

1 **Squamous differentiation portends poor prognosis in low and intermediate-  
2 risk endometrioid endometrial cancer.**

3 **Squamous differentiation in endometrioid endometrial cancer.**

4 Diocésio Alves Pinto de Andrade<sup>1,2&</sup>, Vinicius Duval da Silva<sup>3&</sup>, Graziela de  
5 Macedo Matsushita<sup>3#</sup>, Marcos Alves de Lima<sup>4#</sup>, Marcelo de Andrade Vieira<sup>5#</sup>,  
6 Carlos Eduardo Mattos Cunha Andrade<sup>5#</sup>, Ronaldo Luís Schmidt<sup>5#</sup>, Rui Manuel  
7 Reis<sup>2,6,7&</sup>, Ricardo dos Reis<sup>5&</sup>.

8

9 1- Departament of Oncology, InORP ONCOCLÍNICAS Group (Oncology Institute of  
10 Ribeirão Preto), Ribeirão Preto, São Paulo, Brazil;  
11 2- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São  
12 Paulo, Brazil;  
13 3- Departament of Pathology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil;  
14 4- Epidemiology and Biostatistics Nucleus, Barretos Cancer Hospital, Barretos, São  
15 Paulo, Brazil;  
16 5- Department of Gynecologic Oncology, Barretos Cancer Hospital, Barretos, São  
17 Paulo, Brazil;  
18 6- Life and Health Sciences Research Institute (ICVS), School of Medicine, University  
19 of Minho, Braga, Portugal;  
20 7- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.

21

22 **Corresponding authors:**

23 Email: [diocesio@yahoo.com](mailto:diocesio@yahoo.com) (DAPA)

24

25 <sup>&</sup>These authors contributed equally to this work.

26 <sup>#</sup>These authors contributed to analysis and interpretation of data; writing, review  
27 and/or revision of the manuscript.

28 **ABSTRACT**

29 **Background:**

30 Endometrial cancer presents well-defined risk factors (myometrial invasion,  
31 histological subtype, tumor grade, lymphovascular space invasion (LVSI)). Some  
32 low and intermediate-risk endometrioid endometrial cancer patients exhibited  
33 unexpected outcomes. The aim of this study was to investigate other clinical-  
34 pathological factors that might influence the recurrence rates of patients diagnosed  
35 with low and intermediate-risk endometrioid endometrial cancer.

36 **Methods:**

37 A case-control study from a cohort retrospective of 196 patients diagnosed with  
38 low and intermediate-risk endometrioid endometrial cancer at a single institution  
39 between 2009 and 2014 was conducted. Medical records were reviewed to  
40 compare clinical (race, smoking, menopause age, body mass index) and  
41 pathological (histological characteristics (endometrioid vs endometrioid with  
42 squamous differentiation), tumor differentiation grade, tumor location, endocervical  
43 invasion, LVSI) features of patients with recurrence (case) and without recurrence  
44 (control) of disease. Three controls for each case were matched for age and  
45 staging.

46 **Results:**

47 Twenty-one patients with recurrence were found (10.7%), of which 14 were stage  
48 IA, and 7 were stage IB. In accordance, 63 patients without recurrence were  
49 selected as controls. There were no significant differences in any clinical  
50 characteristics between cases and controls. Among pathological variables,

51 presence of squamous differentiation (28.6% vs. 4.8%, p=0.007), tumor  
52 differentiation grade 2 or 3 (57.1% vs. 30.2%, p=0.037) and presence of  
53 endocervical invasion (28.6% vs. 12.7%, p=0.103) were associated with disease  
54 recurrence on univariate analysis. On multivariable analysis, only squamous  
55 differentiation was a significant risk factor for recurrence (p=0.031).

56 **Conclusion:**

57 Our data suggest that squamous differentiation may be an adverse prognostic  
58 factor in patients with low and intermediate-risk endometrioid endometrial cancer,  
59 that showed a 5.6-fold increased risk for recurrence.

60 **Keywords:** Low and intermediate-risk endometrioid endometrial carcinoma,  
61 prognostic factors, squamous differentiation

62 **Introduction**

63 Endometrial cancer is the most prevalent gynecological neoplasia in women  
64 in the US, accounting for more than 63,000 cases/year and with a lethality rate  
65 close to 18%.<sup>1</sup> In Brazil, this tumor represents the second cause of gynecological  
66 cancer due to a high incidence of tumors of the cervix.<sup>2</sup> Despite knowledge  
67 advances related to genetic alterations of this neoplasia in the last years,  
68 classification of endometrial cancer into type I (endometrioid) or type II (serous or  
69 clear cell) continues to be used in clinical practice, mainly to evaluate risk factors  
70 in tumor development.<sup>3</sup>

71 As in other solid tumors, staging of endometrial cancer is important to define  
72 surgical extension, ranging from hysterectomy with bilateral salpingo-  
73 oophorectomy even need pelvic and/or para-aortic lymphadenectomy.<sup>4</sup> Risk  
74 stratification in stage I tumors aims to assess the risk of lymph node involvement,  
75 the recurrence pattern, patient's prognosis and the best adjuvant treatment to be  
76 performed.<sup>5</sup> Beyond myometrial tumor invasion depth, other clinical-pathological  
77 factors were evaluated: age; histological subtype; tumor differentiation grade and  
78 lymphovascular space invasion (LVSI).<sup>6, 7</sup> Beside these features, other  
79 immunohistochemistry markers, such as L1-cell adhesion molecule (L1CAM) and  
80 p53 are also associated with patient outcome for stage I endometrial cancer, but  
81 not yet incorporated in the current classifications.<sup>8, 9</sup>

82 Endometrial adenocarcinoma with squamous differentiation terminology  
83 was defined by Zaino and Kurman in 1988 to replace two previously used  
84 nomenclature for uterus neoplasms: adenoacanthoma and adenosquamous

85 carcinoma.<sup>10</sup> Squamous differentiation consists of sheets of cells with intercellular  
86 bridges and prominent cell membranes with or without keratinization.<sup>11</sup> It is present  
87 in about 13-25% of endometrial adenocarcinomas.<sup>10, 12</sup> The finding of squamous  
88 differentiation in the anatomopathological examination remains controversial as a  
89 risk factor for recurrence in patients with early stage endometrial cancer.<sup>13, 14</sup>  
90 The aim of this study was to evaluate clinical-pathological features that influenced  
91 the recurrence of patients diagnosed with low and intermediate risk endometrial  
92 cancer according to ESMO (European Society for Medical Oncology) criteria.<sup>5</sup>

93 **Patients and Methods**

94 A case-control study nested in a retrospective cohort of 196 patients  
95 diagnosed with low and intermediate risk endometrial cancer undergoing surgery  
96 at Barretos Cancer Hospital between January 2009 and December 2014 was  
97 conducted. This study was conducted in accordance with the principles of the  
98 Declaration of Helsinki, and was previously approved by the Ethical Review Board  
99 from Barretos Cancer Hospital in March 2017 (Reference 1.942.488). Cases were  
100 defined as patients who presented systemic or locoregional recurrence at any time  
101 of their follow up. We defined three controls for each recurrence case matched age  
102 ( $\pm$  1 year) and FIGO (International Federation of Gynecology and Obstetrics)  
103 staging (IA and IB).

104 According to ESMO criteria<sup>5</sup>, low-risk endometrial cancer is defined as  
105 endometrioid adenocarcinoma stage IA grade 1 or grade 2; intermediate-risk  
106 endometrial cancer is defined as endometrioid adenocarcinoma stage IA grade 3  
107 or endometrioid adenocarcinoma stage IB grade 1 or grade 2. Three or more of  
108 the following four criteria need to be present to define squamous differentiation:  
109 sheet-like growth without glands or palisading, sharp cells margins, eosinophilic  
110 and thick of glassy cytoplasm, and decreased nuclear-to-cytoplasmic ratio  
111 compared with foci elsewhere in the same tumor.<sup>11</sup> The amount of squamous  
112 differentiation can vary, and in a well-sampled carcinoma, the squamous  
113 differentiation should comprise at least 10% of the neoplasia. The degree of  
114 nuclear atypia, if present, generally reflects that of the glandular cells.<sup>15</sup>

115 Clinical-pathological data were reviewed from medical records. The  
116 diagnoses of low and intermediate risk endometrial cancer were confirmed by  
117 surgical histopathologic report. Patients who did not perform definitive surgical  
118 treatment at the institution (for example, patients who underwent surgery at their  
119 region of origin and who were referred to a tertiary hospital only for adjuvant  
120 treatment) were excluded.

121 The following clinical-pathological criteria were evaluated: ECOG (Eastern  
122 Cooperative Oncology Group) scale of performance status (0-1 vs 2);  
123 race/ethnicity (white vs non-white); body mass index (BMI); hormonal status  
124 (menopause vs menacme); number of pregnancies; smoking (yes vs no); tumor  
125 differentiation grade (1, 2 or 3); histological characteristics (endometrioid vs  
126 endometrioid with squamous differentiation); tumor size; tumor location (uterine  
127 corpus vs lower uterine segment); endocervical invasion (yes vs no) and LVSI (yes  
128 vs no).

129

### 130 **Statistical Analysis**

131 Both the data collected and analyses were performed using IBM Statistical  
132 Package for the Social Sciences (SPSS) database version 21.0 (SPSS, Chicago,  
133 IL). Descriptive statistical analysis used median, maximum and minimum value for  
134 quantitative variables and percentage for qualitative variables. Once the above  
135 variables were defined, univariate analysis was performed using Mann-Whitney's  
136 U-test or Fisher's exact test. Parameters with  $P < 0.2$  in univariate analyses were  
137 entered into the logistic regression analysis. Backward stepwise logistic regression

138 models were constructed. The comparisons were considered statistically  
139 significant at  $P < 0.05$ . Study data were collected and managed using REDCap  
140 (Research Electronic Data Capture) electronic data capture tools hosted at  
141 Barretos Cancer Hospital.<sup>16</sup>

142 **Results**

143 Of the 196 endometrial cancer patients described in this retrospective  
144 cohort, 21 patients (10.7%) presented recurrence during their evolution (cases), of  
145 which 2/3 were stage IA and 1/3 were stage IB, and 63 patients without recurrence  
146 were selected as controls (Table 1). The median age of both groups was 64 years  
147 and both groups also exhibit similar fraction of IA staging. Moreover, the patient  
148 population was obese (median BMI above 30), white and was non-smoker (Table  
149 1). Almost all patients were already in menopause (11.2% of patients controls were  
150 still in menacme).

151 **Table 1.** Univariate analysis of predictive recurrence for low and intermediate-risk  
152 endometrioid endometrial cancer.

|                                             |                                            | Case (n=21)            | Control (n=63)         | P-value |
|---------------------------------------------|--------------------------------------------|------------------------|------------------------|---------|
| Age (median) <sup>a</sup>                   |                                            | 64 (46-77)             | 64 (46-78)             | 0.873   |
| FIGO staging (%) <sup>b</sup>               | IA                                         | 14 (66.7)              | 42 (66.7)              | >0.99   |
|                                             | IB                                         | 7 (33.3)               | 21 (33.3)              |         |
| ECOG Performance Status (%) <sup>b</sup>    | 0-1                                        | 20 (95.2)              | 61 (96.8)              | >0.99   |
|                                             | 2                                          | 1 (4.8)                | 2 (3.2)                |         |
| Race/Ethnicity (%) <sup>b</sup>             | White                                      | 18 (85.7)              | 45 (71.4)              | 0.251   |
|                                             | Non-white                                  | 3 (14.3)               | 18 (28.6)              |         |
| BMI (median) <sup>a</sup>                   |                                            | 31.64<br>(19.78-48.62) | 32.65<br>(21.93-52.71) | 0.339   |
| Smoking history <sup>b</sup>                | Yes                                        | 2 (9.5)                | 4 (6.3)                | 0.637   |
|                                             | No                                         | 19 (90.5)              | 59 (93.7)              |         |
| Menopause (%) <sup>b</sup>                  | Yes                                        | 21                     | 56 (88.8)              | 0.184   |
|                                             | No                                         | 0                      | 7 (11.2)               |         |
| Number of pregnancies (median) <sup>a</sup> |                                            | 4 (1-7)                | 4 (1-20)               | 0.725   |
| Tumor differentiation grade <sup>b</sup>    | Grade 1                                    | 9 (42.9)               | 44 (69.8)              | 0.037   |
|                                             | Grade 2 or 3                               | 12 (57.1)              | 19 (30.2)              |         |
|                                             | Endometrioid                               | 15 (71.4)              | 60 (95.2)              | 0.007   |
| Histological subtype (%) <sup>b</sup>       | Endometrioid with squamous differentiation | 6 (28.6)               | 3 (4.8)                |         |
| Tumor size (median – cm) <sup>a</sup>       |                                            | 4.0<br>(16.0-115.0)    | 4.0<br>(1.0-105.0)     | 0.597   |
| Tumor localization <sup>b</sup>             | Uterine corpus                             | 14 (66.7)              | 47 (74.6)              | 0.574   |
|                                             | Lower uterine segment                      | 7 (33.3)               | 16 (25.4)              |         |
| Endocervical invasion (%) <sup>b</sup>      | Yes                                        | 6 (28.6)               | 8 (12.7)               | 0.103   |
|                                             | No                                         | 15 (71.4)              | 55 (87.3)              |         |
| LVSI (%) <sup>b</sup>                       | Yes                                        | 5 (23.8)               | 9 (14.3)               | 0.324   |
|                                             | No                                         | 16 (76.2)              | 54 (85.7)              |         |

153 BMI – body mass index; ECOG – Eastern Cooperative Oncology Group; FIGO – International Federation of Gynecology  
154 and Obstetrics; LVSI – lymphovascular space invasion. a- Mann-Whitney test; b- Fisher's exact test

155                   Squamous differentiation appears as solid areas in the middle of glandular  
156                   tissue. These areas, although solid, can not be considered as such for grading  
157                   purpose (Figure 1a and 1b). A specific immunohistochemical marker used to  
158                   evaluate squamous lineage is p63, as shown in the inset (Figure 1c).<sup>17</sup>

159                   There were no significant differences in race/ethnicity, ECOG performance  
160                   status, number of pregnancies, smoking history, tumor size, tumor localization and  
161                   LVSI between the group of patients with recurrence (cases) and patients without  
162                   recurrence (controls) (Table 1).

163                   In the univariate analysis, four parameters with  $P < 0.2$  were chosen for the  
164                   multivariate logistic regression analysis: hormonal status (menopause), tumor  
165                   differentiation grade, histological characteristics and endocervical invasion (Table  
166                   1). The variable menopause had to be withdrawn from this model since one of its  
167                   categories did not present participants (no menopause in case group), resulting in  
168                   a no data conversion to the odds ratio value. Using backward stepwise logistic  
169                   regression technique, a new model were constructed with three parameters:  
170                   histological subtype with squamous differentiation (28.6% vs. 4.8%,  $p=0.007$ ),  
171                   tumor differentiation grade 2 or 3 (57.1% vs. 30.2%,  $p=0.037$ ) and presence of  
172                   endocervical invasion (28.6% vs. 12.7%,  $p=0.103$ ) (Table 1).

173                   In multivariate analysis, only histological subtype (endometrioid vs  
174                   endometrioid with squamous differentiation) was associated with recurrence  
175                   ( $p=0.031$ ) (Table 2). Women who presented squamous differentiation associated  
176                   with classic endometrioid subtype had a 5.6-fold increased risk for recurrence  
177                   when compared to the group that does not show this histological finding (Table 2).

178 **Table 2.** Multivariate analysis of predictive recurrence for low and intermediate-  
179 risk endometrioid endometrial cancer.

|                              |                                            | Odds Ratio (IC – 95%) | P-value |
|------------------------------|--------------------------------------------|-----------------------|---------|
| Tumour differentiation grade | Grade 1                                    | 1                     | 0.080   |
|                              | Grade 2 or 3                               | 2.66 (0.89–7.96)      |         |
| Tumour type                  | Endometrioid                               | 1                     | 0.031   |
|                              | Endometrioid with squamous differentiation | 5.65 (1.17–27.17)     |         |
| Endocervical invasion        | No                                         | 1                     | 0.168   |
|                              | Yes                                        | 2.55 (0.67–9.66)      |         |

180 Constant= -1.939 ( $P = 0.0001$ )

181 **Discussion**

182 This case-control study of low and intermediate risk endometrial cancer  
183 demonstrated that patients with endometrioid squamous differentiation subtype  
184 had a greater chance of recurrence when compared to patients with typical  
185 endometrioid histological subtype. This finding in the anatomopathological  
186 examination remains controversial as a risk factor for recurrence as published in  
187 the international literature (Table 3).

188 **Table 3.** Summary of squamous differentiation endometrioid endometrial cancer  
189 studies to predict recurrence.

| References                              | Year | Country | N   | Study design         | Risk for recurrence |
|-----------------------------------------|------|---------|-----|----------------------|---------------------|
| This study                              | 2019 | Brazil  | 84  | Case-control         | Yes                 |
| Misirlioglu <i>et al.</i> <sup>13</sup> | 2012 | Turkey  | 223 | Case-control         | Yes                 |
| Jiang <i>et al.</i> <sup>21</sup>       | 2017 | China   | 630 | Retrospective cohort | Yes                 |
| Zaino <i>et al.</i> <sup>14</sup>       | 1991 | USA     | 631 | Prospective cohort   | No                  |
| Sturgeon <i>et al.</i> <sup>22</sup>    | 1998 | USA     | 648 | Case-control         | No                  |
| Lax <i>et al.</i> <sup>23</sup>         | 1998 | USA     | 77  | Case series          | Variable            |
| Abeler <i>et al.</i> <sup>12</sup>      | 1992 | Norway  | 255 | Retrospective cohort | Variable            |

190

191 FIGO staging classifies endometrial cancer grade into three groups: grade  
192 1 tumors are those in which less than 5% of the neoplasm is arranged as solid  
193 growth; grade 2 tumors are those in which 5% to 50% of the neoplasms are  
194 arranged in solid sheets, and grade 3 tumors are those in which greater than 50%  
195 of the neoplasm form solid masses.<sup>18</sup> The current FIGO grade system, primarily  
196 based on the relative proportion of solid and glandular areas also considers  
197 nuclear atypia, and grading is increased by one if more than 50% severe nuclear  
198 atypia (grade 3 nuclei) is found in the neoplastic glands.<sup>19</sup> Currently, squamous

199 differentiation does not enter into this classification, although it can mimic solid  
200 tumors areas. It can be found in all forms of endometrial hyperplasia, being more  
201 common in atypical endometrial proliferation.<sup>15</sup> The squamous and glandular  
202 components have the same PTEN mutations, which indicates that they are clonally  
203 related.<sup>20</sup>

204 Some studies showed that squamous differentiation is a risk factor for  
205 endometrial cancer recurrence.<sup>13, 21</sup> A retrospective study of 223 patients with  
206 early-stage endometrial cancer, carried out by Misirlioglu *et al.*, similar with our  
207 study, regarding methodological structure, showed squamous differentiation as a  
208 risk factor for recurrence in early-stage endometrial cancer.<sup>13</sup> The authors reported  
209 10.31% of recurrence (23 cases), very similar to that found in our study. Several  
210 risk factors were considered positive to increase the chance of recurrence (age,  
211 depth of myometrial tumor invasion, tumor differentiation grade, lymphovascular  
212 space invasion, tumor localization, tumor size), including squamous differentiation  
213 as in our results.<sup>13</sup> Another retrospective cohort with 630 patients with stage I  
214 endometrioid endometrial cancer conducted by Jiang *et al.* evaluated possible risk  
215 factors for metastasis in this tumor. Beyond traditional factors such as tumor size  
216 and depth of myometrial invasion, squamous differentiation was also an  
217 independent risk factor for the development of pulmonary metastasis.<sup>21</sup>

218 On the other hand, there are some studies showing that squamous  
219 differentiation does not pose a worse prognosis. A large study (n=631) conducted  
220 by Gynecologic Oncology Group (GOG) in the late 1970s and early 1980s,  
221 evaluated the prognosis role of the patients with or without histological squamous

222 differentiation.<sup>14</sup> Five-years overall survival was 90% for patients with squamous  
223 differentiation *versus* 82% for patients without this differentiation with statistical  
224 significance.<sup>14</sup> A case-control study with 640 patients carried out by Sturgeon *et*  
225 *al.* showed that squamous differentiation is not a poor prognostic factor for patients  
226 diagnosed with endometrioid endometrial cancer.<sup>22</sup>

227 On account of conflicting results for defining prognosis of tumors; it may be  
228 necessary to classify squamous differentiation component in the low or high  
229 degree. An immunohistochemistry study of 77 patients evaluated estrogen (ER)  
230 receptor, progesterone (PR) receptor, p53 and Ki-67, reported that tumors with  
231 high-grade squamous differentiation (lack of expression of ER and PR; high Ki-67  
232 index and p53 expression) have a worse outcome.<sup>23</sup> This controversy about the  
233 prognosis of recurrence in endometrial cancer with squamous differentiation may  
234 be related to subgroups of its classification. Abeler *et al.* published a cohort with  
235 1985 cases with endometrioid endometrial carcinoma, of which 255 presented  
236 squamous differentiation.<sup>12</sup> In this study, the authors divided tumors with  
237 squamous differentiation into two groups formerly used: adenoacanthoma (for  
238 cytologically well differentiated squamous differentiation) and adenosquamous  
239 carcinoma (for poorly differentiated squamous differentiation). Five-year overall  
240 survival for all patients was 83.5%. Adenoacanthoma subgroup had 91.2% five-  
241 year overall survival and adenosquamous subgroup had 64.9%, showing different  
242 prognosis.<sup>12</sup>

243 Molecular analysis with the aim to discover a biomarker that correlates with  
244 squamous differentiation in endometrial cancer is even more unclear. Cdx2 is an

245 important gene transcription factor in the carcinogenesis of colorectal cancer.<sup>24</sup>  
246 The expression of this biomarker can be present in up to 27% of endometrial  
247 cancer but it is never seen in the normal epithelium.<sup>25</sup> Wani *et al.* evaluated Cdx2  
248 expression in endometrial cancer with or without squamous differentiation and the  
249 expression of the biomarker was more prevalent in patients with this  
250 differentiation.<sup>25</sup> Another biomarker that may be related to squamous  
251 differentiation in endometrial cancer is p16, a tumor suppression protein generally  
252 expressed in tumors caused by the human papillomavirus (HPV).<sup>26, 27</sup>

253 The strengths of our study include the fact that all patients were treated at  
254 the oncogynecology department from a tertiary cancer hospital where protocols are  
255 followed closely. The pathology department is also divided into subspecialties,  
256 surgical specimens description, sampling, and reporting are standardized,  
257 resulting in high reproducibility of the pathology reports. Furthermore, the  
258 methodology chosen was a well-matched case-control study by age and stage,  
259 without differences between groups.

260 The limitations of the present study is its retrospective nature, associated  
261 with the number of recurrent cases found (10.71%), despite agreeing with data  
262 from literature since it is low and intermediate risk stage I tumors.<sup>13</sup> Creasman *et*  
263 *al.* reported a relapse-free survival at five years in stage I surgical patients of  
264 92.3%.<sup>28</sup> Tumor differentiation grade and endocervical invasion were not  
265 statistically significant in the multivariate analysis model, probably due to this  
266 limitation. Other barriers of this study were to have been carried out in a single

267 institution with possible referral bias, and it did not have any immunohistochemical  
268 data.

269 In conclusion, this case-control study provides evidence that squamous  
270 differentiation in low and intermediate risk endometrial cancer had a 5.6-fold  
271 increased risk for recurrence. This finding demonstrates that more detailed  
272 histopathological information could contribute to the analysis of prognosis for the  
273 patients.

274 **Disclosures**

275 The authors do not have any conflicts of interest to disclose.

276 **References**

277 1. Siegel RL, Miller KD, Jemal A. *Cancer statistics, 2018*. 2018;68(1):7-30.

278

279 2. *Estimativa 2018: Incidência de Câncer no Brasil*. [Internet] Rio de Janeiro: INCA

280 - Instituto Nacional de Câncer José Alencar Gomes da Silva; 2018 [cited 10 Ago

281 2018]; Available from: [www.inca.gov.br/estimativa/2018/](http://www.inca.gov.br/estimativa/2018/).

282

283 3. Bokhman JV. *Two pathogenetic types of endometrial carcinoma*. **Gynecol**

284 **Oncol**. 1983;15(1):10-7.

285

286 4. Kitchener H, Swart AM, Qian Q, Amos C, Parmar MK. *Efficacy of systematic*

287 *pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study*.

288 **Lancet**. 2009;373(9658):125-36.

289

290 5. Colombo N, Preti E, Landoni F, Carinelli S, Colombo A, Marini C, et al.

291 *Endometrial cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and*

292 *follow-up*. **Ann Oncol**. 2013;24 Suppl 6:vi33-8.

293

294 6. Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB.

295 *Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology*

296 *Group Study*. **Cancer**. 1987;60(8 Suppl):2035-41.

297

298 7. dos Reis R, Burzawa JK, Tsunoda AT, Hosaka M, Frumovitz M, Westin SN, et al.

299 *Lymphovascular Space Invasion Portends Poor Prognosis in Low-Risk Endometrial*

300 *Cancer*. **Int J Gynecol Cancer**. 2015;25(7):1292-9.

301

302 8. AlHilli MM, Mariani A, Bakkum-Gamez JN, Dowdy SC, Weaver AL,

303 Peethambaram PP, et al. *Risk-scoring models for individualized prediction of overall*

304 *survival in low-grade and high-grade endometrial cancer*. **Gynecol Oncol**.

305 2014;133(3):485-93.

306

307 9. Zeimet AG, Reimer D, Huszar M, Winterhoff B, Puistola U, Azim SA, et al. *L1CAM*

308 *in early-stage type I endometrial cancer: results of a large multicenter evaluation*. **J Natl**

309 **Cancer Inst**. 2013;105(15):1142-50.

310

311 10. Zaino RJ, Kurman RJ. *Squamous differentiation in carcinoma of the*

312 *endometrium: a critical appraisal of adenoacanthoma and adenosquamous carcinoma*.

313 **Semin Diagn Pathol**. 1988;5(2):154-71.

314

315 11. Kurman RJ, Carcangiu ML, Herrington CS, Young RH. *Tumours of the uterine*

316 *corpus. WHO Classification of Tumours of Female Reproductive Organs*. 4th Edition ed.

317 **Lyon: International Agency for Research on Cancer (IARC)**; 2014. p. 121-54.

318

319 12. Abeler VM, Kjorstad KE. *Endometrial adenocarcinoma with squamous cell*

320 *differentiation*. **Cancer**. 1992;69(2):488-95.

321  
322 13. Misirlioglu S, Guzel AB, Gulec UK, Gumurdulu D, Vardar MA. *Prognostic factors*  
323 *determining recurrence in early-stage endometrial cancer.* **Eur J Gynaecol Oncol.**  
324 2012;33(6):610-4.

325  
326 14. Zaino RJ, Kurman R, Herbold D, Gliedman J, Bundy BN, Voet R, et al. *The*  
327 *significance of squamous differentiation in endometrial carcinoma. Data from a*  
328 *Gynecologic Oncology Group study.* **Cancer.** 1991;68(10):2293-302.

329  
330 15. Ellenson LH, Ronnett BM, Soslow RA, Zaino RJ, Kurman RJ. *Endometrial*  
331 *Carcinoma.* In: Kurman RJ, Ellenson LH, Ronnett BM, editors. *Blaustein's Pathology of*  
332 *the Female Genital Tract.* Sixth Edition ed. **New York: Springer;** 2011. p. 393-452.

333  
334 16. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. *Research*  
335 *electronic data capture (REDCap)--a metadata-driven methodology and workflow*  
336 *process for providing translational research informatics support.* **J Biomed Inform.**  
337 2009;42(2):377-81.

338  
339 17. Stefansson IM, Salvesen HB, Akslen LA. *Loss of p63 and cytokeratin 5/6*  
340 *expression is associated with more aggressive tumors in endometrial carcinoma*  
341 *patients.* **Int J Cancer.** 2006;118(5):1227-33.

342  
343 18. Blanco LZ, Jr., Heagley DE, Lee JC, Gown AM, Gattuso P, Rotmensch J, et al.  
344 *Immunohistochemical characterization of squamous differentiation and morular*  
345 *metaplasia in uterine endometrioid adenocarcinoma.* **Int J Gynecol Pathol.**  
346 2013;32(3):283-92.

347  
348 19. Zaino RJ. *FIGO staging of endometrial adenocarcinoma: a critical review and*  
349 *proposal.* **Int J Gynecol Pathol.** 2009;28(1):1-9.

350  
351 20. Hayes MP, Wang H, Espinal-Witter R, Douglas W, Solomon GJ, Baker SJ, et al.  
352 *PIK3CA and PTEN mutations in uterine endometrioid carcinoma and complex atypical*  
353 *hyperplasia.* **Clin Cancer Res.** 2006;12(20 Pt 1):5932-5.

354  
355 21. Jiang W, Chen J, Tao X, Huang F, Zhu M, Wang C, et al. *Possible Risk Factors of*  
356 *Pulmonary Metastases in Patients With International Federation of Gynecology and*  
357 *Obstetrics Stage I Endometrioid-Type Endometrial Cancer.* **Int J Gynecol Cancer.**  
358 2017;27(6):1206-15.

359  
360 22. Sturgeon SR, Sherman ME, Kurman RJ, Berman ML, Mortel R, Twiggs LB, et al.  
361 *Analysis of histopathological features of endometrioid uterine carcinomas and*  
362 *epidemiologic risk factors.* **Cancer Epidemiol Biomarkers Prev.** 1998;7(3):231-5.

363  
364 23. Lax SF, Pizer ES, Ronnett BM, Kurman RJ. *Comparison of estrogen and*  
365 *progesterone receptor, Ki-67, and p53 immunoreactivity in uterine endometrioid*

366    *carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and*  
367    *ciliated cell differentiation.* **Hum Pathol.** 1998;29(9):924-31.

368

369    24. Silberg DG, Swain GP, Suh ER, Traber PG. *Cdx1 and cdx2 expression during*  
370    *intestinal development.* **Gastroenterology.** 2000;119(4):961-71.

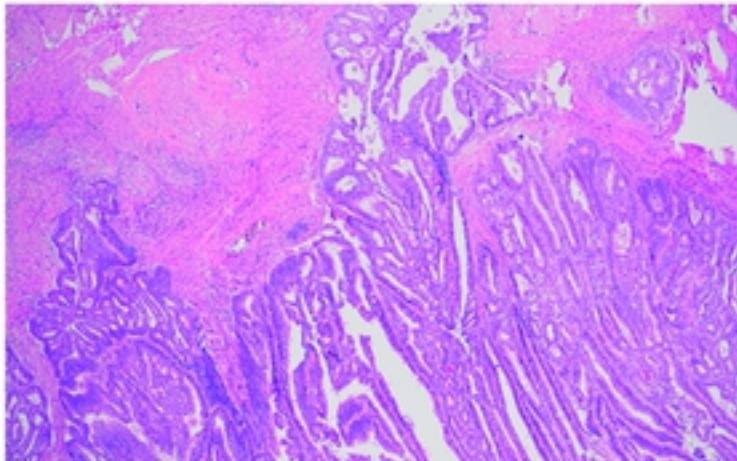
371

372    25. Wani Y, Notohara K, Saegusa M, Tsukayama C. *Aberrant Cdx2 expression in*  
373    *endometrial lesions with squamous differentiation: important role of Cdx2 in squamous*  
374    *morula formation.* **Hum Pathol.** 2008;39(7):1072-9.

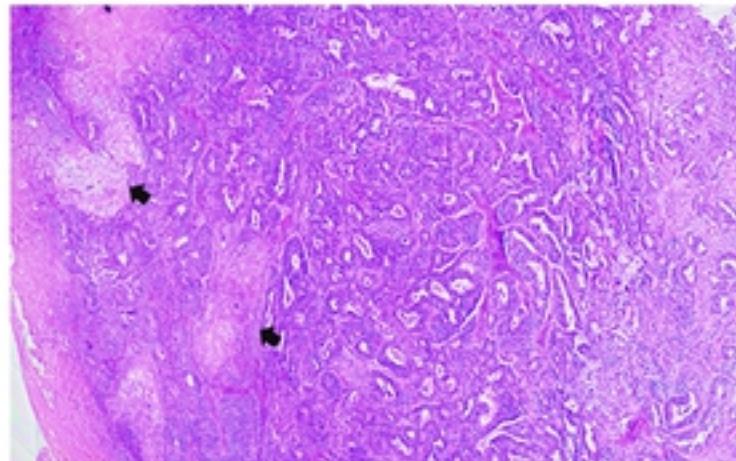
375

376    26. Caponio MA, Addati T, Popescu O, Petroni S, Rubini V, Centrone M, et al.  
377    *P16(INK4a) protein expression in endocervical, endometrial and metastatic*  
378    *adenocarcinomas of extra-uterine origin: diagnostic and clinical considerations.*  
379    **Cancer Biomark.** 2014;14(2-3):169-75.

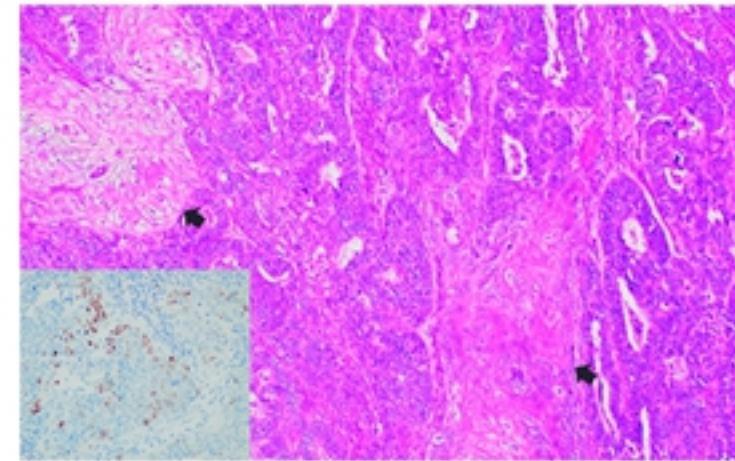
380


381    27. Chew I, Post MD, Carinelli SG, Campbell S, Di Y, Soslow RA, et al. *p16 expression*  
382    *in squamous and trophoblastic lesions of the upper female genital tract.* **Int J Gynecol**  
383    **Pathol.** 2010;29(6):513-22.

384


385    28. Creasman WT, Odicino F, Maisonneuve P, Quinn MA, Beller U, Benedet JL, et al.  
386    *Carcinoma of the corpus uteri. FIGO 26th Annual Report on the Results of Treatment in*  
387    *Gynecological Cancer.* **Int J Gynaecol Obstet.** 2006;95 Suppl 1:S105-43.

388


389



1A



1B



1C

**Figure 1.** Figure 1A depicts an endometrioid adenocarcinoma without squamous transformation, 1B shows a case with squamous transformation areas highlighted with arrows and 1C highlights the squamous transformation areas at a higher magnification (arrows). The inset presents nuclear p63 positivity, a protein antibody used to demonstrate squamous differentiation by immunohistochemistry in a squamous transformation area.

**Figure**