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22 Abstract
23
24 Forest understory vegetation is an important feature of wildlife habitat among other 

25 things. Predicting and mapping understory is a critical need for forest management and 

26 conservation planning, but it has proved difficult. LiDAR has the potential to generate remotely 

27 sensed forest understory structure data, yet this potential has to be fully validated. Our 

28 objective was to examine the capacity of LiDAR point cloud data to predict forest understory 

29 cover. We modeled ground-based observations of understory structure in three vertical strata 

30 (0.5 m to < 1.5 m, 1.5 m to < 2.5 m, 2.5 m to < 3.5 m) as a function of a variety of LiDAR metrics 

31 using both mixed-effects and Random Forest models. We compared four understory LiDAR 

32 metrics designed to control for the spatial heterogeneity of sampling density. The four metrics 

33 were highly correlated and they all produced high values of variance explained in mixed-effects 

34 models. The top-ranked model used a voxel-based understory metric along with vertical 

35 stratum (Akaike weight = 1, explained variance = 87%, SMAPE=15.6%). We found evidence of 

36 occlusion of LiDAR pulses in the lowest stratum but no evidence that the occlusion influenced 

37 the predictability of understory structure. The Random Forest model results were consistent 

38 with those of the mixed-effects models, in that all four understory LiDAR metrics were 

39 identified as important, along with vertical stratum. The Random Forest model explained 74.4% 

40 of the variance, but had a lower cross-validation error of 12.9%. Based on these results, we 

41 conclude that the best approach to predict understory structure is using the mixed-effects 

42 model with the voxel-based understory LiDAR metric along with vertical stratum, but that other 

43 understory LiDAR metrics (fractional cover, normalized cover and leaf area density) would still 

44 be effective in mixed-effects and Random Forest modelling approaches.
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45 Introduction

46 Understory vegetation is an important part of the forested ecosystem. It contributes 

47 greatly to nutrient cycling (1, 2), wildlife habitat (3-5), fire behaviour (6-8), microclimate (2) and 

48 carbon accounting (9). Understory vegetation communities are therefore often considered a 

49 good indicator of forest ecological integrity (10, 11) . However, spatial predictions of understory 

50 cover or density have been extremely difficult to generate using traditional variables such as 

51 topography, overstory and soils (12). Active remote-sensing technology such as LiDAR (light 

52 detection and ranging) could potentially address this issue. 

53 LiDAR provides an estimate of three-dimensional forest structure including estimates of 

54 canopy structure, understory vegetation and terrain. LiDAR is a survey method that measures 

55 the distance to a target (in this case, vegetation) by illuminating the vegetation with a laser light 

56 pulse, and measuring the reflected pulses with a sensor. These reflected pulses are called LiDAR 

57 returns. Three-dimensional representations of the forest are constructed using laser pulse 

58 return times. This capacity has conferred large advantages to forest managers, conservationists 

59 and researchers in their attempts to manage the forest efficiently and sustainably. LiDAR can 

60 generate reliable, robust estimates of many forest structure variables including canopy height 

61 and cover (13-15), as well as basal area and tree density (13, 16) and has  similar potential for 

62 understory structure. 

63 To date, relatively few studies have evaluated the potential of LiDAR to describe 

64 understory structure by comparing ground-based measures of understory structure and LiDAR 

65 data (17-20). In each study, different LiDAR metrics were used with a variety of covariates, 

66 analytical approaches, and forest types to test predictions of understory cover or density. There 
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67 is a large discrepancy in the success of the various LiDAR metrics in producing reliable 

68 predictions of understory. Our objective in this paper is to evaluate the potential of LiDAR to 

69 generate predictions of understory cover by comparing to field measures of understory.  To 

70 achieve this objective, we examine alternative LiDAR metrics that control for spatial 

71 heterogeneity of sampling density, we compare regression and machine learning statistical 

72 approaches, and we examine the value of multiple variables in our models.

73 A key challenge of working with LiDAR data is that there is a large amount of spatial 

74 heterogeneity in the sampling density over space that occurs in the normal course of 

75 generating LiDAR point clouds. This spatial heterogeneity is due to variations in scan angle, 

76 flight height, movement of the aircraft during data collection and the degree of overlapping 

77 flight lines. Thus, relative measures of vegetation density or cover, where the number of 

78 returns in a vertical stratum are scaled relative to some measure of sampling density, should 

79 provide better estimates of true understory vegetation cover.  A variety of approaches have 

80 been used to relativize these measures, for example, dividing the number of returns in a 

81 vertical bin by the total number of returns in the column, or by the number of returns in the bin 

82 and below the bin (20). We examine four different understory structure metrics based on 

83 different approaches to control for sampling density.

84 We explored two statistical approaches for modelling understory vegetation structure 

85 as a function of LiDAR data: machine learning and mixed effects regression models. Machine 

86 learning, specifically random forest, has been used to model forest inventory variables with a 

87 large suite of LiDAR derived predictors (18, 21). Machine learning in this context strives to 

88 produce the best prediction of the forest inventory variables. However, machine learning does 
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89 not produce an ecologically interpretable relationship per se, only estimates of variable 

90 importance. Machine learning makes no assumptions about the structure of the data, is ideal 

91 for predicting relationships that are non-linear, is insensitive to correlations among variables, 

92 and interactions are automatically modeled. However, machine learning is prone to bias 

93 associated with incomplete ranges of conditions being sampled. As an alternative, we explored 

94 linear mixed-effects regression models. These models make assumptions of homoscedasticity 

95 and normality of errors which must be checked but can produce more parsimonious and more 

96 interpretable models than machine learning in some instances. In random forest models, large 

97 suites of variables are usually included to achieve the best predictive capacity. In the regression 

98 models, it is more important to limit the number of variables included to avoid overfitting and 

99 strong correlations between explanatory variables.  

100 Occlusion has been discussed in the literature as a possible issue limiting LiDAR 

101 effectiveness for prediction of understory structure (22, 23), but more recent studies have 

102 shown that the potential occlusion may not interfere with generating predictions. Latifi et al. 

103 (18) demonstrated that artificially reducing the density of the LiDAR point cloud did not have an 

104 appreciable effect on variance explained in models predicting understory structure. In another 

105 study, prediction errors of understory vegetation cover were not related with canopy cover 

106 (17). However, forest type in some instances can influence the predictive accuracy of models 

107 (19). In both of our modelling approaches, we included additional variables beyond the 

108 understory LiDAR metrics that may influence the amount of occlusion of the laser pulse, 

109 namely, the amount of overstory, the forest type, and the vertical stratum. All three of these 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2019. ; https://doi.org/10.1101/698399doi: bioRxiv preprint 

https://doi.org/10.1101/698399
http://creativecommons.org/licenses/by/4.0/


6

110 variables could reflect the amount of vegetation in the area above the vertical stratum of 

111 interest. 

112 Our primary objective is to quantify the capacity of LiDAR to estimate understory 

113 structure. To achieve this, 1; we compare the effectiveness of four possible understory LiDAR 

114 metrics for predicting understory cover that control for sampling density, 2; we examine the 

115 influence of potentially important additional explanatory variables on the model which will  

116 inform us about the importance of occlusion, and 3; we compare the mixed effects vs random 

117 forest approach for generating predictions.  Our aim is to generate robust and effective 

118 predictions of understory cover that could inform forest management and conservation.

119

120

121 Methods

122 Study area

123 This project was conducted in the Petawawa Research Forest. The research forest 

124 covers 9,945 hectares in the Great Lakes-St. Lawrence forest region (45o 58’ 46.74” N, 77o 30’ 

125 22.11” W), Ontario, Canada. The study area is on the Southern end of the Precambrian Shield, 

126 on bedrock of granites and gneisses. Forest composition  features White Pine (Pinus strobus 

127 Linnaeus), Red Pine (Pinus resinosa Aiton), Red Oak (Quercus rubra Linnaeus), Yellow Birch 

128 (Betula alleghaniensis Britton), Sugar Maple (Acer saccharum Marshall), and Red Maple (Acer 

129 rubrum Linnaeus) as dominant species, often in uneven-aged forests. Presently, the Petawawa 

130 Research Forest is dominated by healthy but mature and overmature overstory (80-140 years) 
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131 coupled primarily with low-quality regeneration and understories. For the purpose of the 

132 current study, we classified the forest into four types (TYPE) to explore the influence of forest 

133 type on the consistency of the relationship between field measured understory vegetation 

134 structure and LIDAR metrics.  The four forest type classes (TYPE) are Pine, Red Oak, Mixedwood 

135 without Pine, and Mixedwood with Pine. These four classes account for approximately 71% of 

136 the landbase of the research forest. 

137

138 Field data collection

139 Within the Petawawa Research Forest, plots were selected from a 25 m-resolution 

140 rasterized LiDAR database and Forest Resource Inventory data based on aerial photo 

141 interpretation. Potential plots were selected based on a stratification by forest type, overstory 

142 density and understory density. Initial overstory was measured as the relative number of LiDAR 

143 laser pulse returns in overstory (> 4 m), and understory density as the relative number of LiDAR 

144 laser pulse returns 4 m or lower.  We divided the full range of overstory values into 10 equal 

145 bins, and the full range of understory values into 10 equal bins. For each combination of 

146 understory by overstory bin we selected five potential plots for each of four forest types, for a 

147 total of 2000 plots, 500 in each 10 by 10 matrix, with one matrix per each forest type.  This is a 

148 rough stratification but helped to fill the statistical space to ensure optimal conditions for 

149 model construction. We sampled 437 plots out of the possible 2000, trying to select 1-5 plots 

150 from all cells in the matrix.

151 We collected vegetation data on 250 plots in 2015 and on an additional 187 plots in 

152 2016. Plots were selected in the field from the list of preselected plots based on accessibility 
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153 and conformity with classified forest type, understory and overstory.  At each plot centre, we 

154 used an SX Blue II GPS to generate a sub-meter accurate location through averaging a minimum 

155 number of 300 points.  Our field data collection attempted to generate a field-based point 

156 cloud to match the LiDAR based point cloud. We measured forest structure on ground-based 

157 plots in nine vertical strata (0-0.5 m, 0.5-1 m, 1-1.5 m, 1.5-2 m, 2-2.5 m, 2.5-3 m, 3-3.5 m, 3.5-

158 4.0 m, > 4 m). From the centre point we created eight radial transects (12 m in length each) 

159 starting in a north direction and moving clockwise by 45 degrees for each additional transect.  

160 Along each transect, data were collected at each meter for a total of 97 sample locations in 

161 each plot, including the centre point (Fig 1).  To sample the vegetation structure, observers 

162 recorded the presence or absence of vegetation within a 15 cm circle for each of the nine 

163 vertical strata. Thus, there were 97 sampling points x 9 strata = 873 presence/absence points 

164 collected in each 12 m radius plot volume. The original vertical strata were later grouped into 

165 three strata (S1 = 0.5-1.5 m, S2 = 1.5-2.5 m, S3 = 2.5-3.5 m). We excluded points below 0.5 as 

166 they are difficult to distinguish from ground points. We excluded points above 3.5m as they 

167 were difficult to estimate from the ground. The total number of vegetation presences in each 

168 stratum (0-194) were recorded in the FIELD variable for subsequent analysis. This field 

169 collection would represent a lower sampling density than the LiDAR data which are at 6 pulses 

170 per square meter with up to 8 returns per pulse which resulted in 2.44 returns per m3 

171 compared to the field data with 0.43 returns per m3. These data are not strictly comparable 

172 since the field data represent presence and absence whereas the LiDAR returns represent only 

173 presence but give a general impression of relative sampling density.

174
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175 Fig 1. Sampling design for FIELD observations of vegetation structure. r is the radius of the 
176 measurement area around each point on the transect.
177

178 LiDAR acquisition

179 Airborne LiDAR data were collected over the Petawawa Research Forest from August 

180 17-20, 2012.  The Riegl 680i sensor was carried aboard a Cessna 172 aircraft flown at an 

181 average altitude of 750 m. Technical acquisition specifications are provided in Table 1. The data 

182 were collected as a full-waveform and provided as a discrete point file (LAS 1.1) for use in this 

183 project. Flight overlap was approximately fifty percent.

184
185 Table 1. Airborne LiDAR acquisition specifications.
186

Parameter Value
Pulse repetition rate 150Khz
Frequency 76.67Hz
Scan Angle ± 20 Degrees
FOV 40 Degrees
Line spacing: Cross track 0.6 m
Line spacing: Along track 0.6 m
Line spacing between flight lines 250 m
Laser footprint min: 0.38 m
Laser footprint max 0.42 m
Average point density: All Returns ~ 15 pts/m2

Average point density: Last Returns ~ 6 pts/m2

187
188

189 Data processing and LiDAR variables

190 We developed specific LiDAR understory cover metrics that are expected to capture the 

191 vegetation understory density directly. We identified four metrics for our analysis. Three of 

192 these metrics are used in the literature: fractional cover (FRAC, modified from Wing et al. (17)), 

193 leaf area density (LAD, (24)), and voxel cover (VOX1m, (25)). The fourth metric considered was 
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194 normalized cover (NORM), because it is an easily interpretable and easily calculated alternative. 

195 Fractional cover is calculated by summing the number of LiDAR vegetation returns for each 

196 understory vertical stratum and dividing by the sum of understory and ground returns. Leaf 

197 area density is calculated as the negative log of the number of returns in a vertical stratum 

198 divided by all returns in and below the vertical bin and then divided by a constant. Normalized 

199 cover is calculated by dividing all vegetation returns in the understory stratum divided by all 

200 first returns. The voxel cover approach filters all returns by estimating presence/absence of 

201 returns in each standard voxel (in our case 1 m3) in the vertical stratum. For example, a 2 m x 5 

202 m x 5 m vegetation stratum that contains 50 1-m3 voxels would have a voxel cover value 

203 between 0 and 50, equal to the number of voxels that contain vegetation. Sampling density is 

204 extremely heterogeneous due to different factors such as flight line overlap and the pitch and 

205 yaw of the plane. The LiDAR metrics provide four alternative ways to scale the number of 

206 returns in a vertical bin by sampling density. In addition to these four specific LiDAR understory 

207 cover metrics, we calculated a suite of standard LiDAR point cloud metrics such as canopy cover 

208 and canopy height (S1 Table). 

209

210 Analysis

211 We used linear mixed effects models to determine the capacity of our four main LiDAR 

212 understory cover metrics to predict understory cover recorded in the field (FIELD) in each of the 

213 three vertical strata defined above (ST1, ST2, ST3), and to examine the influence of secondary 

214 explanatory variables(26). These secondary explanatory variables consisted of forest TYPE 

215 (based on overstory composition), STRATUM (vertical 1 m strata, ST1-ST3), and OVERSTORY 
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216 (Appendix 1). The OVERSTORY variable was a measure of LiDAR vegetation cover in the vertical 

217 column above the stratum of interest calculated by classifying canopy cover (CC) into three 

218 classes (low, medium, high).  We treated the plot as a random effect to account for multiple 

219 measurements in each plot.  We formulated 16 candidate models consisting of LiDAR variables, 

220 with the constraint of maintaining variance inflation factors (VIF) < 10 to avoid issues of 

221 multicollinearity (Table 2). For each the four main LiDAR metric, we derived four models: 1) a 

222 null model consisting only the LiDAR metric, 2) a model with the LiDAR metric, OVERSTORY and 

223 their interaction, 3) a model with the LiDAR metric, TYPE, and their interaction, and 4) a model 

224 with the LiDAR metric, STRATUM, and their interactionWe ranked all mixed effects models 

225 based on Akaike’s information criterion (AIC, (27, 28)) and calculated the R2 values. We also 

226 computed the symmetric mean absolute percentage error (SMAPE), based on 10-fold cross-

227 validation (29) for the top-ranked models, and calculated SMAPE values for each of the 3 

228 vertical strata separately. Parameters of the mixed effects models were estimated by maximum 

229 likelihood in R with the nlme package(18, 26, 30).

230
231 Table 2: Mixed effects model explaining understory cover recorded in the field (FIELD) : TYPE 
232 = forest type based on overstory composition, STRATUM = vertical 1 m strata, S1-S3, and 
233 OVERSTORY = a measure of LiDAR vegetation cover in the vertical column above the stratum of 
234 interest calculated by classifying canopy cover (CC) into three classes (low, medium, high), see 
235 Appendix 1. The plot was treated as a random effect in each model.
236

Model Name Model fixed effects structure Biological interpretation
FRAC null FRAC Relationship between 

FRAC and FIELD is constant
FRAC * STRATUM FRAC + STRATUM + FRAC*STRATUM Relationship between 

FRAC and FIELD differs 
among STRATUM

FRAC * OVERSTORY FRAC + OVERSTORY + FRAC*OVERSTORY Relationship between 
FRAC and FIELD differs 
among OVERSTORY
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FRAC * TYPE FRAC + TYPE + FRAC*TYPE Relationship between 
FRAC and FIELD differs 
among TYPE

NORM null NORM Relationship between 
NORM and FIELD is 
constant

NORM * STRATUM NORM + STRATUM + NORM*STRATUM Relationship between 
NORM and FIELD differs 
among STRATUM

NORM * 
OVERSTORY

NORM + OVERSTORY + FRAC*OVERSTORY Relationship between 
NORM and FIELD differs 
among OVERSTORY

NORM * TYPE NORM + TYPE + FRAC*TYPE Relationship between 
NORM and FIELD differs 
among TYPE

VOX1m null VOX1m Relationship between 
VOX1m and FIELD is 
constant

VOX1m * STRATUM VOX1m +STRATUM + VOX1m*STRATUM Relationship between 
VOX1m and FIELD differs 
among STRATUM

VOX1m * 
OVERSTORY

VOX1m + OVERSTORY + 
VOX1m*OVERSTORY

Relationship between 
VOX1m and FIELD differs 
among OVERSTORY

VOX1m * TYPE VOX1m + TYPE + VOX1m*TYPE Relationship between 
VOX1m and FIELD differs 
among TYPE

LAD (null) LAD Relationship between LAD 
and FIELD is constant

LAD * STRATUM LAD + STRATUM + LAD*STRATUM Relationship between LAD 
and FIELD differs among 
STRATUM

LAD  * OVERSTORY LAD + OVERSTORY + LAD*OVERSTORY Relationship between LAD 
and FIELD differs among 
OVERSTORY

LAD  * TYPE LAD + TYPE + LAD*TYPE Relationship between LAD 
and FIELD differs among 
TYPE

237
238
239

240

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2019. ; https://doi.org/10.1101/698399doi: bioRxiv preprint 

https://doi.org/10.1101/698399
http://creativecommons.org/licenses/by/4.0/


13

241 We used random forest with the same FIELD response variable as in the mixed-effects models 

242 described above. Because random forests are non-parametric and do not yield a log-likelihood, 

243 we ran a stepwise procedure with 341 LiDAR derived variables (which includes overstory 

244 estimates) (S1 Table), plus secondary variables forest TYPE (from Forest Resource Inventory), 

245 and STRATUM. We used mean decrease in accuracy to rank variable importance (31). At each 

246 iteration, we removed the 20% least influential variables and compared the explained variance. 

247 Models were built using the randomForest package in R (31). We examined the importance of 

248 variables in the suite of random forest models.  Similar to the mixed effects models above, we 

249 quantified model performance with the percent variance explained and SMAPE based on 10-

250 fold cross-validation. Finally, we compared the prediction performance of the mixed effects and 

251 random forest approaches. 

252

253 Results 

254 Relationship among LiDAR metrics

255 The FIELD measure of understory cover was strongly correlated with all of the four main 

256 LiDAR metrics we investigated (Fig 2a-d). However, the FRAC and VOX1m metrics appeared to 

257 be the most linearly related to the FIELD measure (Fig 2a-d). Nonetheless, the four understory 

258 vegetation metrics were all highly correlated with one another (Table 3). 

259 Fig 2. Scatterplot of FIELD (measured density) against the LiDAR metrics, a) fractional cover 
260 (FRAC), b) normalized cover (NORM), c) leaf area density (LAD), and d) voxel cover (VOX1m), 
261 including Pearson product-moment correlation coefficients.
262
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263 Table 3.  Pearson product-moment correlations between pairs of understory cover LiDAR 
264 metrics included in analysis (n = 1310).
265

Correlation r Lower 95% 
CL

Upper 95% CL

FRAC vs NORM 0.77 0.751 0.794
FRAC vs VOX1m 0.84 0.819 0.852
FRAC vs LAD 0.77 0.744 0.789
NORM vs LAD 0.81 0.79 0.827
NORM vs VOX1m 0.92 0.911 0.927
VOX1m vs LAD 0.79 0.767 0.808

266

267 Mixed-effects models

268 The model consisting of the voxel-based cover estimate (VOX1m) with STRATUM and 

269 their interaction was the most parsimonious among all sixteen models considered (Table 4). 

270 This model had all the support (Akaike weight = 1, Table 4, Fig 3).  This model also had the 

271 highest conditional R2 (along with the FRAC + STRATUM + interaction model, although all 

272 sixteen models had high R2 values (0.71-0.87). For each the four LiDAR metrics we considered, 

273 we observed the same pattern: the addition of STRATUM and the interaction to the null models 

274 resulted in consistently better model performance in terms of delta AIC and R2. The addition of 

275 OVERSTORY or TYPE resulted in much less model improvement than the addition of STRATUM. 

276 The model with most support did not include forest type or overstory, which is important since 

277 forest type was derived from forest inventory data and cannot be extracted from LiDAR point 

278 clouds. 

279

280 Table 4. R2 and AIC values for sixteen candidate linear mixed-effects models. Note that 
281 marginal R2 denotes the percent variance explained by the fixed effects, whereas the 
282 conditional R2 includes both fixed effects and random effects. Delta AIC is the difference 
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283 between each model relative to the most parsimonious model and Akaike weight indicates the 
284 percent support of a given model. .
285

Model Marginal 
R2

Conditional 
R2

AIC Delta AIC Akaike 
weight

VOX1m * STRATUM 0.62 0.87 11868.87 0 1
FRAC * STRATUM 0.65 0.87 11901.00 32.13 0
LAD * STRATUM 0.56 0.82 11998.29 129.42 0
NORM * STRATUM 0.52 0.83 12099.16 230.29 0
VOX1m * OVERSTORY 0.60 0.82 12348.32 479.45 0
LAD * OVERSTORY 0.51 0.73 12384.88 516.01 0
VOX1m * TYPE 0.60 0.82 12384.88 516.01 0
VOX1m null 0.60 0.82 12385.78 516.91 0
LAD * TYPE 0.51 0.72 12396.42 527.55 0
LAD null 0.50 0.71 12407.11 538.24 0
NORM * OVERSTORY 0.53 0.75 12450.66 581.79 0
NORM * TYPE 0.51 0.75 12563.97 695.1 0
NORM null 0.49 0.75 12568.4 699.53 0
FRAC * OVERSTORY 0.58 0.77 12585.04 716.17 0
FRAC * TYPE 0.57 0.75 12613.19 744.32 0
FRAC null 0.56 0.75 12617.05 748.18 0

286

287 Figure 3: Predicted versus observed scatterplot. Predictions of FIELD generated from mixed-
288 effects model consisting of VOX1m + STRATUM + interaction.
289

290 In all of the mixed effects models, the four LiDAR metrics had positive slopes (Fig 4, 

291 Table 5, for example). In our best model, the intercept of the lowest STRATUM was higher than 

292 in the  upper strata (Fig 4). Although the model included the interaction between STRATUM and 

293 voxel cover, there was no evidence of different slopes of LiDAR among strata (Fig 4, Table 5). 

294 Symmetric mean absolute percentage (SMAPE) errors for the top-ranked mixed effects model 

295 was 0.156, but these values varied when investigating each stratum separately (Table 6). 

296 Contrary to expectations, the SMAPE value was lowest for the lowest strata (0.107) and 

297 greatest for the highest strata (0.190). There were 437 observations for each stratum. 
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298
299 Figure 4: Predictions of FIELD for each of three strata based on the mixed-effects model 
300 consisting of VOX1m + STRATUM + interaction. Dashed lines around solid lines denote 95% 
301 confidence intervals around predictions.
302
303 Table 5.  Estimates of the best supported mixed-effects model consisting of VOX1m + 
304 STRATUM + interaction and a random effect of plot.
305

 Estimate  Lower 
95% CL

 Upper 
95% CL

intercept 64.35 60.25 68.46
LIDAR 0.03 0.29 0.32
STRATUM.ST2 -21.94 -25.96 -17.98
STRATUM.ST3 -29.38 -33.48 -25.28
LIDAR*STRATUM.ST2 -0.016 -0.039 0.008
LIDAR*STRATUM.ST3 -0.010 -0.037 0.017

306
307
308 Table 6. Ten-fold cross-validation results from top linear mixed-effects model and the 
309 selected random forest model, based on symmetric mean absolute percentage error 
310 (SMAPE). Note that average values of SMAPE are given for predictions of all STRATUM levels, 
311 but also for predictions specific to STRATUM levels.
312

Model SMAPE mean SMAPE 
sd 
(n=10)

VOX1m * 
STRATUM

predictions of all STRATUM levels 0.156 0.014

predictions of STRATUM 1 0.107 0.016
predictions of STRATUM 2 0.170 0.024
predictions of STRATUM 3 0.190 0.020

Random forest (59 
predictors)

0.129 0.015

313
314
315
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316 Random forest models

317 We examined the percent variance explained and the number of variables included to 

318 choose a final random forest model.  The base model with all 341 LiDAR-derived variables, 

319 forest TYPE, and STRATUM explained 74.8% of the variance, but the final model with only 59 

320 predictors had a very similar variance explained (74.4%) (Fig 5, Table 7). The 10-fold cross-

321 validation on this reduced model showed an overall mean error rate of 0.129 (Table 6). 

322

323 Fig 5. Predicted versus observed scatterplot for Random Forest model with 59 predictors. 
324

325 Some variables appeared more often than others among the 18 random forest models 

326 considered. These variables consisted of STRATUM, GAP (the inverse of LAD), and LAD. In 

327 addition, most or all of the LiDAR understory vegetation cover metrics (VOX1m, FRAC, NORM) 

328 were represented in the top 10 variables of most of the 18 potential models (S2 Table).  Crown 

329 closure (CC), an estimate of overstory, was also often among the top 10 most important 

330 variables within the models considered. Forest TYPE never occurred among the top 10 variables 

331 (S2 Table). 

332
333 Table 7. Random forest models: mean squared residuals and percent variance explained.
334

Number of 
Predictors in model

Mean Squared 
Residuals

Percent variance 
Explained

341 (Base model) 484 74.8
276 485 74.7
223 485 74.8
180 484 74.7
145 476 75.2
116 486 74.7
93 481 75.0
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74 492 74.3
59 490 74.4
47 513 73.3
37 508 73.5
29 531 72.4
22 553 71.2
17 528 72.5
13 558 70.9
10 580 69.8
7 569 70.4
5 632 67.1

335

336 Discussion

337 In this study, our primary objective was to quantify the capacity of LiDAR to estimate 

338 understory structure so that it can be predicted across a landscape. To address this objective, 

339 first we compared the effectiveness of four possible understory LiDAR metrics (fractional cover, 

340 leaf area density, voxel cover, and normalized cover) for predicting understory cover. Each of 

341 these metrics used some measure of the number or presence of LiDAR returns in an understory 

342 vertical stratum and standardized these measures with an estimate of sampling density. All four 

343 LiDAR metrics were effective at predicting the amount of structure in an understory stratum, 

344 but the best metric based on mixed effects modelling was the voxel-based cover estimate 

345 (VOX1m) with the addition of STRATUM with a conditional R2 of 0.87.  The voxel-based 

346 approach is relatively easy to calculate and provides a direct measure of the amount of 

347 understory structure. 

348 We anticipated that other variables could influence the predictions of understory. We 

349 identified three potentially important variables that might influence occlusion of understory 

350 structure: overstory, forest type and stratum. Increased overstory can reduce the ability of 
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351 LiDAR to predict understory structure due to occlusion (22, 23). For LiDAR to detect the 

352 understory structure, LiDAR pulses must reach and be reflected by understory vegetation.  A 

353 greater vegetation interception above the area of interest will result in fewer pulses returning 

354 from the understory.  Both forest type and stratum will also influence the amount of vegetation 

355 in the area above the area of interest and therefore potentially alter the relationship of field 

356 measured and LiDAR measured understory. 

357 Correlations between the three secondary explanatory variables (STRATUM, forest 

358 TYPE, and OVERSTORY) made it impossible to include all variables in a single model. Our best 

359 model included STRATUM, where we found that the lowest stratum had the highest intercept. 

360 This is consistent with occlusion in that we have more vegetation in ST1 than ST2 and ST3 for a 

361 given value of VOX1m.  This is consistent with the idea that fewer laser pulses are reaching the 

362 lower stratum. The relationship between the field observed structure and VOX1m did not vary 

363 with STRATUM. Surprisingly, we found that the error in the predicted relationship was greatest 

364 in the highest STRATUM and lowest in the lowest STRATUM suggesting that there was no 

365 reduction in predictability associated with potential occlusion.  This may be due to the 

366 possibility that the understory vegetation in the lower stratum is easier to estimate on the 

367 ground and therefore there is less noise in the relationship between the field and the LiDAR 

368 measures in the lower stratum.  Either way, we conclude that our LiDAR sampling intensity was 

369 sufficient in our forest system to capture the understory structure regardless of the density of 

370 vegetation above the area of interest and the related potential for occlusion. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2019. ; https://doi.org/10.1101/698399doi: bioRxiv preprint 

https://doi.org/10.1101/698399
http://creativecommons.org/licenses/by/4.0/


20

371 There is some discrepancy in the literature on the effect of occlusion. Latifi et al. (19) 

372 found that thinning LiDAR data by artificially reducing the sampling density did not impact the 

373 effectiveness of models to predict understory. Their original data had a high point density of 30-

374 40 points per m2 and a maximum of 11 returns. Data were thinned to two different levels but 

375 Latifi et al. (19) do not report on the final point density after thinning. Our data are at roughly 

376 11.69 vegetation returns per m2, with about 0.55 vegetation returns per m3 in the 0.5-4m 

377 understory stratum.  Obviously, the effectiveness of LiDAR to capture understory structure will 

378 eventually be undermined by a sufficient reduction in sampling density, but this limit does not 

379 seem to have been reached in the Petawawa research forest. Gonzalez-Ferreiro et al. (32) 

380 showed that reducing pulse density from 8 pulses per m2 to 0.5 pulses per m2,  did not decrease 

381 model precision in estimating stand variables. Wing et al. (17) found no trends between 

382 understory vegetation cover prediction error and canopy cover, lending support to the idea 

383 that under some natural overstory conditions and common LiDAR sampling densities, occlusion 

384 is not an issue for predicting understory with LiDAR.  In contrast, Ruiz et al. (33) reported an 

385 effect of LiDAR sampling density on model R2 values but only at levels below around 5 

386 points/m2.  It is unclear how this number translates into pulses reaching the understory.  The 

387 lack of influence of forest type on understory cover predictions enables predicting understory 

388 from LiDAR alone without relying on traditional forest resource inventory data.

389 The comparisons of mixed effects and random forest models revealed some obvious 

390 alignment. All four of the LiDAR metrics considered (fractional cover, leaf area density, 

391 normalized cover, and voxel cover) produced models with high R2 values. All four of these 

392 variables also had very high variable importance in the random forest models. The stratum 
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393 variable appeared often in the top random forest models and was also important in the top-

394 ranked mixed-effects model (VOX1m * STRATUM). The random forest model had a high 

395 variance explained (75%), but not as high as the best mixed effects model that included the 

396 voxel-based measure of cover (87%).  Our selected random forest model had 59 explanatory 

397 variables, whereas the best mixed effects model had two explanatory variables and their 

398 interaction, as well as a random effect of plot. Based on our results, generating landscape-wide 

399 predictions using the mixed-effects model should be simpler and more efficient than with the 

400 random forest model. For these reasons, although the random forest model is effective, we 

401 recommend the mixed effects model as the better choice for predicting understory vegetation 

402 structure with LiDAR. 

403 Direct evaluations of LiDAR metrics to capture understory cover are relatively rare. 

404 Studies have shown good agreement between field and LiDAR measures of forest stand 

405 biomass (34, 35), but biomass is likely driven primarily by tree biomass rather than understory. 

406 Asner et al. (36) explored structural transformation of rain forests due to invasive plants and 

407 used LiDAR to estimate structural changes in the understory. However, Asner et al. (36) did not 

408 report quantitative comparisons of field and LiDAR measures. Martinuzzi et al. (37) produced 

409 classification accuracies of 83% in predicting the presence of shrubs, but not their abundance. 

410 Wing et al. (17) compared understory vegetation cover and airborne LiDAR estimates with the 

411 addition of a filter for intensity values in an interior ponderosa pine forest. Their models had R2 

412 values from 0.7 to 0.8 and accuracies of ± 22%. Our models achieved slightly higher R2 with 

413 slightly lower error rates without the use of the intensity filter, suggesting that the latter filter 

414 may not always be necessary to generate good estimates. As well, the intensity filter is affected 
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415 by a number of factors such as elevation and the nature of the object intercepted that are 

416 difficult to normalize, so we prefer models that do not require intensity filters. Latifi et al. (19) 

417 also made a direct comparison of ground-based vs LiDAR estimates of understory cover in 

418 temperate mixed stands, and found strong relationships in the top canopy and the herbal layer 

419 with lower predictive power in the intermediate stand layers. Their shrub layer regression 

420 model had a relatively low R2 value of 37%. In a later study, Latifi et al. (18) showed an R2 of 

421 80% for the shrub layer based on thinned LiDAR point clouds and new analytical methods.  

422 Campbell et al. (20) also compared field and LiDAR measures of understory directly in 

423 mixedwood forests and generated an R2 of 0.44 based on a relative point density similar to 

424 metrics that we used here. It is unclear why there is so much variation in the ability of LiDAR to 

425 predict understory structure but it suggests that we should be somewhat cautious in assuming 

426 that individual LiDAR metrics are capturing the understory structure.  It is important to note 

427 that some of the error in prediction in our models is likely the result of the lag between the 

428 LiDAR acquisition (2012) and the field data acquisition (2016-2017). This lag is likely to result in 

429 the most error in the youngest stands where changes in herb and shrub growth are likely to be 

430 greatest.  The majority of stands included in the analysis are mature forest, and even with this 

431 source of error our ability to predict was good.

432 Despite the limited work directly evaluating LiDAR measures of understory vegetation 

433 structure, many studies have explored the use of LiDAR to capture wildlife habitat structure 

434 some of which is related to understory (38-42). One of the most commonly reported 

435 relationships is between vegetation structural diversity or understory density and wildlife 

436 diversity (5, 43-45). In addition, vegetation understory structure explained bird species 
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437 composition in a number of studies (5, 46, 47). Melin et al. (48) found that a LiDAR metric 

438 similar to fractional cover to estimate shrub density below 5 m was a good predictor of grouse 

439 brood occurrence in Finland, consistent with expectations based on known habitat preferences 

440 of the species. However, they did not test the assumption that the LiDAR metric effectively 

441 estimates vegetation density below 5 m. All of these studies do however, provide indirect 

442 evidence for the effectiveness of LiDAR estimates to predict understory cover or density.

443

444 Conclusions

445 Based on the highest variance explained, the fewest number of explanatory variables, 

446 and ease of interpretation and application, we would recommend using the mixed-effects 

447 model consisting of voxel-based cover estimate, stratum, and their interaction to generate 

448 spatial estimates of understory cover. Nonetheless, all four LiDAR metrics that we considered 

449 and both analytical approaches (mixed effects models, random forests) produced predictions 

450 suitable for many ecological and forest planning applications. This information could improve 

451 spatially-explicit mapping of wildlife habitat, fire behaviour, or forest ecosystem dynamics. 

452 Measuring understory cover in situ is not difficult, but many applications require maps or 

453 spatial estimates of attributes for forest management and conservation applications over large 

454 areas. LiDAR remote sensing is the most efficient approach to generating these spatial 

455 estimates of forest attributes. Our results fully support the indirect evidence provided from 

456 wildlife studies that LiDAR can predict understory vegetation structure even in the presence of 

457 a mature tree canopy.  With error percentages of around 15%, these spatial predictions will 

458 introduce some uncertainty into predictions, which should be factored into decision-making. 
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