

1 Overexpressing *CsGH3.1* and *CsGH3.1L* reduces susceptibility to *Xanthomonas citri*
2 subsp. *citri* by repressing auxin signaling in citrus (*Citrus sinensis* Osbeck)

3 Xiuping Zou^{1,2,*}, Junhong Long^{1,2}, Ke Zhao^{1,2}, Aihong Peng^{1,2}, Min Chen^{1,2}, Qin
4 Long^{1,2}, Yongrui He^{1,2}, Shanchun Chen^{1,2,*}

5 ¹Citrus Research Institute, Chinese Academy of Agricultural Sciences and National

6 Center for Citrus Variety Improvement, Chongqing 400712, P. R. China

7 ²Citrus Research Institute, Southwest University, Chongqing 400716, P. R. China

8 **Corresponding author*

9 Tel: 86-23-68349019

10 Fax: 86-23-68349020

11 E-mail: zouxuping@cric.cn; chenshanchun@cric.cn

13 **Abstract** The auxin early response gene *Gretchen Hagen3* (*GH3*) plays dual roles in
14 plant development and responses to biotic or abiotic stress. It functions in regulating
15 hormone homeostasis through the conjugation of free auxin to amino acids. In citrus,
16 *GH3.1* and *GH3.1L* play important roles in responding to *Xanthomonas citri* subsp.
17 *citri* (Xcc). Here, in Wanjingcheng orange (*C. sinensis* Osbeck), the overexpression of
18 *CsGH3.1* and *CsGH3.1L* caused increased branching and drooping dwarfism, as well
19 as smaller, thinner and upward curling leaves compared with wild-type. Hormone
20 determinations showed that overexpressing *CsGH3.1* and *CsGH3.1L* decreased the
21 free auxin contents and accelerated the Xcc-induced decline of free auxin levels in
22 transgenic plants. A resistance analysis showed that transgenic plants had reduced
23 susceptibility to citrus canker, and a transcriptomic analysis revealed that hormone
24 signal transduction-related pathways were significantly affected by the overexpression
25 of *CsGH3.1* and *CsGH3.1L*. A MapMan analysis further showed that overexpressing
26 either of these two genes significantly downregulated the expression levels of the
27 annotated auxin/indole-3-acetic acid family genes and significantly upregulated biotic
28 stress-related functions and pathways. Salicylic acid, jasmonic acid, abscisic acid,
29 ethylene and zeatin levels in transgenic plants displayed obvious changes compared
30 with wild-type. In particular, the salicylic acid and ethylene levels involved in plant
31 resistance responses markedly increased in transgenic plants. Thus, the
32 overexpression of *CsGH3.1* and *CsGH3.1L* reduces plant susceptibility to citrus
33 canker by repressing auxin signaling and enhancing defense responses. Our study
34 demonstrates auxin homeostasis' potential in engineering disease resistance in citrus.

35 **Key words:** citrus canker; GH3; auxin signaling; resistance

36 **Introduction**

37 Citrus canker, caused by *Xanthomonas citri* subsp. *citri* (Xcc), is an important disease
38 of citrus. Xcc affects various citrus species and most of the economically important
39 cultivars, including orange, grapefruit, lime, lemon, pomelo and citrus rootstock [1].
40 The canker's development includes the initial appearance of oily looking spots,
41 usually on the abaxial leaf surface, outbursts of white or yellow spongy pustules and
42 finally the formation of brown corky cankers [2]. Pustule formation (excessive cell
43 division) in the infected tissues plays a vital role in citrus canker development and
44 pathogen spread [1, 3-5]. The inhibition or disruption of pustule development can
45 efficiently repressed pathogen spread and even confer plant resistance to citrus canker
46 [6, 7], indicating that the manipulation of pustule development is a potential strategy for
47 the efficient management of citrus canker. Thus, understanding the molecular
48 mechanisms involved in responding to pathogen-induced pustule formation in citrus
49 could stimulate renewed efforts to develop more effective and economical control
50 methods of citrus canker management.

51 Auxin, a critical plant hormone that controls a range of plant growth and
52 developmental processes, including cell division and expansion, has long been
53 recognized as a regulator of plant defenses [8, 9]. The effector AvrRpt2 from
54 *Pseudomonas syringae* elicits auxin biosynthesis in plants and promotes disease in
55 *Arabidopsis thaliana* [10]. The flagellin Flg22 from *P. syringae* induces the microRNA
56 mi393 to degrade the RNAs of the auxin receptor gene *TIR1*, resulting in immune
57 responses in *Arabidopsis* [11]. Auxin represses the expression of pathogenesis-related
58 (PR) genes to impair defense responses, and the inhibition of auxin signaling is a part
59 of the salicylic acid (SA)-mediated resistance mechanism [12-14]. Indole-3-acetic acid
60 (IAA) is the major form of auxin in most plants, including citrus. Many plant
61 pathogens can either secret IAA into host tissues or enhance the host's IAA synthesis,
62 and the elevated IAA levels increase cell wall loosening and remodeling to favor
63 pathogen invasion and spread [9]. Conversely, plant disease resistance is enhanced by

64 repressing auxin signaling or decreasing the IAA content [5, 15].

65 Xcc increases cell division and expansion in host-infected sites through the
66 regulation of auxin to increase bacterial growth [3, 5]. In the initial stages of canker
67 development, naphthalene acetic acid treatments significantly enhanced the water
68 soaking phenomenon on citrus leaves [5]. Additionally, Costacurta et al. [16] reported
69 that the Xcc pathogen produces IAA through the indole-3-pyruvic acid pathway, and
70 that this IAA biosynthesis is enhanced by citrus leaf extracts. However, the molecular
71 mechanisms of the host governing auxin responses to citrus canker remain to be
72 elucidated.

73 The normal physiologic function of auxin depends on the spatiotemporal
74 fine-tuning of hormone levels. The maintenance of IAA homeostasis is regulated by
75 several groups of auxin-responsive genes, including those of the auxin/IAA (*Aux/IAA*),
76 *Gretchen Hagen3* (*GH3*) and small auxin-up RNA (*SAUR*) families [17]. *GH3* is an
77 amido synthetase that conjugates IAA to amino acids (such as Asp, Ala, and Phe),
78 thus inactivating free IAA [18]. *GH3* proteins are classified into three groups in
79 *Arabidopsis*. Group I has jasmonic acid (JA)-amino synthetase activity, whereas
80 group II is able to catalyze IAA conjugation to amino acids [18]. No adenylation
81 activity on the substrates tested has been found for group III members. Some *GH3*
82 proteins conjugate SA to amino acids [18]. At present, many *GH3* genes have been
83 identified in bean, apple, maize, tomato, rice and *Medicago sativa* [19-21]. In addition to
84 their functions in plant growth and development, *GH3* genes participate in disease
85 resistance. *AtGH3.12* regulates SA-dependent defense responses by controlling
86 pathogen-inducible SA levels [22]. *AtGH3.5* has a dual regulatory role in *Arabidopsis*
87 SA and auxin signaling during pathogen infection [13, 23]. *Oryza sativa GH3-8* and
88 *GH3-1* promote fungal resistance through the regulation of auxin levels [24, 25], while
89 *GH3-2* mediates a broad-spectrum resistance to bacterial and fungal diseases [15].

90 In the early stage of this experiment, the transcriptomes of Newhall navel orange
91 (*C. sinensis* Osbeck) and Calamondin (*Citrus madurensis*), with susceptibility and
92 resistance to Xcc, respectively, were constructed (Unpublished). The transcriptomic
93 analysis showed that *GH3* group II *CsGH3.1* genes were induced significantly by Xcc

94 and had high expression levels in the Newhall navel orange [26], indicating that this
95 group's members play important roles in responding to citrus canker. Here, to
96 understand the roles of *CsGH3.1* in regulating host responses to citrus canker, we
97 constructed transgenic Wanjincheng orange (*C. sinensis* Osbeck) plants
98 independently overexpressing *CsGH3.1* and *CsGH3.1L*. Their overexpression reduced
99 endogenous auxin levels, altered plant architecture and enhanced host defense
100 responses to citrus canker. We then explored the effects of *CsGH3.1* and *CsGH3.1L*
101 overexpression in transgenic plants using high-throughput transcriptome sequencing.

102 **Materials and methods**

103 **Plant materials and growth conditions**

104 Wanjincheng orange (*C. sinensis* Osbeck) used in this study were planted in a
105 greenhouse at the National Citrus Germplasm Repository, Chongqing, China.

106 **Vector construction**

107 The coding sequences of the *CsGH3.1* (Cs1g22140) and *CsGH3.1L* (Cs8g04610)
108 genes were obtained from the *C. sinensis* genome database
109 (<http://citrus.hzau.edu.cn/orange/>). The pGEM plasmids independently containing the
110 *CsGH3.1* and *CsGH3.1L* genes [26] and the plant expression vector pGN [27], from our
111 laboratory, were used to construct plant overexpression vectors for this study.

112 *CsGH3.1* and *CsGH3.1L* were digested from the pGEM vectors with *SalI/BamHI*, and
113 then independently inserted into *SalI/BamHI*-digested pGN. Finally, two plant
114 overexpression vectors containing *CsGH3.1* and *CsGH3.1L*, respectively, were
115 obtained (Fig. S1). They were transformed into *Agrobacterium tumefaciens* strain
116 EHA105 by electroporation.

117 **Citrus transformation**

118 The epicotyls of Wanjincheng orange were used as explants for citrus transformation.
119 The transformation protocol was performed according to Peng et al. [6]. Putative
120 transgenic shoots were screened using GUS histochemical staining [27]. The recovery
121 of GUS-positive plants was performed by grafting onto Troyer citrange [*Poncirus*
122 *trifoliata* (L.) Raf. × *C. sinensis* Osbeck] seedlings *in vitro*. The integration of
123 *CsGH3.1* and *CsGH3.1L* into plants was further confirmed by a PCR analysis. The

124 primers for the PCR confirmation of transgenic plants are presented in Table S1. All
125 transgenic and wild-type (WT) plants were grown in a netted greenhouse at 28°C.

126 **Real-time quantitative PCR (qPCR) analysis**

127 Citrus total RNA was isolated using the EASYspin Plant RNA Extraction Kit
128 following the manufacturer's instructions (Aidlab, Beijing, China). RNA was reverse
129 transcribed into cDNA using the iScriptTM cDNA Synthesis Kit (Bio-Rad, Hercules,
130 CA, USA). The detection of gene expression was performed by qPCR using the iQ™
131 SYBR Green Supermix (Bio-Rad). The PCR reactions were carried out as follows: a
132 pretreatment (94°C for 5 min), followed by 40 amplification cycles (94°C for 20 s and
133 60°C for 60 s). Experiments were repeated three times. Using the citrus Actin gene
134 for normalization, the relative expression levels were calculated by the $2^{-\Delta\Delta Ct}$ method
135 [28].

136 **Measurement of hormone contents**

137 Hormones IAA, SA, zeatin (ZT), abscisic acid (ABA), ethylene (ET) and JA
138 were extracted from the leaves of citrus plants was determined at Chongqing Bono
139 Heng Biotechnology Co., Ltd (Chongqing, China). Contents of IAA, SA, ZT, ABA,
140 and JA was simultaneously measured as described by [29, 30]. In brief, Tissue samples
141 (1 g fresh weight) were frozen in liquid nitrogen, ground to a fine powder, extracted
142 with 80% methanol overnight and then centrifuged at 13,000 $\times g$ for 10 min. The
143 supernatant was evaporated and then redissolved in 1% acetic acid. Hormones were
144 purified on Oasis cartridges (Waters, Milford, MA, USA) in accordance with the
145 manufacturer's instructions. The extracted hormones were redissolved in 10%
146 methanol, and then IAA, SA, ZT, ABA and JA levels were determined using
147 high-performance liquid chromatography. To measure ET contents, 1 g leaf tissue
148 were placed in a gas-tight container equipped with septa, and 1 mL of headspace gas
149 was sampled using a gas syringe [31]. The ethylene production was measured using gas
150 chromatograph. The test was repeated three times.

151 **Evaluation of transgenic plants resistance to citrus canker**

152 The disease resistance assay for transgenic plants against citrus canker was performed

153 according to Peng et al. [6]. A Xcc strain, XccYN1 [6], was used to investigate plant
154 disease resistance. Three mature healthy leaves per plant were tested. In total, 24
155 punctures were made per leaf with a needle containing the bacterial suspension ($0.5 \times$
156 10^5 CFU ml $^{-1}$). The inoculated leaves were maintained at 28°C under a 16-h light/8-h
157 dark photoperiod with 45 $\mu\text{mol m}^{-2} \text{ s}^{-1}$ illumination and 60% relative humidity.
158 Photographs were taken at 10 dpi. The area of all diseased spots was assessed with
159 ImageJ 2.0 software (National Institutes of Health, Bethesda, MD, USA). The disease
160 intensity of an individual line was based on the mean values of the diseased areas
161 surrounding the 24 punctures on three leaves using the rating index described by Peng
162 et al. [6]. The test was repeated three times.

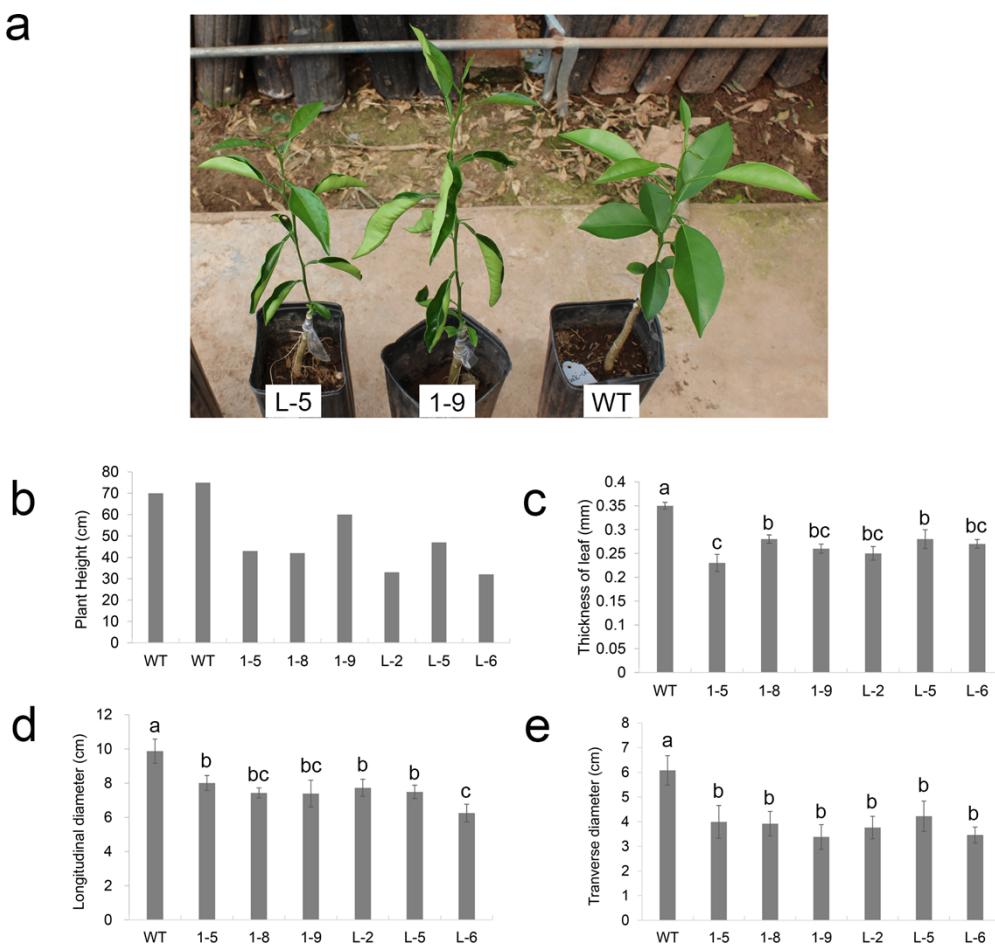
163 **Construction of RNA-Seq libraries and high-throughput sequencing**

164 In this experiment, three biological replicates per selected transgenic and WT plants
165 were performed. Total RNA from fully mature leaves was extracted using a TRIzol
166 kit (Invitrogen, Thermo Fisher Scientific, Shanghai, China) in accordance with the
167 user manual. RNA quality was determined using a NanoDrop 2000 spectrophotometer
168 (Thermo) and an Agilent 2100 Bioanalyzer (Agilent Technologies Canada Inc,
169 Mississauga, ON, Canada). Sequencing libraries were constructed from 1 μg of total
170 RNA using NEBNext UltraTM RNA Library Prep Kit for Illumina (New England
171 Biolabs, Ipswich, MA, USA) following manufacturer's recommendations. The
172 libraries were sequenced using the Illumina HiSeq 2500 platform (BioMarker
173 Technologies Illumina, Inc, Shanghai, China).

174 **Analysis of RNA-Seq data**

175 Approximately 6.4 Gb of high-quality clean reads were generated from each library
176 after removing adaptor sequences and filtering low-quality sequences. All the clean
177 reads were mapped to the reference genome of sweet orange (*C. sinensis*,
178 <http://citrus.hzau.edu.cn/orange/index.php>) by TopHat2 with default parameters [32].
179 Gene function was annotated based on Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KO and
180 gene ontology (GO) databases. Gene expression levels in all the biological replicates
181 were estimated using the FPKM method [33]. A differential expression analysis
182 between transgenic lines and WT was performed using the DESeq R package 1.10.1

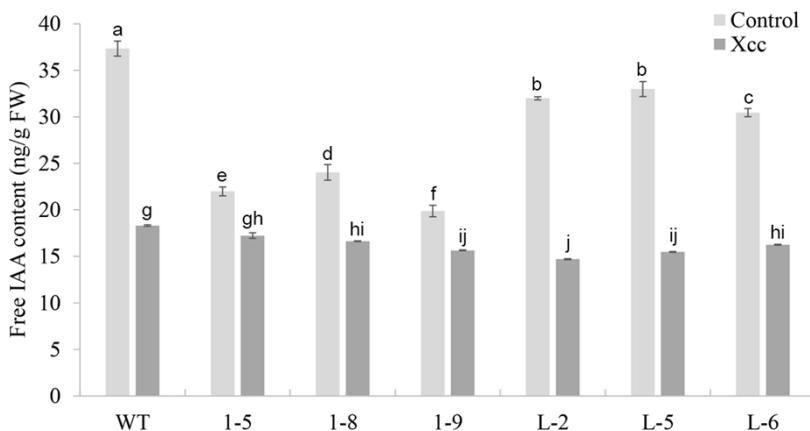
183 [34]. Genes with adjusted P-values < 0.05 found by DESeq were assigned as
184 differentially expressed genes (DEGs). A GO enrichment analysis of the DEGs was
185 performed using the GOseq R package [35]. A KEGG pathway enrichment analysis of
186 DEGs was performed using KOBAS software [36].
187 MapMan software [37] was also used to analyze citrus gene expression data. At the end,
188 the citrus genes from the reference genome of sweet orange (*C. sinensis*,
189 <http://citrus.hzau.edu.cn/orange/index.php>) were assigned to BINs using the Mercator
190 automated annotation pipeline (<http://mapman.gabipd.org/web/guest/mercator>), and
191 then, the pathways, which were affected by DEGs, were analyzed using MapMan.
192 Differentially represented MapMan pathways were defined using a two-tailed
193 Wilcoxon rank sum test corrected using the Benjamin–Hochberg method (false
194 discovery rate ≤ 0.05).


195 **Results**

196 **Overexpression of *CsGH3.1* and *CsGH3.1L* in citrus causes abnormal phenotypes**

197 To understand the functions of *CsGH3.1* and *CsGH3.1L* in citrus responses to citrus
198 canker, the two genes, under the control of CaMV 35S promoter (Fig. S1), were
199 introduced separately into Wanjincheng orange by *Agrobacterium*-mediated epicotyl
200 transformation. Transgenic plants were identified using β -glucuronidase (GUS)
201 histochemical staining and PCR analysis (Fig. S1). Expression levels of *CsGH3.1* and
202 *CsGH3.1L* in transgenic plants were evaluated by qPCR analyses (Fig. S2). Based on
203 the data, the pLGN-GH3.1 lines 1-3, -4, -5, -6, -8 and -9, and the pLGN-GH3.1L lines
204 L-2, -5 and -6 showed high expression levels.

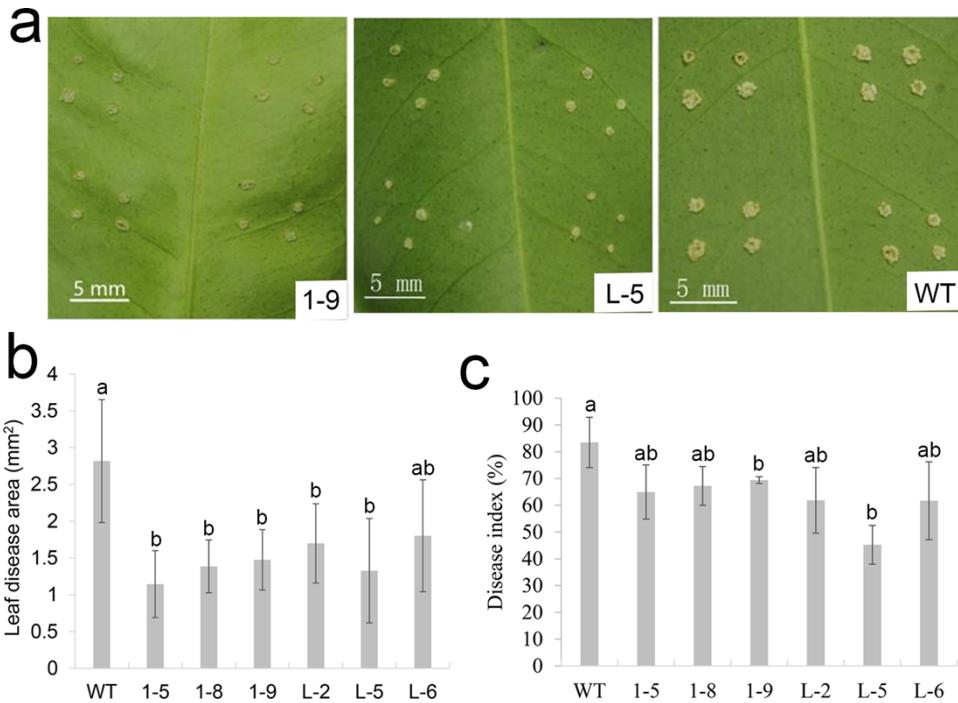
205 After the transgenic lines were planted in a greenhouse, their phenotypes were
206 investigated. In the early stage (~6 months after planting), most transgenic plants
207 showed leaf drooping and upward curling (Fig. 1a). Gradual increased branching and
208 leaf curling were detected as transgenic plants grew (Fig. S3). Lines 1-3, 1-4, 1-5, 1-9,
209 L-2, L-5 and L-6, having high gene expression levels, had severe malformations,
210 while lines 1-1, 1-2 and 1-10, having low gene expression levels, showed no obvious
211 differences compared with WT (Fig. S3). Line 1-8 also showed no obvious difference,
212 while line L-1 displayed mild changes in its phenotype compared with WT (Fig. S3).


213 After one year, lines 1-3 and 1-4 died. After two years, transgenic plants displayed a
214 bushy dwarf phenotype with smaller, drooping and upward curling leaves and branch
215 softening and drooping (Fig. 1b and Fig. S4). Moreover, transgenic leaves were
216 significantly thinner, and both their longitudinal and transverse diameters were
217 significantly shorter compared with WT (Fig. 1c–e). Such abnormal phenotypes
218 indicated that overexpressing *CsGH3.1* and *CsGH3.1L* affected the basic plant
219 development.

220 **Fig. 1** Phenotypic analysis of transgenic citrus independently overexpressing *CsGH3.1* (1-#) and
221 *CsGH3.1L* (L-#). (a) Phenotypes of transgenic and wild-type (WT) plants after growing for six
222 months in a greenhouse. (b) The heights of transgenic plants grown in a greenhouse for two years
223 after grafting. The thickness (c), and the longitudinal (d) and transverse (e) diameters of leaves
224 from transgenic plants grown in a greenhouse for 2 years after grafting were evaluated using 20
225 leaves per line. Error bars represent the mean standard errors. Different letters on top of the bars
226 represent significant differences from WT controls based on a Tukey's test ($P < 0.05$).
227

228 **The decreased free IAA level in transgenic plants**

229 To investigate the auxin content, the free IAA level in each transgenic line was
230 measured. The free IAA levels in the 1-5, 1-8, 1-9, L-2, L-5 and L-6 transgenic lines
231 were significantly lower than in WT plants before exposure to Xcc (Fig. 2). Other
232 lines showed no differences in free IAA levels compared with WT. After Xcc
233 inoculation, free IAA levels in these transgenic lines were still significantly lower
234 than in WT, although the levels were markedly decreased in both transgenic lines and
235 WT after Xcc inoculations (Fig. 2).

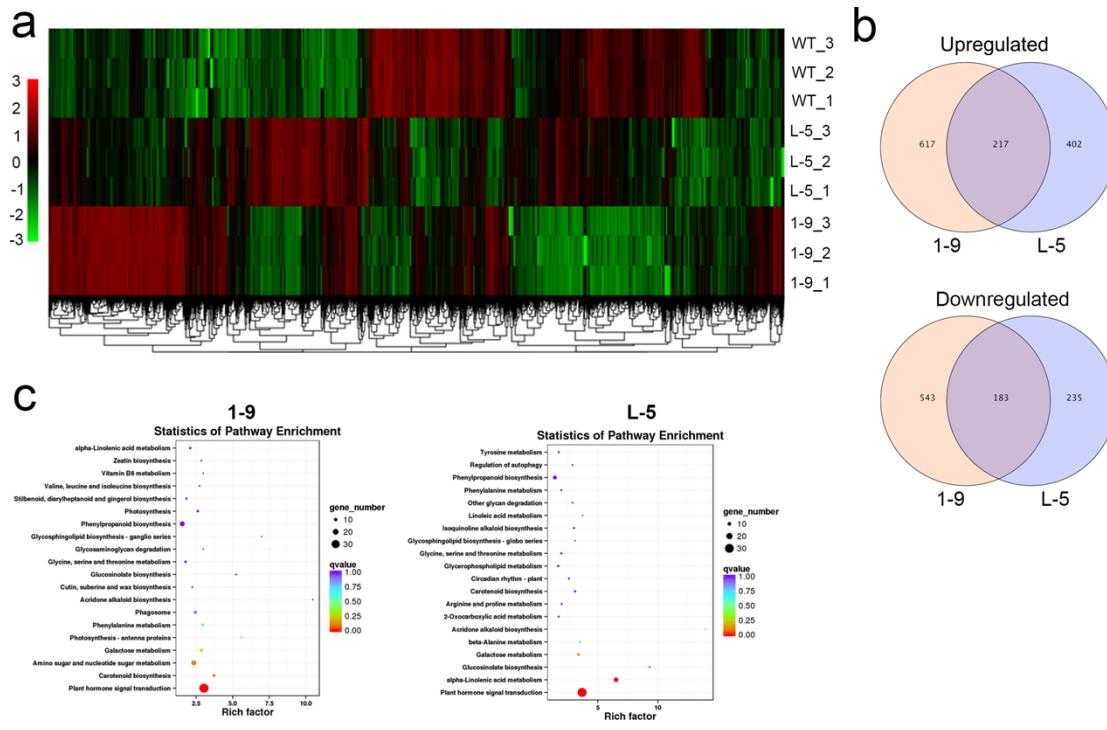


236
237 **Fig. 2** Determination of the IAA contents in transgenic citrus independently overexpressing
238 *CsGH3.1* (1-#) and *CsGH3.1L* (L-#). IAA was isolated from six fully expanded intact leaves per
239 line. The presented IAA values are the averages of three independent measurements per line
240 before *Xanthomonas citri* subsp. *citri* (Xcc) infection (control) and 3 d after Xcc infection. The
241 overexpression of *CsGH3.1* or *CsGH3.1L* decreased the IAA contents in transgenic plant before
242 and after pathogen exposure. Error bars represent the mean standard errors. WT: wild-type.
243 Different letters on top of bars represent significant differences from WT controls based on
244 Tukey's test ($P < 0.05$).

245 **Overexpression of *CsGH3* in citrus reduced susceptibility to Xcc**

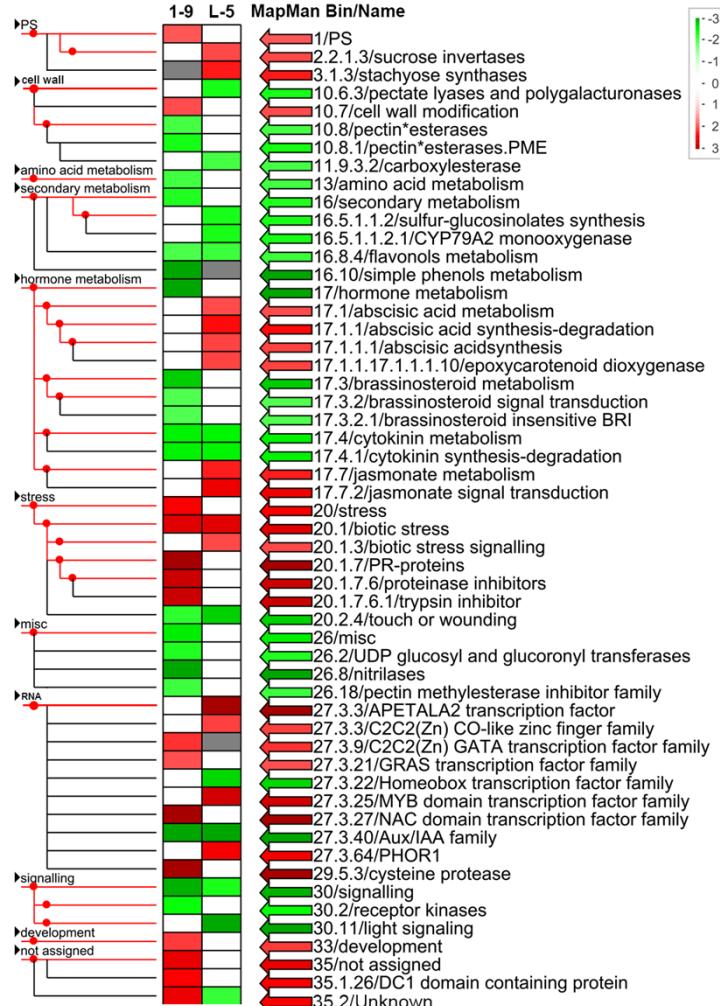
246 To evaluate the citrus canker resistance levels of transgenic plants, the 1-5, 1-8, 1-9,
247 L-2, L-5 and L-6 transgenic lines were inoculated with Xcc by *in vitro* pinpricks. The
248 diseased areas were determined 10 d after Xcc infection. Lesions around the pinprick
249 sites in transgenic lines were significantly smaller compared with WT (Fig. 3a and b).
250 The disease indices of these transgenic lines decreased significantly compared with

251 WT (Fig. 3c), indicating that these transgenic lines had enhanced citrus canker
252 resistance. The lines 1-9 and L-5 showed the strongest resistance to citrus canker (Fig.
253 3c). Thus, overexpressing *CsGH3.1* and *CsGH3.1L* enhanced host defense responses
254 to citrus canker.



255
256 **Fig. 3** Evaluation of citrus canker resistance in transgenic citrus independently overexpressing
257 *CsGH3.1* (1-#) and *CsGH3.1L* (L-#). (a) Citrus canker leaf symptoms in transgenic and
258 non-transgenic lines 10 d after pin-puncture inoculation with *Xanthomonas citri* subsp. *citri* (Xcc).
259 (b) Lesion areas and (c) disease indices in transgenic plants. Diseased areas in leaves were
260 counted 10 d after Xcc inoculation in WT and transgenic lines. Each column represents the mean
261 of nine leaves from three independent experiments. Error bars represent the mean standard errors.
262 Different letters on top of bars represent significant differences from wild-type (WT) controls
263 based on Tukey's test ($P < 0.05$).

264 **An overview of the transcriptional responses in transgenic citrus lines**


265 To reveal the molecular mechanisms underlying canker resistance in
266 CsGH3-overexpressing plants, global transcriptional profiling of lines 1-9 and L-5
267 showing high levels of resistance to citrus canker and a WT plant were compared
268 using RNA-Seq (Fig. 4a; Supplementary data S1). In total, 1,560 and 1,037 genes
269 were identified as DEGs in the 1-9 and L-5 transgenic lines, respectively, when

270 compared with a WT plant (Supplementary data S2). There were more upregulated
271 DEGs than downregulated DEGs in both the 1-9 and L-5 lines (Fig. 4b;
272 Supplementary data S2). In the GO annotation, most of the DEGs were classified into
273 metabolic process, cellular process, single-organism process, response to stimulus,
274 and biological regulation (Supplementary data S3; Fig. S5). The KEGG pathway
275 enrichment analysis further revealed that the DEGs in the 1-9 and L-5 transgenic lines
276 were assigned to 88 and 83 KEGG pathways (Fig. 4c), respectively. Notably, 34 and
277 31 DEGs were significantly (q -value < 0.05) assigned to “plant hormone signaling
278 transduction (KO04075)” (Fig. 4c).

279
280 **Fig. 4** Global gene expression profiles of transgenic citrus independently overexpressing *CsGH3.1*
281 (1-9) and *CsGH3.1L* (L-5). (a) Heat map analysis of the differentially expressed genes (DEGs)
282 among 1-9 and L-5 transgenic and wild-type lines. The 1-9 and L-5 transgenic lines showed a
283 similar hierarchical cluster pattern. (b) Venn diagrams showing the overlaps of differentially
284 expressed genes between transgenic lines. In total, 400 of 2,745 DEGs showed similar expression
285 profiles among these lines. (c) KEGG pathway enrichment of the DEGs between transgenic lines.
286 The overexpression of *CsGH3.1* or *CsGH3.1L* significantly affected hormone signal transduction.
287
288 To further survey the pathways or functions that were affected by the DEGs in
the 1-9 and L-5 transgenic lines, the RNA-Seq data were visualized using the

289 MapMan tool (Fig. 5). A complete list of MapMan pathways differentially
290 represented in the transgenic lines is provided in Supplementary data S4. Based on
291 these data, cell wall, secondary metabolism, hormone metabolism, stress, RNA and
292 signaling were the major pathways or functions that were significantly regulated by
293 the overexpression of *CsGH3.1* and *CsGH3.1L*. Differences in differentially
294 represented pathways or functions were also detected between the transgenic lines.
295 Importantly, flavonol metabolism, cytokinin metabolism and synthesis-degradation,
296 biotic stress, touch or wounding, Aux/IAA family, signaling, and unknown categories
297 displayed significant changes in both the 1-9 and L-5 transgenic lines compared with
298 WT. Biotic stress-related pathways were positively affected, while Aux/IAA family
299 genes were negatively affected by both *CsGH3.1* and *CsGH3.1L* (Fig. 5). Aux/IAA
300 family genes have vital roles in auxin signaling [9]. The survey clearly showed that the
301 overexpression of *CsGH3.1* and *CsGH3.1L* repressed auxin signaling and enhanced
302 biotic stress responses in citrus. Thus, the DEGs involved in auxin metabolism and
303 signaling, as well as biotic stress responses, were studied in more detail.

304

305 **Fig. 5** MapMan visualization of differentially represented pathways and functional categories
306 between the 1-9 and L-5 transgenic citrus lines overexpressing *CsGH3.1* and *CsGH3.1L*,
307 respectively. Each colored rectangular block denotes a MapMan pathway or functional category.
308 Upregulated and downregulated categories are shown in red and green, respectively. The scale bar
309 represents fold change values. The categories differentially represented in the transgenic plants are
310 indicated on the right.

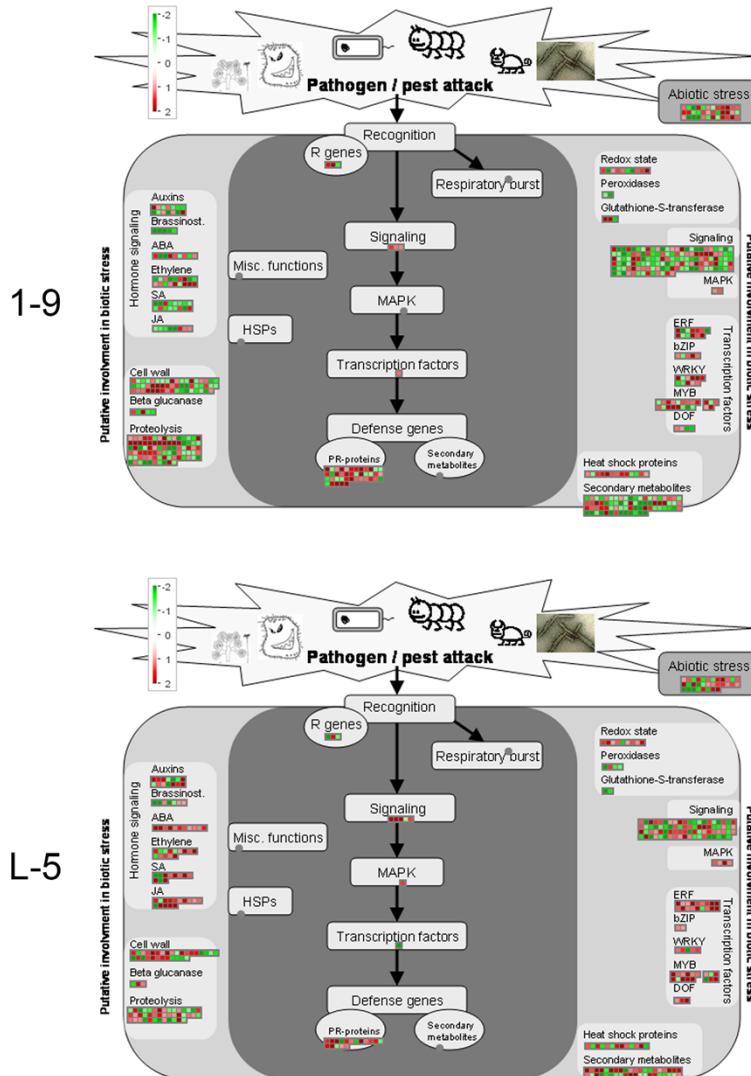
311 **Auxin-related genes**

312 We investigated the DEGs related to auxin homeostasis, perception and signaling in
313 transgenic lines using a MapMan analysis. Most of the 28 auxin-related DEGs
314 showed significantly downregulated expression levels in both the 1-9 and L-5
315 transgenic lines, and most of these genes were assigned to auxin signaling
316 transduction (Table 1). All 12 Aux/IAA family members, a group of auxin-induced
317 genes, showed significantly downregulated expression levels in the transgenic plants.

318 In addition, two of four SAUR-like auxin-responsive protein family members (ARG7),
319 and one auxin response factor (ARF10) also showed significantly downregulated
320 expression levels in the transgenic plants. The expression levels of three genes (PIN1,
321 PIN3 and AUX1-like protein 3) involved in auxin transport were significantly
322 downregulated in transgenic plants (Table 1). However, four genes (Cs7g08110,
323 Cs5g20420, Cs3g19760 and Cs7g08080) involved in auxin synthesis-degradation
324 were significantly induced by the independent overexpression of *CsGH3.1* and
325 *CsGH3.1L* (Table 1). Overall, the overexpression of *CsGH3.1* and *CsGH3.1L*
326 significantly repressed the expression levels of auxin transport and signaling-related
327 genes. Interestingly, *CsGH3.1*'s overexpression downregulated *CsGH3.1L*'s
328 expression, while *CsGH3.1L*'s overexpression upregulated *CsGH3.1*'s expression
329 (Table 1).

330 **Table 1** Differentially expressed genes related to auxin biosynthesis and signaling in transgenic citrus
331 independently overexpressing *CsGH3.1* and *CsGH3.1L*

Gene ID	Putative function	Log ₂ (Fold change)*	
		(Transgenic line vs WT) 1-9 line	L-5 line
Auxin synthesis-degradation			
Cs7g08110	UDP-glycosyltransferase (UGT) 74B1	2.332	1.632
cs5g20420	UDP-glycosyltransferase (UGT) 75B1	1.048	ND.
cs3g19760	IAA amino acid conjugate hydrolase	ND.	1.878
cs7g08080	IAA-amino acid conjugate hydrolase	ND.	1.899
Auxin transport			
Orange1.1t00089	Auxin efflux carrier component 1, PIN1	-1.224	-1.119
Cs2g16620	Auxin efflux carrier component 3, PIN3	-1.289	-2.156
cs2g06880	TIR1/AFB auxin receptor protein	1.239	ND.
cs3g19250	Auxin transporter-like protein 3 (AUX1-like 3)	-1.563	ND.
Auxin signaling			
Cs5g29060	AUX/IAA family Auxin induced gene, IAA11	-1.630	-1.396
Cs9g09120	AUX/IAA family Auxin induced gene, IAA13	-1.209	-1.144
Cs5g30380	AUX/IAA family Auxin-induced protein, IAA16	-7.380	-5.406
Cs5g30390	AUX/IAA family Auxin-induced protein; IAA4	-1.994	-2.445
Cs7g05540	AUX/IAA family Auxin-induced protein; IAA29	-3.151	-1.735
Cs9g08100	AUX/IAA family Auxin-induced protein; IAA4	-4.057	-3.351
Cs9g08110	AUX/IAA family IAA14-like	-3.146	-4.451
Cs1g13970	AUX/IAA family Auxin-induced protein; IAA19	-4.305	-5.132
Cs4g18240	AUX/IAA family Auxin-induced protein; IAA29	-3.919	-2.829


cs1g13960	AUX/IAA family Auxin-inducible AUX/IAA gene	-1.972	ND.
cs3g10920	AUX/IAA family AUXIN INDUCIBLE 2-11 (ATAUX2-11)	-1.619	ND.
cs3g10930	AUX/IAA family early auxin-induced (IAA16)	ND.	-1.399
Orange1.1t04221	SAUR-like auxin-responsive protein family (ARG7)	-3.446	-2.909
cs1g16790	SAUR-like auxin-responsive protein family	-2.084	ND.
orange1.1t02550	SAUR-like auxin-responsive protein family	1.056	1.035
cs4g12720	SAUR-like auxin-responsive protein family	ND.	2.624
Cs8g16440	Auxin response factor 10 (ARF10)	-2.241	-2.089
orange1.1t00464	indole-3-acetic acid-amido synthetase GH3.5	ND.	1.301
cs1g22140	CsGH3.1	12.353	7.818
cs8g04610	CsGH3.1L	-3.452	7.296

332 *Differentially expressed genes having $|\text{Log}_2(\text{Fold change})| \geq 1$ are presented. ND, not detected.

333 **Disease response-related genes**

334 Figure 6 presents an overview of the MapMan functional categories for genes
335 involved in disease responses. Their functional products could be sorted into the
336 following major classes: hormone signaling, cell wall, proteolysis, signaling, PR
337 proteins, redox state, transcription factors, heat shock proteins and secondary
338 metabolites. Among the disease response-related genes, the number (90) of
339 upregulated genes was obvious more than that (57) of downregulated genes. In total,
340 45 and 23 genes, including resistance, stress recognition, signal receptor and
341 transduction, and PR protein, were directly assigned into the “stress. biotic” MapMan
342 category in the 1-9 and L-5 transgenic lines, respectively (Supplementary data S5).
343 Among these genes, 33 and 18 genes showed significantly upregulated expression
344 levels in the 1-9 and L-5 lines, respectively (Supplementary data S5).

345

346 **Fig. 6** MapMan visualization of the functional categories of genes differentially expressed in
347 response to biotic stress in the 1-9 and L-5 transgenic citrus lines overexpressing *CsGH3.1* and
348 *CsGH3.1L*, respectively. Significantly upregulated and downregulated genes are displayed in red
349 and green, respectively.

350 Table 2 displays the important DEGs correlated with biotic stress in transgenic plants
351 based on the MapMan annotation. The induced genes included a
352 Toll-Interleukin-Resistance (TIR) domain family member (Cs5g18230) involved in
353 innate immune responses, three defense *PR* genes (Cs6g01070, NB-ARC
354 domain-containing disease resistance protein; Cs9g18740, disease resistance family
355 protein/LRR family protein; and Cs5g19240, TIR-NBS-LRR disease resistance
356 protein). Moreover, all 10 transcription factor genes had upregulated expression levels,
357 and these genes mainly included the AP2/EREPB, MYB and WRKY families. Thus,

358 gene expression associated with responses to biotic stress was clearly activated by the
359 overexpression of *CsGH3.1* and *CsGH3.1L*.

360 **Table 2** Differentially expressed genes related to biotic stress in transgenic citrus independently overexpressing
361 *CsGH3.1* and *CsGH3.1L*

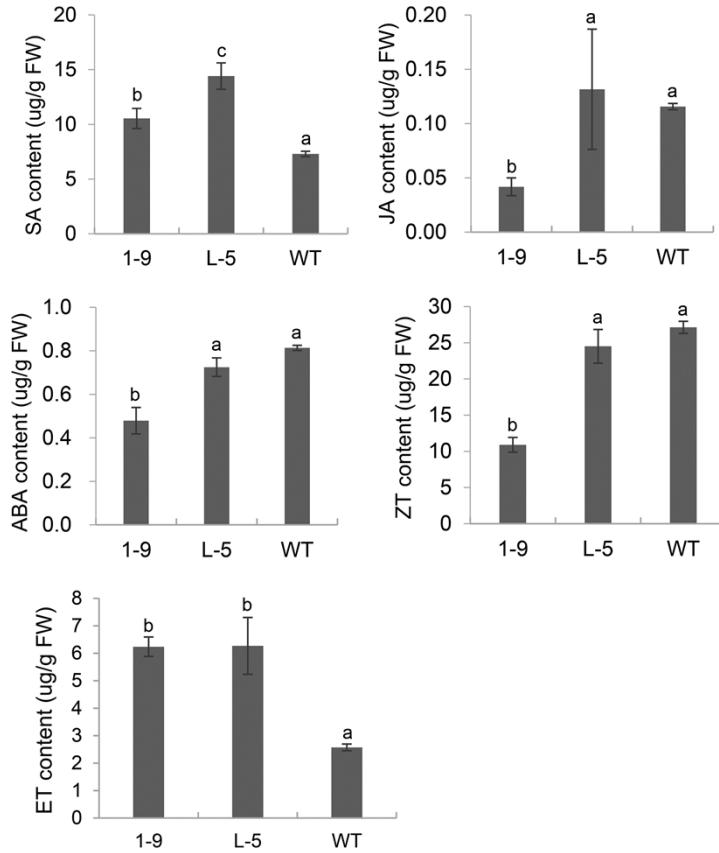
Gene ID	Putative function	Log ₂ Fold change*	
		(Transgenic line vs WT)	
		1-9	L-5
Stress recognition			
Orange1.1t02076	Disease resistance-responsive family protein	-1.005	-2.029
Orange1.1t03601	LRR receptor-like kinase FLS2	2.755	1.412
Cs2g16870	MLP-like protein 31 (MLP31)	2.198	3.223
Cs2g17820	ARM repeat superfamily protein	1.177	3.669
Cs2g29780	HXXXXD-type acyl-transferase family protein	1.436	3.488
Cs2g31450	Acetyl coa:(Z)-3-hexen-1-ol acetyltransferase (CHAT)	-1.365	1.685
Signal receptor			
Cs5g18230	Toll-Interleukin-Resistance (TIR) domain family protein	2.044	1.717
Cs5g27950	Leucine-rich repeat I receptor kinase	-2.207	-2.005
Cs5g15420	Leucine-rich repeat VIII (VIII-2) receptor kinase	1.262	1.429
Cs9g14980	Leucine-rich repeat XI receptor kinase	-1.142	-2.069
Orange1.1t01442	Leucine-rich repeat XI receptor kinase	-2.353	-1.839
Orange1.1t03106	Leucine-rich repeat XI receptor kinase	1.394	1.342
Cs4g07400	Serine/threonine receptor kinase	3.036	1.785
Orange1.1t01406	DUF 26receptor kinase	-1.357	-1.596
Signal transduction			
Cs1g17210	JAZ1 involved in jasmonate signaling	1.173	2.883
Cs1g17220	JAZ1 involved in jasmonate signaling	1.143	2.371
Cs6g17590	Calmodulin-like protein	1.321	1.482
Cs7g27120	Calmodulin binding protein-like	1.230	1.591
Cs5g07160	Calmodulin like 37 (CML37)	1.288	1.996
Cs2g15970	Rac-like GTP-binding protein RAC2	-2.151	-1.370
Cs2g21150	Mitogen-activated protein kinase kinase kinase 18 (MAPKKK18)	1.286	3.530
Orange1.1t01873	Tobacco Rapid Alkalization Factor (RALF)	-1.357	-1.438
Cs9g05280	AHP1 Arabidopsis thaliana histidine phosphotransfer protein	-1.134	-1.235
Cs7g09390	Phototropic-responsive NPH3 family protein	-1.633	-1.696
Cs9g07670	Chlorophyll A-B binding family protein	-1.136	-2.031
Defense response gene			
Cs6g01070	NB-ARC domain-containing disease resistance protein	2.089	1.506
Cs9g18740	Disease resistance family protein / LRR family protein defense	2.640	2.459
Cs8g14950	Glucan endo-1,3-beta-glucosidase	-1.567	1.177
Cs3g06300	Receptor like protein 6 (RLP6)	-1.089	1.200
Cs5g19240	Disease resistance protein (TIR-NBS-LRR class)	2.180	1.563
Redox metabolism			
Cs2g17910	Cytochrome b561/ferric reductase transmembrane protein family	-1.646	-1.768

Gene ID	Putative function	Log ₂ Fold change*	
		(Transgenic line vs WT)	
Cs5g32580	Thioredoxin superfamily protein	1.316	1.028
Cs2g16150	GRX480, the glutaredoxin family that regulates protein redox state	1.436	1.806
Orange1.1t03455	Probable glutathione S-transferase, gsts , Auxin-induced protein	-1.777	-1.624
Cs2g15310	Peroxidase superfamily protein	-1.918	-1.385
Responsive transcription factor			
Cs6g15360	The DREB subfamily A-1 of ERF/AP2 transcription factor (CBF4)	2.032	4.256
Cs9g16810	The DREB subfamily A-1 of ERF/AP2 transcription factor (CBF4)	1.725	2.039
Orange1.1t01154	The DREB subfamily A-1 of ERF/AP2 transcription factor (CBF2)	1.543	2.840
Cs1g07950	The ERF subfamily B-1 of ERF/AP2 transcription factor (ATERF-4)	1.913	2.078
Cs4g07040	The DREB subfamily A-5 of ERF/AP2 transcription factor family	5.413	2.803
Cs5g29830	Member of the R2R3 factor gene family (MYB14)	1.249	2.333
Cs2g27410	Member of the R2R3 factor gene family (MYB58)	3.896	4.470
Cs3g23070	Member of the R2R3 factor MYB gene family (MYBR1)	2.909	2.012
Cs3g23950	Member of the R2R3 factor gene family (MYB73)	2.235	3.114
Cs1g03870	Group II-c WRKY Transcription Factor (WRKY51)	3.168	1.313
Protein degradation			
Cs2g18910	Encode a protein similar to subtilisin-like serine protease	-1.763	-2.831
Cs2g27790	Cysteine proteinases superfamily protein	3.370	1.277
Cs9g06150	Eukaryotic aspartyl protease family protein	1.971	3.298
Cs2g29430	Skp2-like F-box family protein	-2.364	-2.155
Cs3g14660	F-box family protein; RNI-like superfamily protein	1.338	1.078
Cs6g13640	E3 ubiquitin ligase protein involved in PAMP-triggered immunity	1.070	2.153

*Differentially expressed genes having $|\text{Log}_2(\text{Fold change})| \geq 1$ are presented.

362 Data presented in Table 3 show that 11 cell wall-related genes were differentially
363 expressed, with 8 being upregulated by the overexpression of *CsGH3*. These
364 upregulated genes were mostly involved in cell wall biosynthesis and modification,
365 such as xyloglucan endotransglycosylase, cellulose synthase, and wax and cutin
366 synthesis. Among them, two genes encoding FASCICLIN-like
367 arabinogalactan-protein 12 (Cs8g16830) and a xylem-specific cellulose synthase
368 (Cs4g02000), showed highly induced expression levels (fold change > 5). Three
369 genes (pectinesterase inhibitor Cs1g05510, expansin Cs5g07854 and
370 polygalacturonase Cs7g08620), assigned to cell wall degradation, were downregulated
371 when *CsGH3* was overexpressed.

373 **Table 3** Differentially expressed genes related to cell wall in transgenic citrus independently overexpressing
374 *CsGH3.1* and *CsGH3.1L*


Gene ID	Putative function	Log ₂ (Fold change)*	
		(Transgenic line vs WT)	

		1-9	L-5
Cell wall biosynthesis			
Cs8g16830	FASCICLIN-like arabinogalactan-protein 12 (FLA12)	5.439	5.357
Cs4g03060	Xyloglucan endotransglycosylase-related protein (XTR6)	2.591	1.90
Cs4g03130	Xyloglucan endotransglycosylase-related protein (XTR6)	2.031	1.393
Cs4g03140	Xyloglucan endotransglycosylase-related protein (XTR6)	2.227	1.673
Cs4g02000	Xylem-specific cellulose synthase	7.304	6.993
Cs9g02720	Putative membrane-anchored cell wall protein, COBRA-like protein-7	1.113	1.570
Cs5g28330	Long chain acyl-coa synthetase involved in cutin synthesis	1.576	1.109
Orange1.1t00556	Condensing enzyme KCS1 involved in wax biosynthesis	1.408	2.712
Cell wall degradation			
Cs1g05510	Plant invertase/pectin methylesterase inhibitor superfamily	-1.940	-1.797
Cs5g07854	EXLB1 (expansin-like B1), a member of the expansin family	-1.393	-1.692
Cs7g08620	Polygalacturonase 2 (PG2)	-2.432	-1.802

*Differentially expressed genes having $|\text{Log}_2(\text{Fold change})| \geq 1$ are presented.

Effects of overexpression of *CsGH3* on hormone contents of transgenic lines

Because the transgenic plants displayed severe dwarfism (Fig. S4) and obvious changes in transcriptional profiles involved in hormone metabolism (Fig. 6; Supplementary data S6), we investigated SA, JA, ABA, ZT and ET levels in the 1-9 and L-5 transgenic lines (Fig. 7). The SA and ET contents in both 1-9 and L-5 transgenic lines were significantly greater than in WT. The JA, ABA and ZT contents in the 1-9 transgenic line were significantly lower than in WT. No significant difference in JA, ABA or ZT level was detected in the L-5 line compared with WT, although the ABA and ZT levels were decreased in this transgenic line.

385

386 **Fig. 7** Determination of SA, JA, ABA, ZT and ET contents in the 1-9 and L-5 transgenic citrus
387 lines overexpressing *CsGH3.1* and *CsGH3.1L*, respectively. Hormones were isolated from six
388 fully expanded intact leaves per line. Error bars represent the mean standard errors of three
389 independent measurements. Different letters on top of bars represent significant differences from
390 wild-type (WT) controls based on Tukey's test ($P < 0.05$).

391 **Discussion**

392 The *GH3* gene family maintains hormonal homeostasis by conjugating free hormones
393 to amino acids during exposure to biotic and abiotic stresses. Our work first showed
394 that the overexpression of *CsGH3.1* and *CsGH3.1L* decreased free IAA levels.
395 Correspondingly, transgenic plants displayed a bushy dwarf phenotype that is
396 associated with an auxin shortage [25]. Additionally, naphthalene acetic acid treatments
397 significantly induced the expression of *CsGH3.1* in citrus leaves [26]. Thus, *CsGH3.1*
398 and *CsGH3.1L* appear to be functional IAA-amido synthetase genes involved in the
399 regulation of free IAA levels in citrus. *CsGH3.1* and *CsGH3.1L* belong to the group II
400 proteins of the *GH3* family. *Arabidopsis GH3.5* and rice *GH3.1* and *sGH3.8* of this
401 group positively regulate pathogen-induced defense responses through the depletion

402 of free IAA [13, 24, 25]. Similarly, the overexpression of *CsGH3.1* and *CsGH3.1L*
403 enhances plant resistance to citrus canker. Moreover, we showed that the
404 overexpression of *CsGH3.1* and *CsGH3.1L* accelerated the *Xcc*-induced decline of
405 free IAA levels in transgenic plants. Based on these data, our results indicated that the
406 overexpression of *CsGH3.1* and *CsGH3.1L* reduces the susceptibility to *Xcc* by
407 decreasing free IAA levels both before and after pathogen infection in citrus.

408 The transcriptomic data showed that the decrease in the free IAA level
409 significantly repressed the expression levels of auxin signaling-related genes in
410 transgenic plants. For example, AUX/IAA family members, SAUR-like
411 auxin-responsive protein family members, and ARF10, PIN1, PIN3 and AUX1-like
412 protein genes, which are involved in auxin signal transduction, were significantly
413 downregulated in transgenic plants. In particular, the expression levels of the
414 AUX/IAA family members annotated by our transcriptomic data were significantly
415 repressed by the overexpression of *CsGH3*. The AUX/IAA family encodes a group of
416 primary auxin-responsive proteins, which regulate ARF expression through
417 ubiquitin-mediated degradation [17]. When cellular auxin concentrations are below a
418 certain threshold, AUX/IAA proteins inhibit ARF transcription factors to activate
419 auxin responsive genes (such as *AUX/IAA*, *GH3* and *SAUR*) and subsequently
420 suppress auxin responses [9]. This suppression further represses AUX/IAA transcript
421 levels. The decreased expression of PIN1 and PIN3 indicated that the auxin efflux
422 was inhibited in transgenic plants, suggesting that the overexpression of *CsGH3.1* and
423 *CsGH3.1L* affected the auxin distribution in plants. The transcriptomic data also
424 showed that no auxin biosynthesis-related genes (such as those related to tryptophan
425 biosynthesis or metabolism) were affected by the decrease in the free IAA content,
426 while the two genes encoding UDP-glycosyltransferase (UGT74B1 and UGT75B1),
427 which conjugate auxin to glucoside [38], displayed significantly increased expression
428 levels in transgenic plants. Thus, the unchanged expression levels of auxin
429 biosynthesis-related genes and activation of auxin glucosylation-related genes further
430 favored decreases in the free IAA contents of transgenic plants. Additionally, the
431 IAA–amino acid conjugated hydrolase genes (Cs3g19760 and Cs7g08080), which can

432 rapidly regenerate IAA from IAA–amino acid conjugates to help maintain auxin
433 homeostasis [39], displayed increased expression levels in the L-5 line, which could be
434 an antagonistic response to depleted free auxin levels.

435 The constitutive expression of *CsGH3.1* and *CsGH3.1L* affected the
436 establishment of citrus' architecture. Abnormal phenotypes also occurred in
437 transgenic rice overexpressing *OsGH3.1* [25] and *OsGH3.8* [24]. The GO annotation
438 revealed that many of the DEGs in transgenic lines were classified into metabolic
439 process, cellular process and development. Cell walls play critical roles in
440 establishing plant architecture. In our study, most genes that were involved in cell
441 wall biosynthesis, were profoundly upregulated by the overexpression of *CsGH3.1*
442 and *CsGH3.1L*. Additionally, three genes (pectinesterase inhibitor, expansin and
443 polygalacturonase), related to cell wall loosening, had decreased expression levels.
444 However, Domingo et al. [25] showed that most of the genes involved in both cell wall
445 biosynthesis and loosening were downregulated by *OsGH3.1*'s overexpression in rice.
446 This transcriptional differences of these genes between the two studies indicated that
447 *GH3.1* has various functions in the regulation of cell wall-related genes in different
448 species. However, it is clear that overexpressing *GH3.1* can result in similar dwarf
449 phenotypes in both rice and citrus.

450 Auxin is believed to act as a pathogenic factor in pustule formation during citrus
451 canker development [5, 16, 26]. The transcriptional activator-like effectors, PthAs,
452 secreted by Xcc manipulate multiple disease susceptibility genes or their products to
453 regulate pustule formation in infected sites [40]. For example, the PthA-induced
454 expression of the susceptibility genes *CsLOB1*, *CsLOB2* and *CsDiox* regulate citrus
455 cell division and growth to increase pustule formation [3, 4, 40]. PthA effectors also
456 interact with CsCYP and CsMAF1 proteins, which are repressors of citrus RNA
457 polymerase (Pol) II and III, respectively, to activate the transcription of host genes
458 involved in cell division and growth [41]. Auxin inhibits the translocation of CsMAF1
459 from the nucleoplasm to nucleolus [42], which decreased the accumulation of CsMAF1
460 in the nucleolus. This decreased CsMAF1 content in the nucleolus is beneficial for
461 Pol III's activation of host genes' transcription as well as for the PthA effectors'

462 enhancement of *CsLOB1*, *CsLOB2* and *CsDiox* expression levels, which both increase
463 symptom development. Thus, conversely, this depletion of free IAA in transgenic
464 plants is favorable for CsMAF1's entry into the nucleolus to antagonize Pol
465 III-mediated gene expression and finally represses disease development. Moreover,
466 *CsGH3*-mediated auxin homeostasis probably affects *CsLOB1* functions in citrus
467 canker development. The cell wall is the first line of plant defense against pathogen
468 invasion and pathogen-induced host cell wall loosening plays an important role in
469 symptom development [43, 44]. *CsLOB1* upregulates the expression of pectate lyase,
470 extension, α -expansin and cellulose genes [3], which are involved in the cell wall
471 loosening induced by pathogen infection [1]. Auxin triggers cell wall loosening by
472 rapidly acidifying cell walls [45]. Thus, pathogen-induced increases in auxin may have
473 synergistic roles in the cell wall loosening induced by *CsLOB1*. Our transcriptomic
474 data also showed that a decrease in free auxin significantly repressed the expression
475 levels of cell wall loosening-related genes. Similarly, Cernadas and Benedetti [5]
476 showed that the auxin transport inhibitor naphthyl-phthalamic acid repressed pustule
477 formation and the expression of cell wall loosening-related genes induced by Xcc
478 infection in the sweet orange (*C. sinensis*) "Pêra" cultivar. Thus, the data showed
479 that interfering with auxin homeostasis, as seen with *CsGH3*, can weaken pathogen
480 effector-induced host pustule formation and finally enhance plant resistance.

481 The MapMan analysis showed that biotic stress-related pathways were
482 significantly upregulated by the overexpression of *CsGH3.1* and *CsGH3.1L*. In
483 addition, a considerable number of induced genes were disease-resistance response
484 genes, such as TIR, PR, LRR and TIR-NBS-LRR family members, suggesting that the
485 depletion of the IAA content enhanced the defense response. In the complex network
486 of regulatory interactions during plant resistance responses, an antagonistic
487 relationship between SA and JA signaling pathways is evident, and generally, plant
488 responses to bacterial infections involve activating SA signaling, which represses JA
489 signaling [46, 47]. In citrus, SA treatments enhance resistance to citrus canker [48].
490 Moreover, SA also inhibits pathogen spread in plants by repressing auxin signaling
491 [14], and *Arabidopsis GH3.5* enhances the SA-mediated defense response [49]. Thus, we

492 evaluated the effects of overexpressing *CsGH3.1* and *CsGH3.1L* on the hormone
493 contents of transgenic citrus. The transgenic lines had significantly increased SA
494 levels. Additionally, the transcriptomic analysis showed that three of four genes
495 encoding S-adenosyl-L-methionine-dependent methyltransferase superfamily proteins,
496 which convert active SA to non-active methylSA, were repressed in transgenic lines,
497 which was consistent with increased levels of SA. This indicated that the depletion of
498 the IAA content enhanced the SA accumulation by regulating the conversion of SA
499 and methylSA. In JA signaling, the 12-oxophytodienoic acid reductase and
500 cystathionine Beta-synthase genes participating in JA biosynthesis were
501 downregulated in the 1-9 line, which was consistent with the decreased JA level in
502 this line. However, the JA content was not significantly different compared with WT
503 plants, although the two genes were induced in the L-5 line. Thus, our data showed
504 that the overexpression of *CsGH3.1* and *CsGH3.1L* enhanced SA signaling and
505 partially repressed JA signaling, which may activate the expression of disease
506 resistance genes in transgenic plants. The data also showed that ET levels were
507 significantly induced by the overexpression of *CsGH3.1* in transgenic lines. Plants
508 produce ET in response to most biotic and abiotic stresses. In some cases, the role of
509 ET in plant defense contributes to pathogen resistance. In *A. thaliana*, SA and ET
510 function together to coordinately induce several defense-related genes, and ET
511 treatments potentiate the SA-mediated induction of PR-1 [47, 50]. However, the ET
512 signaling pathway may also negatively affect SA-dependent resistance [46, 51, 52]. In our
513 study, *CsGH3.1* and *CsGH3.1L* positively regulated SA and ET accumulations in
514 citrus, which should improve resistance to citrus disease.

515 In this study, transgenic plants overexpressing *CsGH3.1* and *CsGH3.1L*
516 displayed a similar altered morphology, decreased free IAA levels and enhanced
517 citrus canker resistance. However, a transcriptomic analysis showed that there were
518 obvious differences in the affected MapMan pathways between lines 1-9 and L-5,
519 indicating that *CsGH3.1* and *CsGH3.1L* have different roles in the regulation of auxin
520 signaling. Based on the findings, we hypothesized that *CsGH3.1* and *CsGH3.1L* can
521 increase resistance against citrus canker in citrus plants by inhibiting the accumulation

522 of active auxin, revealing a potential role for the *GH3* gene in citrus breeding to
523 improve citrus canker resistance.

524 **Author contribution statement**

525 XZ designed the experiments and wrote the manuscript. LJ performed the
526 transcriptomic sequencing and analysis. ZK performed the hormone content analysis.
527 PA performed and evaluated the resistance to citrus canker. CM performed the citrus
528 genetic transformations. LQ performed the phenotype analysis of transgenic plants.
529 HY performed the PCR analyses. SC analyzed the data. All the authors read and
530 approved the manuscript.

531 **Acknowledgements**

532 This work was supported by the National Key Research and Development Program of
533 China (2018YFD1000300), the Natural Science Foundation Project of CQ
534 (cstc2017jcyjBX0020), the Earmarked Fund for China Agriculture Research System
535 (CARS-27 to S. Chen) and the Science and Technology Major Project of Guangxi
536 (Gui Ke AA18118046). We thank Lesley Benyon, PhD, from Liwen Bianji, Edanz
537 Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this
538 manuscript.

539 **Conflict of interest**

540 The authors declare that they have no conflicts of interest.

541 **References**

- 542 [1] Brunings A M, Gabriel D W. *Xanthomonas citri*: breaking the surface. *Mol Plant Pathol*, 2003.
543 **4**(3): 141-57.
- 544 [2] Mendonça L B D, Zambolim L, Badel J L. Bacterial citrus diseases: Major threats and recent
545 progress. *Journal of Bacteriology & Mycology*, 2017. **5**: 340–350.
- 546 [3] Hu Y, Zhang J L, Jia H G, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N A, Jones J B.
547 *Lateral organ boundaries 1* is a disease susceptibility gene for citrus bacterial canker disease.
548 *Proceedings of the National Academy of Sciences of the United States of America*, 2014.
549 **111**(4): E521-E529.
- 550 [4] Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, Hong N, Wang G, Chen G. A potential disease
551 susceptibility gene *CsLOB* of citrus is targeted by a major virulence effector *PthA* of

552 [5] *Xanthomonas citri* subsp. *citri*. *Mol Plant*, 2014. **7**(5): 912-5.

553 [6] Cernadas R A, Benedetti C E. Role of auxin and gibberellin in citrus canker development and in the transcriptional control of cell-wall remodeling genes modulated by *Xanthomonas axonopodis* pv. *citri*. *Plant Science*, 2009. **177**(3): 190-195.

554 [7] Peng A H, Chen S C, Lei T G, Xu L Z, He Y R, Wu L, Yao L X, Zou X P. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene *CsLOB1* promoter in citrus. *Plant biotechnology journal*, 2017. **15**: 1509–1519.

555 [8] Jia H, Zhang Y, Orbovic V, Xu J, White F, Jones J, Wang N. Genome editing of the disease susceptibility gene *CsLOB1* in citrus confers resistance to citrus canker. *Plant biotechnology journal*, 2017. **15**: 817-823.

556 [9] Glickmann E, Gardan L, Jacquet S, Hussain S, Elasri M, Petit A, Dessaix Y. Auxin production is a common feature of most pathovars of *Pseudomonas syringae*. *Molecular Plant-Microbe Interactions*, 1998. **11**(2): 156-162.

557 [10] Kazan K, Manners J M. Linking development to defense: auxin in plant-pathogen interactions. *Trends in Plant Science*, 2009. **14**(7): 373-382.

558 [11] Chen Z Y, Agnew J L, Cohen J D, He P, Shan L B, Sheen J, Kunkel B N. *Pseudomonas syringae* type III effector AvrRpt2 alters *Arabidopsis thaliana* auxin physiology. *Proceedings of the National Academy of Sciences of the United States of America*, 2007. **104**(50): 20131-20136.

559 [12] Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. *Science*, 2006. **312**(5772): 436-9.

560 [13] Truman W M, Bennett M H, Turnbull C G N, Grant M R. *Arabidopsis* auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds. *Plant physiology*, 2010. **152**(3): 1562-1573.

561 [14] Zhang Z, Li Q, Li Z, Staswick P E, Wang M, Zhu Y, He Z. Dual regulation role of GH3.5 in salicylic acid and auxin signaling during *Arabidopsis-Pseudomonas syringae* interaction. *Plant physiology*, 2007. **145**(2): 450-464.

562 [15] Wang D, Pajerowska-Mukhtar K, Culler A H, Dong X N. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. *Current Biology*, 2007. **17**(20): 1784-1790.

563 [16] Fu J, Liu H B, Li Y, Yu H H, Li X H, Xiao J H, Wang S P. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. *Plant physiology*, 2011. **155**(1): 589-602.

564 [17] Costacurta A, Mazzafera P, Rosato Y B. Indole-3-acetic acid biosynthesis by *Xanthomonas axonopodis* pv. *citri* is increased in the presence of plant leaf extracts. *FEMS Microbiology Letters*, 2010. **159**(2): 215-220.

565 [18] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. *Plant molecular biology*, 2002. **49**(3): 373-385.

566 [19] Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. Characterization of an *Arabidopsis* enzyme family that conjugates amino acids to indole-3-acetic acid. *Plant Cell*, 2005. **17**(2): 616-627.

567 [20] Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T. Genome-wide analysis of the GH3 family in apple (*Malus × domestica*). *BMC Genomics*, 2013. **14**(1): 297.

568 [21] Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C. Genome-wide identification,

596 expression analysis of auxin-responsive GH3 family genes in maize (*Zea mays* L.) under
597 abiotic stresses. *Journal of Integrative Plant Biology*, 2015. **57**(9): 783-795.

598 [21] Yang Y, Yue R, Sun T, Zhang L, Chen W, Zeng H, Wang H, Shen C. Genome-wide identification,
599 expression analysis of GH3 family genes in *Medicago truncatula* under stress-related
600 hormones and *Sinorhizobium meliloti* infection. *Applied Microbiology and Biotechnology*,
601 2015. **99**(2): 841-854.

602 [22] Nobuta K, Okrent R A, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth M C, Innes R W.
603 The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense
604 responses in *Arabidopsis*. *Plant physiology*, 2007. **144**(2): 1144-1156.

605 [23] Westfall C S, Sherp A M, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez J M.
606 *Arabidopsis thaliana* GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin
607 and salicylic acid homeostasis. *Proceedings of the National Academy of Sciences of the United
608 States of America*, 2016. **113**(48): 13917-13922.

609 [24] Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. Activation of the indole-3-acetic
610 acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and
611 jasmonate-independent basal immunity in rice. *The Plant Cell*, 2008. **20**(1): 228-240.

612 [25] Domingo C, Andres F, Tharreau D, Iglesias D J, Talon M. Constitutive expression of *OsGH3.1*
613 reduces auxin content and enhances defense response and resistance to a fungal pathogen
614 in rice. *Mol Plant Microbe Interact*, 2009. **22**(2): 201-10.

615 [26] Chen M, Yongrui H E, Lanzhen X U, Peng A, Lei T, Yao L, Qiang L I, Zhou P, Bai X, Duan M.
616 Cloning and Expression Analysis of Citrus Genes *CsGH3.1* and *CsGH3.6* Responding to
617 *Xanthomonas axonopodis* pv. *citri* Infection. *Horticultural Plant Journal*, 2016. **2**(04): 18-27.

618 [27] Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S. Transgenic citrus expressing
619 synthesized cecropin B genes in the phloem exhibits decreased susceptibility to
620 Huanglongbing. *Plant molecular biology*, 2017. **93**: 341-353.

621 [28] Livak K J, Schmittgen T D. Analysis of Relative Gene Expression Data Using Real-Time
622 Quantitative PCR and the 2- $\Delta\Delta CT$ Method. *Methods*, 2001. **25**(4): 402-408.

623 [29] Wu Y, Hu B. Simultaneous determination of several phytohormones in natural coconut juice
624 by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid
625 chromatography. *Journal of Chromatography A*, 2009. **1216**(45): 7657-7663.

626 [30] Górká B, Wieczorek P P. Simultaneous determination of nine phytohormones in seaweed and
627 algae extracts by HPLC-PDA. *Journal of Chromatography B*, 2017. **1057**: 32-39.

628 [31] Meigh D F, Norris K H, Craft C C, Lieberman M. Ethylene Production by Tomato and Apple
629 Fruits. *Nature*, 1960. **186**(4728): 902-903.

630 [32] Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg S L. TopHat2: accurate alignment
631 of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biology*,
632 2013. **14**(4): R36.

633 [33] Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. Mapping and quantifying
634 mammalian transcriptomes by RNA-Seq. *Nature Methods*, 2008. **5**: 621.

635 [34] Wang L, Wang X, Wang X, Zhang X, Feng Z. DEGseq: an R package for identifying differentially
636 expressed genes from RNA-seq data. *Bioinformatics*, 2009. **26**(1): 136-138.

637 [35] Young M D, Wakefield M J, Smyth G K, Oshlack A. Gene ontology analysis for RNA-seq:
638 accounting for selection bias. *Genome Biology*, 2010. **11**(2): R14.

639 [36] Mao X, Tao C J G O, Wei L. Automated genome annotation and pathway identification using

640 the KEGG Orthology (KO) as a controlled vocabulary. *Bioinformatics*, 2005. **21**(19):
641 3787-3793.

642 [37] Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller L A, Rhee S Y, Stitt
643 M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic
644 pathways and other biological processes. *Plant Journal*, 2010. **37**(6): 914-939.

645 [38] Ludwigmüller J. Auxin conjugates: their role for plant development and in the evolution of
646 land plants. *Journal of Experimental Botany*, 2011. **62**(6): 1757-1773.

647 [39] Sherry L, Rosie T, Rebekah A R, T M S, Bonnie B. Characterization of a family of IAA-amino acid
648 conjugate hydrolases from *Arabidopsis*. *Journal of Biological Chemistry*, 2002. **277**(23):
649 20446-20452.

650 [40] Pereira A L A, Carazzolle M F, Abe V Y, de Oliveira M L P, Domingues M N, Silva J C, Cernadas
651 R A, Benedetti C E. Identification of putative TAL effector targets of the citrus canker
652 pathogens shows functional convergence underlying disease development and defense
653 response. *BMC Genomics*, 2014. **15**: 157.

654 [41] Soprano A S, Abe V Y, Smetana J H, Benedetti C E. Citrus MAF1, a repressor of RNA
655 polymerase III, binds the *Xanthomonas citri* canker elicitor PthA4 and suppresses citrus
656 canker development. *Plant Physiol*, 2013. **163**(1): 232-42.

657 [42] Soprano A S, Giuseppe P O, Shimo H M, Lima T B, Batista F A H, Righetto G L, Pereira J G C,
658 Granato D C, Nascimento A F Z, Gozzo F C, de Oliveira P S L, Figueira A C M, Smetana J H C,
659 Paes Leme A F, Murakami M T, Benedetti C E. Crystal Structure and Regulation of the Citrus
660 Pol III Repressor MAF1 by Auxin and Phosphorylation. *Structure*, 2017. **25**(9): 1360-1370.

661 [43] Rashid A. Defense responses of plant cell wall non-catalytic proteins against pathogens.
662 *Physiological and Molecular Plant Pathology*, 2016. **94**: 38-46.

663 [44] Bellincampi D, Cervone F, Lionetti V. Plant cell wall dynamics and wall-related susceptibility
664 in plant-pathogen interactions. *Frontiers in plant science*, 2014. **5**: 228-228.

665 [45] Fendrych M, Leung J, Friml J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall
666 acidification and growth of *Arabidopsis* hypocotyls. *eLife*, 2016. **5**: e19048.

667 [46] Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. *Current
668 Opinion in Plant Biology*, 2002. **5**(4): 325-331.

669 [47] Di X, Gomila J, Takken F L W. Involvement of salicylic acid, ethylene and jasmonic acid
670 signalling pathways in the susceptibility of tomato to *Fusarium oxysporum*. *Molecular Plant
671 Pathology*, 2017. **18**(7): 1024-1035.

672 [48] Francis M I, Redondo A, Burns J K, Graham J H. Soil application of imidacloprid and related
673 SAR-inducing compounds produces effective and persistent control of citrus canker.
674 *European Journal of Plant Pathology*, 2009. **124**(2): 283-292.

675 [49] Zhongqin Z, Muyang W, Zhimiao L, Qun L, Zuhua H. *Arabidopsis* GH3.5 regulates salicylic
676 acid-dependent and both NPR1-dependent and independent defense responses. *Plant
677 Signaling & Behavior*, 2008. **3**(8): 537-542.

678 [50] Schenk P M, Kazan K, Wilson I, Anderson J P, Richmond T, Somerville S C, Manners J M.
679 Coordinated plant defense responses in *Arabidopsis* revealed by microarray analysis.
680 *Proceedings of the National Academy of Sciences of the United States of America*, 2000.
681 **97**(21): 11655-11660.

682 [51] O'Donnell P J, Jones J B, Antoine F R, Ciardi J, Klee H J. Ethylene-dependent salicylic acid
683 regulates an expanded cell death response to a plant pathogen. *The Plant Journal*, 2001.

684 **25**(3): 315-323.

685 [52] Lawton K A, Potter S L, Uknes S, Ryals J. Acquired resistance signal transduction in
686 *Arabidopsis* is ethylene independent. *The Plant Cell*, 1994. **6**(5): 581-588.

687