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Abstract

In silico T-cell epitope prediction plays a key role in immunization experiments
design and vaccine preparation. In this study, classification models based on random
forests algorithm were trained by use of experimental human leukocyte antigen class I
(HLA-I) presenting T-cell peptides data, in which several characteristics were
constructed as immunogenicity features, including amino acid sequence characteristics,
peptide entropy, eluted ligand likelihood percentile rank (EL %Rank) score and score
of immunogenic peptide. The classification result for the antigen epitopes outperformed
the previous research (AUC=0.81, external validation data set AUC=0.77). As
mutational epitopes generated by the coding region contain only the alterations of one
or two amino acids, we assume that these characteristics might also be applied to the

classification of the endogenic mutational epitopes named ‘neoantigens’. Based on
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29  mutation information and sequence related amino acid characteristics, a prediction
30  model of neoantigen was established as well (AUC=0.78). Further, a web-based tool
31  was developed for the prediction of either human antigen epitope or neoantigen epitope

32 (http://www.biostatistics.online/[INeo-Epp/antigen.php). Overall, by analyzing amino

33  acid distribution in T-cell receptor (TCR) contact sites, we found that TCR prefers to
34 recognize the hydrophobic amino acids. This work may provide a new insight for T-
35  cell recognition of antigen peptides.

36

37  Author summary

38 Currently, most epitope prediction researches focus on peptides processing and
39  presenting, such as proteasomal cleavage, transporter associated with antigen
40  processing (TAP) and major histocompatibility complex (MHC) combination. To date,
41  however, the immunogenicity mechanism of epitopes remains unclear. It is generally
42  agreed upon that T-cell immunogenicity may be influenced by foreignness,
43  accessibility, molecular weight, molecular structure, molecular conformation, chemical
44  properties and physical properties of target peptides in different degrees. Here, we first
45  collected quite an amount of experimental HLA-I T-cell peptides data, as well as the
46  potential immunogenic amino acid features. Subsequently, based on the random forest
47  algorithm, we successfully constructed the separate prediction models for T cell
48  immunogenic HLA-I presenting antigen and neoantigen epitopes. Furthermore, we
49  built a web-based tool to facilitate the prediction of HLA-I T-cell immunogenic
50  epitopes.

51

52  Introduction

53 An antigen is consisted of several epitopes, which can be recognized either by B-
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54 or T-cells and/or molecules of the host immune system. However, usually, a few amino
55  acid residues that comprise an epitope are sufficient to elicit an immune response [1].
56  MHC-I (HLA-I in human) antigen peptides are processed and presented as follows: (1)
57  cytosolic and nuclear proteins are cleaved to short peptides by intracellular proteinases;
58  (2) some are selectively transferred to endoplasmic reticulum (ER) by TAP transporter,
59  and subsequently are treated by endoplasmic reticulum aminopeptidase; (3) antigen
60  presenting cells (APCs) present peptides possessed to 8-11 AA (amino acid) residues
61 on MHC class I molecules to CD8+ T cells [2]. So far, several software have been
62  developed to predict the antigen processing and presentation, including NetChop [3],
63  NetCTL [4], NetMHCpan [5], MHCflurry [6]. However, statistically, approximately
64  only 1% of the predicted binding peptide-MHC complexes (p-MHC) can eventually
65  cause immunogenicity [7]. Although the recognition and amplification of T-cells may
66  benefit from the development of T-cell receptor (TCR) sequencing, the cycle of vaccine
67  development and immunization research is extended. Thus, an effective identification
68  method follow-up the above software is urgently needed to shorten the whole cycle.
69 Nowadays, many experimental human epitopes may be acquired from the immune
70  epitope database (IEDB) [8], which makes it feasible to mathematically predict human
71  epitopes. Even if IEDB provides us a wide range of information on T cell epitopes, a
72 high degree of MHC polymorphism brings forward a severe challenge for T-cell
73 epitope prediction. HLA molecules have hundreds of different variants [9].

74 Experimentally, many infrequent HLA subtypes peptides (e.g. B55, B63) with
75  uneven positive and negative distributions are not conducive to analyze the potential
76  deviation existed in TCR recognition owing to various HLA presented peptides. A
77  general analysis of all HLA presented peptides, ignoring the pattern of TCR recognition

78  of specific HLA, may result in a lower prediction.
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79 Due to the intensive study on HLA, HLA supertype has been proposed. Sette et al.
80  [10] classified, for the first time, overlapping peptide binding repertoires into nine
81  major functional HLA supertypes (A1, A2, A3, A24, B7, B27, B44, B58, B62). In 2008,
82  John Sidney et al [11] made a further supplement, in which over 80% of the 945
83  different HLA-A and -B alleles can be assigned to the original nine supertypes. It has
84  not been reported whether peptides presented by different HLA alleles influence TCR
85  recognition. Hence, we collected experimental epitopes according to HLA alleles for
86  analyzing.

87 Screening of mutant and abnormally expressed epitopes are crucial in tumor

88  immunotherapy. In 2017, Ott PA et al. [12] and Sahin et a/ [13]. confirmed that peptides

89  and RNA vaccines made up of neoantigens in melanoma can stimulate and proliferate

90 CD8+ and CD4+ T cells. Neoantigen vaccination not only can expand the existing

91  specific T cells, but also induce a wide range of novel T-cell specificity in cancer

92  patients and enhance tumor suppression [14]. Meanwhile, a tumor can be better

93  controlled by the combination therapy of neoantigen vaccine and programmed cell

94 death protein 1 (PD-1)/PD1 ligand 1(PDL-1) therapy [15-16]. However, a considerable

95  amount of identified candidate neoantigens in the process of sequencing recognition of

96  somatic cell mutations were false positive, which would fail to stimulate TCR

97  recognition and immune response. This is undoubtedly a disadvantage for designing

98  vaccines against neoantigens.

99 In this study, based on the collection of the validated HLA-I T-cell peptides,
100  including antigens and neoantigens, we discovered several effective classification
101  features and successfully constructed the classification models for antigens and
102  neoantigens, respectively. Furthermore, a web-based tool, INeo-Epp (immunogenic and

103 neoangtigenic epitope prediction), was built for separate prediction of human antigen
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104  and neoantigen epitopes.

105

106 Results

107 Immunogenic and non-immunogenic epitopes

108 Peptides that can promote cytokines proliferation are considered as immunogenic
109  epitopes. However, non-immunogenic epitopes may result from the following reasons:
110  a) p-MHC truly unrecognized by TCR; b) peptides unpresented by MHC (quantitatively
111  expressed as %rank>2); c) negative selection/clonal presentation induced by excessive
112 similarity with autologous peptides [17]. In this work, to further study the recognition
113 preferences of T cells, >2 %rank and 100% matching human GRCh38 peptide
114 sequences were removed from the definition of non-immunogenic peptides.

115

116  Data statistics

117 In this study, 11,297 validated epitopes and non-epitopes with the length of 8-11
118 amino acids were collected from IEDB. T-cell responses include activation,
119  cytotoxicity, proliferation, IFN-y release, TNF release, granzyme B release, 1L-2
120 release, IL-10 release. Seventeen different HLA alleles were collected (Fig 1A), and
121  the detailed antigen lengths distribution are shown in (Fig 1B). Besides, we also
122 collected the neoantigen data from 12 publications, including 2837 non-epitopes and
123 164 epitopes (Fig 1C), and the detailed neoantigen lengths distribution are shown in

124 (Fig 1D).
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Figurel: Epitope peptides composition and amino acid lengths distribution.

(A) Detailed seventeen HLA alleles of antigen peptides data distribution and each HLA
allele positive and negative data proportion and the corresponding HLA frequency in
Asian, Black, Caucasian. (B) Antigen peptides proportion of 8-11 AA lengths. (C)
Distribution of HLA alleles of neoantigen peptides. (D) Neoantigen peptides proportion

of 8-11 AA lengths.

Furthermore, we analyzed the position-related amino acid arrangement in antigen
epitopes. The result showed that leucine was strongly preferred in all the positions of
antigen epitope, however, tryptophan, histidine, cysteine were the least preferred (Fig2
A). TCR contact position plays a crucial role in the analysis of immunogenicity. As
TCRs might be more sensitive to some amino acids, the amino acids preference in

antigen epitope peptide and antigen non-epitope peptide was further analyzed after


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

139  excluding anchor sites. We found that a TCR tends to identify the hydrophobic amino
140  acids (Fig 2B). For example, 70% of amino acids that occur more frequently in
141  immunogenicity epitopes are hydrophobic (W, P, A, V, L). Charged amino acids (e.g.
142 D, K) are enriched in non-epitopes, and amino acids with more complex R group
143 structure frequently occur in non-epitopes. Based on the above, the amino acid
144  distribution difference at the TCR contact sites was regarded by us as one of the

145  immunogenicity features (i.e. score for immunogenic peptide (C22)).
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148  Figure 2: Antigen epitope amino acid distribution difference in P1-P11, and amino

149  acid distribution frequency in TCR contact site of antigen epitope and non-epitope.
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150  (A) The proportion of amino acids at each position of epitope and non-epitope peptides
151 in antigen peptides, and the higher position the more frequency. (B) Frequency
152 distribution of amino acids at solvent-exposed positions in antigen epitope and non-
153  epitope peptides, and the amino acids below the dotted line are preferred by the epitope.

154

155  Classification prediction model for antigen epitopes

156 We constructed the features of peptides on the basis of the characteristics of amino
157  acids (see Materials and Methods section: Characteristics Calculation of peptides based
158  on amino acids). All amino acid characteristics were selected from Protscale [18] in
159  ExPASy (SIB bioinformatics resource portal). The 21 involved features are as follows:
160  Kyte—Doolittle numeric hydrophobicity scale (C1) [19], molecular weight (C2),
161  bulkiness (C3) [20], polarity (C4) [21], recognition factors (C5) [22], hydrophobicity

162  (C6) [23], retention coefficient in HPLC (C7) [24], ratio hetero end/side (C8) [21],
163  average flexibility (C9) [25], beta-sheet (C10) [26], alpha-helix (C11) [27], beta-turn
164 (C12) [27], relative mutability (C13) [28], number of codon(s) (C14), refractivity
165 (C15) [29], transmembrane tendency (C16) [30], %accessible residues (C17) [31],

166  average area buried (C18) [32], conformational parameter for coil (C19) [27], total
167  beta-strand (C20) [33], parallel beta-strand (C21) [33] (see Table S4 in detail). Also,

168  score for immunogenic peptide (C22), peptide entropy (C23) [34] and %rank (C24)
169  were also taken into consideration. Together, 24 immunogenic features were collected,
170  and all features were retained for antigen epitopes prediction after screening using R
171  package Buroat [35]. Compared to other characteristics, score for immunogenic peptide
172 and %rank have higher impacts, suggesting they have more significant power on

173  antigen epitopes classification (Firure3 A).
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174 The receiver operator characteristic (ROC) curve of models are shown in Fig 4.
175  The five-fold cross validation AUC was 0.81 in the prediction model for antigen epitope
176  (line in red Fig3 B) and the externally validated AUC was 0.75 (line in purple Fig4 C).
177  Here, we tried to remove HLA supertypes (not included in training set) data from the
178  externally validated antigen data and, the AUC, specificity, and sensitivity were
179  increased to 0.78, 0.71, and 0.72, respectively. (line in pink Fig4 C). This, to some
180  extent, verifies our conjecture about TCR specific recognition of different HLA alleles

181  presenting peptides.
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183  Figure 3: Feature selection in antigen epitopes and ROC curves of antigen epitopes
184  classification. (A) Twenty four features were screened and retained, the features on the
185  right of the dotted line are effective. (B) The line in blue represents antigen epitopes
186  without screening; the line in green represents selection with the deletion of %rank>2
187  non-epitope; and the line in red represents selection with the deletion of the non-
188  epitopes 100% matching human GRCh38 peptides sequence. (C) The ROC curves of
189  external verification set, line in purple represents modeling using antigen epitopes

190  without filtering, the line in pink represents using antigen epitopes removing non-
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epitopes %rank>2 and HLA supertypes (not encountered in training set).

Classification prediction model for neoantigen epitopes

Neoantigens derived from somatic mutations are different from the wild peptide
sequences. Therefore, some mutation-related characteristics were also taken into
account. For instance, hydrophobic difference before and after mutation (C25),
differential agretopicity index (DAI, C26) [36] and whether the mutation position was
anchored (C27). Finally, 27 features were selected for the neoantigen model. However,
only 25 neoantigen related features were retained after running Buroat, because C25
and C27 were removed. Also, %rank showed a marked effect (Fig 4A). in the five-fold

cross-validation of the prediction model for neoantigen epitopes, AUC was 0.78 (Fig
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Figure 4: Feature selection in neoantigen epitopes and ROC curves of neoantigen
epitopes classification. (A) Twenty seven features were screened and the 25 features
on the right of the dotted line were reserved for modeling in random forest algorithm.

(B) ROC curves of neoantigen epitopes classification.
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209
210  Web server for TCR epitope prediction

211 Based on these above-mentioned validated features, we established a web server
212 for TCR epitope prediction, named INeo-Epp. This tool can be used to predict both
213  immunogenic antigen and neoantigen epitopes. For antigen, the nine main HLA
214  supertypes can be used. We recommend the peptides with the lengths of 8-12 residues,
215  butnot less than 8. N-terminal, position 2, C-terminal were treated as anchored sites by
216  default. A predictive value greater than 0.5 is considered as positive immunogenicity
217  (P). Please make sure that HLA-subtype must match your peptides. When HLA-
218  subtype mismatches, the different %rank value may strongly influence the results.
219  Additionally, the neoantigen model requires providing wild and mutated sequences at
220  the same time to extract mutation associated characteristics, and currently only
221  immunogenicity prediction for neoantigens of single amino acid mutations are
222 supported. You can use example option to test the INeo-Epp

223 (http://www.biostatistics.online/INeo-Epp/antigen.php).

224

225  Discussion

226 Because of the complexity of antigen presenting and TCR binding, the mechanism
227  of TCR recognition has not been clearly revealed. In 2013, J. A. Calis [37] developed
228  atool for epitope identification of mice and humans (AUC = 0.68). Although mice and
229  human beings are highly homologous, the murine epitopes may very likely cause
230  deviation in identifying human epitopes. Inspired by J. A. Calis, our research focused
231  on human beings’ epitopes and were conducted in a larger data set. In our study, the
232 TCR recognized immunogenic epitope prediction AUC is increased to 0.81.

233 By analyzing epitope immunogenicity from the perspective of amino acid


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

234  molecular composition, we observed that TCRs do have a preference for hydrophobic
235 amino acid recognition. For short peptides presented by different HLA supertypes,
236  TCRs may have different identification patterns. The immunogenicity prediction based
237  on all HLA-presenting peptides may affect the accuracy of the prediction results. That
238 is, the prediction results of specified HLA-presenting peptides may be better. Recently,
239  Céline M. Laumont [38] demonstrated that noncoding regions aberrantly expressed
240  tumor-specific antigens (acTSAs) may represent ideal targets for cancer
241  immunotherapy. These epitopes can also be studied in the future.

242 However, for neoantigens prediction, the positive prediction rate is not as good
243 (AUC is 0.78 and no external validation), because relevant and available experimental
244  data of TCR recognized neoepitopes are limited. The immunogenic neoantigen
245  prediction model remains to be improved as more data will be gathered. Besides, a TCR
246  sequencing database would be needed to study the relationship between TCRs and
247  epitopes from a deeper structure. More relevant amino acid properties and structural
248  features may remain to be discovered for further mathematical analysis. We believe
249  that in the age of biological systems data explosion, mathematical calculation is a good
250  way to derive biological significance. With the development of machine learning and
251  deep learning, we expect the prediction of neoantigen immunogenicity will be
252 continually improved.

253 Neoantigen prediction is the most important step in the preparation of neoantigen
254  vaccine. Bioinformatics methods can be used to extract tumor mutant peptides and
255  predict neoantigens. Most current strategies end in presenting peptides predictions and
256  among the results of these predictions, in the end, less than 10 neoantigens might be
257  discovered, but it is time-consuming and costly to experimentally eliminate the false

258  positively predicted peptides. Our methods in this study and the INeo-Epp tool may
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259  help eliminate a large number of false positive antigen/neoantigen peptides, and greatly
260  reduce the amount of candidates to be verified by experiments.

261 In summary, this study provides an inference from the immunogenicity
262  classification prediction of antigens to neoantigens, and the INeo-Epp can be applied
263  not only to identify putative antigens, but also to identify putative neoantigens.

264

265 Materials and Methods

266  Generation of data sets

267 Antigen epitope data were collected from IEDB (Linear epitope, Humans, T cell
268  assays, MHC class I, any disease were chosen). Data collection criteria: each HLA
269  subtype quantity >50 and HLA frequency >0.5% (refer to allele frequency database
270  [39]) (Table 1, check Table S1 for detailed information).

271

272  TABLE 1| Summary of IEDB epitope data

HLA supertype IEDB HLA Number HLA allele frequency Motif view
data Negative Positive Asian / Black / Caucasian
Al A01:01 811 103 0.154/0.046 / 0.164 1-2(ST)-3-4-5-6-7-8-9(Y)
A26:01 83 19 0.041/0.014/0.030 1(DE)-2(ITV)-3-4-5-6-7-8-9(FMY)
A2 A02:01 1883 1580 0.049/0.123/0.275 1-2(LM)-3-4-5-6-7-8-9(ILV)-10(V)
A3 Al1:01 196 174 0.139/0.014 / 0.060 1-2(IMSTV)-3-4-5-6-7-8-9(K)-10(K)
A03:01 1400 169 0.063 /0.083 / 0.139 1-2(ILMTV)-3-4-5-6-7-8-9(K)-10(K)
A24 A24:02 207 219 0.136/0.024 / 0.084 1-2(WY)-3-4-5-6-7-8-9(FIW)
A23:01 1138 12 0.006/0.109 / 0.019 1-2(WY)-3-4-5-6-7-8-9-10(F)
B7 B35:01 63 248 0.062 /0.068 /0.055 1-2(P)-3-4-5-6-7-8-9(FMY)
B07:02 523 244 0.034/0.005 / 0.0143 1-2(p)-3-4-5-6-7-8-9(FLM)
B51:01 13 51 0.074/0.021/ 0.047 1-2(P)-3-4-5-6-7-8-9(1V)
B8 B08:01 317 195 0.036/0.037/0.114 1-2-3-4-5(HKR)-6-7-8-9(FILMV))
B27 B27:05 100 86 0.008 / 0.008 / 0.037 1(RY)-2(R)-3(FMLWY)-4-5-6-7-8-9
B44 B37:01 1036 10 0.034/0.005/0.014 -
B40:01 67 65 0.022/0.012/0.052 -
B44:02 73 66 0.008 /0.020 / 0.095 1-2(E)-3-4-5-6-7-8-9(FIWY)
B58 B58:01 11 62 0.041/0.037/0.007 1-2(AST)-3-4-5-6-7-8-9(W)
B62 B15:01 3 70 0.016/0.010/0.060 1-2(LMQ )-3-4-5-6-7-8-9(FY)
Total 7924 3373
Remove negative %rank>2 5123 3373
Remove negative human 100% similar 4943 3373
273
274 The validation dataset was collected from seven published independent human
275 antigen studies [40-46], consisting of 577 non-immunogenic epitopes and 85
276  immunogenic epitopes (Table 2, S2 Table)
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277
278  TABLE?2 | validated peptides data included in this study
Publication time PMID Author non-epitopes epitopes
2013 23580623 Weiskopf et al 477 42
2018 29397015 Hendrik Luxenburger et al 100 26
2018 30260541 Youchen Xia et al - 1
2018 30487281 Hawa Vahed et al - 4
2018 30518652 Atefeh Khakpoor et al - 2
2018 30587531 Alina Huth et al - 4
2018 30815394 Solomon Owusu Sekyere et al - 6
Total 577 85
Remove negative %rank >2 and HLA supertypes (not in training set) 321 69
279
280 The neoantigen data were collected from 11 publications [15,48-57] and IEDB
281  mutational epitopes, and 13 published data sets collected by Anne-Mette B in one
282  publication [47] in 2017, see Table 3, S3 Table for details.
283
284  TABLE 3| Neoantigen data included in this study
Publication PMID Author Tumor Non-immunogenic  Immunogenic T-cell
time Type neo-epitopes neo-epitopes assay
2013-12 24323902 Darin A. W et al. Ovarian Cancer — 1 ELISPOT
2015-9 26359337 Eliezer M et al. Melanoma - 18 Clinical benefit
2015-11 26752676 Takahiro K et al. Lung adenocarcinoma - 4 -
2016-1 26901407 Alena Gros et al. Melanoma 12 14 ELISPOT
2016-5 27198675 Erlend Strenen et al. Melanoma 1134 16 CTL clone
2016-12 28405493 Annika Nelde et al. Lymphoma - 2 ELISPOT
2017-6 28619968 Xiuli Zhang et al. Breast cancer — 4 Flow cytometry
2017-10 29104575 Markus M et al. Melanoma 10 16 -
2017-11 29187854 Anne-Mette B et al. Polytype 1874 42 ELISPOT et al.
2017-11 29132146 Vinod P. B et al. pancreatic — 10 Flow Cytometry
2018-5 29720506 Tatsuo Matsuda et al. Ovarian Cancer - 3 ELISPOT
2018-12 29409514 Sonntag et al. pancreatic ductal carcinoma - 3 Flow Cytometry
2018-10 30357391 Randi Vita et al. — 6 35 —
Total 3030 168
Remove duplication 2837 164
Remove negative %rank>2 and human 100% similar 1697 164

285

286
287

288

289

Feature calculation

Characteristics calculation of peptides based on amino acid sequences. The formula

for calculating peptide characteristics is shown in (1). Py, P,, Pc are considered to be

embedded in HLA molecules and no contact with TCRs, so they're not evaluated.
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x&(N2,.)

290 —{ Z P, / (len(P) -3
x € Pos(P)
(1)

291 P, peptide. ¢, characteristic. Where P, represents characteristics of peptides. 4, amino
292 acid. N, N-terminal in a peptide. C, C-terminal in a peptide. Pos, amino acid position in
293 peptide. Where P, represents characteristics of amino acids in peptides.
294  Score for immunogenic peptide (C22). Amino acid distribution frequency differences
295  between immunogenicity and non-immunogenic peptides at TCR contact sites were

296  considered as a feature (2).

Pscore
x & (N,2,0)

297 = Z {Pie+(f/'l)_Pie'(f.»24)
x € Pos(P)
(2)
298  P,*, immunogenic peptides. P;,, non-immunogenic peptides. f*4, amino acid frequency
299 in TCR contact position. Where P;.. (f’4) represents frequency of amino acids in

300 immunogenic peptides at TCR contact sites.

301  Calculating peptide entropy (C23). peptide entropy [58] was used as a feature (3).

x & (N,2,0)
302 Py = {- Z Py, *logy( Py,)} / (len(P) - 3) 3)

x € Pos(P)
303 Py peptide entropy. f4, amino acid frequency in human GRCh38 peptides. Where Py,
304  represents the frequency in human GRCh38 peptides of amino acids in epitope peptides.

305 %rank score (C24). HLA binding prediction were run by netMHCpan4.0 in

306  which %rank was recommended as evaluation standard, %rank<0.5 as strong binders,

307  0.5<%rank<2 as weak binders, %rank>2 as no binders.

308
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Cross-validation, feature selection, random forests and ROC generation.

The cross-validation were generated in R using the package caret [59] (method =
"repeatedcv", number = 5, repeats = 3). The feature screening result were generated in
R using the package Buroat (a feature selection method). R package randomForest [60]
was used for training data (mtry=14 for antigen epitope, mtry=15 for neoantigen, the
remaining parameter use default values). R package ROCR was used [61] for drawing

ROC.

Analysis and statistics

A python script was used for calculating peptide characteristics and extracting mutation

information. Models were built using R.

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No.
31870829), Shanghai Municipal Health Commission, and Collaborative Innovation
Cluster Project (No. 2019CXJQ02). We sincerely thank Menghuan Zhang, Guangrong

Qin, Hong Li and Qibing Leng for their valuable advice.

Author Contributions

Conceptualization: Lu Xie, Guangzhi Wang
Funding acquisition: Lu Xie

Formal Analysis: Guangzhi Wang
Investigation: Guangzhi Wang
Methodology: Guangzhi Wang

Software: Huihui Wan, Ouyang Jan, Guangzhi Wang


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

334  Supervision: Yuyu Li, Xiaoxiu Tan, Yong Xu, Yong Zhao, Yong Lin
335  Writing — original draft: Guangzhi Wang.
336  Writing — review & editing: Lu Xie, Xingxing Jian.

337

338 Competing interests

339  The authors have declared that no competing interests exist.

340

341 References

342 1. Desai DV, Kulkarni-Kale U. T-cell epitope prediction methods: an overview.
343  Methods in molecular biology (Clifton, NJ). 2014;1184:333-64.

344 2. Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation. Nature.
345 1992;357(6377):375-9.

346 3. Kesmir C, Nussbaum AK, Schild H, Detours V, Brunak S. Prediction of
347  proteasome cleavage motifs by neural networks. Protein engineering. 2002;15(4):287-
348  96.

349 4. Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, et al. An
350 integrative approach to CTL epitope prediction: a combined algorithm integrating
351 MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions.
352  European journal of immunology. 2005;35(8):2295-303.

353 5. Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0:
354  Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and
355  Peptide Binding Affinity Data. Journal of immunology (Baltimore, Md : 1950).
356 2017;199(9):3360-8.

357 6. O'Donnell TJ, Rubinsteyn A, Bonsack M, Riemer AB, Laserson U, Hammerbacher


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

358  J. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction. Cell systems.
359  2018;7(1):129-32.¢4.

360 7. Kristensen VN. The Antigenicity of the Tumor Cell - Context Matters. The New
361  England journal of medicine. 2017;376(5):491-3.

362 8. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The
363 Immune Epitope Database (IEDB): 2018 update. Nucleic acids research. 2019;47(D1):
364  D339-d43.

365 9. RechePA, Reinherz EL. Definition of MHC supertypes through clustering of MHC
366  peptide-binding repertoires. Methods in molecular biology (Clifton, NJ). 2007;409:
367  163-73.

368 10. Sette A, Sidney J. Nine major HLA class I supertypes account for the vast
369  preponderance of HLA-A and -B polymorphism. Immunogenetics. 1999;50(3-4):201-
370  11. Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised
371  and updated classification. BMC immunology. 2008;9:1.

372 12. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic
373  personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217-
374 21.

375 13. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al.
376  Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity
377  against cancer. Nature. 2017;547(7662):222-6.

378  14. HuZ, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines
379  for cancer. Nature reviews Immunology. 2018;18(3):168-82.

380 15. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
381  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science

382 (New York, NY). 2015;350(6257):207-11.


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

383  16. Efremova M, Finotello F, Rieder D, Trajanoski Z. Neoantigens Generated by
384  Individual Mutations and Their Role in Cancer Immunity and Immunotherapy.
385  Frontiers in immunology. 2017;8:1679.

386  17. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the
387 thymus for positive selection and central tolerance induction. Nature reviews
388  Immunology. 2009;9(12):833-44.

389  18. Ramsby M, Makowski G. The Proteomics Protocols Handbook2005. 37-48 p.
390 19. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of
391  aprotein. Journal of molecular biology. 1982;157(1):105-32.

392 20. Zimmerman JM, Eliezer N, Simha R. The characterization of amino acid sequences
393  in proteins by statistical methods. Journal of theoretical biology. 1968;21(2):170-201.
394  21. Grantham R. Amino acid difference formula to help explain protein evolution.
395  Science (New York, NY). 1974;185(4154):862-4.

396  22. Fraga SJCJoC. Theoretical prediction of protein antigenic determinants from
397  amino acid sequences. 1982;60(20):2606-10.

398  23. Sweet RM, Eisenberg D. Correlation of sequence hydrophobicities measures
399  similarity in three-dimensional protein structure. Journal of molecular biology.
400  1983;171(4):479-88.

401  24. Meek JL. Prediction of peptide retention times in high-pressure liquid
402  chromatography on the basis of amino acid composition. Proceedings of the National
403  Academy of Sciences of the United States of America. 1980;77(3):1632-6.

404  25. Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MHJS. Hydrophobicity of
405  amino acid residues in globular proteins. 1985;229(4716):834-8.

406  26. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their

407  amino acid sequence. Advances in enzymology and related areas of molecular biology.


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

408  1978;47:45-148.

409  27. Deléage G, Roux BJPE. An algorithm for protein secondary structure prediction
410  based on class prediction. 1987;1(4):289.

411  28. Hersh RTJJoMC. Atlas of Protein Sequence and Structure, 1966. 1965;13(2):337-.
412 29. Jones DD. Amino acid properties and side-chain orientation in proteins: a cross
413  correlation appraoch. Journal of theoretical biology. 1975;50(1):167-83.

414  30. Zhao G, London E. Strong correlation between statistical transmembrane tendency
415  and experimental hydrophobicity scales for identification of transmembrane helices.
416  The Journal of membrane biology. 2009;229(3):165-8.

417  31. Janin J. Surface and inside volumes in globular proteins. Nature.
418  1979;277(5696):491-2.

419  32. Green JR, Korenberg MJ, David R, Hunter IW. Recognition of adenosine
420  triphosphate binding sites using parallel cascade system identification. Annals of
421  biomedical engineering. 2003;31(4):462-70.

422 33. Lifson S, Sander C. Antiparallel and parallel beta-strands differ in amino acid
423 residue preferences. Nature. 1979;282(5734):109-11.

424 34. Shannon CEJBSTJ. A mathematical theory of communication. 1948;27(4):623-56.
425  35. Kursa MB, Rudnicki WRJJoSS. Feature Selection with Boruta Package.
426  2010;36(11):1-13.

427  36. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al.
428  Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to
429  predict anticancer immunogenicity. The Journal of experimental medicine.
430  2014;211(11):2231-

431  37. Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, et al.

432 Properties of MHC class I presented peptides that enhance immunogenicity. PLoS


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

433 computational biology. 2013;9(10): €1003266.

434  38. Laumont CM, Vincent K, Hesnard L, Audemard E, Bonneil E, Laverdure JP, et al.
435  Noncoding regions are the main source of targetable tumor-specific antigens. Science
436  translational medicine. 2018;10(470).

437  39. Gonzalez-Galarza FF, McCabe A, Melo Dos Santos EJ, Takeshita L, Ghattaoraya
438 @G, Jones AR, et al. Allele Frequency Net Database. Methods in molecular biology
439  (Clifton, NJ). 2018;1802:49-62.

440  40. Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN,
441 et al. Comprehensive analysis of dengue virus-specific responses supports an HLA-
442  linked protective role for CD8+ T cells. Proceedings of the National Academy of
443  Sciences of the United States of America. 2013;110(22):E2046-53.

444  41. Luxenburger H, Grass F, Baermann J, Boettler T, Marget M, Emmerich F, et al.
445  Differential virus-specific CD8(+) T-cell epitope repertoire in hepatitis C virus
446  genotype 1 versus 4. Journal of viral hepatitis. 2018;25(7):779-90.

447 42, Xia Y, Pan W, Ke X, Skibbe K, Walker A, Hoffmann D, et al. Differential escape
448  of HCV from CDS8(+) T cell selection pressure between China and Germany depends
449  on the presenting HLA class I molecule. Journal of viral hepatitis. 2019;26(1):73-82.
450  43. Vahed H, Agrawal A, Srivastava R, Prakash S, Coulon PA, Roy S, et al. Unique
451  Type I Interferon, Expansion/Survival Cytokines, and JAK/STAT Gene Signatures of
452  Multifunctional Herpes Simplex Virus-Specific Effector Memory CD8(+) TEM Cells
453  Are Associated with Asymptomatic Herpes in Humans. Journal of virology. 2019;93(4).
454 44, Khakpoor A, Ni Y, Chen A, Ho ZZ, Oei V, Yang N, et al. Spatiotemporal
455  Differences in Presentation of CD8 T Cell Epitopes during Hepatitis B Virus Infection.
456  Journal of virology. 2019;93(4).

457 45. Huth A, Liang X, Krebs S, Blum H, Moosmann A. Antigen-Specific TCR


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

458  Signatures of Cytomegalovirus Infection. Journal of immunology (Baltimore, Md :
459  1950). 2019;202(3):979-90.

460  46. Owusu Sekyere S, Schlevogt B, Mettke F, Kabbani M, Deterding K, Wirth TC, et
461  al. HCC Immune Surveillance and Antiviral Therapy of Hepatitis C Virus Infection.
462  Liver cancer. 2019;8(1):41-65.

463  47. Bjerregaard AM, Nielsen M, Jurtz V, Barra CM, Hadrup SR, Szallasi Z, et al. An
464  Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes. Frontiers in
465  immunology. 2017;8: 1566.

466  48. Wick DA, Webb JR, Nielsen JS, Martin SD, Kroeger DR, Milne K, et al.
467  Surveillance of the tumor mutanome by T cells during progression from primary to
468  recurrent ovarian cancer. Clinical cancer research: an official journal of the American
469  Association for Cancer Research. 2014;20(5):1125-34.

470  49. Karasaki T, Nagayama K, Kawashima M, Hiyama N, Murayama T, Kuwano H, et
471  al. Identification of Individual Cancer-Specific Somatic Mutations for Neoantigen-
472  Based Immunotherapy of Lung Cancer. Journal of thoracic oncology : official
473  publication of the International Association for the Study of Lung Cancer.
474 2016;11(3):324-33.

475  50. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective
476  identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma
477  patients. Nature medicine. 2016;22(4):433-8.

478  51. Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, et al.
479  Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science
480  (New York, NY). 2016;352(6291):1337-41.

481  52. Nelde A, Walz JS, Kowalewski DJ, Schuster H, Wolz OO, Peper JK, et al. HLA

482  class I-restricted MYDS88 L265P-derived peptides as specific targets for lymphoma


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

483  immunotherapy. Oncoimmunology. 2017;6(3): e1219825.

484  53. Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, et al. Breast Cancer
485  Neoantigens Can Induce CD8(+) T-Cell Responses and Antitumor Immunity. Cancer
486  immunology research. 2017;5(7):516-23

487  54. Muller M, Gfeller D, Coukos G, Bassani-Sternberg M. 'Hotspots' of Antigen
488  Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen
489  Prioritization. Frontiers in immunology. 2017;8: 1367.

490  55. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al.
491  Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer.
492  Nature. 2017;551(7681):512-6.

493  56. Matsuda T, Leisegang M, Park JH, Ren L, Kato T, Ikeda Y, et al. Induction of
494  Neoantigen-Specific Cytotoxic T Cells and Construction of T-cell Receptor-
495  Engineered T Cells for Ovarian Cancer. Clinical cancer research: an official journal of
496  the American Association for Cancer Research. 2018;24(21):5357-67.

497  57. Sonntag K, Hashimoto H, Eyrich M, Menzel M, Schubach M, Docker D, et al.
498  Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive
499  patient with metastasized pancreatic ductal carcinoma treated with individualized,
500 neoepitope-derived multipeptide vaccines: a case report. Journal of translational
501  medicine. 2018;16(1):23.

502  58. Shannon CEJBSTIJ. A mathematical theory of communication. 1948;27(4):623-56.
503  59. Kuhn MJASCL. Caret: Classification and regression training. 2015;129(1):291—
504  295.

505  60. Liaw A, Wiener M. Classification and Regression by RandomForest.2001.

506 61. Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier

507  performance in R. Bioinformatics (Oxford, England). 2005;21(20):3940-1.


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/697011; this version posted July 10, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

508 Supporting information captions

509  S1 Table IEDB antigen epitopes summary. Detailed description of 17 HLA molecules
510  which collected from IEDB. (XLSX)

511  S2 Table External validation antigen epitopes summary. Epitope details of 7
512 publications. (XLSX)

513  S3 Table Neoantigen epitopes summary. Epitope details of 13 publications. (XLSX)
514  S4 Table Summary of amino acid characteristics. For all amino acid characteristics

515  (n=21) that are described in the ExPASy. (XLSX)


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

4

Ay

B negative

B positive

B*58:02 W3

B*51:01
B44:02 A
B*40:01
B*37:01

B*27:05 N

B*15:01
B*35:01
B*08:01

B*07:02 WA

Ar26:01

At24:02 &=

A23:01
A11:01
- A*03:01

ADZ:M
A*01:01

Ak

1000 1500 2000 2500 3000

500

i

|

0

|

[

_

_

|

_

_

_

|

[

_

__
I_
|
j
_H__
_

|

|

"

__

0
]

1000

80D

600

400

200 =

POESLD
EEFLD
L1 B
eECLD
LOEL0D
POESOD
FOCE0D
E0E0D
E0-Z0D
L-Lsg
LlFre
elitFa
EEEE
LOEREE
LEsER
Lrseg
G0cLEd
LEgLg
L1518
LrsLg
Lo-g0a
20-£08
Cl-gay
LOEgaw
BEEEY
POEEEY
POEZEY
FIELEY
L)
pOrOEY
LOFSEY
FALIR oFA -
MDY
LWELLY
OO
GO-EOY
PO
FOCLOY


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

Probability

Q.73

E

0.25

blm

A Afrequency in non-epitope

oY kag L = =
£X L
% — 2 AV 0.75

[ I | = = ~ =
ez E:'S: 5 %.\:l £ Do
E¥GrrecsEzEk - Yrgh
Y SN et e A \V{ SHUs
A — - M e s I 025 =g g—8
preprr‘nﬁﬁttps /1doi BPG110+10HES70 T-thie -y Ssiom-posted July 20, ZOE)-TheteperﬁoHeﬁéﬁhls preﬁr (whichE:?'uw

ertified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetu is made

ayailable ypder aCg-BY 4.0-jnternatigpal licenge.

1 2 3 0 11 1 2

L
B

chemistry [l Acicic [l sasic Il Hyeropnotic [l newra [l Potar
Lpitope

NIMA<"

TRDITMIA=H™

A
¥

00D TR A

.
<
3
~J
X
=
=
=

L
_Sl_
=
=
=

KT AN

- XH=AT

|

- (Il

T
L
|
y
L]
i
|

B i e T, e e

3

=1
-y
m
—
=

chemistry . Acidic . Easi:. Hydrophatic . Metral . Potar

Non-epitope

0.15
I

0.10

0.05

0.00

| |
0.05 0.10

AAfrequency in epitope

0.15


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

B‘ ROC curve c ROC curve

Inpariance

| j . =
; g 5 |
: = (=]
| ©
H o g - P e
i - " = =
! £ £
i = B
| 8 g
e oS- € -
' = [=
! = |
i =
: o+d '
s puEmEeEeeeSiTes s S -
=7
-—ﬁé Lo
- ! = g-.-
TT I T T T T T T N T T T T T T PR T FRT T 0T 10 I ¥ T I I l T T T T T T
4 JECEEBScCCEEYBCEOCEEtEETES 0.0 0.2 0.4 06 0.8 1.0 0.0 02 0.4 08 0.8 1.0
i i f False positive rate False positive rate


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

ROC curve

= 0.785

— AUC

0l

80 90 v0 ¢'0 00

ajes anyisod any)

3 E
3| E
HIH

rrrrrrrrr1rrrrrruoetryrirribrunrid

Ot

_ _ T T
Ot 0g 0l 0

ajuepodw)

1.0

0.8

0.6

0.4
False positive rate

0.2

0.0

KX
023
B
90
1.
£

L1

Ll

Bl

L

G

Ly

1

Fa

&0

L

Tl

By

5.0

Za

L

L)

Ll

Fl
RO
ST

L&

e e s
By s g


https://doi.org/10.1101/697011
http://creativecommons.org/licenses/by/4.0/

