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Summary 

Striatal dopamine (DA) is critical for action and learning. Recent data show DA release is under tonic inhibition 

by  striatal GABA. Ambient  striatal GABA  tone on  striatal  projection neurons  can be  governed by plasma 

membrane GABA uptake transporters (GATs) on astrocytes. However, whether striatal GATs and astrocytes 

determine  DA  output  are  unknown. We  reveal  that  DA  release  in mouse  dorsolateral  striatum,  but  not 

nucleus accumbens core, is governed by GAT‐3 and GAT‐1. These GATs are partly localized to astrocytes, and 

are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of parkinsonism, GATs 

become downregulated and tonic GABAergic inhibition of DA release augmented, despite attenuated GABA 

co‐release from dopaminergic axons. These data define previously unappreciated and important roles for 

GATs  and  astrocytes  in  determining  DA  release  in  striatum,  and  reveal  that  they  underlie  maladaptive 

plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions. 
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Highlights: 

1. GABA transporters set the level of GABA inhibition of DA output in dorsal striatum 

2. Astrocytes facilitate DA release by limiting tonic GABA inhibition  

3. Tonic GABA inhibition of DA release is augmented in mouse model of parkinsonism 

4. DA and GABA co‐release are reduced in mouse model of parkinsonism 
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Introduction  

Dopamine (DA) release in the dorsal and ventral striatum plays key roles in action selection and motivation, 

and is dysregulated in diverse disorders including Parkinson’s disease (PD) and addictions. Striatal DA 

release is gated locally by axonal mechanisms and striatal neuromodulators that regulate or even drive DA 

release (Schmitz et al., 2003; Sulzer et al., 2016). It has recently been revealed that DA release is under 

tonic inhibition by striatal GABA (Lopes et al., 2018), operating through GABAA and GABAB receptors 

presumably located directly on DA axons (Lopes et al., 2018; Pitman et al., 2014; Schmitz et al., 2002). The 

striatum contains a high density of GABAergic projection neurons and interneurons and, in addition, 

receives a source of GABA co‐released from mesostriatal DA neurons (Kim et al., 2015; Tritsch et al., 2012, 

2014). Given the paucity of GABAergic synapses on DA axons (Charara et al., 1999), tonic inhibition of DA 

release by striatal GABA is presumably mediated through extrasynaptic effects of ambient GABA (Lopes et 

al., 2018). GABA can spill over for extrasynaptic actions in other nuclei (Farrant and Nusser, 2005), and in 

the dorsal striatum, provides a sizeable ambient GABA tone on spiny projection neurons (SPNs), evident as 

a tonic GABAA receptor‐mediated inhibitory conductance (Ade et al., 2008; Cepeda et al., 2013; Kirmse et 

al., 2008, 2009; Santhakumar et al., 2010).  

Tonic inhibition by ambient GABA across the mammalian brain is usually limited by uptake by 

plasma membrane GABA transporters (GATs) (Brickley and Mody, 2012). There are two isoforms of the GAT 

in striatum: GAT‐1 (Slc6a1), abundant in axons of GABAergic neurons (Augood et al., 1995; Durkin et al., 

1995; Ng et al., 2000; Yasumi et al., 1997); and GAT‐3 (Slc6a11), expressed moderately (Ficková et al., 1999; 

Ng et al., 2000; Yasumi et al., 1997) and seen particularly on astrocytes (Chai et al., 2017; Ng et al., 2000; Yu 

et al., 2018). Emerging transcriptomic data indicate that striatal astrocytes might express both GAT‐1 and 

GAT‐3 (Chai et al., 2017; Gokce et al., 2016; Zhang et al., 2014). In addition, mRNA for GAT‐1 and for GAT‐3 

has been found in midbrain DA neurons and these GATs have been suggested but not confirmed to be 

located on striatal DA axons to support GABA co‐storage and co‐release (Tritsch et al., 2014). Ambient 

GABA tone on SPNs in dorsal striatum is limited by the activity of GAT‐3 and GAT‐1 (Kirmse et al., 2008, 

2009; Santhakumar et al., 2010; Wójtowicz et al., 2013), and recent evidence indicates that GAT‐3 on 

striatal astrocytes play a particularly important role: GAT‐3 dysregulation results in profound changes to 

SPN activity and striatum‐dependent behavior (Yu et al., 2018). However, whether striatal GAT function is a 

critical for setting the level of DA output has not previously been examined.  

Here we reveal that GAT‐3 and GAT‐1 strongly regulate striatal DA release in the dorsolateral 

striatum (DLS) but not in the nucleus accumbens core (NAcC), by limiting tonic inhibition by striatal ambient 

GABA. We identify a particular role for GATs located on striatal astrocytes in supporting DA release, and 

furthermore, reveal that maladaptive GAT regulation impairs DA output in the DLS in a mouse model of 

early parkinsonism. 
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RESULTS  

DA release in DLS and NAcC is tonically inhibited by a GAD‐dependent GABA source 

We recently reported that axonal DA release in the dorsal striatum is under tonic inhibition by striatal 

GABA, as GABAA and GABAB receptor antagonists enhanced DA release evoked by single electrical and 

targeted light pulses (Lopes et al., 2018). Since mechanisms that regulate striatal DA release can diverge 

between dorsal and ventral striatal territories (Brimblecombe et al., 2015; Britt and McGehee, 2008; 

Janezic et al., 2013; Shin et al., 2017; Threlfell and Cragg, 2011; Threlfell et al., 2010), we determined 

whether DA release in NAcC, a part of the ventral striatum, is similarly regulated by tonic GABA inhibition. 

We used fast‐scan cyclic voltammetry (FSCV) in acute coronal slices of mouse brain to detect extracellular 

concentration of DA ([DA]o) at carbon‐fiber microelectrodes evoked by single electrical pulses in DLS and 

NAcC (Figure 1A). Co‐application of GABAA and GABAB receptor antagonists (+)‐bicuculline (10 M) and CGP 

55845 (4 M) respectively, significantly enhanced electrically evoked [DA]o by ~20% in either the DLS or 

NAcC, when compared to drug‐free time‐matched controls (DLS: p = 0.0004, n = 6 experiments/3 mice; 

NAcC: p = 0.001, n = 5 experiments/3 mice; Figure 1B). These effects were similar in DLS and NAcC (Figure 

1B; p > 0.9; Mann‐Whitney tests) and did not require striatal glutamate input (Supplementary Figure S1), 

nor cholinergic interneuron input to nAChRs (since experiments were conducted in the presence of the 

nAChR antagonist DHE). Using an optogenetics‐based strategy to activate DA axons selectively, we also 

confirmed that inhibition of DA release by GABA receptors does not require concurrent activation of striatal 

GABAergic microcircuits (Figure 1C). GABA receptor antagonism significantly enhanced [DA]o evoked by 

single light pulses by ~25% in both the DLS and NAcC compared to time‐matched drug‐free control (Figure 

1D; DLS: p < 0.0001, n = 9 experiments/5 mice; NAcC: p = 0.002, n = 5 experiments/4 mice), and similarly so 

in DLS vs. NAcC (Figure 1D; p > 0.9; Mann‐Whitney tests). These results confirm that DA release is under 

tonic inhibition by GABA in striatal regions spanning dorsal to ventral. 

We tested whether GABAergic inhibition of DA release arose from GABA co‐released by DA axons 

or from GABA originating from a canonical neuron source (i.e. striatal GABAergic neurons). Mesostriatal DA 

neurons synthesize, co‐store and co‐release GABA (Tritsch et al., 2012), with GABA synthesis depending on 

aldehyde dehydrogenase (ALDH)‐1a1 (Kim et al., 2015). In contrast, canonical synthesis of GABA in neurons 

requires glutamic acid decarboxylase (GAD). We inhibited GABA synthesis in DA axons by pre‐treating slices 

with ALDH inhibitor disulfiram (10 μM) for 2 to 4 hours, which depleted light‐evoked GABA currents from 

DA axons onto SPNs by half (Supplementary Figure S2), as reported previously (Kim et al., 2015). However, 

ALDH inhibition did not prevent GABA receptor antagonists from enhancing DA release: in the DLS, in the 

presence of disulfiram, GABA receptor antagonists enhanced light‐evoked [DA]o by ~40%, which was a 

significantly larger effect than seen without disulfiram (Figure 1E; with disulfiram versus without, p = 0.005, 

Mann‐Whitney test; disulfiram present: n = 6 experiments/5 mice; disulfiram absent: n = 10 experiments/7 

mice). These data suggest that GABA co‐released from DA axons does not directly inhibit DA release. They 

also suggest that ALDH‐dependent GABA acts indirectly to limit tonic inhibition by a different, ALDH‐
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independent source. To assess whether tonic inhibition of DA release depended instead on a GAD‐

dependent GABA source, we pre‐treated brain slices with GAD inhibitor 3‐mercaptopropionic acid (3‐MPA, 

500 μM) for 2 to 4 hours, which attenuates electrically evoked GABA transmission onto SPNs by more than 

half (Kim et al., 2015). After GAD inhibition, the disinhibition of DA release in the DLS by GABA receptor 

antagonists was attenuated (Figure 1E; with 3‐MPA vs. without, p = 0.008, Mann‐Whitney test; 3‐MPA: n = 

7 experiments/5 mice; 3‐MPA absent: n = 10 experiments/7 mice), indicating that a GAD‐dependent GABA 

source provides tonic inhibition of striatal DA release.  

GAT‐1 and GAT‐3 inhibition attenuates DA release in the DLS but not NAcC  

Given the paucity of GABAergic axoaxonic synapses identified on DA axons (Charara et al., 1999), tonic 

inhibition of DA release likely arises from extrasynaptic ambient GABA. We tested the hypothesis that GAT, 

through its ability to govern ambient GABA (Kirmse et al., 2008, 2009; Santhakumar et al., 2010; Wójtowicz 

et al., 2013), determines the level of tonic inhibition of DA release. The non‐selective GAT inhibitor (±)‐

nipecotic acid (NPA) (1 ‐ 10 mM) inhibits all subtypes of GATs (Goubard et al., 2011; Li et al., 2017). Bath 

application of NPA (1.5 mM) attenuated evoked [DA]o in the DLS to ~60% of time‐matched controls (Figure 

2A; electrical: p < 0.0001, Mann‐Whitney test, n = 9 experiments/5 mice; Figure 2B; light: p = 0.006, Mann‐

Whitney test, n = 9 experiments/5 mice). NPA attenuated evoked [DA]o to a greater extent in DLS than in 

NAcC (Figure 2D; DLS vs NAcC, p = 0.0008, Mann‐Whitney test) where the effect of NPA on electrically 

evoked [DA]o did not reach statistical significance compared to time‐matched controls (Figure 2C; p = 0.06, 

Mann‐Whitney test; n = 6 experiments/4 mice). These data indicate that the level of tonic inhibition of DA 

release is limited by GAT in DLS, and to a greater degree than in NAcC. 

Two main isoforms of the GAT are expressed in the basal ganglia: GAT‐1 and GAT‐3 (Jin et al., 

2011). We identified which isoform(s) limits GABAergic inhibition of DA release in the DLS, using selective 

inhibitors. The GAT‐1 selective inhibitor SKF89976A (20 M) significantly attenuated electrically evoked 

[DA]o in DLS to ~75% of time‐matched controls (Figure 2E; p = 0.0004, Mann‐Whitney test, n = 6 

experiments/4 mice). Combined inhibition of GAT‐1 and GAT‐3 with SKF89976A plus SNAP5114 (50 M) 

significantly attenuated electrically evoked [DA]o to ~60% of time‐matched controls (Figure 2F; p < 0.0001, 

Mann‐Whitney test, n = 9 experiments/5 mice), an additional effect compared to GAT‐1 inhibition alone 

and equivalent to that seen with broad‐spectrum GAT inhibitor NPA (Figure 2G; Kruskal‐Wallis ANOVA, p = 

0.003; SKF+SNAP vs. SKF: p < 0.05, NPA vs. SKF+SNAP: p > 0.05, NPA vs. SKF: p < 0.05, Dunn’s multiple 

comparison tests). These data indicate that both GAT‐1 and GAT‐3 limit the level of GABA inhibition of DA 

release in the DLS.  

GAT inhibition attenuates striatal DA release by increasing GABA receptor tone 

We ruled out diminished DA storage as a cause of the attenuation of DA release following GAT inhibition: 

Striatal DA content measured using high performance liquid chromatography (HPLC) with electrochemical 

detection was unchanged after incubation in NPA compared to controls (Figure 2H; p = 0.60, Mann‐
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Whitney test, n = 19 experiments/5 mice per condition). Instead, we confirmed that GAT inhibition 

modified DA release in a GABA receptor‐dependent manner. The acute effects of NPA on evoked [DA]o 

were prevented in the presence of antagonists for GABAA and GABAB receptors combined (picrotoxin, 100 

M, CGP55845, 4 M) (Figure 2I; without GABA receptor antagonists: ~65% of baseline; with GABA 

receptor antagonists: ~95% of baseline; p = 0.001, Mann‐Whitney test, n = 5 experiments/4 mice), 

consistent with the effects of GAT on DA release being mediated via extracellular GABA acting on GABA 

receptors. We have previously shown that activation of GABA receptors can slightly modify the activity‐

dependence of DA release during short stimulus trains (Lopes et al., 2018). Consistent with an increase in 

GABA receptor activation, GAT inhibitor NPA increased the dependence of evoked [DA]o on pulse number 

during 50 Hz trains in DLS (Figure 2J; F = 434.7, p < 0.0001, drug condition x pulse no. interaction, two‐way 

repeated‐measures ANOVA; 2p: p = 0.004, 5p: p < 0.0001, 10p: p < 0.0001; Sidak’s multiple comparisons; n 

= 8 experiments/5 mice). NPA also increased the paired‐pulse ratio of electrically evoked [DA]o at short 

inter‐pulse intervals (Supplementary Figure S3) consistent with a decrease in DA release probability 

(Jennings et al., 2015). Together these data indicate that GAT inhibition attenuates DA release through 

increasing GABA receptor tone.  

We assessed whether the greater effect of GAT inhibition in DLS than NAcC (see Figure 2) was due 

to differences in GABA receptor function between regions. However, bath application of exogenous GABA 

(2 mM) attenuated [DA]o evoked by 1p electrical stimulation to a similar degree in DLS and NAcC (Figure 

2K; DLS vs. NAcC: p = 0.33, Mann‐Whitney test, DLS n = 6 experiments/4 mice, NAcC, n = 5 experiments/4 

mice), ruling out overall differences in GABA receptor function as a factor. These findings suggest that the 

function of GAT in limiting tonic inhibition differs between DLS and NAcC. 

GAT‐3 and GAT‐1 function and expression is enriched in DLS versus NAcC  

To identify whether GAT regulates tonic GABA inhibition to a greater degree in DLS than NAcC, we recorded 

the tonic GABAA receptor‐mediated currents in SPNs using whole‐cell voltage‐clamp electrophysiology and 

assessed the impact of GAT inhibition on holding current. We confirmed that changes in holding current 

were mediated by GABAA receptors by subsequently applying GABAA antagonist picrotoxin (PTX; 100 M). 

Consistent with the effects on DA release, GAT inhibition with NPA (1.5 mM) elicited a significantly greater 

increase in GABAA‐mediated holding current in SPNs in the DLS than in the NAcC (Figure 3A‐C; DLS vs NAc: p 

= 0.008, Mann‐Whitney test; DLS: p = 0.0003, Friedman’s ANOVA on Ranks, NPA vs. drug‐free baseline: p = 

0.001, NPA + PTX vs. drug‐free baseline: p = 0.16, NPA vs. NPA + PTX: p < 0.001, Student‐Newman‐Keuls 

tests, n = 7 cells/5 mice; NAcC: p = 0.0001, Friedman’s ANOVA on Ranks, NPA vs. drug‐free baseline: p = 

0.014, NPA + PTX vs. drug‐free baseline: p = 0.014, NPA vs. NPA + PTX: p = 0.002, Student‐Newman‐Keuls 

tests, n = 6 cells/3 mice). These data corroborate a greater role for GATs in limiting ambient GABA tone in 

DLS than in NAcC. 
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Furthermore, tonic GABA inhibition of SPNs in DLS, like DA release, was regulated by both GAT1 

and GAT3. Inhibition of GAT‐1 alone with SKF89976A (20 M) induced a small increase in the GABAA‐

mediated holding current (Figure 3D, p = 0.006, Friedman’s ANOVA on Ranks, SKF vs. drug‐free baseline: p 

= 0.001, SKF + PTX vs. drug‐free baseline: p = 0.41, SKF vs. SKF + PTX: p = 0.01, Student‐Newman‐Keuls tests, 

n = 6 cells/3 mice). Combined inhibition of GAT‐1 and GAT‐3 with SKF89976A (20 M) and SNAP5114 (50 

M) induced a three‐fold increase (Figure 3E; p = 0.006, Friedman’s ANOVA on Ranks, SKF + SNAP vs. drug‐

free baseline: p = 0.001, SKF + SNAP + PTX vs. drug‐free baseline: p = 0.41, SKF + SNAP vs. SKF + SNAP + PTX: 

p = 0.011, Student‐Newman‐Keuls tests, n = 6 cells/4 mice), which was greater than after GAT‐1 inhibition 

alone, but similar to that seen with broad‐spectrum GAT inhibition (Figure 3F; p = 0.0002, Kruskal‐Wallis 

analysis of variance; SKF + SNAP vs. SKF: p < 0.01, NPA vs. SKF + SNAP: p > 0.05, NPA vs. SKF: p < 0.01; 

Dunn’s multiple comparison tests).  

GABA tone in striatum has previously been reported to be action‐potential independent i.e. due to 

spontaneous GABA release (Wójtowicz et al., 2013). We assessed whether GATs were limiting an action 

potential‐independent GABA tone. In the presence of Nav blocker tetrodotoxin (TTX, 1 M), NPA increased 

the GABAA‐mediated holding current in SPNs in the DLS (Figure 3G, NPA vs. baseline: p = 0.03, Wilcoxon 

signed‐rank test; n = 6 cells/3 mice) to a level not different to that induced by NPA in TTX‐free conditions 

(Figure 3H; p = 0.43, Mann‐Whitney test), confirming that GATs in DLS are limiting a spontaneous GABA 

tone.  

Collectively, these results show that striatal GAT‐1 and GAT‐3 regulate an ambient GABA tone, 

which arises from an action‐potential independent source, and do so to a greater degree in DLS compared 

to NAcC. We explored an anatomical basis for the regional heterogeneity in GAT function. Striatal 

immunoreactivity to GAT‐1 and GAT‐3 in the DLS and NAcC revealed relative enrichment in the DLS for both 

GAT1 (Figure 4A,B, p = 0.009, Wilcoxon signed‐rank test, n = 12 hemispheres/6 mice) and GAT‐3 (Figure 

4C,D; p = 0.002, Wilcoxon signed‐rank test, n = 12 hemispheres/6 mice). We also noted enriched GAT‐3 in 

the medial NAc shell (NAcS) contiguous with the medial septal nucleus (Supplementary Figure S4). This 

observation prompted us to identify the effects of GAT inhibition on DA release in NAcS. Correspondingly, 

we noted that GAT inhibition diminished electrically evoked [DA]o in NAcS, unlike NAcC (Supplementary 

Figure S4), indicating further regional heterogeneity in the role of GATs in limiting tonic inhibition across 

the striatum.  

GAT‐1 and GAT‐3 on astrocytes are key regulators of ambient GABA inhibition of DA release 

Striatal GATs are located on the plasma membranes of a variety of cells that include GABAergic neurons 

(Augood et al., 1995; Durkin et al., 1995; Ng et al., 2000; Yasumi et al., 1997) and astrocytes (Chai et al., 

2017; Ng et al., 2000; Yu et al., 2018). GATs have also been presumed, but not confirmed, to reside on DA 

axonal membranes to support GABA uptake, co‐storage and co‐release (Tritsch et al., 2014). To better 

understand where GAT is located to regulate tonic GABAergic inhibition of DA, we probed two candidate 
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locations, namely DA axons, and astrocytes. We explored whether GAT‐1 or GAT‐3 could be detected on DA 

axons using immunofluorescence and confocal microscopy, but we did not find robust evidence for 

localization of these proteins to DA axons identified by an eYFP reporter (Supplementary Figure S5). As a 

positive control for our immunofluorescence and imaging, we confirmed that GAT‐1 was localized to the 

neurites of parvalbumin‐expressing GABAergic interneurons (Supplementary Figure S6), which are well 

known to express GAT‐1 (Augood et al., 1995). Our observations do not provide support for the assumption 

that GAT‐1 and GAT‐3 proteins are localized to DA axons (Tritsch et al., 2014) in order to provide GABA 

uptake for co‐storage and co‐release.  

In many brain regions, including striatum, astrocytes are thought to regulate ambient GABA levels 

by active uptake of GABA (Yu et al., 2018). GAT‐3 protein expression has been documented on striatal 

astrocytes (Chai et al., 2017; Ng et al., 2000; Yu et al., 2018), and although GAT‐1 is typically associated with 

neuronal structures (Borden, 1996), recent transcriptomic studies have found RNA for both GAT‐3 and GAT‐

1 in striatal astrocytes (Chai et al., 2017; Gokce et al., 2016; Zhang et al., 2014). We revisited GAT‐1 

localization, using immunofluorescence and confocal microscopy with antibodies directed against GAT‐1 or 

GAT‐3, as well as against the striatal astrocytic marker S100β (Chai et al., 2017) in the DLS and NAcC (Figure 

5A,B). As expected, we found that GAT‐3 was robustly co‐localized to the plasma membranes of S100β‐

expressing astrocytes (Figure 5C, n = 3 mice). We also found some instances of localization of GAT‐1 on 

S100β astrocytes (Figure 5D, n = 3 mice). These data indicate that, although GAT‐1 is commonly expressed 

by striatal GABAergic interneurons, GAT‐1 can also be expressed by some astrocytes in striatum.  

We next probed whether GATs on striatal astrocytes could govern tonic GABAergic inhibition of DA 

release. To address this, we pre‐treated striatal slices with fluorocitrate (200 µM for >1hr, or vehicle 

control), an established approach for metabolically inhibiting astrocytes, thus rendering them inactive and 

preventing the effects of astrocytic GAT (Boddum et al., 2016; Bonansco et al., 2011). DA release in 

fluorocitrate‐ and vehicle‐treated slices was then recorded with/without the GAT inhibitor NPA. We first 

confirmed that we could detect the effects of GAT inhibition on DA release in DLS in control slices. 

Accordingly, [DA]o evoked by 1p electrical stimulation across a range of sites in the DLS from slices 

incubated in NPA (1.5 mM) for 30 min was significantly less than in NPA‐free control conditions, as 

expected (Figure 5E; p = 0.0003, Mann‐Whitney test; n = 24 observations/5 mice for each condition), and 

4p/1p ratio (50 Hz) was appropriately enhanced (Figure 5F; p = 0.014, Mann‐Whitney test; n = 8 

experiments/5 mice for each condition). By contrast, in slices pre‐treated with fluorocitrate to inactivate 

astrocytes, NPA did not significantly modify [DA]o evoked by 1p (Figure 5G; p = 0.10, Mann‐Whitney test, n 

= 42 observations/7 mice for each condition), or the 4p/1p ratio (50 Hz), compared to NPA‐free conditions 

(Figure 5H; p = 0.64, Mann‐Whitney test, n = 13 observations/7 mice for each condition). We noted also 

that evoked [DA]o was lower in fluorocitrate‐treated vs vehicle‐treated slices (Figure 5I; p = 0.0001, Mann‐

Whitney test). Additionally, the inhibition of [DA]o by NPA was attenuated when astrocytes were inhibited 
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compared to not (Figure 5J; p = 0.004, Mann‐Whitney test). Together, these data indicate that GATs on 

striatal astrocytes regulate the level of inhibition of DA release by ambient GABA.  

Tonic inhibition of DA release in the DLS is augmented in a mouse model of parkinsonism 

Our data described above provide compelling evidence that GATs regulate DA output in the DLS. 

Intriguingly, dysregulation of GATs within the basal ganglia has been implicated in models of neurological 

disease: in a 6‐hydroxydopamine‐induced mouse model of Parkinson’s, astrocytes in the external globus 

pallidus have downregulated GAT‐3 (Chazalon et al., 2018); and in R6/2 and FVB/N transgenic mouse 

models of Huntington’s disease, GAT expression in striatum is increased and tonic inhibition by ambient 

GABA decreased (Cepeda et al., 2013; Wójtowicz et al., 2013; Yu et al., 2018). Given that deficits in DA 

transmission occur in dorsal striatum, but not in NAcC, in several transgenic rodent models of early 

parkinsonism prior to cell loss (Janezic et al., 2013; Sloan et al., 2016; Taylor et al., 2014), we explored 

whether tonic GABAergic inhibition of striatal DA release and its regulation by striatal GAT might be 

affected in a mouse model of early parkinsonism.  

We chose to use SNCA‐OVX mice, a model of early parkinsonism (Janezic et al., 2013). SNCA‐OVX 

mice are devoid of mouse ‐synuclein but overexpress human wildtype ‐synuclein at disease‐relevant 

levels and show early deficits in DA release prior to DA cell loss (Janezic et al., 2013). To address our aims, 

we made these SNCA‐OVX mice ‘optogenetics capable’, such that they allowed for optical manipulation of 

DA axons. We crossed Slc6a3IRES‐Cre mice with ‐synuclein knockout mice to create Slc6a3IRES‐Cre mice devoid 

of mouse ‐synuclein, and then crossed these mice with SNCA‐OVX mice to generate two cohorts of mice, 

both devoid of mouse ‐synuclein: (1) “SNCA+” mice that express Cre recombinase in DA neurons and 

human ‐synuclein; and (2) as littermate background controls, “Snca‐/‐” mice that express Cre recombinase 

in DA neurons but no human transgene. We confirmed that, as observed in the original SNCA‐OVX mice 

(Janezic et al., 2013), the resulting SNCA+ mice at 4 months exhibited a ~30% deficit in electrically evoked 

[DA]o when compared to littermate controls (Snca‐/‐) in the dorsal striatum (Figure 6A; t = 3.3, df = 46, p = 

0.002, unpaired t test; n = 24 observations/5 mice for each genotype) and not in the NAc (Figure 6A; t = 1.4, 

df = 40, p = 0.17, unpaired t‐test; n = 21 observations/5 mice for each genotype). The DA release deficit in 

dorsal striatum was not attributable to a reduction in striatal DA content in SNCA+ mice compared to Snca‐

/‐ mice (Figure 6B; t = 0.16, df = 14, p = 0.87, dorsal striatum; t = 0.74, df = 14, p = 0.47, NAc; n = 8 

experiments/5 mice for each genotype). We then established that [DA]o evoked optogenetically in DLS by 

single light pulses also showed a similar deficit in SNCA+ compared to Snca‐/‐ (Figure 6C; t = 2.44, df = 29, p 

=0.02; SNCA+: n = 16 observations/3 mice; Snca‐/‐: n = 15 observations/3 mice).  

Furthermore, this new optogenetic capable model of parkinsonism allowed us to address for the 

first time whether DA release deficits in DLS are accompanied by corresponding deficits in GABA co‐release 

from DA axons. To provide a readout of GABA co‐release, we used voltage‐clamp recordings of currents 

evoked in SPNs by optical stimulation of DA axons (Figure 6D).  We observed a significantly lower amplitude 
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of light‐evoked GABAergic co‐release currents in SPNs of SNCA+ mice compared to Snca‐/‐ mice (Figure 

6D,E; t = 2.68, df = 14, p = 0.018; SNCA+: n = 9 cells/4 mice, Snca‐/‐: n = 7 cells/4 mice). These evoked 

currents were GABAA receptor‐mediated as they were eliminated by picrotoxin (PTX, 100 µM) (Figure 6F; t 

= 4.55, df = 10, p = 0.001). This observed difference in GABAergic current amplitudes was not due to 

differences in series resistance (Figure 6G; t = 0.23, df = 14, p = 0.82).  

We then explored whether tonic GABA inhibition of DA release was modified in the parkinsonian 

model in DLS and NAcC. We found that GABAR antagonism enhanced [DA]o evoked by single light pulses to 

a significantly greater degree in SNCA+ mice than in Snca‐/‐ controls in DLS (Figure 6H; p = 0.0003, Mann‐

Whitney test; SNCA+: n = 8 experiments/5 mice, Snca‐/‐: n = 7 experiments/5 mice) but not in NAcC (Figure 

6I; p = 0.09, Mann‐Whitney test; SNCA+: n = 8 experiments/5 mice, Snca‐/‐: n = 9 experiments/5 mice), 

which was a significant regional difference (Figure 6J; p = 0.02, Mann‐Whitney test). These data indicate 

that the GABA tone on DA axons is dysregulated in SNCA+ parkinsonian mice and in particular, that tonic 

GABAergic inhibition of DA release is augmented in DLS. 

We tested the hypothesis that elevated tonic inhibition of DA release in the DLS of SNCA+ mice 

might be due to impaired GAT function. We tested the effect of the non‐selective GAT inhibitor NPA on 

[DA]o evoked by single electrical pulses in DLS and found an attenuated effect of NPA in SNCA+ versus Snca‐

/‐ controls (Figure 6K; p = 0.03, Mann‐Whitney test vs Snca ‐/‐; n = 5 experiments/4 mice for each 

genotype). Quantification of Western blots of dorsal striatal tissue revealed lower levels of both GAT‐1 and 

GAT‐3 proteins in SNCA+ mice versus Snca‐/‐ controls (Figure 6L; GAT‐1: p = 0.0004; GAT‐3: p = 0.01; Mann‐

Whitney tests; n = 7 SNCA+ mice, n = 10 Snca ‐/‐ mice). Taken together, these data suggest that tonic 

inhibition of DA release by ambient GABA is augmented in the dorsal striatum in early parkinsonism due to 

decreased GAT‐1 and GAT‐3 (Figure 7).  

 

DISCUSSION  

We define a major role for striatal GATs and astrocytes in setting the level of DA output in the striatum. We 

show that GAT‐1 and GAT‐3, located at least in part on striatal astrocytes, govern tonic GABAergic inhibition 

of DA release. GATs operate in a heterogeneous manner across the striatum, substantially limiting tonic 

inhibition of DA release in DLS but not NAcC. Moreover, in a mouse model of early parkinsonism prior to 

the overt loss of DA neurons, we reveal maladaptive decreases in striatal GAT‐1 and GAT‐3 expression and 

consequently, profound augmentation of tonic inhibition of DA release by GABA in the dorsal striatum.  

GATs limits the tonic inhibition of DA release 

We found that tonic inhibition of DA release by GABA spans dorsal‐ventral territories of striatum and arises 

from a GAD‐dependent source of GABA. The source of GABA was not ALDH‐dependent e.g. co‐release from 

DA axons, as inhibition of ALDH did not attenuate the tonic inhibition of DA release by GABA, despite 

attenuating GABA co‐release from DA axons, as seen previously (Kim et al., 2015). Conversely, ALDH‐
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inhibition slightly boosted tonic inhibition of DA release, suggesting that ALDH‐dependent sources of GABA, 

such as GABA co‐release from DA axons, limit the tonic inhibition by the GAD‐dependent GABA network. 

Correspondingly, in mice expressing human α‐synuclein, in which we found that GABA co‐release from DA 

axons is attenuated, we also found that the level of tonic GABA inhibition on DA release was boosted. We 

note that Aldh1a1 mutations in humans and deletion in mice lead to alcohol‐consuming preferences (Kim 

et al., 2015; Liu et al., 2011; Sherva et al., 2009), and speculate that a modified DA output might plausibly 

contribute to this behaviour. 

The paucity of GABAergic synapses on DA axons (Charara et al., 1999) suggests that GAD‐

dependent GABA tone arises from the extrasynaptic ambient tone that can be detected in striatum (Ade et 

al., 2008; Cepeda et al., 2013; Kirmse et al., 2008, 2009; Santhakumar et al., 2010). This tone was action 

potential‐independent, i.e. spontaneous (Kaeser and Regehr, 2013), as reported previously for tonic 

inhibition of SPNs (Wójtowicz et al., 2013). A spontaneous GABAergic regulation of DA release is not 

surprising when considering that the axonal arbour of a given nigrostriatal DA neuron (in rat) reaches on 

average 2.7% of the volume of striatum (Matsuda et al., 2009; Oorschot, 1996), and that such volumes 

contain ~74,000 GABAergic neurons (calculated from 2.8 million striatal neurons per hemisphere 

(Oorschot, 1996) of which ~98% are GAD‐immunoreactive) and also GAD‐positive cholinergic interneurons 

that can co‐release GABA (Lozovaya et al., 2018). Even very low rates of spontaneous vesicle release from a 

small fraction of GAD‐utilizing GABAergic neurons might summate sufficiently to provide a tone at GABA 

receptors on DA axons that limits DA output. The general functions of this spontaneous GABA tone are not 

well understood, but could differ from functions of action potential‐dependent or synaptic events (Farrant 

and Nusser, 2005), and could include regulation of DA axonal membrane resistance to modify the impact of 

other inputs or limit the propagation of action potentials through the axonal arbour for a sparser coding.  

We found that GAT‐1 and GAT‐3 both limit the actions of GABA on DA axons in DLS, and thereby 

indirectly facilitate DA release. This unprecedented role for the GATs in supporting DA output was 

heterogeneous: GATs limited tonic GABAergic inhibition of DA release in DLS, and also NAcS, but not NAcC, 

which corresponded with heterogeneity in GAT‐1 and GAT‐3 expression. Of note, the positive relationship 

we find between GAT function and DA output is paralleled by, and provides a candidate explanation for, 

some clinical effects of GAT inhibitors e.g. tiagibine. When used clinically as antiepileptics drugs to increase 

extracellular GABA levels, these inhibitors can have parkinsonian‐like motor side effects (Zaccara et al., 

2004). 

We did not find evidence for robust localization of GAT‐1 or GAT‐3 to DA axons in DLS, despite a 

previous inference that GATs reside on DA axons to support GABA uptake for co‐release (Tritsch et al., 

2014). This inference was based on mRNA for GAT‐1 (and weakly for GAT‐3) being present in the somata of 

DA neurons in substantia nigra, and on the attenuation of GABA co‐release from DA axons after 

pharmacological inhibition of GATs (Tritsch et al., 2014). However, because subsequent work has shown 

that there is a tonic GABAergic inhibition of DA release mediated by both GABAA and GABAB receptors 
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(Lopes et al., 2018), which we show here is profoundly limited by the GATs, then the observed dependence 

of GABA co‐release on GAT is very likely a result of the GATs limiting tonic inhibition of GABA co‐release, 

rather than GATs necessarily being required for GABA uptake.  

We revealed that astrocytes play a critical role in limiting the tonic inhibition of DA release and 

therefore supporting DA output. We found that both GAT‐3 and, to a lesser extent, GAT‐1, could be 

identified on astrocytes, challenging the previous generalization that GAT‐1 is exclusively neuronal (Borden, 

1996). The role we find for astrocytes in supporting GABA uptake to minimise tonic inhibition of DA release, 

indicates a previously unappreciated role for astrocytes in determining the dynamic output of DA. This 

finding significantly revises current understanding of the striatal mechanisms that can dynamically regulate 

DA transmission. Astrocytic GATs have recently been shown to regulate tonic GABAergic inhibition of 

striatal SPNs and striatal‐dependent behaviours (Yu et al., 2018), and thus, our collective findings point to 

GATs and astrocytes as powerful regulators of striatal and DA function that warrant further future 

investigation.  

Striatal GAT dysfunction in a mouse model of Parkinson’s disease 

To probe the significance of the regulation of striatal DA by striatal GATs, we explored GAT function in a 

mouse model of early parkinsonism. A recent study in external globus pallidus of dopamine‐depleted rats 

found elevated extracellular GABA resulting from downregulation of GAT‐3 on astrocytes, mediated 

through a loss of DA signalling at D2 DA receptors (Chazalon et al., 2018). Conversely, striatal GAT‐3 levels 

are upregulated in mouse models of Huntington’s disease (Wójtowicz et al., 2013; Yu et al., 2018). We 

explored potential adaptations to GAT function and tonic GABA inhibition of DA release in the striatum of 

the human α‐synuclein‐overexpressing mouse model of PD. This model is a highly physiological, slowly 

progressing mouse model of parkinsonism, that, in capturing a human disease‐relevant genetic burden of 

α‐synuclein overexpression, shows early deficits in DA release restricted to dorsal striatum prior to late‐

stage degeneration of DA neurons, disturbed encoding of behaviour of surviving DA neurons and a motor 

phenotype (Dodson et al., 2016; Janezic et al., 2013). We firstly ascertained the novel finding that DA 

transmission deficits in this model in early adulthood are accompanied by a corresponding deficit in GABA 

co‐release from DA axons, which suggests that in early parkinsonism at least, malfunction in nigrostriatal 

DA is accompanied by malfunction in nigrostriatal GABA. Furthermore, we found an augmentation of tonic 

GABA inhibition of DA release in the DLS (and not NAcC), which was accompanied by downregulated GAT‐1 

and GAT‐3 expression. Whether these adaptations in GAT are consequential to reduced dopamine 

signalling, as seen in the globus pallidus after massive depletion of dopamine (Chazalon et al., 2018), or due 

to a potential interaction between α‐synuclein and striatal GAT and/or astrocytes is not yet known. 

Regardless, this resulting enhanced tonic inhibition will diminish nigrostriatal DA release, compounding any 

release deficits underpinned by α‐synuclein actions e.g. tighter vesicle clustering at DA release sites (Janezic 
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et al., 2013). These changes in GATs and tonic GABA inhibition in early parkinsonism can be considered 

‘maladaptive’.  

In conclusion, the regulation of striatal GABA‐DA interactions via striatal GATs and astrocytes 

represent loci for governing DA output as well as for maladaptive plasticity in early parkinsonism, which 

could also provide a novel therapeutic avenue for upregulating DA signalling in PD. 

 

 

MATERIALS AND METHODS  

Mice. All experimental procedures involving the use of animals were carried out according to institutional 

guidelines and conformed to the UK Animals (Scientific Procedures) Act 1986. Wild‐type C57BL/6J mice 

were obtained from Charles River (Harlow, UK). Knock‐in mice bearing an internal ribosome entry site 

(IRES)‐linked Cre recombinase gene downstream of the gene Slc6a3, which encodes the plasma membrane 

dopamine transporter (DAT) were obtained from Jackson Laboratories (Slc6a3IRES‐Cre mice; B6.SJL‐

Slc6a3tm1.1(cre)Bkmn/J; stock no. 006660). PVCre knock‐in mice expressing Cre recombinase in parvalbumin (PV)‐

expressing neurons were obtained from Jackson Laboratories (B6;129P2‐Pvalbtm1(cre)Arbr/J; stock no. 

008069). BAC‐transgenic mice that overexpress human ‐synuclein (SNCA) at Parkinson’s disease‐relevant 

levels and are back‐crossed onto an ‐synuclein‐null (Snca−/−) background (B6.Cg‐

Tg(SNCA)OVX37Rwm Sncatm1Rosl/J; Jackson Laboratories stock no. 023837), “SNCA‐OVX” mice, were bred 

locally (Janezic et al., 2013). ‘Optogenetic capable’ SNCA+ mice were generated by crossing Slc6a3IRES‐Cre+/+; 

Snca‐/‐ mice with SNCA+/‐; Snca‐/‐ mice (SNCA‐OVX mice) (Janezic et al., 2013). For all experiments 

involving SNCA+ mice, we used age‐ and sex‐matched Snca‐null mice (heterozygous for Slc6a3IRES‐Cre) as 

littermate controls. All mice were maintained on a C57BL/6 background, group‐housed and maintained on 

a 12‐hr light cycle with ad libitum access to food and water. All transgenic mice used in experiments were 

homozygous for transgenes or mutant alleles.  

Stereotaxic intracranial injections. Slc6a3IRES‐Cre mice, PVcre mice (postnatal day (P) 28 – 35) and Slc6a3IRES‐Cre 

x SNCA‐OVX mice (P 77 ‐ 84) were anesthetized with isoflurane and placed in a small animal stereotaxic 

frame (David Kopf Instruments). After exposing the skull under aseptic techniques, a small burr hole was 

drilled and adeno‐associated virus (8x1012 genome copies per ml; UNC Vector Core Facility) encoding Cre‐

dependent ChR2 was injected. Viral solutions were injected at an infusion rate of 100 nL/min with a 32‐

gauge Hamilton syringe (Hamilton Company) and withdrawn 5‐10 min after the end of injection. In 

Slc6a3IRES‐Cre x SNCA‐OVX mice, and Slc6a3IRES‐Cre mice, a total volume of 1 μL of AAV5‐EF1α‐DIO‐

hChR2(H134R)‐eYFP was injected bilaterally (500 nL per hemisphere/injection) into substantia nigra pars 

compacta (SNc, AP ‐3.1 mm, ML ±1.2 mm from bregma, DV ‐4.25 mm from exposed dura mater). In PV‐Cre 

mice, a total volume of 600 nL of AAV2‐EF1α‐DIO‐hChR2(H134R)‐eYFP was injected bilaterally (300 nL per 

hemisphere/injection) into dorsolateral striatum (DLS, AP +0.65 mm, ML ±2.0 mm from bregma, DV ‐1.85 
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mm from exposed dura mater). Viral‐injected mice were used for experiments after >28 days post‐

injection.  

Slice preparation. Acute brain slices were obtained from 35‐ to 80‐day‐old mice using standard techniques. 

Mice were culled by cervical dislocation (for FSCV experiments alone) or mice were anaesthetized with 

pentobarbital and transcardinally perfused with ice‐cold artificial cerebrospinal fluid (aCSF) containing (in 

mM): 130 NaCl, 2.5 KCl, 26 NaHCO3, 2.5 CaCl2, 2 MgCl2, 1.25 NaH2PO4 and 10 glucose (for whole‐cell patch‐

clamp electrophysiology experiments alone or in combination with FSCV experiments). 300 μm‐thick 

coronal slices containing caudate putamen (CPu) and NAc were prepared from dissected brain tissue using 

a vibratome (VT1200S, Leica Microsystems) and transferred to a holding chamber containing a HEPES‐

based buffer solution maintained at room temperature (20‐22°C) containing (in mM): 120 NaCl, 20 NaHCO3, 

10 glucose, 6.7 HEPES acid, 5 KCl, 3.3 HEPES sodium salt, 2 CaCl2, 2 MgSO4, 1.2 KH2PO4 (for FSCV 

experiments alone) or containing aCSF kept at 34°C for 15 min before returning to room temperature (20‐

22°C). All recordings were obtained within 5‐6 hours of slicing. All solutions were saturated with 95% O2 / 

5% CO2. 

Fast‐scan cyclic voltammetry (FSCV). Individual slices were hemisected and transferred to a recording 

chamber and superfused at ~3.0 mL/min with aCSF at 31‐33 °C. A carbon fibre microelectrode (CFM; 

diameter 7‐ 10 μm, tip length 70‐120 μm), fabricated in‐house, was inserted 100 μm into the tissue and 

slices were left to equilibrate and the CFM to charge for 30‐60 min prior to recordings. All experiments 

were carried out either in the dorsolateral quarter (DLS) of the CPu or nucleus accumbens (NAc) core 

(NAcC; within 100 μm of the anterior commissure) or lateral NAc shell (NAcS), one site per slice (see 

Supplementary Figure S4). Evoked extracellular DA concentration ([DA]o) was measured using FSCV at CFMs 

as described previously (Threlfell et al., 2012). In brief, a triangular voltage waveform was scanned across 

the microelectrode (‐700 to +1300 mV and back vs Ag/AgCl reference, scan rate 800 V/s) using a Millar 

Voltammeter (Julian Millar, Barts and the London School of Medicine and Dentistry), with a sweep 

frequency of 8 Hz. Electrical or light stimuli were delivered to the striatal slices at 2.5 min intervals, which 

allow stable release to be sustained at ~90‐95% (see Fig. 1B,D) over the time course of control experiments. 

Evoked currents were confirmed as DA by comparison of the voltammogram with that produced during 

calibration with applied DA in aCSF (oxidation peak +500‐600 mV and reduction peak ‐200 mV). Currents at 

the oxidation peak potential were measured from the baseline of each voltammogram and plotted against 

time to provide profiles of [DA]o versus time. CFMs were calibrated post hoc in 2 μM DA in each 

experimental solution. Calibration solutions were made immediately before use from stock solution of 2.5 

mM DA in 0.1 M HClO4 stored at 4 oC. CFM sensitivity to DA was between 10 and 40 nA/μM. Unless noted 

otherwise, FSCV recordings were carried out in the presence of dihydro‐‐erythroidine (DHE, 1 μM), an 

antagonist at 2 subunit‐containing nicotinic acetylcholine receptors (nAChRs), to eliminate cholinergic 
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signalling effects on DA release (Exley and Cragg, 2008; Rice and Cragg, 2004; Threlfell et al., 2012). Release 

was tetrodotoxin‐sensitive as shown previously (Threlfell et al., 2012).  

 

In experiments where [DA]o was evoked by electrical stimulation, a local bipolar concentric Pt/Ir 

electrode (25 μm diameter; FHC Inc.) was placed approximately 100 μm from the CFMs and stimulus pulses 

(200 μs duration) were given at 0.6 mA (perimaximal in drug‐free control conditions). We applied either 

single pulses (1p) or 2‐10 pulses (2p, 4p, 5p, 10p) at 10 ‐ 100 Hz. A frequency of 100 Hz is useful as a tool for 

exposing changes in short‐term plasticity in DA release that arise through changes in initial release 

probability (Jennings et al., 2015; Rice and Cragg, 2004). In experiments where [DA]o was evoked by light 

stimulation in slices prepared from Slc6a3IRES‐Cre mice expressing ChR2, DA axons in striatum were activated 

by TTL‐driven (Multi Channel Stimulus II, Multi Channel Systems) brief pulses (2 ms) of blue light (470 nm; 5 

mWmm‐2; OptoLED; Cairn Research), which illuminated the field of view (2.2 mm, x10 water‐immersion 

objective). Epifluorescence used to visualize ChR2‐eYFP expression was used sparingly to minimize ChR2 

activation before recordings 

Electrophysiology. Individual slices were hemisected and transferred to a recording chamber and 

superfused at ~3.0 mL/min with aCSF at 31‐33 °C. Cells were visualized through a X40 water‐immersion 

objective with differential interference contrast optics. All whole‐cell experiments were recorded using 

borosilicate glass pipettes with resistances in the 3 – 5 MΩ range and were pulled on a Flaming‐ Brown 

micropipette puller (P‐1000, Sutter Instruments). Whole‐cell voltage‐clamp electrophysiology recordings 

were made from spiny projection neurons (SPNs; identified by their membrane properties (Gertler et al., 

2008; Planert et al., 2013)) in the DLS or NAcC. SPNs were voltage‐clamped at ‐70 mV using a MultiClamp 

700B amplifier (Molecular Devices) and with pipettes filled with a CsCl‐based internal solution (in mM 120 

CsCl, 15 CsMeSO3, 8 NaCl, 0.5 EGTA, 10 HEPES, 2 Mg‐ATP, 0.3 Na‐GTP, 5 QX‐314; pH 7.3 adjusted with 

CsOH; osmolarity ranging from 305 ‐ 310 mOsmkg‐1). The recording perfusate always contained NBQX (5 

μM) and APV (50 μM) to block AMPA and NMDA receptor‐mediated inward currents. Errors due to the 

voltage drop across the series resistance (<20 MΩ) were left uncompensated and membrane potentials 

were corrected for a ~5 mV liquid junction potential. Cells were discarded from analysis if if series 

resistance varied by more than 15% or increased over 25 MΩ.  

To record tonic GABAA currents, SPNs voltage‐clamped at ‐70 mV were recorded in gap‐free mode. 

Cells were allowed to stabilize for 5‐10 min before drug manipulations: GAT inhibitors were bath applied 

for 20 ‐25 min; picrotoxin (100 μM) for an additional 3‐5 min. Recordings of light‐evoked GABA currents in 

SPNs from ChR2‐expressing DA axons in slices from Slc6a3IRES‐Cre mice were taken 10 min after break‐in, and 

at 30 s intervals for a duration of 10 min from SPNs voltage‐clamped at ‐70 mV. Under these conditions, 

GABAA receptor‐mediated currents appear inward as reported previously (Tritsch et al., 2012). TTL‐driven 

(Multi Channel Stimulus II, Multi Channel Systems) brief pulses (2 ms) of blue light (470 nm; 5 mWmm‐2; 

OptoLED; Cairn Research) illuminated the full field of view (2.2 mm, X10 water‐immersion objective).  
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High‐performance liquid chromatography. DA content in dorsal striatum was measured by HPLC with 

electrochemical detection as described previously (Janezic et al., 2013). Tissue punches (2 mm in diameter) 

were taken from dorsal striatum in two brain slices per animal, snap frozen and stored at −80 °C in 200 μL 

0.1 M HClO4. On the day of analysis, samples were thawed on ice, homogenized, and centrifuged at 15,000 

g for 15 min at 4 °C. The supernatant was analysed for DA content. Analytes were separated using a 4.6 × 

250 mm Microsorb C18 reverse‐phase column (Varian or Agilent) and detected using a Decade II SDS 

electrochemical detector with a Glassy carbon working electrode (Antec Leyden) set at + 0.7 V with respect 

to a Ag/AgCl reference electrode. The mobile phase consisted of 13% methanol (vol/vol), 0.12 M NaH2PO4, 

0.5–4.0 mM octenyl succinic anhydride (OSA), and 0.8 mM EDTA (pH 4.4–4.6), and the flow rate was fixed 

at 1 mL/min. 

Western blot. Mouse brains were extracted and sliced using the procedures outlined above. One 1.2 mm 

thick coronal slice containing striatum was prepared from each brain and one tissue punch (2 mm in 

diameter) of dorsal striatum taken per hemisphere. Striatal tissue samples were snap‐frozen and stored at 

at −80 °C. For analysis, striatal tissue was defrosted on ice, homogenized in RIPA Lysis and Extraction Buffer 

(Sigma) containing 150 mM NaCl, 1.0% IGEPAL, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0, 

with Complete‐Mini Protease Inhibitor and PhosStop (Roche), using a Tissue Tearor (Biospec Products, Inc), 

and soluble fraction isolated by microcentrifugation at 15,000 g for 15 min at 4°C. Total protein content 

was quantified using a BCA Protein Assay Kit (Thermo Scientific) and equal amounts of total protein were 

loaded onto 4 – 15% Tris‐Glycine gels (BioRad). Following electrophoresis (200 V for ~45 min), proteins 

were transferred onto polyvinylidene fluoride membranes (BioRad). Blots were probed overnight at 4C 

with 1:1,000 rabbit anti‐GABA transporter 1 (Synaptic Systems, 274102) or 1:1,000 rabbit anti‐GABA 

transporter 3 (Abcam, AB181783). Blots were incubated with HRP‐conjugated secondary anitbodies at 

1:3,000 for 1 h at room temperature and bands developed using ECL Prime Western Blotting Detection 

Reagent (GE Healthcare). Blots were subsequently incubated with 1:20,000 HRP‐conjugated β‐actin 

(Abcam, AB49900) for 1 h at room temperature and bands developed as above. Visualization and imaging 

of blots was performed with a ChemiDoc Imaging System (BioRad) and bands quantified using Image Lab 

Software (BioRad). Protein concentration for GAT‐1 and GAT‐3 were normalized to β‐actin.  

Indirect immunofluorescence. Adult mice were anaesthetized with an overdose of pentobarbital and 

transcardially perfused with 20‐50 mL of phosphate‐buffered saline (PBS), followed by 30‐100 mL of 4% 

paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.4. Brains were removed and post‐fixed overnight 

in 4% PFA. Brains were embedded in agar (3‐4%) and coronal sections (50 µm) were cut on a vibrating 

microtome (Leica VT1000S) and collected in a 1 in 4 series. Sections were stored in PBS with 0.05% sodium 

azide. Upon processing, sections were washed in PBS and then blocked for 1h in a solution of PBS TritonX 

(0.3%) with sodium azide (0.02%; PBS‐Tx) containing 10% normal donkey serum (NDS). Sections were then 

incubated in primary antibodies overnight in PBS‐Tx with 2% NDS at 4°C. Primary antibodies: rabbit anti‐TH 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 10, 2019. ; https://doi.org/10.1101/698274doi: bioRxiv preprint 

https://doi.org/10.1101/698274
http://creativecommons.org/licenses/by/4.0/


Roberts et al      

 

16 

 

(1:2,000, Sigma‐Aldrich, ab112); rabbit anti‐GAT1 (1:1,000, Synaptic Systems, 274102); rabbit anti‐GAT3 

(1:250, Millipore/Chemicon, AB1574); guinea pig anti‐S100β (1:2,000, Synaptic Systems, 287004); rat anti‐

GFP that also recognizes eYFP (1:1,000, Nacalai Tesque, 04404‐84); and guinea‐pig anti‐parvalbumin 

(1:1,000, Synaptic Systems, 195004). Sections were then incubated in species‐appropriate fluorescent 

secondary antibodies with minimal cross‐reactivity overnight in PBS‐Tx at room temperature (Donkey anti‐

Rabbit AlexaFluor 488, 1:1,000, Invitrogen, A21206; Donkey anti‐Rabbit Cy3, 1:1,000, Jackson 

ImmunoResearch, 711‐165‐152; Donkey anti‐Guinea Pig AlexaFluor 488, 1:1,000, Jackson ImmunoResearch, 

706‐545‐148; Donkey anti‐Rat AlexaFluor 488, 1:1,000, Jackson ImmunoResearch, 712‐545‐153). Sections 

were washed in PBS and then mounted on glass slides and cover‐slipped using Vectashield (Vector Labs). 

Coverslips were sealed using nail varnish and stored at 4°C. To verify the specificity of ChR2‐EYFP 

expression in TH‐positive structures in Slc6a3IRES‐Cre mice, mounted sections were imaged with an Olympus 

BX41 microscope with Olympus UC30 camera and filters for appropriate excitation and emission wave 

lengths (Olympus Medical). 

Confocal imaging and image analysis. Confocal images were acquired with an LSM880/Axio.Imager Z2 

(Zeiss) and Image J was used for image analysis. For whole striatum analysis of GAT1 or GAT3, the X10 (NA = 

0.45) objective was used and all imaging settings (laser %, pinhole/optical section, pixel size, gain, and 

scanning speed) were kept constant between animals. For the quantification of fluorescence (mean grey 

values), 4 sections in the rostro‐caudal plane were imaged at approximately the following distances rostral 

of Bregma; +1.3mm, +1.0mm, +0.6mm, and +0.25mm (see Supplementary Figure S4). A region of interest 

(ROI) of 300 µm x 300 µm was overlaid over the DLS and the ventral CPu (vCPu); and an ROI of 200 µm X 

200 µm was overlaid on NAcC and the NAcS, for both hemispheres. Values for NAcC and NAcS were taken 

from the 2 most rostral sections (see Supplementary Figure 4). Mean grey values from the areas of interest 

were normalized to the median grey value for each hemisphere (n = 12 hemispheres from 6 animals). For 

examination of co‐localization a X63 objective was used (NA = 1.46); Z‐stacks were taken with the pinhole 

set to 1 Airy Unit (optical section = 0.7µm) with a z‐stack interval of 0.35 µm. In order to assess co‐

localization ZEN (blue edition v.2.3; Zeiss) software was used. For S100β, PV+ axons (eYFP in PV‐Cre mice) 

or dopaminergic axons (eYFP in Slc6a3IRES‐Cre mice) and GAT1/3 co‐localization, stacks from 2 striatal regions 

and 2 NAcC regions in at least one section were examined per animal (n = 3 per marker).  

Drugs. (S)‐SNAP5114 (SNAP, 50 µM), (±)‐nipecotic acid (NPA, 1.5 mM), γ‐aminobutyric acid (GABA, 2 mM) 

and picrotoxin (100 M) were obtained from Sigma Aldrich. Dihydro‐β‐erythroidine hydrobromide (DHβE, 1 

M), (+)‐bicuculline (10 M) and tetrodotoxin (1 M) were obtained from Tocris Bioscience. DL‐2‐Amino‐5‐

phosphonovaleric acid (AP5, 50 μM), disulfiram (10 μM) and SKF‐89976A hydrochloride (SKF, 20 μM) were 

obtained from Santa Cruz Biotechnology. NBQX disodium salt (NBQX, 5 μM) and CGP 55845 hydrochloride 

(CGP, 4 M) were obtained from Abcam. Fluorocitrate was prepared as previously described (Paulsen et al., 

1987). In brief, D,L‐fluorocitric acid Ba3 salt (Sigma Aldrich) was dissolved in 0.1 M HCl, the Ba2+ precipitated 
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with 0.1 M Na2S04 and then centrifuged at 1,000 g for 5 min. Supernatant containing fluorocitrate was used 

at a final concentration of 200 µM for experimentation. All drugs were dissolved in distilled water or 

dimethyl sulfoxide (DMSO) to make stock aliquots at 1,000–10,000 × final concentrations and stored at −20 

°C. Stock aliquots were diluted with aCSF to final concentration immediately before use. 

Data acquisition and analysis. FSCV data were digitized at 50 kHz using a Digidata 1550A digitizer 

(Molecular Devices). Data were acquired and analyzed using Axoscope 11.0 (Molecular Devices) and locally 

written VBA scripts. For drug effects, peak [DA]o was averaged over 4 stimulations once peak [DA]o had re‐

stabilized post‐drug application and compared to time‐matched data from drug‐free controls, unless 

otherwise stated. Electrically evoked [DA]o in slices pre‐incubated in fluorocitrate (200 µM) exhibited 

ongoing run‐down across repeated 1p stimulations (n = 5 experiments/3 mice; data not shown) and 

therefore we used an alternative stimulation paradigm to compare a large number of dorsal striatal 

recording sites in slices pre‐treated with fluorocitrate versus control conditions to minimize run‐down. FSCV 

data are normalized to pre‐drug conditions for clarity and for comparisons between regions. For 

experiments involving multiple pulse protocols, each stimulation type was repeated in triplicate, 

interspersed with 1p stimulations, and then averaged and normalized to 1p stimulations at each recording 

site, as previously (Lopes et al., 2018; Threlfell et al., 2012).  

Membrane currents from voltage‐clamp electrophysiology experiments were amplified and low‐

pass filtered at 5 kHz using a MultiClamp 700B amplifier (Molecular Devices), digitized at 10 kHz and 

acquired using a Digidata 1550A digitizer (Molecular Devices). Peak amplitude, onset latency, peak latency, 

10‐90% rise time and decay time were measured from an average of 3 replicate traces recorded before and 

after drug wash on conditions using Clampfit 10.4.1.4 software (Molecular Devices).  

For all experiments, data were collected from a minimum of 3 animals. Data were compared for 

statistical significance using Prism 7 (Graph Pad) with the following statistical tests (as indicated in the text, 

and two‐tailed): un‐paired t‐tests, paired t‐tests, two‐way repeated‐measures ANOVA followed by Sidak’s 

multiple comparisons, and where the data were not normally distributed, Mann‐Whitney U tests, Kruskal‐

Wallis ANOVA followed by Dunn’s Multiple Comparisons, Friedman’s ANOVA on Ranks and Student‐

Newman‐Keuls multiple comparisons and for comparing cumulative distributions, Komogorov‐Smirnov 

tests. p values smaller than 0.05 were considered statistically significant, adjusted for multiple 

comparisons. 
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Figure 1. Striatal DA release is under tonic inhibition by a GAD‐dependent GABA source.  

(A,C) Schematics representing the experimental configuration and representative voltammograms for (A) electrically 

evoked  [DA]o  or  (C)  light‐evoked  [DA]o,  after  injection  and  expression  of  viral  ChR2‐eYFP  in  VTA  and  SNc  (top)  in 

Slc6a3IRES‐Cre mouse. TH  (red), ChR2‐eYFP  (green).  Scale bars  in  (C): 0.25 mm.  (B,D) Mean peak  [DA]o  (± SEM) during 

consecutive  recordings  evoked  by  a  single  electrical  (B)  or  light  pulse  (D)  (1p)  in  control  conditions  (black,  n  =  9 

experiments/7 mice for electrical, n = 8 experiments/6 mice for light) and with GABAA and GABAB receptor antagonists 

(solid bar)(purple, GABAR antag), (+)‐bicuculline (10 M) and CGP 55845 (4 M), respectively, recorded in the DLS (left, 

n = 6 experiments/3 mice for electrical, n = 9 experiments/5 mice for light) or NAcC (middle, n = 5 experiments/3 mice 

for  electrical,  n  =  5  experiments/4 mice  for  light). Right, mean  peak  [DA]o  (±  SEM)  evoked  by  1p  following GABAR 

antagonism in DLS and NAcC (as % of pre‐drug baseline). (E) Left, Mean peak [DA]o (± SEM) during consecutive recordings 

evoked by 1p light during application of GABAR antagonists in the absence (black, n = 10 experiments/7 mice) or the 

presence of ALDH inhibitor disulfiram (10 M) (orange, n = 6 experiments/5 mice) or GAD inhibitor 3‐MPA (5000 M) 

(red, n = 7 experiments/5 mice). Right, Mean peak [DA]o (± SEM) in DLS following GABAR antagonism in the absence or 

the presence of 3‐MPA (expressed as a % of pre‐drug baseline). Statistical significance was assessed by Mann‐Whitney 

tests.  **P  <  0.01,  ***P  <  0.0001,  n.s.  not  significant. Data  are normalized  to mean of  4  time points  prior  to GABA 

antagonist application (dotted line); last 4 time points (gray shaded region) are used for statistical comparisons. Inset, 

mean transients of DA]o observed at each stimulus normalized  to pre‐drug baselines. DHβE  (1 M) was present  for 

experiments with electrical stimuli.  
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Figure 2. GAT inhibition attenuates DA release in DLS, but not NAcC, by increasing GABA receptor tone.  

(A‐C,E‐F) Mean peak [DA]o (± SEM) during consecutive recordings evoked by a single electrical (A,C,E,F,K) or light pulse 

(B) in DLS (A,B,E,F,K) or NAcC (C) in control conditions (black, n = 9 experiments/7 mice for electrical, n = 8 experiments/6 

mice for light) or with GAT inhibitor NPA (1.5 mM) (A, blue, n = 9 experiments/5 mice; B, n = 9 experiments/5 mice; C, 

n = 6 experiments/4 mice), the GAT‐1 specific inhibitor SKF89976A (20 M) (E, orange, n = 6 experiments/4 mice), or 

the  combined  bath  application  of  SKF89976A  and  the  GAT‐3  specific  inhibitor  SNAP5114  (50 M)  (F, green,  n  =  9 

experiments/5 mice). (D,G) Mean peak [DA]o (± SEM) evoked by 1p following GAT inhibition (expressed as a % of pre‐

drug baseline). (H) Mean DA content (± SEM) of dorsal striatum incubated in vehicle‐treated control conditions (black, 

n = 19 punches/5 mice) or NPA (1.5 mM) (blue, n = 19 punches/5 mice). (I) Mean peak [DA]o (± SEM) during consecutive 

recordings evoked by a 1 electrical pulse in DLS during application of NPA (1.5 mM) in the absence (dark blue, n = 9 

experiments/5 mice) or presence (light blue, n = 5 experiments/4 mice) of GABAA (picrotoxin, 100 M) and GABAB (CGP 

55845, 4 M) receptor antagonists. (J) Left, Mean profiles and right, mean peak values of [DA]o evoked by 50 Hz electrical 

pulses in DLS normalized to 1p in the absence (black, control, n = 8 experiments/5 mice) or presence of NPA (1.5 mM) 

(blue, n = 8 experiments/5 mice). Right, Sigmoidal curve fits (R2 = 0.98). (K) Mean peak [DA]o (± SEM) with application 

of GABA (2 mM) in DLS (dark red, n = 6 experiments/4 mice) and NAcC (light red, n = 5 experiments/4 mice). Mann‐

Whitney tests (A‐F, H, I, K), Kruskal‐Wallis test and Dunn’s multiple comparisons (G), two‐way RM ANOVA and Sidak’s 

multiple comparisons (J). *P < 0.05, **P < 0.01, ***P < 0.0001, n.s. not significant. Data are normalized to first 4 time 

points (dotted line); last 4 time points (gray shaded region) are used for statistical comparisons. Insets, mean transients 

of [DA]o (normalized to pre‐drug baselines). DHβE (1 M) present throughout experiments with electrical stimuli. 
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Figure 3. Tonic GABA currents in striatal spiny projection neurons (SPNs) are augmented by GAT inhibition.  

(A‐B,D‐E,G)  Left,  representative  continuous whole‐cell  recordings  from  SPNs  in  DLS  (A,D,E,G)  or NAcC  (B),  voltage‐

clamped at ‐70 mV in the presence of  ionotropic glutamate receptor antagonists NBQX (5 M) and D‐AP5 (50 M), 

before and during bath application of (A‐B) GAT inhibitor NPA (blue, 1.5 mM, n = 7 cells/5 mice for DLS in A, n = 6 cells/3 

mice  for NAcC  in B),  (D) GAT‐1  specific  inhibitor  SKF89976A  (orange,  20 M, n = 6  cells/3 mice),  (E)  the  combined 

application of SKF89976A and GAT‐3 specific inhibitor SNAP5114 (green, 50 M, n = 6 cells/4 mice), or (G) NPA in the 

presence of  TTX  (1 M)  (red,  n  =  6  cells/3 mice). GAT  inhibitors  increase  the extracellular GABAA‐mediated  inward 

current,  revealed  by  a  shift  in  the holding  current,  and  is  reversed  upon  application of GABAA  receptor  antagonist 

picrotoxin  (PTX,  100 M). Right, mean  (±  SEM) holding  current  in pA  recorded  in  SPNs  in  control  conditions,  upon 

addition of GAT inhibitors and then PTX. (C,F,H) Mean (± SEM) tonic GABAA‐receptor‐mediated currents induced by GAT 

inhibition  recorded  from  SPNs,  calculated  by  subtracting  pre‐drug holding  current  from GAT block‐induced holding 

current. Friedman’s ANOVA on Ranks and Student‐Newman‐Keuls multiple comparisons (A,B,D,E), Mann‐Whitney tests 

(C,H), Kruskal‐Wallis test and Dunn’s multiple comparisons (F), Wilcoxon signed‐rank test (G) *P < 0.05, **P < 0.01., n.s. 

not significant.  
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Figure 4. Enrichment of GAT‐1 and GAT‐3 expression in the DLS versus NAcC. 

(A,C) Representative immunofluorescence signals for GAT‐1 (cyan, A) and GAT‐3 (green, C) using confocal microscopy 

in coronal sections across the rostral‐caudal  limits containing striatum prepared from an  individual C57BL/6J mouse 

with heat maps for striatal GAT intensity. Boxes indicate representative locations for GAT intensity measurements in 

the dorsolateral  striatum  (DLS) and nucleus accumbens core  (NAcC). Scale bars: 1 mm. Note enriched GAT‐3  in  the 

medial NAc shell (NAcS) contiguous with the medial septal nucleus and enriched GAT‐3 expression in the claustrum. 

(B,D) Left, Mean (± SEM) GAT‐1 (B) and GAT‐3 (D) intensity in DLS and NAcC normalized to total striatum and averaged 

across  rostral‐caudal  sites  for  each  hemisphere  (n  =  12  hemispheres/6  mice  for  each  GAT‐1  and  GAT‐3).  Right, 

Representative  single  plane  images  of  GAT‐1  (B)  and GAT‐3  (D)  immunofluorescence  from DLS  and NAcC;  imaging 

parameters were kept constant across regions. Scale bars: 50 m. Mann‐Whitney tests. **P < 0.01.  
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Figure  5.  GAT‐3  and  GAT‐1  expressed  on  striatal 

astrocytes  regulate  GABA  inhibition  of  DA  release.  

(A‐B)  Striatal  immunofluorescence  signals  for 

astrocyte  marker  S100β  (magenta)  in  dorsolateral 

striatum (DLS, A) and nucleus accumbens core (NAcC, 

B).  Scale  bars:  100 µm,  for  inset:  10 µm.  cc:  corpus 

callosum,  ac:  anterior  commissure.  (C‐D)  GAT‐3 

(green,  C)  and  GAT‐1  (cyan,  D)  are  expressed  on 

plasma  membranes  of  striatal  S100β‐expressing 

astrocytes  imaged  in DLS  (n  =  3  animals). Note  that 

localization of GATs on astrocytes (white arrows) was 

more prevalent  for GAT‐3 than GAT‐1.   Scale bars: 5 

m. (E‐H) Mean profiles of [DA]o and mean peak [DA]o 

(± SEM) in DLS evoked by 1 electrical pulse (E,G) or 4 

pulses normalized  to 1p  (F,H)  in  the absence  (black) 

and presence of GAT inhibitor NPA (blue or pink, 1.5 

mM) in vehicle‐treated control slices (E,F, n = 5 mice) 

or  in  slices  treated  with  astrocyte  inhibitor 

fluorocitrate (FC, 200 µM, G,H, n = 7 mice). (I) Mean 

peak [DA]o (± SEM) evoked by 1 electrical pulse in the 

absence  of  NPA  in  control  slices  (‐FC)  and  in 

fluorocitrate‐treated slices (+FC) from (E,G). (J) Mean 

peak [DA]o (± SEM) evoked by 1 electrical pulse in the 

presence  of  NPA  (1.5  mM)  normalized  to  control 

conditions  in  control  slices  (blue)  or  fluorocitrate‐

treated slices (pink). DHβE (1 M) present throughout. 

Mann‐Whitney tests (E‐J). **P < 0.01, *** P < 0.001, 

n.s. not significant.  
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Figure 6. Enhanced tonic inhibition of striatal DA release and reduced co‐release of DA and GABA from DA axons in a 

mouse model of early parkinsonism.  (A) Left, mean [DA]o profiles vs.  time following 1‐pulse electrical simulation in 

dorsal striatum (DS) and nucleus accumbens (NAc) of SNCA+ mice (light blue) and littermate controls (Snca‐/‐, dark blue) 

at 3‐4 months, backcrossed onto an Slc6a3IRES‐Cre background. Right, Mean (± SEM) 1p‐evoked [DA]o (in M) from Left (n 

= 24 observations/5 mice per genotype in DS, n = 21 observations/5 mice per genotype in NAc). (B) Mean (± SEM) DA 

content in DS and NAc of SNCA+ mice (light blue) and littermate controls (Snca‐/‐, dark blue) (n = 8 experiments/5 mice 

per genotype in DS and NAc). (C) Left, mean [DA]o profiles vs. time following 1‐pulse light simulation in DLS of SNCA+ 

mice (light blue) and littermate controls (Snca‐/‐, dark blue). Right, Mean (± SEM) 1p‐evoked [DA]o (in M) from Left (n 

= 15 observations/3 mice in Snca‐/‐ mice, n = 16 observations/3 mice in SNCA+ mice). (D‐G) Mean (± SEM) 1‐pulse light‐
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evoked inhibitory postsynaptic currents (IPSCs) recorded from spiny projection neurons (SPNs) every 30s in the DLS of 

SNCA+ mice (light blue, n = 9 cells/4 mice) and littermate controls (Snca‐/‐, dark blue, n = 7 cells/4 mice), voltage clamped 

at ‐70 mV and in the presence of ionotropic glutamate receptor antagonists (NBQX, 5 M; D‐APV, 50 M). IPSCs in SPNs 

of both SNCA+ and Snca‐/‐ mice were abolished in the presence of GABAA receptor antagonist picrotoxin (PTX, 100 M, 

F) and differences in recorded IPSC amplitude not due to differences in series resistance (Rs) between recordings (G). 

(H,I,K) Mean peak [DA]o (± SEM) during consecutive recordings evoked by 1p light (H,I) or electrical pulse (K) in DLS (H,K) 

or NAcC (I) during applications of antagonists for GABAA (bicuculline, 10 µM) and GABAB receptors (CGP 55845, 4 µM) 

(H,I), or the nonspecific GAT inhibitor NPA (1.5 mM, K) in Snca‐/‐ (dark blue, GABAR antagonism: n = 7 experiments/5 

mice in DLS, n = 9 experiments/5 mice for NAcC, NPA: n = 5 experiments/4 mice) and SNCA+ mice (light blue, GABAR 

antagonism: n = 8 experiments/5 mice for both DLS and NAcC, NPA: n = 5 experiments/4 mice) mice. Data are normalized 

to first 4 time points (dotted line); last 4 time points (gray shaded region) are used for statistical comparisons. Insets, 

mean transients showing release and uptake of  [DA]o  in drug condition  (dashed traces) vs pre‐drug condition  (solid 

traces), normalized to pre‐drug baselines. (J) Cumulative frequency plots of individual data points (left) and mean (± 

SEM) per recording site (right) from (D,E) for SNCA+ mice in for DLS and NAcC recordings following GABAR antagonism. 

(L) Representative Western blots and mean (± SEM) of GAT‐1 and GAT‐3 protein content of dorsal striatum tissue taken 

from Snca‐/‐ mice (n = 10 mice) and SNCA+ mice (n = 7 mice). Data normalized to actin and littermate control expression. 

Unpaired t tests in (A‐C, E,G), Paired t test in (F), Mann‐Whitney tests in (H‐L) and Komogorov‐Smirnov tests in (J). *P < 

0.05, **P < 0.01, *** P < 0.001, n.s. not significant.  
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Figure 7. Augmented tonic inhibition of striatal DA release in dorsal striatum of parkinsonian mice due to reduced 

striatal GAT expression. Under normal circumstances (left), GAD‐synthesized GABA is released from GABAergic striatal 

neurons  can  spillover  to  act  at GABA  receptors  (GABAAR  and GABABR)  located  presumably  on DA axons,  inhibiting 

(dashed red lines) DA and GABA co‐release. The level of GABA spillover and tonic inhibition of DA release is determined 

by the activity of GABA transporters (GATs) located on astrocytes (gray) and neurons, which remove GABA from the 

extracellular space. In a mouse model of early Parkinsonism (right), striatal GAT expression is downregulated in dorsal 

striatum, resulting  in augmented tonic  inhibition of DA release by GABA. Co‐release of GABA from DA axons  is also 

reduced.  
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