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Abstract

Forest understory vegetation is an important feature of wildlife habitat among other
things. Predicting and mapping understory is a critical need for forest management and
conservation planning, but it has proved difficult. LiDAR has the potential to generate remotely
sensed forest understory structure data, yet this potential has to be fully validated. Our
objective was to examine the capacity of LiDAR point cloud data to predict forest understory
cover. We modeled ground-based observations of understory structure in three vertical strata
(0.5mto<1.5m,1.5mto<2.5m, 2.5 mto < 3.5m) as a function of a variety of LIDAR metrics
using both mixed-effects and Random Forest models. We compared four understory LiDAR
metrics designed to control for the spatial heterogeneity of sampling density. The four metrics
were highly correlated and they all produced high values of variance explained in mixed-effects
models. The top-ranked model used a voxel-based understory metric along with vertical
stratum (Akaike weight = 1, explained variance = 87%, SMAPE=15.6%). We found evidence of
occlusion of LiDAR pulses in the lowest stratum but no evidence that the occlusion influenced
the predictability of understory structure. The Random Forest model results were consistent
with those of the mixed-effects models, in that all four understory LiDAR metrics were
identified as important, along with vertical stratum. The Random Forest model explained 74.4%
of the variance, but had a lower cross-validation error of 12.9%. Based on these results, we
conclude that the best approach to predict understory structure is using the mixed-effects
model with the voxel-based understory LiDAR metric along with vertical stratum, but that other
understory LiDAR metrics (fractional cover, normalized cover and leaf area density) would still

be effective in mixed-effects and Random Forest modelling approaches.
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Introduction

Understory vegetation is an important part of the forested ecosystem. It contributes
greatly to nutrient cycling (1, 2), wildlife habitat (3-5), fire behaviour (6-8), microclimate (2) and
carbon accounting (9). Understory vegetation communities are therefore often considered a
good indicator of forest ecological integrity (10, 11) . However, spatial predictions of understory
cover or density have been extremely difficult to generate using traditional variables such as
topography, overstory and soils (12). Active remote-sensing technology such as LiDAR (light
detection and ranging) could potentially address this issue.

LiDAR provides an estimate of three-dimensional forest structure including estimates of
canopy structure, understory vegetation and terrain. LiDAR is a survey method that measures
the distance to a target (in this case, vegetation) by illuminating the vegetation with a laser light
pulse, and measuring the reflected pulses with a sensor. These reflected pulses are called LiDAR
returns. Three-dimensional representations of the forest are constructed using laser pulse
return times. This capacity has conferred large advantages to forest managers, conservationists
and researchers in their attempts to manage the forest efficiently and sustainably. LiDAR can
generate reliable, robust estimates of many forest structure variables including canopy height
and cover (13-15), as well as basal area and tree density (13, 16) and has similar potential for
understory structure.

To date, relatively few studies have evaluated the potential of LiDAR to describe
understory structure by comparing ground-based measures of understory structure and LiDAR
data (17-20). In each study, different LIDAR metrics were used with a variety of covariates,

analytical approaches, and forest types to test predictions of understory cover or density. There
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is a large discrepancy in the success of the various LIDAR metrics in producing reliable
predictions of understory. Our objective in this paper is to evaluate the potential of LiDAR to
generate predictions of understory cover by comparing to field measures of understory. To
achieve this objective, we examine alternative LiIDAR metrics that control for spatial
heterogeneity of sampling density, we compare regression and machine learning statistical
approaches, and we examine the value of multiple variables in our models.

A key challenge of working with LiDAR data is that there is a large amount of spatial
heterogeneity in the sampling density over space that occurs in the normal course of
generating LiDAR point clouds. This spatial heterogeneity is due to variations in scan angle,
flight height, movement of the aircraft during data collection and the degree of overlapping
flight lines. Thus, relative measures of vegetation density or cover, where the number of
returns in a vertical stratum are scaled relative to some measure of sampling density, should
provide better estimates of true understory vegetation cover. A variety of approaches have
been used to relativize these measures, for example, dividing the number of returns in a
vertical bin by the total number of returns in the column, or by the number of returns in the bin
and below the bin (20). We examine four different understory structure metrics based on
different approaches to control for sampling density.

We explored two statistical approaches for modelling understory vegetation structure
as a function of LiDAR data: machine learning and mixed effects regression models. Machine
learning, specifically random forest, has been used to model forest inventory variables with a
large suite of LiDAR derived predictors (18, 21). Machine learning in this context strives to

produce the best prediction of the forest inventory variables. However, machine learning does
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89  not produce an ecologically interpretable relationship per se, only estimates of variable
90 importance. Machine learning makes no assumptions about the structure of the data, is ideal
91  for predicting relationships that are non-linear, is insensitive to correlations among variables,
92 andinteractions are automatically modeled. However, machine learning is prone to bias
93  associated with incomplete ranges of conditions being sampled. As an alternative, we explored
94 linear mixed-effects regression models. These models make assumptions of homoscedasticity
95  and normality of errors which must be checked but can produce more parsimonious and more
96 interpretable models than machine learning in some instances. In random forest models, large
97  suites of variables are usually included to achieve the best predictive capacity. In the regression
98 models, it is more important to limit the number of variables included to avoid overfitting and
99  strong correlations between explanatory variables.
100 Occlusion has been discussed in the literature as a possible issue limiting LIDAR
101  effectiveness for prediction of understory structure (22, 23), but more recent studies have
102  shown that the potential occlusion may not interfere with generating predictions. Latifi et al.
103  (18) demonstrated that artificially reducing the density of the LiDAR point cloud did not have an
104  appreciable effect on variance explained in models predicting understory structure. In another
105  study, prediction errors of understory vegetation cover were not related with canopy cover
106  (17). However, forest type in some instances can influence the predictive accuracy of models
107  (19). In both of our modelling approaches, we included additional variables beyond the
108  understory LiDAR metrics that may influence the amount of occlusion of the laser pulse,

109 namely, the amount of overstory, the forest type, and the vertical stratum. All three of these
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110  variables could reflect the amount of vegetation in the area above the vertical stratum of

111  interest.

112 Our primary objective is to quantify the capacity of LiDAR to estimate understory

113 structure. To achieve this, 1; we compare the effectiveness of four possible understory LiDAR
114  metrics for predicting understory cover that control for sampling density, 2; we examine the
115  influence of potentially important additional explanatory variables on the model which will
116  inform us about the importance of occlusion, and 3; we compare the mixed effects vs random
117  forest approach for generating predictions. Our aim is to generate robust and effective

118  predictions of understory cover that could inform forest management and conservation.

119

120

121 Methods

122 Study area

123 This project was conducted in the Petawawa Research Forest. The research forest

124  covers 9,945 hectares in the Great Lakes-St. Lawrence forest region (45° 58’ 46.74” N, 77° 30’
125  22.11” W), Ontario, Canada. The study area is on the Southern end of the Precambrian Shield,
126  on bedrock of granites and gneisses. Forest composition features White Pine (Pinus strobus
127  Linnaeus), Red Pine (Pinus resinosa Aiton), Red Oak (Quercus rubra Linnaeus), Yellow Birch
128  (Betula alleghaniensis Britton), Sugar Maple (Acer saccharum Marshall), and Red Maple (Acer
129  rubrum Linnaeus) as dominant species, often in uneven-aged forests. Presently, the Petawawa

130  Research Forest is dominated by healthy but mature and overmature overstory (80-140 years)
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131  coupled primarily with low-quality regeneration and understories. For the purpose of the

132 current study, we classified the forest into four types (TYPE) to explore the influence of forest
133  type on the consistency of the relationship between field measured understory vegetation

134  structure and LIDAR metrics. The four forest type classes (TYPE) are Pine, Red Oak, Mixedwood
135  without Pine, and Mixedwood with Pine. These four classes account for approximately 71% of
136  the landbase of the research forest.

137

138 Field data collection

139 Within the Petawawa Research Forest, plots were selected from a 25 m-resolution

140  rasterized LiDAR database and Forest Resource Inventory data based on aerial photo

141  interpretation. Potential plots were selected based on a stratification by forest type, overstory
142  density and understory density. Initial overstory was measured as the relative number of LiDAR
143 laser pulse returns in overstory (>4 m), and understory density as the relative number of LiDAR
144  laser pulse returns 4 m or lower. We divided the full range of overstory values into 10 equal
145  bins, and the full range of understory values into 10 equal bins. For each combination of

146 understory by overstory bin we selected five potential plots for each of four forest types, for a
147  total of 2000 plots, 500 in each 10 by 10 matrix, with one matrix per each forest type. Thisis a
148  rough stratification but helped to fill the statistical space to ensure optimal conditions for

149  model construction. We sampled 437 plots out of the possible 2000, trying to select 1-5 plots
150  from all cells in the matrix.

151 We collected vegetation data on 250 plots in 2015 and on an additional 187 plots in

152  2016. Plots were selected in the field from the list of preselected plots based on accessibility
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153  and conformity with classified forest type, understory and overstory. At each plot centre, we
154  used an SX Blue Il GPS to generate a sub-meter accurate location through averaging a minimum
155  number of 300 points. Our field data collection attempted to generate a field-based point

156  cloud to match the LiDAR based point cloud. We measured forest structure on ground-based
157  plots in nine vertical strata (0-0.5 m, 0.5-1 m, 1-1.5m, 1.5-2 m, 2-2.5m, 2.5-3 m, 3-3.5 m, 3.5-
158 4.0 m, >4 m). From the centre point we created eight radial transects (12 m in length each)
159  startingin a north direction and moving clockwise by 45 degrees for each additional transect.
160  Along each transect, data were collected at each meter for a total of 97 sample locations in
161  each plot, including the centre point (Fig 1). To sample the vegetation structure, observers
162  recorded the presence or absence of vegetation within a 15 cm circle for each of the nine

163  vertical strata. Thus, there were 97 sampling points x 9 strata = 873 presence/absence points
164  collected in each 12 m radius plot volume. The original vertical strata were later grouped into
165  three strata (S1=0.5-1.5m, S2 =1.5-2.5 m, S3 = 2.5-3.5 m). We excluded points below 0.5 as
166  they are difficult to distinguish from ground points. We excluded points above 3.5m as they
167  were difficult to estimate from the ground. The total number of vegetation presences in each
168  stratum (0-194) were recorded in the FIELD variable for subsequent analysis. This field

169  collection would represent a lower sampling density than the LiDAR data which are at 6 pulses
170  per square meter with up to 8 returns per pulse which resulted in 2.44 returns per m3

171  compared to the field data with 0.43 returns per m3. These data are not strictly comparable
172 since the field data represent presence and absence whereas the LiDAR returns represent only
173  presence but give a general impression of relative sampling density.

174
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175  Fig 1. Sampling design for FIELD observations of vegetation structure. r is the radius of the
176  measurement area around each point on the transect.
177

178  LiDAR acquisition

179 Airborne LiDAR data were collected over the Petawawa Research Forest from August
180  17-20, 2012. The Riegl 680i sensor was carried aboard a Cessna 172 aircraft flown at an

181  average altitude of 750 m. Technical acquisition specifications are provided in Table 1. The data
182  were collected as a full-waveform and provided as a discrete point file (LAS 1.1) for use in this

183  project. Flight overlap was approximately fifty percent.

184

185  Table 1. Airborne LiDAR acquisition specifications.

186
Parameter Value
Pulse repetition rate 150Khz
Frequency 76.67Hz
Scan Angle 1 20 Degrees
FOV 40 Degrees
Line spacing: Cross track 0.6m
Line spacing: Along track 0.6 m
Line spacing between flight lines 250 m
Laser footprint min: 0.38m
Laser footprint max 042 m
Average point density: All Returns ~ 15 pts/m?
Average point density: Last Returns ~ 6 pts/m?

187

188

189 Data processing and LiDAR variables

190 We developed specific LIDAR understory cover metrics that are expected to capture the
191  vegetation understory density directly. We identified four metrics for our analysis. Three of
192  these metrics are used in the literature: fractional cover (FRAC, modified from Wing et al. (17)),

193 leaf area density (LAD, (24)), and voxel cover (VOX1m, (25)). The fourth metric considered was
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194  normalized cover (NORM), because it is an easily interpretable and easily calculated alternative.
195  Fractional cover is calculated by summing the number of LiDAR vegetation returns for each

196  understory vertical stratum and dividing by the sum of understory and ground returns. Leaf

197  area density is calculated as the negative log of the number of returns in a vertical stratum

198  divided by all returns in and below the vertical bin and then divided by a constant. Normalized
199  coveris calculated by dividing all vegetation returns in the understory stratum divided by all
200 first returns. The voxel cover approach filters all returns by estimating presence/absence of

201  returnsin each standard voxel (in our case 1 m3) in the vertical stratum. For example, a2 m x 5
202  m x5 m vegetation stratum that contains 50 1-m?3 voxels would have a voxel cover value

203  between 0 and 50, equal to the number of voxels that contain vegetation. Sampling density is
204  extremely heterogeneous due to different factors such as flight line overlap and the pitch and
205 yaw of the plane. The LiDAR metrics provide four alternative ways to scale the number of

206  returns in a vertical bin by sampling density. In addition to these four specific LIDAR understory
207  cover metrics, we calculated a suite of standard LiDAR point cloud metrics such as canopy cover
208  and canopy height (S1 Table).

209

210 Analysis

211 We used linear mixed effects models to determine the capacity of our four main LiDAR
212 understory cover metrics to predict understory cover recorded in the field (FIELD) in each of the
213  three vertical strata defined above (ST1, ST2, ST3), and to examine the influence of secondary
214  explanatory variables(26). These secondary explanatory variables consisted of forest TYPE

215  (based on overstory composition), STRATUM (vertical 1 m strata, ST1-ST3), and OVERSTORY
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216  (Appendix 1). The OVERSTORY variable was a measure of LiDAR vegetation cover in the vertical
217  column above the stratum of interest calculated by classifying canopy cover (CC) into three

218  classes (low, medium, high). We treated the plot as a random effect to account for multiple
219  measurements in each plot. We formulated 16 candidate models consisting of LiDAR variables,
220  with the constraint of maintaining variance inflation factors (VIF) < 10 to avoid issues of

221 multicollinearity (Table 2). For each the four main LiDAR metric, we derived four models: 1) a
222 null model consisting only the LiDAR metric, 2) a model with the LiDAR metric, OVERSTORY and
223 their interaction, 3) a model with the LiDAR metric, TYPE, and their interaction, and 4) a model
224  with the LiDAR metric, STRATUM, and their interactionWe ranked all mixed effects models

225 based on Akaike’s information criterion (AIC, (27, 28)) and calculated the R? values. We also
226  computed the symmetric mean absolute percentage error (SMAPE), based on 10-fold cross-
227  validation (29) for the top-ranked models, and calculated SMAPE values for each of the 3

228  vertical strata separately. Parameters of the mixed effects models were estimated by maximum
229  likelihood in R with the nlme package(18, 26, 30).

230

231  Table 2: Mixed effects model explaining understory cover recorded in the field (FIELD) : TYPE
232 = forest type based on overstory composition, STRATUM = vertical 1 m strata, S1-S3, and

233  OVERSTORY = a measure of LiDAR vegetation cover in the vertical column above the stratum of

234  interest calculated by classifying canopy cover (CC) into three classes (low, medium, high), see
235  Appendix 1. The plot was treated as a random effect in each model.

236
Model Name Model fixed effects structure Biological interpretation
FRAC null FRAC Relationship between
FRAC and FIELD is constant
FRAC * STRATUM FRAC + STRATUM + FRAC*STRATUM Relationship between
FRAC and FIELD differs
among STRATUM

FRAC * OVERSTORY  FRAC + OVERSTORY + FRAC*OVERSTORY Relationship between
FRAC and FIELD differs
among OVERSTORY
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FRAC * TYPE FRAC + TYPE + FRAC*TYPE Relationship between
FRAC and FIELD differs
among TYPE

NORM null NORM Relationship between
NORM and FIELD is
constant

NORM * STRATUM NORM + STRATUM + NORM*STRATUM Relationship between
NORM and FIELD differs
among STRATUM

NORM * NORM + OVERSTORY + FRAC*OVERSTORY  Relationship between

OVERSTORY NORM and FIELD differs
among OVERSTORY

NORM * TYPE NORM + TYPE + FRAC*TYPE Relationship between
NORM and FIELD differs
among TYPE

VOX1m null VOX1m Relationship between
VOX1m and FIELD is
constant

VOX1m * STRATUM  VOX1m +STRATUM + VOX1Im*STRATUM Relationship between
VOX1m and FIELD differs
among STRATUM

VOX1m * VOX1m + OVERSTORY + Relationship between

OVERSTORY VOX1m*OVERSTORY VOX1m and FIELD differs
among OVERSTORY

VOX1m * TYPE VOX1m + TYPE + VOXIm*TYPE Relationship between
VOX1m and FIELD differs
among TYPE

LAD (null) LAD Relationship between LAD
and FIELD is constant

LAD * STRATUM LAD + STRATUM + LAD*STRATUM Relationship between LAD
and FIELD differs among
STRATUM

LAD * OVERSTORY LAD + OVERSTORY + LAD*OVERSTORY Relationship between LAD
and FIELD differs among
OVERSTORY

LAD * TYPE LAD + TYPE + LAD*TYPE Relationship between LAD
and FIELD differs among
TYPE

237
238
239

240
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241  We used random forest with the same FIELD response variable as in the mixed-effects models
242  described above. Because random forests are non-parametric and do not yield a log-likelihood,
243  we ran a stepwise procedure with 341 LiDAR derived variables (which includes overstory

244  estimates) (S1 Table), plus secondary variables forest TYPE (from Forest Resource Inventory),
245  and STRATUM. We used mean decrease in accuracy to rank variable importance (31). At each
246  iteration, we removed the 20% least influential variables and compared the explained variance.
247  Models were built using the randomForest package in R (31). We examined the importance of
248  variables in the suite of random forest models. Similar to the mixed effects models above, we
249  quantified model performance with the percent variance explained and SMAPE based on 10-
250 fold cross-validation. Finally, we compared the prediction performance of the mixed effects and
251  random forest approaches.

252

253 Results

254  Relationship among LiDAR metrics

255 The FIELD measure of understory cover was strongly correlated with all of the four main
256  LiDAR metrics we investigated (Fig 2a-d). However, the FRAC and VOX1m metrics appeared to
257  be the most linearly related to the FIELD measure (Fig 2a-d). Nonetheless, the four understory
258  vegetation metrics were all highly correlated with one another (Table 3).

259  Fig 2. Scatterplot of FIELD (measured density) against the LiDAR metrics, a) fractional cover
260  (FRAC), b) normalized cover (NORM), c) leaf area density (LAD), and d) voxel cover (VOX1m),

261  including Pearson product-moment correlation coefficients.
262
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263  Table 3. Pearson product-moment correlations between pairs of understory cover LiDAR
264  metrics included in analysis (n = 1310).

265
Correlation r Lower 95% Upper 95% CL
CL
FRAC vs NORM 0.77 0.751 0.794
FRAC vs VOX1m 0.84 0.819 0.852
FRAC vs LAD 0.77 0.744 0.789
NORM vs LAD 0.81 0.79 0.827
NORM vs VOX1m 0.92 0.911 0.927
VOX1m vs LAD 0.79 0.767 0.808
266

267  Mixed-effects models

268 The model consisting of the voxel-based cover estimate (VOX1m) with STRATUM and
269 their interaction was the most parsimonious among all sixteen models considered (Table 4).
270  This model had all the support (Akaike weight = 1, Table 4, Fig 3). This model also had the

271 highest conditional R? (along with the FRAC + STRATUM + interaction model, although all

272 sixteen models had high R? values (0.71-0.87). For each the four LiDAR metrics we considered,
273  we observed the same pattern: the addition of STRATUM and the interaction to the null models
274  resulted in consistently better model performance in terms of delta AIC and R2. The addition of
275  OVERSTORY or TYPE resulted in much less model improvement than the addition of STRATUM.
276  The model with most support did not include forest type or overstory, which is important since
277  forest type was derived from forest inventory data and cannot be extracted from LiDAR point
278  clouds.

279

280  Table 4. R? and AIC values for sixteen candidate linear mixed-effects models. Note that

281  marginal R denotes the percent variance explained by the fixed effects, whereas the
282  conditional RZ includes both fixed effects and random effects. Delta AIC is the difference
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283  between each model relative to the most parsimonious model and Akaike weight indicates the
284  percent support of a given model. .

285
Model Marginal Conditional AIC Delta AIC  Akaike
R? R? weight
VOX1m * STRATUM 0.62 0.87 11868.87 0 1
FRAC * STRATUM 0.65 0.87 11901.00 32.13 0
LAD * STRATUM 0.56 0.82 11998.29 129.42 0
NORM * STRATUM 0.52 0.83 12099.16 230.29 0
VOX1m * OVERSTORY 0.60 0.82 12348.32 479.45 0
LAD * OVERSTORY 0.51 0.73 12384.88 516.01 0
VOX1m * TYPE 0.60 0.82 12384.88 516.01 0
VOX1m null 0.60 0.82 12385.78 516.91 0
LAD * TYPE 0.51 0.72 12396.42 527.55 0
LAD null 0.50 0.71 12407.11 538.24 0
NORM * OVERSTORY 0.53 0.75 12450.66 581.79 0
NORM * TYPE 0.51 0.75 12563.97 695.1 0
NORM null 0.49 0.75 12568.4 699.53 0
FRAC * OVERSTORY 0.58 0.77 12585.04 716.17 0
FRAC * TYPE 0.57 0.75 12613.19 744.32 0
FRAC null 0.56 0.75 12617.05 748.18 0
286

287  Figure 3: Predicted versus observed scatterplot. Predictions of FIELD generated from mixed-
288  effects model consisting of VOX1m + STRATUM + interaction.

289

290 In all of the mixed effects models, the four LiDAR metrics had positive slopes (Fig 4,

291 Table 5, for example). In our best model, the intercept of the lowest STRATUM was higher than
292  inthe upper strata (Fig 4). Although the model included the interaction between STRATUM and
293  voxel cover, there was no evidence of different slopes of LiDAR among strata (Fig 4, Table 5).
294  Symmetric mean absolute percentage (SMAPE) errors for the top-ranked mixed effects model
295  was 0.156, but these values varied when investigating each stratum separately (Table 6).

296  Contrary to expectations, the SMAPE value was lowest for the lowest strata (0.107) and

297  greatest for the highest strata (0.190). There were 437 observations for each stratum.
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Figure 4: Predictions of FIELD for each of three strata based on the mixed-effects model
consisting of VOX1m + STRATUM + interaction. Dashed lines around solid lines denote 95%

confidence intervals around predictions.

Table 5. Estimates of the best supported mixed-effects model consisting of VOX1m +

STRATUM + interaction and a random effect of plot.

Estimate Lower Upper
95% CL 95% CL

intercept 64.35 60.25 68.46
LIDAR 0.03 0.29 0.32
STRATUM.ST2 -21.94 -25.96 -17.98
STRATUM.ST3 -29.38 -33.48 -25.28

LIDAR*STRATUM.ST2 -0.016 -0.039 0.008
LIDAR*STRATUM.ST3 -0.010 -0.037 0.017

Table 6. Ten-fold cross-validation results from top linear mixed-effects model and the
selected random forest model, based on symmetric mean absolute percentage error
(SMAPE). Note that average values of SMAPE are given for predictions of all STRATUM levels,

but also for predictions specific to STRATUM levels.

Model SMAPE mean SMAPE
sd
(n=10)
VOX1m * predictions of all STRATUM levels 0.156 0.014
STRATUM
predictions of STRATUM 1 0.107 0.016
predictions of STRATUM 2 0.170 0.024
predictions of STRATUM 3 0.190 0.020
Random forest (59 0.129 0.015

predictors)
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Random forest models

We examined the percent variance explained and the number of variables included to
choose a final random forest model. The base model with all 341 LiDAR-derived variables,
forest TYPE, and STRATUM explained 74.8% of the variance, but the final model with only 59
predictors had a very similar variance explained (74.4%) (Fig 5, Table 7). The 10-fold cross-

validation on this reduced model showed an overall mean error rate of 0.129 (Table 6).

Fig 5. Predicted versus observed scatterplot for Random Forest model with 59 predictors.

Some variables appeared more often than others among the 18 random forest models
considered. These variables consisted of STRATUM, GAP (the inverse of LAD), and LAD. In
addition, most or all of the LiDAR understory vegetation cover metrics (VOX1m, FRAC, NORM)
were represented in the top 10 variables of most of the 18 potential models (S2 Table). Crown
closure (CC), an estimate of overstory, was also often among the top 10 most important
variables within the models considered. Forest TYPE never occurred among the top 10 variables

(S2 Table).

Table 7. Random forest models: mean squared residuals and percent variance explained.

Number of Mean Squared  Percent variance
Predictors in model  Residuals Explained

341 (Base model) 484 74.8

276 485 74.7

223 485 74.8

180 484 74.7

145 476 75.2

116 486 74.7

93 481 75.0
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74 492 74.3
59 490 74.4
47 513 73.3
37 508 73.5
29 531 72.4
22 553 71.2
17 528 72.5
13 558 70.9
10 580 69.8
7 569 70.4
5 632 67.1
335
336 Discussion
337 In this study, our primary objective was to quantify the capacity of LiDAR to estimate

338 understory structure so that it can be predicted across a landscape. To address this objective,
339 first we compared the effectiveness of four possible understory LiDAR metrics (fractional cover,
340 leaf area density, voxel cover, and normalized cover) for predicting understory cover. Each of
341  these metrics used some measure of the number or presence of LiDAR returns in an understory
342  vertical stratum and standardized these measures with an estimate of sampling density. All four
343  LiDAR metrics were effective at predicting the amount of structure in an understory stratum,
344  but the best metric based on mixed effects modelling was the voxel-based cover estimate

345  (VOX1m) with the addition of STRATUM with a conditional R of 0.87. The voxel-based

346  approach is relatively easy to calculate and provides a direct measure of the amount of

347  understory structure.

348 We anticipated that other variables could influence the predictions of understory. We
349 identified three potentially important variables that might influence occlusion of understory

350 structure: overstory, forest type and stratum. Increased overstory can reduce the ability of
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351  LiDAR to predict understory structure due to occlusion (22, 23). For LiDAR to detect the

352  understory structure, LiDAR pulses must reach and be reflected by understory vegetation. A
353  greater vegetation interception above the area of interest will result in fewer pulses returning
354  from the understory. Both forest type and stratum will also influence the amount of vegetation
355 inthe area above the area of interest and therefore potentially alter the relationship of field

356 measured and LiDAR measured understory.

357 Correlations between the three secondary explanatory variables (STRATUM, forest

358  TYPE, and OVERSTORY) made it impossible to include all variables in a single model. Our best
359  model included STRATUM, where we found that the lowest stratum had the highest intercept.
360 This is consistent with occlusion in that we have more vegetation in ST1 than ST2 and ST3 for a
361 given value of VOX1m. This is consistent with the idea that fewer laser pulses are reaching the
362 lower stratum. The relationship between the field observed structure and VOX1m did not vary
363  with STRATUM. Surprisingly, we found that the error in the predicted relationship was greatest
364  in the highest STRATUM and lowest in the lowest STRATUM suggesting that there was no

365 reduction in predictability associated with potential occlusion. This may be due to the

366  possibility that the understory vegetation in the lower stratum is easier to estimate on the

367 ground and therefore there is less noise in the relationship between the field and the LiDAR
368 measures in the lower stratum. Either way, we conclude that our LiDAR sampling intensity was
369  sufficient in our forest system to capture the understory structure regardless of the density of

370  vegetation above the area of interest and the related potential for occlusion.
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371 There is some discrepancy in the literature on the effect of occlusion. Latifi et al. (19)
372  found that thinning LiDAR data by artificially reducing the sampling density did not impact the
373  effectiveness of models to predict understory. Their original data had a high point density of 30-
374 40 points per m? and a maximum of 11 returns. Data were thinned to two different levels but
375 Latifi et al. (19) do not report on the final point density after thinning. Our data are at roughly
376  11.69 vegetation returns per m?, with about 0.55 vegetation returns per m3 in the 0.5-4m

377 understory stratum. Obviously, the effectiveness of LiDAR to capture understory structure will
378  eventually be undermined by a sufficient reduction in sampling density, but this limit does not
379 seem to have been reached in the Petawawa research forest. Gonzalez-Ferreiro et al. (32)

380 showed that reducing pulse density from 8 pulses per m? to 0.5 pulses per m?, did not decrease
381  model precision in estimating stand variables. Wing et al. (17) found no trends between

382  understory vegetation cover prediction error and canopy cover, lending support to the idea

383  that under some natural overstory conditions and common LiDAR sampling densities, occlusion
384 is notanissue for predicting understory with LiDAR. In contrast, Ruiz et al. (33) reported an
385 effect of LiIDAR sampling density on model R? values but only at levels below around 5

386  points/m2. Itis unclear how this number translates into pulses reaching the understory. The
387 lack of influence of forest type on understory cover predictions enables predicting understory

388 from LiDAR alone without relying on traditional forest resource inventory data.

389 The comparisons of mixed effects and random forest models revealed some obvious
390 alignment. All four of the LiDAR metrics considered (fractional cover, leaf area density,
391  normalized cover, and voxel cover) produced models with high R? values. All four of these

392 variables also had very high variable importance in the random forest models. The stratum
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393  variable appeared often in the top random forest models and was also important in the top-
394  ranked mixed-effects model (VOX1m * STRATUM). The random forest model had a high

395 variance explained (75%), but not as high as the best mixed effects model that included the
396  voxel-based measure of cover (87%). Our selected random forest model had 59 explanatory
397 variables, whereas the best mixed effects model had two explanatory variables and their

398 interaction, as well as a random effect of plot. Based on our results, generating landscape-wide
399  predictions using the mixed-effects model should be simpler and more efficient than with the
400 random forest model. For these reasons, although the random forest model is effective, we
401 recommend the mixed effects model as the better choice for predicting understory vegetation

402 structure with LiDAR.

403 Direct evaluations of LIDAR metrics to capture understory cover are relatively rare.

404  Studies have shown good agreement between field and LiDAR measures of forest stand

405  biomass (34, 35), but biomass is likely driven primarily by tree biomass rather than understory.
406  Asner et al. (36) explored structural transformation of rain forests due to invasive plants and
407  used LiDAR to estimate structural changes in the understory. However, Asner et al. (36) did not
408 report quantitative comparisons of field and LiDAR measures. Martinuzzi et al. (37) produced
409 classification accuracies of 83% in predicting the presence of shrubs, but not their abundance.
410 Wing et al. (17) compared understory vegetation cover and airborne LiDAR estimates with the
411  addition of a filter for intensity values in an interior ponderosa pine forest. Their models had R?
412  values from 0.7 to 0.8 and accuracies of £ 22%. Our models achieved slightly higher R with

413  slightly lower error rates without the use of the intensity filter, suggesting that the latter filter

414  may not always be necessary to generate good estimates. As well, the intensity filter is affected
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415 by a number of factors such as elevation and the nature of the object intercepted that are

416  difficult to normalize, so we prefer models that do not require intensity filters. Latifi et al. (19)
417  also made a direct comparison of ground-based vs LiDAR estimates of understory cover in

418 temperate mixed stands, and found strong relationships in the top canopy and the herbal layer
419  with lower predictive power in the intermediate stand layers. Their shrub layer regression

420 model had a relatively low R? value of 37%. In a later study, Latifi et al. (18) showed an R? of
421  80% for the shrub layer based on thinned LiDAR point clouds and new analytical methods.

422  Campbell et al. (20) also compared field and LiDAR measures of understory directly in

423  mixedwood forests and generated an R? of 0.44 based on a relative point density similar to
424  metrics that we used here. It is unclear why there is so much variation in the ability of LiDAR to
425  predict understory structure but it suggests that we should be somewhat cautious in assuming
426  that individual LIDAR metrics are capturing the understory structure. It is important to note
427  that some of the error in prediction in our models is likely the result of the lag between the
428  LiDAR acquisition (2012) and the field data acquisition (2016-2017). This lag is likely to result in
429  the most error in the youngest stands where changes in herb and shrub growth are likely to be
430 greatest. The majority of stands included in the analysis are mature forest, and even with this
431  source of error our ability to predict was good.

432 Despite the limited work directly evaluating LIDAR measures of understory vegetation
433 structure, many studies have explored the use of LiDAR to capture wildlife habitat structure
434  some of which is related to understory (38-42). One of the most commonly reported

435 relationships is between vegetation structural diversity or understory density and wildlife

436  diversity (5, 43-45). In addition, vegetation understory structure explained bird species
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composition in a number of studies (5, 46, 47). Melin et al. (48) found that a LIiDAR metric
similar to fractional cover to estimate shrub density below 5 m was a good predictor of grouse
brood occurrence in Finland, consistent with expectations based on known habitat preferences
of the species. However, they did not test the assumption that the LiDAR metric effectively
estimates vegetation density below 5 m. All of these studies do however, provide indirect

evidence for the effectiveness of LiDAR estimates to predict understory cover or density.

Conclusions

Based on the highest variance explained, the fewest number of explanatory variables,
and ease of interpretation and application, we would recommend using the mixed-effects
model consisting of voxel-based cover estimate, stratum, and their interaction to generate
spatial estimates of understory cover. Nonetheless, all four LiDAR metrics that we considered
and both analytical approaches (mixed effects models, random forests) produced predictions
suitable for many ecological and forest planning applications. This information could improve
spatially-explicit mapping of wildlife habitat, fire behaviour, or forest ecosystem dynamics.
Measuring understory cover in situ is not difficult, but many applications require maps or
spatial estimates of attributes for forest management and conservation applications over large
areas. LiDAR remote sensing is the most efficient approach to generating these spatial
estimates of forest attributes. Our results fully support the indirect evidence provided from
wildlife studies that LiDAR can predict understory vegetation structure even in the presence of
a mature tree canopy. With error percentages of around 15%, these spatial predictions will

introduce some uncertainty into predictions, which should be factored into decision-making.
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