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Abstract 
Transposons and other repetitive sequences make up a large part of complex genomes.  
Repetitive sequences can be co-opted into a variety of functions and thus provide a 
source for evolutionary novelty. However, comprehensively detecting ancestral repeats 
that align between species is difficult since considering all repeat-overlapping seeds in 
alignment methods that rely on the seed-and-extend heuristic results in prohibitively high 
runtimes. Here, we show that ignoring repeat-overlapping alignment seeds when aligning 
entire genomes misses numerous alignments between repetitive elements. We present 
a tool – RepeatFiller – that improves genome alignments by incorporating previously-
undetected local alignments between repetitive sequences. By applying RepeatFiller to 
genome alignments between human and 20 other representative mammals, we uncover 
between 22 and 84 megabases of previously-undetected alignments that mostly overlap 
transposable elements. We further show that the increased alignment coverage improves 
the annotation of conserved non-exonic elements, both by discovering numerous novel 
transposon-derived elements that evolve under constraint and by removing thousands of 
elements that are not under constraint in placental mammals. In conclusion, RepeatFiller 
contributes to comprehensively aligning repetitive genomic regions, which facilitates 
studying transposon co-option and genome evolution. 
 
Source code: https://github.com/hillerlab/GenomeAlignmentTools 
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Introduction 
A substantial portion of vertebrate genomes consist of transposons and other repetitive 
sequences [1, 2]. While most repeats are estimated to evolve neutrally [3], transposons 
are important substrates for evolutionary tinkering [4, 5]. For example, transposon-derived 
sequences contribute to the transcriptome by providing alternatively spliced exons [6, 7]. 
By contributing transcription factor binding sites, promoters, and distal regulatory 
elements, co-opted transposons are involved in rewiring of regulatory networks and drive 
regulatory innovation [7-15]. Importantly, a sizeable portion of evolutionarily constrained 
regions arose from ancestral transposon sequences [16, 17]. Studying how ancestral 
transposons and other repeats were co-opted into functional roles requires whole genome 
alignments that comprehensively align orthologous repeats. 
 
The nature of repetitive sequences such as transposons, however, leads to many 
paralogous alignments, which pose a challenge for comprehensively aligning orthologous 
repeats between vertebrate genomes. Most methods for aligning entire genomes use a 
seed-and-extend heuristic, originally implemented in BLAST [18], to find local alignments 
between the sequences of two genomes. The seeding step of this heuristic detects short 
words or patterns (called seeds) that match between the sequences of the two genomes. 
This can be computed very efficiently. Seed detection is then followed by a 
computationally more expensive alignment extension step that considers ungapped and 
gapped local alignments. Given that repetitive sequences provide numerous seed 
matches to paralogous repeat copies in a whole genome comparison, it is computationally 
infeasible to start a local alignment from seeds located in repetitive sequences. Therefore, 
seeds that overlap repetitive regions are not used to start a local alignment phase, either 
by masking repetitive regions before aligning genomes [19-22] or by dynamically adapting 
seeding parameters by the observed seed frequencies [23]. Consequently, alignments 
between highly-identical repeats are only found during the extension phase, initiated from 
seeds outside the repeat boundaries. This can be problematic if the regions flanking a 
repeat have been diverged to an extent that no seed in the vicinity of the repeat can be 
found. 
 
Here, we investigated to which extent aligning repetitive sequences are missed in whole 
genome alignments. We show that ignoring repeat-overlapping seeds misses between 
22 and 84 Mb of mostly repetitive elements that actually align between mammals and we 
provide a tool, called RepeatFiller, to incorporate such repeat-overlapping alignments into 
genome alignments. We further show that a subset of aligning sequences detected by 
RepeatFiller evolve under evolutionary constraint, which uncovers previously-unknown 
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conserved non-exonic elements and thus improves the annotation of constrained 
elements. 
 
 
Results 
 
RepeatFiller incorporates several megabases of aligning repetitive sequences to 
genome alignments 
To investigate how many aligning repetitive elements have been missed in alignments 
between mammalian genomes, we adopted a previously-developed approach that was 
initially devised to detect novel local alignments between a pair of distantly-related 
species [24, 25]. The original approach focused on unaligning regions that are flanked by 
aligning blocks in co-linear alignment chains [26], which are detected in the first all-vs-all 
genome alignment step. In a second step, this original approach used lastz [21] with 
highly-sensitive seeding and (un)gapped extension parameters to align the previously-
unaligning regions again. This second round of highly-sensitive local alignment can 
uncover novel alignments that are co-linear with already-detected alignment blocks. Here, 
we adopted this approach by introducing two key changes. First, we increased alignment 
parameter sensitivity only slightly, but unmasked the unaligning region. This implies that 
all seeds, including repeat-overlapping seeds, will be considered (Figure 1). By restricting 
the size of the unaligning regions to smaller regions of at most 20 kb, we reason that 
novel local alignments detected with a similar sensitivity level likely constitute orthologous 
alignments. Second, while the previous approach computed all alignment chains again 
from scratch using previously-detected and novel local alignments, our new approach 
directly adds novel alignments to existing alignment chains, thus removing the need for a 
chain re-computing step. This approach is called RepeatFiller and is available at 
https://github.com/hillerlab/GenomeAlignmentTools.  
 
To investigate how many aligning repetitive elements can be added by RepeatFiller, we 
built alignment chains between the human (hg38) genome assembly and the genomes of 
20 other mammals that represent the major mammalian clades (Figure 2, Supplementary 
Table 1). We found that RepeatFiller adds between 22.4 Mb (Rhesus macaque) and 83.7 
Mb (rabbit) of aligning sequence, which represents between 0.7 – 2.6% of the human 
genome (Figure 2, Supplementary Table 1). By overlapping the new alignments with 
repetitive elements annotated in the human genome, we found that the vast majority of 
newly-aligned sequences overlap repeats, in particular transposable elements (Figure 2,  
Supplementary Table 1). The runtime of the RepeatFiller step is between 14.7 and 43.4 
CPU hours (Supplementary Table 1), and thus adds little the runtime of the initial genome-
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wide all-vs-all pairwise alignment step that is typically around ~1000 CPU hours. 
Together, this shows that a considerable portion of aligning transposon sequences are 
missed when repeat-overlapping seeds are ignored and that RepeatFiller can detect such 
alignments with little extra computational runtime.  
 
RepeatFiller application uncovers thousands of novel repeat-derived conserved 
non-exonic elements 
Next, we investigated whether some of the newly-aligning sequences show evidence of 
evolutionary constraint, which indicates purifying selection and a biological function. To 
this end, we used the pairwise alignments, generated either with or without RepeatFiller, 
to build two human-referenced multiple genome alignments of 21 mammals with Multiz 
[27]. Then, we used PhastCons [28] to identify constrained elements. We found that the 
majority (98%) of the 164 Mb in the human genome that are classified as constrained in 
the multiple alignment without RepeatFiller were also classified as constrained in the 
RepeatFiller-subjected alignment.  
 
Dividing the conserved regions detected in the alignment without RepeatFiller into exonic 
and non-exonic regions, we found that 99.8% of the exonic and 97.4% of the non-exonic 
regions are also classified as constrained in the RepeatFiller-subjected alignment. Since 
conserved exonic regions are virtually identical, likely because they rarely overlap 
repeats, we focused our comparison on the conserved non-exonic elements (CNEs), 
which often overlap cis-regulatory elements [29-31]. This comparison first showed that 
3.46 Mb of the human genome were newly classified as conserved non-exonic in the 
RepeatFiller-subjected alignment, representing 2.9% of all conserved non-exonic bases 
detected in this alignment. Requiring a minimum size of 30 bp, application RepeatFiller 
led to the identification of 30167 novel CNEs that are listed in Supplementary Table 2. 
 
Two striking examples of newly-identified CNEs are shown in Figures 3 and 4. Figure 3 
shows the genomic region overlapping MEIS3, a homeobox transcription factor gene that 
synergizes with Hox genes and is required for hindbrain development and survival of 
pancreatic beta-cells [32-34]. By revealing novel alignments to many non-human 
mammals, RepeatFiller identifies several novel repeat-overlapping CNEs in introns of 
MEIS3 (Figure 3). Figure 4 shows the genomic region around AUTS2, a transcriptional 
regulator required for neurodevelopment that is associated with human neurological 
disorders such as autism [35, 36]. Applying RepeatFiller revealed several novel CNEs 
upstream of AUTS2. For some of these CNEs, RepeatFiller incorporated a well-aligning 
sequence of 19 mammals, which then permitted the identification of evolutionary 
constraint. Overall, applying RepeatFiller led the identification of more than 30000 CNEs 
that were not detected before.  
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RepeatFiller improves annotations of Conserved Non-exonic Elements 
Interestingly, the comparison of conserved non-exonic bases detected by PhastCons also 
revealed 3.08 Mb of the human genome that were classified as conserved non-exonic 
only in the multiple alignment without RepeatFiller, but not in the RepeatFiller-subjected 
alignment. These 3.08 Mb represent 2.6% of all conserved non-exonic bases detected in 
the alignment without RepeatFiller. The 29334 CNEs with a size ≥30 bp are listed in 
Supplementary Table 3. To investigate the reasons underlying these ‘lost’ CNEs, we first 
sought to confirm that the RepeatFiller-subjected alignment had an increased species 
coverage in these regions. Indeed, we found that RepeatFiller added on average 3.9 
(median 3) aligning species to these lost CNEs. Inspecting many of these CNEs showed 
that the newly added sequences are similar to the already-aligned sequences; however, 
they exhibit more substitutions. These substitutions increase the overall sequence 
divergence across mammals, which likely explains why the same region was not 
classified as constrained anymore, despite having a higher coverage of aligning species. 
Figure 5 A and B shows two examples of such genomic regions that are not classified as 
constrained after adding additional alignments with RepeatFiller. 
 
To confirm that the newly-added sequences increase the overall sequence divergence, 
we applied GERP++ [37] to both multiple alignments (Supplementary Figure 1A). For 
each alignment column, GERP++ estimates the number of substitutions that were 
rejected by purifying selection (RS = rejected substitutions) by subtracting the number of 
observed substitutions from the number of substitutions expected under neutrality. Since 
GERP++ computes the number of substitutions expected under neutrality from a 
phylogenetic tree that is pruned to the aligning species (Supplementary Figure 1B), we 
can directly compare RS between alignment columns that were only classified as 
constrained in either alignment to estimate whether the RepeatFiller-added sequences 
evolve slower than expected under neutrality. Specifically, for each alignment column, we 
computed the difference in RS before and after adding new alignments with RepeatFiller, 
as illustrated in Supplementary Figure 1B.  
 
We found that the alignment columns, where constraint was only detected in the 
alignment without RepeatFiller, mostly exhibit slightly negative RS differences (Figure 5C, 
grey background), which suggests that many positions in the RepeatFiller-added 
sequences do not evolve under strong constraint. Hence, the extent of constraint in the 
more limited set of aligning sequences was likely overestimated, providing an explanation 
of why these genomic regions were not classified anymore as constrained across 
placental mammals. It should be noted that these regions may still be under constraint in 
particular lineages. In contrast, most alignment columns, where constraint was only 
detected after applying RepeatFiller, exhibit a positive RS difference (Figure 5C, orange 
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background), which suggests that the newly-added sequences evolve under constraint. 
Overall, by uncovering previously-unknown alignments, RepeatFiller application led to an 
improved CNE annotation. 
 
 
Discussion 
While transposon-derived sequences can be co-opted into a multitude of biological roles 
and can evolve under evolutionary constraint, comprehensively detecting alignments 
between ancestral transposons and other repeats is not straightforward. The main reason 
is that considering all repeat-overlapping alignment seeds during the initial whole genome 
alignment step is computationally not feasible. However, it is feasible to consider all seeds 
when aligning local regions that are bounded by colinear aligning blocks. We provide a 
tool RepeatFiller that implements this idea and incorporates newly-detected repeat-
overlapping alignments into pairwise alignment chains. We tested the tool on alignments 
between human and 20 representative mammals and showed that with little additional 
computational runtime RepeatFiller uncovers between 22 and 84 Mb of previously-
undetected alignments that mostly originate from transposable elements.  
 
We further show that RepeatFiller application enables a refined and more complete CNE 
annotation by two means. First, applying RepeatFiller led the identification of thousands 
of CNEs whose aligning sequences were not detected before. This includes highly-
conserved transposon-derived CNEs that are located near important developmental 
genes. Second, the sequences added by RepeatFiller may not evolve slower than 
expected under neutral evolution. In this case, providing a more complete set of aligning 
sequences led to the removal of thousands of putatively-spurious CNEs that overall do 
not evolve under strong constraint across placental mammals, though the possibility of 
lineage-specific constraint remains.  
 
Taken together, RepeatFiller implements an efficient way to improve the completeness 
of aligning repetitive regions in whole genome alignments, which helps annotating 
conserved non-exonic elements and studying transposon co-option and genome 
evolution. 
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Materials and Methods 
Generating pairwise genome alignments 
We used the human hg38 genome assembly as the reference genome. To compute 
pairwise genome alignments, we used lastz version 1.04.00 [21] and the chain/net 
pipeline [26] with default parameters (chainMinScore 1000, chainLinearGap loose). We 
used the lastz alignment parameters K = 2400, L = 3000, Y = 9400, H = 2000 and the 
lastz default scoring matrix. All species names and their assemblies are listed in 
Supplementary Table 1.  
 
RepeatFiller 
The input of RepeatFiller is a file containing co-linear chains of local alignment blocks. 
This file must be in the UCSC chain format as defined here 
https://genome.ucsc.edu/goldenPath/help/chain.html. The output is a file that contains 
the same chains plus the newly-added local alignment blocks. By default, RepeatFiller 
only considers unaligned regions in both the reference and query genome that are at least 
30 bp and at most 20000 bp long. We considered all chains with the score greater than 
25000. For each unaligning region that fulfills the size thresholds, RepeatFiller uses lastz 
with the same parameters as above but with a slightly more sensitive ungapped alignment 
threshold (K=2000). All repeat-masking (lower case letters) was removed before 
providing the local sequences to lastz. Since lastz may find multiple additional local 
alignments in this second step, we used axtChain [26] to obtain a ‘mini chain’ of local 
alignments for this unaligning region. RepeatFiller then inserts the aligning blocks of a 
newly-detected mini chain at the respective position in the original chain if the score of 
the mini chain is at least 5000. All default parameters for the size of unaligning regions, 
minimum chain scores and local alignment parameters can be changed by the user via 
parameters. Finally, RepeatFiller recomputes the score of the entire chain if new 
alignments were added.  
 
We compared the number of aligning bases in the chains before and after applying 
RepeatFiller. To this end, we used the coordinates of aligning chain blocks to determine 
how many bases of the human hg38 assembly align (via at least one chain) to the query 
species. We used the RepeatMasker repeat annotation for hg38, available at the UCSC 
Genome Browser [38], to determine how many of the newly-added alignments overlap 
repetitive elements. 
 
Generating multiple alignments 
Before building multiple alignment, we filtered out low scoring chains and nets requiring 
a minimum score of 100000. We used Multiz-tba [27] with default parameters to generate 
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two reference-based multiple alignments using the pairwise alignment nets produced with 
and without RepeatFiller, respectively.   
 
Conservation analysis 
To identify constrained elements, one needs a tree with branch lengths representing the 
number of substitutions per neutral site. We used four-fold degenerated codon sites 
based on the human ENSEMBL gene annotation to estimate the neutral branch lengths 
with PhyloFit [28]. To identify conserved regions, we used PhastCons [28] with the 
following parameters: rho=0.31; expected-length=45; target-coverage=0.3. To obtain 
conserved non-exonic regions, we first obtained exonic regions from the human Ensembl 
and RefSeq annotation (UCSC tables ensGene and refGene). As done before [25], we 
merged all exonic regions and added 50 bp flanks to exclude splice site proximal regions 
that often harbor conserved splicing regulatory elements. To obtain Conserved Non-
exonic Elements (CNEs), we subtracted these exonic bases and their flanks from all 
conserved regions. 
 
To compare constraint in genomic regions classified as constraint in only one alignment, 
we used GERP++ [37] with default parameters (acceptable false positive rate = 0.05) to 
estimate constraint per genomic position. We denote genomic regions as ‘gained’ if they 
were classified as constrained by PhastCons only in the multiple alignment generated 
with RepeatFiller. We denote genomic regions as ‘lost’ if they were classified as 
constrained only in alignment generated without RepeatFiller (Supplementary Figure 1A). 
Gained and lost regions were identified using ‘bedtools intersect’ [39]. For each position 
in ‘gained’ and ‘lost’ non-exonic regions, we computed the RS score (number of rejected 
substitutions) with GERP++ [37] and calculated the difference between the RS score 
obtained for the alignment with and without RepeatFiller (Supplementary Figure 1B). 
These differences are plotted in Figure 5C. Positive differences indicate that the 
sequences added by RepeatFiller evolve slower than under neutrality, thus increasing the 
number of rejected substitutions. Differences close to zero indicate that the newly-added 
sequences evolve as expected under neutral evolution and negative differences indicate 
that they evolve faster than expected under neutral evolution. 
 
 
Data Availability 
The multiple genome alignments generated with and without applying RepeatFiller and 
the respective PhastCons conserved elements are available at https://bds.mpi-
cbg.de/hillerlab/RepeatFiller/. The CNEs that differ between both alignments are 
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available in Supplementary Tables 2 and 3. The RepeatFiller source code is available at 
https://github.com/hillerlab/GenomeAlignmentTools. 
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Figures 
 

 
Figure 1: Missed repeat-overlapping alignments and concept of RepeatFiller.  
Illustration of RepeatFiller. Focusing on unaligning regions in a reference and query 
genome that are flanked by up- and downstream aligning blocks, RepeatFiller performs 
a second round of local alignment considering also repeat-overlapping seeds. Newly 
found local alignments (red boxes) are inserted into the context of other aligning blocks 
(grey boxes). Unaligning regions that are larger than a user-defined threshold are not 
considered as the chance of aligning non-orthologous repeats is increased. 
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Figure 2: RepeatFiller adds several megabases of aligning transposable elements to 
existing genome alignments.  
Phylogenetic tree of human and 20 non-human mammals whose genomes we aligned to 
the human genome. The amount of newly alignments detected by RepeatFiller is shown 
in megabases and in percent relative to the human genome. Bar charts provide a 
breakdown of newly-added aligning sequences into overlap with transposons, simple 
repeats and non-repetitive sequence. 
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Figure 3: Examples of newly-identified CNEs near MEIS3. 
UCSC genome browser [38] screenshot shows an ~11 kb genomic region overlapping 
the gene MEIS3, a homeobox transcription factor that is required for hindbrain 
development. Visualization of the two multiple genome alignments (without RepeatFiller 
at the top, with RepeatFiller below; boxes representing align regions with darker colors 
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indicating a higher alignment identity) shows that RepeatFiller adds several aligning 
sequences, some of which evolve under evolutionary constraint and thus are CNEs (red 
boxes) only detected in the RepeatFiller-subjected alignment. The RepeatMasker 
annotation shows that these newly-identified CNEs overlap transposons. The zoom-in 
shows the 21-mammal alignment of one of the newly-identified CNEs, which overlaps a 
DNA transposon. While this genomic region did not align to any mammal before applying 
RepeatFiller, our tool identified a well-aligning sequence for 17 non-human mammals (red 
font). A dot represents a base that is identical to the human base, insertions are marked 
by vertical orange lines, and unaligning regions are showed as double lines. 
 
 
 
 
 
 

 
Figure 4: Examples of newly-identified CNEs upstream of AUTS2.  
UCSC genome browser screenshot shows a ~1.5 Mb genomic region around AUTS2, a 
transcriptional regulator required for neurodevelopment. CNEs only detected in the 
RepeatFiller-subjected multiple alignment are marked as red tick marks. The zoom-in 
shows the 21-mammal alignment of one of the newly-identified CNEs. While only the 
rhesus macaque sequence aligned to human before applying RepeatFiller, our tool 
identifies a well-aligning sequence for all 19 other mammals (red font). A dot represents 
a base that is identical to the human base. The RepeatMasker annotation (bottom) shows 
that this newly-identified CNE overlaps a DNA transposon.  
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Figure 5: Additional alignments found with RepeatFiller reveal absence of conservation 
in the genomic regions that were erroneously classified as conserved before. 
(A, B) UCSC genome browser screenshots showing two examples of genomic regions 
that were only classified as constrained in a multiple genome alignment generated without 
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applying RepeatFiller. Dots in these alignments represent bases that are identical to the 
human base, insertions are marked by vertical orange lines, and unaligning regions are 
showed as double lines. The alignments show that the sequences of species added by 
RepeatFiller (red font) exhibit a number of substitutions. This explains why these regions 
were not classified as constrained anymore, despite adding more aligning sequences. 
Please note that in (B) only the sequence of the rhesus macaque was aligned before 
applying RepeatFiller. Sequences in both (A) and (B) overlap LINE transposons.  
(C) Difference in evolutionary constraint in non-exonic alignment columns that are only 
classified as constrained in either alignment. For each alignment position, we used 
GERP++ to compute the estimated number of substitutions rejected by purifying selection 
(RS). The difference in RS between alignments with and without RepeatFiller is visualized 
as a violin plot overlaid with a white box plot. This shows that almost all non-exonic bases 
that were only detected as constrained in the alignment with RepeatFiller (orange 
background) have a positive RS difference, indicating that the newly-aligning sequences 
added by RepeatFiller largely evolve under evolutionary constraint. In contrast, non-
exonic bases only detected as constrained in the alignment without RepeatFiller (grey 
background) often have slightly negative RS differences, indicating that many of the 
newly-added sequences do not evolve under constraint. The two distributions are 
significantly different (P<e-16, two-sided Wilcoxon rank sum test).  
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