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Abstract 27 

The recent availability of large-scale neuroimaging cohorts (here the UK Biobank 28 

[UKB] and the Human Connectome Project [HCP]) facilitates deeper characterisation of the 29 

relationship between phenotypic and brain architecture variation in humans. We tested the 30 

association between 654,386 vertex-wise measures of cortical and subcortical morphology 31 

(from T1w and T2w MRI images) and behavioural, cognitive, psychiatric and lifestyle data. 32 

We found a significant association of grey-matter structure with 58 out of 167 UKB 33 

phenotypes spanning substance use, blood assay results, education or income level, diet, 34 

depression, being a twin as well as cognition domains (UKB discovery sample: N=9,888). 35 

Twenty-three of the 58 associations replicated (UKB replication sample: N=4,561; HCP, 36 

N=1,110). In addition, differences in body size (height, weight, BMI, waist and hip 37 

circumference, body fat percentage) could account for a substantial proportion of the 38 

association, providing possible insight into previous MRI case-control studies for psychiatric 39 

disorders where case status is associated with body mass index. Using the same linear 40 

mixed model, we showed that most of the associated characteristics (e.g. age, sex, body 41 

size, diabetes, being a twin, maternal smoking, body size) could be significantly predicted 42 

using all the brain measurements in out-of-sample prediction. Finally, we demonstrated 43 

other applications of our approach including a Region Of Interest (ROI) analysis that retain 44 

the vertex-wise complexity and ranking of the information contained across MRI processing 45 

options.  46 

 47 

Highlights 48 

• Our linear mixed model approach unifies association and prediction analyses for 49 

highly dimensional vertex-wise MRI data 50 
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• Grey-matter structure is associated with measures of substance use, blood assay 51 

results, education or income level, diet, depression, being a twin as well as cognition 52 

domains 53 

• Body size (height, weight, BMI, waist and hip circumference) is an important source 54 

of covariation between the phenome and grey-matter structure 55 

• Grey-matter scores quantify grey-matter based risk for the associated traits and 56 

allow to study phenotypes not collected 57 

• The most general cortical processing (“fsaverage” mesh with no smoothing) 58 

maximises the brain-morphometricity for all UKB phenotypes  59 
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1. Introduction 60 

The field of MRI studies is at a turning point owing to the recent availability of large data 61 

sets to researchers, including the UKB (Miller et al., 2016) and HCP (Van Essen et al., 2013; 62 

Van Essen et al., 2012b) samples. These datasets promote not only the replication of 63 

previous findings, but also expand the range of phenotypes available for study (e.g. 64 

psychiatric symptoms and lifestyle factors). In addition, such data sets can offer insights into 65 

the brain markers that may be shared between phenotypes, helping to draw new links 66 

between brain and behaviour. Finally, these community samples can complement the 67 

typical case-control paradigm by identifying confounders of MRI analyses or by studying 68 

related traits (e.g. cognition domains relevant in Alzheimer’s disease).    69 

Here, we introduce a set of analyses that leverages large sample sizes to fully exploit the 70 

spatial resolution of MRI images using linear mixed models (LMM) implemented in the OSCA 71 

software tool (Zhang et al., 2019). Our high-resolution approach (i.e. vertex-wise 72 

morphological measures) has the advantage of retaining all the brain complexity data of 73 

current MRI acquisitions rather than relying on prior-based data reduction techniques (e.g. 74 

the region-of-interest [ROI] approach), and allows for the elucidation of precise brain-75 

phenotype associations.  76 

Specifically, we used an efficient implementation of LMMs to estimate the multivariate 77 

correlation of 600,000+ cortical and subcortical measurement at vertices extracted from T1 78 

weighted (T1w) and T2 weighted (T2w) MRI images with a phenotype of interest (previously 79 

coined morphometricity (Sabuncu et al., 2016), here we prefer the more specific brain-80 

morphometricity). We extended this framework to also estimate the proportion of variance 81 

in a trait associated with the vertex-wise data from specific brain features, hemispheres and 82 

regions of interest. We further introduce multi-trait LMMs that can further quantify shared 83 
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brain-morphometricity (grey-matter correlation) between traits, reflecting causal, bi-84 

directional or confounded relationships. In addition, we show how LMMs can estimate the 85 

joint effects of all brain features on a trait to construct a trait predictor from brain features 86 

(grey-matter score) that can be applied and tested in an independent sample. As such, our 87 

approach unifies association studies and prediction analyses, in order to unravel the brain-88 

phenome relationships (Rosenberg et al., 2018).  89 

We analysed two of the largest MRI datasets available (UKB [split into discovery N=9,888 90 

and replication N=4,561] and HCP [N=1,110]) and considered a wide range of phenotypes 91 

spanning demographics, blood cell composition, diet, psychiatric and traumatic history, 92 

physical capacities or substance use. We have released our image processing and analysis 93 

software/scripts as well as all summary statistics to facilitate replication and re-use of the 94 

results. 95 

 96 

2. Materials and Methods 97 

2.1.UK Biobank (UKB) sample 98 
2.1.1. Participants recruitment, inclusion and exclusion criteria  99 

The UKB participants were unselected volunteers from the United Kingdom (Sudlow 100 

et al., 2015). Participants who had participated in the baseline UKB data collection were 101 

invited to undergo the imaging study if they lived within travelling distance of the imaging 102 

centre. Exclusion criteria were limited to: presence of metal implant, recent surgery and 103 

health conditions problematic for MRI imaging (e.g. hearing, breathing problems or extreme 104 

claustrophobia) (Miller et al., 2016).  105 

 106 

2.1.2. T1 and T2 FLAIR image collection 107 

MRI images were collected in Cheadle (greater Manchester) using a 3T Siemens 108 

Skyra machine (software platform VD13) and a 32-channel head coil (Miller et al., 2016). 109 
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The T1 weighted (T1w) images were acquired over 4:54 minutes, voxel size 1.0x1.0x1.0mm, 110 

matrix of 208x256x256mm, using a 3D MPRAGE sequence (Mugler and Brookeman, 1990), 111 

sagittal orientation of slice acquisition, R=2 (in plane acceleration factor), TI/TR=880/2000 112 

ms (Miller et al., 2016). The T2 FLAIR acquisition lasted 5:52 minutes, voxel size 1.05x1.0x1.0 113 

mm, matrix of 192x256x256 voxels, 3D SPACE sequence (Mugler et al., 2000), sagittal 114 

orientation, R=2, partial Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical (Miller et 115 

al., 2016).  116 

 117 

2.1.3. Image processing  118 

We processed the T1w and T2 FLAIR images using the ENIGMA (Thompson et al., 119 

2014) protocols for cortical surface and thickness (Stein et al., 2012) as well as subcortical 120 

structure (Gutman et al., 2013; Gutman et al., 2012). When both T1w and T2 FLAIR were 121 

available for a participant, we processed them together to enhance the tissue segmentation 122 

in FreeSurfer 6.0 (Fischl, 2012), hence a more precise skull stripping and pial surfaces 123 

definition. When the T2 FLAIR was not acquired or not usable, we processed the T1w image 124 

by itself. We retained the full image information by using the (fsaverage) vertex-wise level 125 

data in the cortical surface and thickness analyses. This corresponded to 149,960 cortical 126 

vertices in the left hemisphere and 149,933 in the right hemisphere, for each modality. In 127 

addition, we extracted subcortical radial thickness and log Jacobian determinant (that 128 

measures surface deformation from a template, somewhat analogous to a relative surface 129 

area (Roshchupkin et al., 2016)) for 27,300 vertices per hemisphere mapping 7 subcortical 130 

volumes (hippocampus, putamen, amygdala, thalamus, caudate, pallidum and accumbens) 131 

(Gutman et al., 2013). Overall, the imaging data used in the analyses comprised 654,386 132 

vertex measurements per individual: 299,893 describing cortical thickness, another 299,893 133 
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for cortical surface area, 27,300 for subcortical thickness and 27,300 for subcortical 134 

curvature.  135 

For comparison with previous ENIGMA publications, we also extracted cortical 136 

thickness and surface area of 34 cortical regions delimited by the Desikan atlas (Desikan et 137 

al., 2006; Fischl et al., 2004), as described on the ENIGMA website. To further the 138 

comparison of processing options, we extracted cortical measurements from smoothed 139 

fsaverage meshes (fwhm 5, 10, 15, 20 and 25mm) as well as (unsmoothed) coarser meshes 140 

provided by FreeSurfer: fsaverage6 (149,091 vertices for both hemispheres and modalities), 141 

fsaverage5 (37,455 vertices), fsaverage4 (9,457 vertices) and fsaverage3 (2,414).  142 

 143 

2.1.4. Discovery Sample description 144 

At the time of download (July 2017), T1w images were available for 10,102 145 

participants of the UK Biobank (UKB) project. None of the participants had withdrawn 146 

consent after the data was collected. We excluded 175 participants with T1w images 147 

labelled as unusable by the UKB, leaving 9,928 MRI scans to process. T2 FLAIR images were 148 

available for 9,755 of those. The FreeSurfer processing failed or did not complete within 48 149 

hours for a handful of participants: 37 for cortical processing, 19 for subcortical, including 17 150 

for whom both processing failed. For simplicity, we chose not to re-run image processing on 151 

these participants as their exclusion should have a minimal impact on the results obtained 152 

from the full sample. Excluded individuals are described in Dataset S1. Our final sample 153 

comprised 9,890 participants with usable cortical data, 9,908 with subcortical data and 154 

9,888 with both cortical and subcortical data. This sample consisted of 9,888 adults aged 155 

62.5 on average (SD=7.5, range 44.6–79.6) and comprised 52.4% of female participants.  156 
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We excluded 391 participants with extreme brains (outliers) or likely to have a large effect 157 

on the analyses (see Appendix S1 for details of QC and Dataset S1 for description of the 158 

excluded participants). 159 

 160 

2.1.5. Variables used 161 

We included 168 variables grouped in several categories: demographics, cognition, 162 

physical test, psychiatry, recent feelings, stress and traumas, substance use, miscellaneous, 163 

brain measurements, blood assay and diet (see Dataset S2 for details). When longitudinal 164 

observations were available for a participant, we used the one collected as part of the 165 

imaging assessment (when available) or the closest in time. 166 

 167 

2.1.6. Replication Sample description 168 

Replication data set was downloaded in May 2018 and consisted in an additional 169 

4,942 participants with a T1w image. Image processing and phenotype selection were 170 

identical to that of the discovery sample. This led to the exclusion of 381 participants whose 171 

processing failed and 238 excluded from QC. The final sample (N=4,323) included in the 172 

replication analysis was on average 63.1 years old (SD=7.46, range 46.1-80.3) with 52.1% of 173 

females. The age difference between discovery and replication sample was small but 174 

significant (p=9.02e-7). See Dataset S1 for a full description of replication participants (final, 175 

QCed and failed processing) in addition to a comparison of the discovery and replication 176 

samples. 177 

 178 

2.2.Human Connectome Project (HCP) sample 179 
2.2.1. Participants recruitment, inclusion and exclusion criteria 180 

HCP participants were recruited from ongoing longitudinal studies of the Missouri 181 

Family Study (Edens et al., 2010; Sartor et al., 2011) and had to be between 22 and 35 years 182 
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of age. Inclusion and exclusion criteria have been described previously (Van Essen et al., 183 

2012b). 184 

 185 

2.2.2. T1 and T2 weighted image collection 186 

T1w and T2 weighted (T2w) images were collected at the Washington University (St 187 

Louis, Missouri) on a 3T Siemens Skyra scanner using a standard 32-channel head coil (Van 188 

Essen et al., 2013; Van Essen et al., 2012b). Two T1w images were acquired, each over 7 189 

minutes and 40 seconds with a voxel size of 0.7x0.7x0.7mm, matrix/FOV of 190 

224x224x224mm using a 3D MPRAGE sequence (Mugler and Brookeman, 1990), 191 

TR/TE/TI=2400/2.14/1000ms, flip angle 8degrees, R=2, sagittal orientation of slice 192 

acquisition (Glasser et al., 2013). Similarly, two T2w images were acquired over 8:24 min 193 

each, voxel size 0.7x0.7x0.7mm, matrix of 224x224x224mm, 3DSPACE sequence (Mugler et 194 

al., 2000), sagittal orientation, R=2, TR/TE=3200/565, no fat suppression pulse.  195 

 196 

2.2.3. Image processing  197 

The HCP team (Glasser et al., 2013; Marcus et al., 2013; Van Essen et al., 2012a) pre-198 

processed the structural scans to facilitate scan comparison across individuals, removing 199 

spatial artefacts and improve T1w and T2w alignment using FSL (Jenkinson et al., 2002; 200 

Jenkinson et al., 2012) and FreeSurfer (Fischl, 2012). When both passed HCP quality control 201 

(QC), T1w and T2w images they processed them together in FreeSurfer 6.0 (Fischl, 2012), 202 

otherwise data extraction relied on a single scan (Glasser et al., 2013). Participants with 203 

poor quality T1w and T2w scans were re-imaged (Glasser et al., 2013). Cortical processing 204 

(recon-all procedure in FreeSurfer) was also performed by the HCP team and included down 205 

sampling to 1mm size voxels and 256x256x256 matrix, aided registration using customised 206 

brain mask, and two manual steps performed outside of the recon-all procedure to enhance 207 
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white matter and pial reconstruction (Glasser et al., 2013). We downloaded the processed 208 

images (Marcus et al., 2011) and performed ENIGMA shape analysis (Gutman et al., 2013; 209 

Gutman et al., 2012) to extract vertex-wise measurements of the subcortical thickness and 210 

curvature. As for the UKB sample, a total of 654,386 vertex measurements were extracted 211 

for each individual. We excluded 24 outliers with extreme brains or likely to bias the 212 

analyses (see Appendix S1 and Dataset S2 for description of excluded participants). 213 

 214 

2.2.4. Sample description 215 

As per the HCP “1200 Subjects data release” (1
st

 of March 2017), 1,113 participants 216 

were scanned on the 3T MRI and underwent extensive behavioural testing. Participants 217 

were mostly (54.4%) females and were 28.8 years old on average (SD=3.7, range 22–37). 218 

The sample comprised 455 twins (41.0%), 286 monozygotic twins (138 complete pairs) and 219 

169 dizygotic twins (78 complete pairs).  In addition, siblings and half siblings of twins were 220 

also recruited which resulted in only 445 distinct families in the sample.   221 

 222 

2.2.5. Variables used  223 

For the HCP sample, we included 161 variables, some of which were also available in 224 

the UKB (e.g. demographics, cognition, physical assessment, blood assay or psychiatry). We 225 

also included interesting variables only present in the HCP sample: personality, emotion, in 226 

depth mental health assessment (Semi-Structured Assessment for the Genetics of 227 

Alcoholism (SSAGA) and Adult Self Report (ASR) (Achenbach, 2009; Achenbach et al., 2003)), 228 

detailed cognition, Pittsburgh sleep index (PSQI) (Buysse et al., 1989), or results from the 229 

urine drug tests (see Dataset S2).  230 

 231 

2.3.Variance component analyses and brain relatedness matrix calculation 232 
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2.3.1. The linear mixed model 233 

 234 

We aimed to estimate the variance of a trait accounted for by brain features, which 235 

Sabuncu et al., called “morphometricity” (Sabuncu et al., 2016). To do so we consider the 236 

following linear mixed model that allows estimating the association between a phenotype 237 

and M vertices even when M is greater than the sample size (N):  238 

 � � �� � � � �      ( 1) 239 

where ��,� is the phenotype considered with N the number of observations, ��,� is a matrix 240 

of c covariates (as such does not include any vertex variable), �c,1 is a vector of fixed effects, 241 

� is a random effect with �~
�0, �σ��� and � is the error term with �~
�0, �σ���. In this 242 

formulation ��,� is the identity matrix as we assume the error terms to be independent and 243 

identically distributed. ��,� is a matrix of variance-covariance between individuals 244 

calculated from all vertex measurements, which we will refer to as the brain relatedness 245 

matrix (BRM). Off diagonal elements of the BRM can be interpreted as a measure of brain 246 

similarity between two individuals (see S2 Appendix). Finally, σ�� and σ��  are the variance 247 

components for the random effects � and �. For context, this model is analogous to that 248 

used in complex trait genetics to estimate SNP-based heritability, where a Genetic 249 

Relatedness Matrix (GRM) replaces the BRM (Yang et al., 2010; Yang et al., 2011). The 250 

element i,j of the BRM can be calculated as the inner product of brain measurements of 251 

individuals i and j: b�,	 �
∑ ��,� ��,� 

�
�

� . Here, �
,� represents the value of vertex m for 252 

individual i centred and standardised by its standard deviation over all individuals, z	,� the 253 

value of vertex m for individual j centred and standardised over all individuals, M is the total 254 

number of vertices or brain features included. We can equivalently use matrix notation, 255 

then: � � ���
� , with ��,�  a matrix of the centred and standardised brain observations, for N 256 
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individuals and M brain features. We are interested in estimating the parameters σ�� and σ��  257 

so we can derive the proportion of the trait variance captured by the brain similarities: 258 

R� � ��
	  

��
	� �


	 . To do so we used the REstricted Maximum Likelihood (REML) method 259 

(Patterson and Thompson, 1971) implemented in OSCA.  260 

   261 

2.3.2. Mixed model with several random effects 262 

Here, we are dealing with several types of brain measurements: cortical vs. 263 

subcortical or thickness vs. surface area for instance. To accommodate the different 264 

modalities, we can extend the LMM presented above to jointly estimate the variance 265 

accounted for by the different types of measurements:  � � �� � �� � �� � �� � �� � �                                266 

now, with ��~
�0, ��σ��� � , i � �1; �4 �, and all other parameters left unchanged. Note that 267 

since all �� are estimated jointly, each estimate is conditional on the other three parameters 268 

fitted in the model. We constructed the BRM �� from the cortical thickness measurements, 269 

�� from the cortical surface area, �� from the subcortical radial thickness and �� from the 270 

subcortical curvature. The variance components σ���  quantify the specific variance attributed 271 

to each type of measurement and the quantity 
���

	 ���	
	 ����

	 � ���
	

���
	 ���	

	 ����
	 � ���

	 � �

	  represents the 272 

proportion of the trait variance captured by all our brain measurements not biased towards 273 

the cortical measurements.  274 

 275 

2.3.3. Bivariate models to estimate grey-matter correlation 276 

Finally, we are interested in estimating the correlation (or covariance) between two 277 

traits that is attributable to the same brain similarities, which we call grey-matter 278 

correlation rGM. This can be achieved by fitting a bivariate LMM, a direct extension of the 279 

models presented above (Thompson, 1973). We used the AI-REML algorithm in GCTA (Lee 280 
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et al., 2012) as the multivariate option is not yet available in OSCA. We restricted our 281 

bivariate analysis to variables that were significantly associated with grey-matter structure. 282 

We derived the residual correlations (r�� from the phenotypic (r) and grey-matter 283 

correlations estimated by GCTA:  r� �
���
�����

	��	
	

� ����
	!� ���	

	! 
   with R��and R��  the brain-284 

morphometricity of the two traits included in the bivariate model. For significance testing, 285 

we derived SE of r��  from a first order Taylor series approximation (delta method, see 286 

Appendix S3 and (Bijma and Bastiaansen, 2014; Lee et al., 2012; Visscher, 1998)).  287 

 288 

2.4.Covariates used  289 

Our baseline model included commonly used covariates in MRI analyses: acquisition 290 

variables (UKB imaging wave, processing with T1w or with combined T1w+T2w), age, sex, 291 

and head size (intra-cranial volume (ICV) as well as left and right total cortical surface area 292 

and cortical thickness that correspond to the measurements used here). In a follow-up 293 

analysis, we included other covariates such as height, weight and BMI to evaluate their 294 

confounding effect on the reported associations. We reported the associations between 295 

phenotypes and covariates using the adjusted R-squared calculated from linear models 296 

estimated in R3.3.3 (R Development Core Team, 2012). As some of the covariates are 297 

correlated we report the R
2 

calculated by adding progressively the covariates (same order as 298 

above). Thus, the fixed effect R
2
 should not be compared between covariates, but can be 299 

contrasted between phenotypes or with the random effect R
2
. We compared the covariates’ 300 

associations with our phenotypes of interest in the UKB discovery and replication samples 301 

and found highly concordant results between the two samples (Figure S1). Thus, any brain-302 
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morphometricity difference found between UKB discovery and replication sample should 303 

reflect a true difference in the phenotype grey-matter structure association.    304 

2.5.Test statistics in mixed linear models 305 

We tested whether the variance accounted for by the brain similarities was 306 

significantly different from 0 using a likelihood ratio test on nested models (with and 307 

without the random effect). The test statistic follows a chi-square distribution with x degree 308 

of freedom (x being the number of variance components tested) for a ""� value inside the 309 

parameter space. However, when testing #0: ""� � 0 %&. #1: "�� ( 0 , the p-value should be 310 

interpreted with caution as the estimator may not be asymptotically normally distributed 311 

because 0 is a boundary of the parameter space (Self and Liang, 1987; Stram and Lee, 1994). 312 

Some have suggested that the p-value could be better approximated using a mixture of chi-313 

square distributions in the test of significance (Self and Liang, 1987; Stram and Lee, 1994). 314 

However, a 50:50 mixture has been shown to be sometimes inappropriate (Crainiceanu and 315 

Ruppert, 2004; Pinheiro and Bates, 2000) as the test relies on assumptions often not met in 316 

LMM (such as i.i.d. observations) (Crainiceanu and Ruppert, 2004). Thus, we preferred using 317 

a χ2 (x df.), the only consequence being a less powerful hence conservative test (Bates et 318 

al., 2015; Crainiceanu and Ruppert, 2004; Pinheiro and Bates, 2000). Such test is 319 

implemented in OSCA (Zhang et al., 2019), as well as in GCTA (Yang et al., 2011). 320 

 321 

2.6.Statistical power of the current analyses 322 

In the UKB discovery sample (assuming N=9,500), we have 80% power to detect an 323 

effect >2.2% of variance accounted for by the combined BRM (gathering all features), while 324 

taking into account multiple testing (pvalue significance threshold p<0.05/175, to ensure a 325 

type I error<5%). In the HCP sample (assuming N=1,000), considering the number of tests 326 

performed (p<0.05/160), we would need an effect of 20% of variance accounted for to yield 327 
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the same power (Appendix S4 and (Visscher et al., 2014)). For brain correlations, the 328 

calculation of statistical power depends on the sample size (set to 9,500), the variance 329 

accounted for in each phenotype (we chose 5%), the phenotypic correlation (set to r=0.2), 330 

the significance threshold (p<4.2e-5, based on our number of tests) as well as the variance 331 

of off-diagonal elements of the BRM %)*�+
#� (0.00096, for the BRM of all brain features) 332 

(Visscher et al., 2014). In this example, we had 80% power to detect a brain correlation 333 

greater than 0.35, but only a 7% power for a brain correlation of 0.2. Using a sample of 334 

N=1,000, as per the HCP, and selecting phenotypes with >20% variance accounted for 335 

(everything else being equal), we have a 1% power to detect a brain correlation of 0.35, and 336 

we would need a brain correlation greater than 0.99 to achieve 80% power.   337 

 338 

2.7.Vertex level associations of specific brain features and regions 339 

We conducted post-hoc analyses to identify associations with each type of brain 340 

measurement (i.e. left or right measurements of cortical thickness, cortical surface area, 341 

subcortical curvature and subcortical thickness) in each cortical (Desikan-Killiany atlas 342 

(Desikan et al., 2006)) or subcortical region. For this, we used BRMs specific to each region 343 

and brain measurement. Brain regions of interest (ROI) contained between 272 and 12,179 344 

vertices in the left cortex, and between 369 and 11,878 for the right hemisphere. The 345 

smallest ROI was the frontal pole and the largest the superior frontal gyrus. Subcortical 346 

structures ranged from 930 vertices (Accumbens) to 2502 (Caudate, Hippocampus and 347 

Putamen) (Gutman et al., 2013; Gutman et al., 2012). We used the same covariates as in 348 

previous LMMs.  349 

 350 

2.8.In sample prediction (10-fold cross-validation) 351 
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We derived brain prediction scores using the Best Linear Unbiased Predictors (BLUP) 352 

(Henderson, 1950, 1975; Robinson, 1991) and evaluated them in the UKB discovery sample 353 

using a 10-fold cross-validation design. Note that the BLUP predictor was derived from the 354 

LMM (REML) analysis described above. When measuring the correlation between grey-355 

matter scores and observed value, we controlled for the same covariates used in the LMMs 356 

and included dummy variables to account for hypothetical differences between the groups 357 

selected in the cross-validation design. BLUP estimates the predicted values of the random 358 

effects (here, b, see equation 1) instead of relying on the estimates of fixed effects for all 359 

brain features (Goddard et al., 2009; Robinson, 1991). In short, BLUP scores integrate the 360 

correlations between vertices to derive weights that correspond to the joint effects of all 361 

the vertices. BLUP have desirable statistical properties: they are unbiased and are best 362 

predictors in the sense that they minimise the mean square error in the class of linear 363 

unbiased predictors (Henderson, 1975; Robinson, 1991), leading to more accurate 364 

prediction than other linear predictors (Robinson et al., 2017; Vilhjalmsson et al., 2015). 365 

Among others, BLUP scores are routinely used in animal breeding (Robinson, 1991), 366 

prediction of individual genetic risk (Robinson et al., 2017) as well as to calculate 367 

transcriptomic or methylation age (Peters et al., 2015). BLUP predictors can be calculated in 368 

OSCA (Zhang et al., 2019) from summary statistics (analogous to GCTA-SBLUP (Robinson et 369 

al., 2017)) and known correlation between vertex measurements. 370 

 371 

2.9.Out of sample prediction 372 

Finally, we derived BLUP brain prediction scores constructed from the UKB discovery 373 

sample, and applied them to the UKB replication and HCP participants. We evaluated the 374 
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predictive performance using the correlation between grey-matter score and corresponding 375 

observed phenotype, controlling for covariates used in the LMMs.  376 

 377 

2.10. Application of LMMs to identify “best” cortical processing 378 

 Here, we defined as “best” processing the MRI cortical processing that maximises 379 

the association with a trait of interest, from the minimal number of features (vertices). 380 

Thus, we evaluated which of our 10 FreeSurfer processing (fsaverage – no smoothing; 381 

fsaverage – smoothing fwhm5, 10, 15, 20, 25; fsaverage6, 5, 4, 3 – no smoothing; ENIGMA 382 

ROI processing; see 2.1.3) maximised the brain-morphometricity, for all UKB traits 383 

considered.  384 

As the ENIGMA processing only consists of 150 measurements (14 subcortical volumes 385 

measurements, cortical surface or thickness averaged over 78 ROI defined by the Desikan-386 

Killiany atlas (Desikan et al., 2006)) we used generalised linear models (GLMs – multiple 387 

regression) to estimate the brain-morphomometricity. For context, the LMM approach used 388 

in the vertex level analyses is a direct extension of GLMs that allows the number of features 389 

to exceed the number of participants (p>N). 390 

 391 

2.11. Data and code availability statement 392 

Data used in this manuscript is held and distributed by the HCP and UKB teams. We 393 

have released the scripts used in image processing and LMM analyses to facilitate 394 

replication and dissemination of the results (see URLs). We have also released BLUP weights 395 

to allow meta-analyses or application of the grey-matter scores in independent cohorts.  396 

 397 

3. Results  398 
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3.1.Associations between phenotypes and all grey-matter structure vertices  399 

For the phenotypes of interest, we summarised in circular barplots (Figure 1) the 400 

association (R
2
) with all 654,386 vertex-wise grey-matter measures extracted during image 401 

processing, as well as with covariates (acquisition, age, sex and brain/head size variables - 402 

see Methods). The R
2
 may be interpreted as the proportion of variance in a phenotype 403 

captured by all grey-matter morphology. Figure 1 shows only the significant results 404 

(Bonferroni significance threshold; pUKB_discovery=0.05/175=2.8e-4, pHCP=0.05/160=2.9e-4) 405 

with the full results available in Dataset S3, S4 (see Figure S2 for positive control 406 

associations). 407 

Grey-matter structure was strongly associated with age (R
2

UKB=0.77, SE=0.018; 408 

R
2

HCP=0.88, SE=0.10), sex (R
2

UKB=0.66, SE=0.012; R
2

HCP=0.56, SE=0.059), as well as height 409 

(R
2

UKB=0.22, SE=0.011; R
2

HCP=0.47, SE=0.060) weight (R
2

UKB=0.47, SE=0.019; R
2

HCP=0.81, 410 

SE=0.099) and BMI (R
2

UKB=0.57, SE=0.024; R
2

HCP=0.92, SE=0.12). Measures of build, body fat 411 

and metabolism were also associated with grey-matter structure (R
2

UKB=0.45, SE=0.019 with 412 

waist circumference, R
2

UKB=0.24, SE=0.013 with body fat percentage, R
2

UKB=0.19, SE=0.009 413 

with basal metabolic rate; corresponding measures not available in the HCP dataset). In 414 

addition, grey-matter structure was associated with measures of strength in both samples 415 

(e.g. hand grip: R
2

UKB=0.074, SE=0.009; R
2

HCP=0.23, SE=0.58) and levels of physical activity 416 

(R
2

UKB ranging between 0.059-0.25, not-significant in the HCP).  417 

Grey-matter structure was further associated with cognitive domains (R
2

UKB ranging 418 

in 0.048-0.13, R
2

HCP in 0.34-0.57), smoking (R
2

UKB ranging in 0.11-0.28, R
2

HCP in 0.45-0.65), 419 

alcohol consumption (R
2

UKB ranging between 0.071-0.14, R
2

HCP=0.63, SE=0.13), educational 420 

attainment (R
2

UKB=0.097, SE=0.029; R
2

HCP=0.39, SE=0.11) and income level (R
2

UKB=0.042, 421 

SE=0.014; R
2

HCP=0.32, SE=0.10). Associations with diet, blood assay results, depression score 422 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 20

and symptoms, diabetes, bone density, lifestyle and maternal smoking around birth were 423 

only observed in the UKB, the phenotypes not being available in the HCP (Figure 1).  424 

We replicated 23 of the 58 associations listed above in the UKB replication sample 425 

(p<0.05/58; Figure S3a). Replication of blood assay phenotypes was limited due to the small 426 

sample sizes (N~300), being only collected for the first imaging waves. Beyond statistical 427 

significance that depends on sample and effect sizes, the brain-morphometricity estimates 428 

were highly similar between the discovery and replication UKB samples (cor=0.95, excluding 429 

blood assay, Figure S3b). Full replication results have been added to Dataset S4. 430 

 In the UKB (discovery), results and conclusions did not change regardless of fitting a 431 

single random effect or several random effects each corresponding to one of the grey-432 

matter modalities (i.e. cortical thickness, cortical surface, subcortical thickness, and 433 

subcortical area) (Figure S4).  In the HCP, we observed 3 extra significant associations 434 

between grey-matter structure and cocaine (urine test), self-reported number of times used 435 

cocaine or hallucinogens. Similar to the association found with opiate (urine test), the small 436 

number of positive participants warrants replication. We chose not to include these 3 437 

variables in the subsequent analyses.  438 
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439 

Figure 1: Circular barplot of the associations (R
2
) between phenotypes and grey-matter structure vertices (morphometricity) 440 

For clarity, we only plotted the significant associations in the UKB discovery (panel a) and HCP sample (panel b). We applied Bonferro441 
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correcting to account for multiple testing in each sample. The black bars represent the 95% confidence intervals of the morphometricity 442 

estimates. For context, we also present the association R
2
 between phenotypes and covariates of the baseline model, as per the legend under 443 

the barplot. As some covariates may be correlated, the R
2
 was calculated by adding progressively the covariates in that order: acquisition and 444 

processing variables (labelled “other”), age, sex and head size (ICV, total cortical thickness and surface area). Age and sex were not included as 445 

covariates when studying them as phenotypes. See Dataset S3-4 for full results. See Figure S1 for positive control associations. 446 
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3.2.Controlling for body size 448 

The large associations between grey-matter structure and height, weight, BMI, waist 449 

and hip circumference (even after controlling for acquisition, age, sex and head size 450 

differences, Figure 1) led us to perform a sensitivity analysis to evaluate their contribution 451 

to the brain-morphometricity of the traits studied. We repeated the analysis further 452 

controlling for height, weight and BMI, which yielded lower R
2
 estimates (Figure S5) and 453 

fewer significant associations with grey-matter structure. Thus, when correcting for height 454 

in the UKB, 4 of the 58 associations with grey-matter structure did not remain significant: 455 

household income, monocyte percentage, beef intake, and time spent using computer, see 456 

Dataset S3). Such finding is consistent with the reported association between body size and 457 

income or socio-economic status in the UKB (Tyrrell et al., 2016). When further correcting 458 

for weight and BMI another 14 associations did not remain significant including educational 459 

attainment, frequency drinking alcohol, most diet items (cereal, dried fruits, poultry, 460 

processed meat), time spent driving, red blood cell count, frequency of walks and small 461 

exercise. Notably, the brain-morphometricity of the depression score could be completely 462 

explained by differences in weight and BMI (R
2
baseline=0.050, SE=0.018; R

2
baseline+height=0.048, 463 

SE=0.017, R
2
baseline+height+BMI+weight<0.001, SE=0.007) and none of the associations between 464 

grey-matter structure and depression symptoms remained significant (Tiredness, 465 

Anhedonia, Poor appetite- overeating, R
2
baseline+height+BMI+weight<0.014). The brain-466 

morphometricity estimates (correcting for body size) in the UKB replication sample aligned 467 

with results from the discovery sample (cor=0.90), except for age and sex showing larger 468 

associations with grey-matter structure in the replication analysis (Figure S6). 469 

Similarly, 4 of the 27 associations did not remain significant in the HCP dataset: with 470 

fluid intelligence (total skipped), hand grip strength, ASR thought and attention problems 471 
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and frequency of being drunk in the past year. Though we had limited power to detect 472 

associations smaller than R
2
 of 0.2 in this sample (see 2.6).  473 

In light of these results, we chose a conservative approach to present in the main 474 

text results that include body size variables as covariates, though the analyses using baseline 475 

covariates can be found in the supplementary. We acknowledge (see discussion) that this 476 

may be overly conservative, by implicitly making strong assumptions about the direction of 477 

causation between body shape, grey-matter morphology and the rest of the phenome. On 478 

the other hand, it avoids reporting associations that may be fully or in part caused by 479 

differences in body shape. 480 
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481 
Figure 2: Matrices of grey-matter correlations (upper diagonals) and residual correlations (lower diagonals) between all the variab482 

showing significant morphometricity after controlling for baseline covariates, as well as height, weight and BMI.  483 

Panel (a) shows the results for the UKB and panel (b) the HCP results. Correlations significant after multiple testing correction (Bonfe484 

indicated by a star. Blocks circled in black indicate the different phenotype categories used previously (see Figure 1). Most grey-matt485 

bles 

erroni) are 

ter 

.
C

C
-B

Y
-N

C
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted July 9, 2019. 
; 

https://doi.org/10.1101/696864
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 26

correlations are observed within categories (e.g. cognition or substance use) but they can also help identifying shared brain-morphometricity 486 

between different types of variables (e.g. cheese intake and pulse rate). rGM is a measure of the shared brain-morphometricity between 2 traits 487 

and can arise from causal, bi-directional or confounded relationships between phenotypes. Contrasting rGM and residual correlation (rE) can 488 

indicate how much of the phenotypic correlation is attributable to individual’s resemblance in term of grey-matter structure, compared to 489 

other factors (brain or non-brain resemblances).  490 
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3.3.Grey-matter correlations 492 

We estimated grey-matter and residual correlations (rGM and rE) between the 493 

phenotypes that showed significant brain-morphometricity in the univariate analyses. rGM 494 

can be interpreted as the proportion of grey-matter vertices similarly associated with both 495 

traits, while rE offers insight into factors, shared between the traits, but that do not relate to 496 

grey-matter structure (e.g. other brain modalities, non-brain contribution). A weighted sum 497 

of rGM and rE make up the phenotypic correlation (see 2.3.3). In this section, we controlled 498 

for height, weight and BMI on top of the baseline covariates, which yields a conservative set 499 

of 39 phenotypes and prevents results from being confounded by body size (Figure 2; 500 

Datasets S5 (UKB), S6 (HCP) for point estimates). We excluded phenotypes used as 501 

covariates (age, sex, head and body size) as regressing them out makes them orthogonal 502 

(i.e. not associated) with the remaining traits. We used conservative significance thresholds 503 

of 0.05/(35*34)=4.2e-5 for UKB and 0.05/(18*17)=1.6e-4 for HCP that account for the total 504 

number of correlations performed in each sample. We highlighted below which grey-matter 505 

correlations were also significant in the UKB replication sample (significance threshold 506 

p<0.05/ntest i.e. p<1.9e-3).  507 

In the UKB, we observed significant positive grey-matter (and residual) correlations 508 

between cognition domains (rGM ranging between 0.71, SE=0.12 and 1.0, SE=0.007; 509 

corresponding rE ranging between 0.26, SE=0.014 and 0.94, SE=0.005; Figure 2). In addition, 510 

we identified grey-matter correlations between measures of physical activity. For example, 511 

body fat percentage correlated with waist circumference (rGM=0.52, SE=0.12), forced vital 512 

capacity (rGM=-0.66, SE=0.14), basal metabolic rate (rGM=-0.69, SE=0.094, rGM-replication=-0.75, 513 

SE=0.13) and time spent watching TV (rGM=0.73, SE=0.13, rGM-replication=0.81, SE=0.16). Pulse 514 

rate correlated with waist circumference (rGM=0.67, SE=0.13) and basal metabolic rate 515 
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(rGM=-0.55, SE=0.11), acceleration force correlated with frequency of vigorous activity (rGM=-516 

0.64, SE=0.17) while hand grip strength (left and right) was associated with forced vital 517 

capacity (replicated) and forced expiratory volume (replicated). In addition, we found 518 

significant grey matter correlations between substance use phenotypes such as amount of 519 

usual alcohol intake and alcohol intake (rGM=-0.89, SE=0.086; rGM-replication=-1.0, SE=0.12; sign 520 

due to coding of the variable, see Dataset S1), smoking status (rGM=0.71, SE=0.13) and past 521 

tobacco use (rGM=-0.64, SE=0.14). Finally, we identified unexpected large grey-matter 522 

correlations. For example, cheese intake and forced expiratory volume were both correlated 523 

(rGM=1.0, SE=0.11) with fluid intelligence, and waist circumference correlated with overall 524 

health rating and pulse rate (rGM>0.67). Overall, 9 out of the 26 significant correlations 525 

replicated in the UKB replication sample; sign of the grey-matter correlation was always 526 

consistent between discovery and replication analyses (Table S1).  527 

In the HCP, we observed positive grey-matter correlations between cognition 528 

domains (Figure 2 and Dataset S6) and between IQ dimensions and education level. In 529 

addition, the two tobacco related phenotypes were associated with most of the same grey-530 

matter vertices (rGM=0.92, SE=0.045). To note, residual correlations and grey-matter 531 

correlations were of opposite signs between IQ domains and delay discounting variables, 532 

and between cognition and substance use phenotypes. These observations remained after 533 

rank-inverse transformation of the variable, suggesting it is not an artefact of the trait 534 

distribution. More work is needed to confirm these results in larger samples.     535 

For completeness, grey-matter (and residual) correlations under the baseline model 536 

are reported in Figure S7, which reveals many large grey-matter correlations between 537 

measures of body size and diet, blood assay, activity levels and depression symptoms and 538 

score. This further highlights that in the phenome, the brain-morphometricity of some traits 539 
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may be accounted for by the covariation between these phenotypes and body size 540 

measuremements. In particular, depression score was correlated (rGM=1) with weight, BMI 541 

waist or hip circumference, consistent with its brain-morphometricity lowered to 0 when 542 

controlling for body size. In addition, depression score was also correlated (rGM=-1) with 543 

activity levels and acceleration force, but also with poultry or cheese intake, happiness in 544 

own’s health, diabetes and time spent watching television (rGM=1), variable themselves 545 

strongly associated with measures of body shape (Figure S7, section 3.2).  546 

 547 

3.4.Associations with grey-matter structure of specific cortical and subcortical regions 548 

 We investigated the brain-morphometricity of traits by estimating the association 549 

with grey-matter structure of specific cortical and subcortical regions (Desikan-Killiany atlas 550 

(Desikan et al., 2006)). All phenotypes were corrected for height, weight and BMI in addition 551 

to the baseline covariates. Associations with BMI and other body size variables under the 552 

baseline model are also presented. In this post-hoc analysis, we used Bonferroni correction 553 

to account for the number of tests performed (significance threshold of 554 

0.05/(164*39)=7.2e-6 in the UKB, 1.2e-5 in the HCP). 555 

In the UKB, the largest associations were observed between age of the participants 556 

and subcortical volumes (R
2
 ranging between 0.22 and 0.35 for subcortical thickness, 0.20 557 

0.38 for subcortical area), but most cortical regions were also significantly associated with 558 

age, albeit to a lesser extent (R
2
 in the 0.0083-0.15 range for cortical thickness, 0.0048-0.15 559 

range for cortical surface area). Next, significant ROI associations included sex, associated 560 

with all subcortical volumes (R
2
 in the 0.0049-0.024 range for thickness, 0.0058-0.027 for 561 

area) and with many cortical regions (R
2
 in the 0.0011-0.0076 range for cortical thickness, 562 

0.0019-0.014 for cortical surface area) (Figure S8 and Dataset S7). Maternal smoking around 563 
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birth was further associated with 28 ROI, mostly located in the occipital and temporal lobes 564 

(R
2
 in the 0.013-0.026 range with cortical thickness, R

2
 in 0.014-0.071 with cortical surface 565 

and R
2
 in the 0.010-0.039 range with subcortical structure). In addition, we found significant 566 

associations between cognition domains and structure of thalamus, putamen, pallidum and 567 

hippocampus (R
2
 in the 0.0043-0.024 range).  Notably, fluid intelligence was associated with 568 

all aspects of thalamus anatomy (left and right, thickness and surface area) while the other 569 

cognition domains considered were associated with some aspects of thalamus structure. No 570 

association between cognition and cortical structure survived multiple testing correction.  571 

Diabetes diagnosis correlated with (left) superior frontal surface area (R
2
=0.054), as 572 

well as with thalamus, putamen, and pallidum thickness (R
2
 ranging between 0.0067 and 573 

0.015), or thalamus and hippocampus surface (R
2
 in the 0.0061-0.014 range). Alcohol intake 574 

was associated with left thalamus thickness (R
2
=0.018) while smoking status and past 575 

tobacco use were associated with thalamus, caudate, putamen and pallidum thickness, as 576 

well as with thalamus surface area (R
2
 in the 0.007-0.020 range). Finally, we also observed 577 

small associations between cortical or subcortical regions and overall health rating, time 578 

spend watching TV, body fat percentage and physiological measurements (Figure S8).  579 

Using the replication UKB sample, we replicated 633 out of the 975 significant ROI-580 

trait associations (p<0.05/975). Most associations were found with age, sex and body size 581 

variables, though we also replicated associations between subcortical volumes and hand 582 

grip strength or time spent watching TV (Dataset S8). In addition, the magnitude of the 583 

associations with age, and body size were greatly similar between discovery and replication 584 

analyses (Figure S9). For sex, we observed larger ROI associations in the UKB replication 585 

sample (Figure S9), consistent with the larger brain-morphometricity observed in this 586 

sample (Figure S6).  587 
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 In the HCP sample, age was associated with thickness (R
2
 in the 0.020-0.049 range) 588 

and surface area (R
2
 ranging between 0.067-0.10) throughout the cortex, as well as with 589 

subcortical structure (R
2
 in the 0.016-0.087 range). Sex was associated with cortical 590 

thickness of the lateral orbitofrontal cortex (R
2 

in the 0.059-0.073 range), as well as with 591 

subcortical structure (R
2
 in the 0.042-0.19 range). In addition, we found large associations 592 

between cocaine, opiate or hallucinogens use and surface area of several cortical regions 593 

located in the temporal lobe (fusiform, superior temporal, insula), frontal (pars-triangularis, 594 

pars-opercularis, caudal-middle frontal), parietal (supramarginal, superior and inferior-595 

parietal, precuneus) or in the cingulate (R
2 

in the 0.25-1.00 range for cocaine test, R
2
 in the 596 

0.43-0.46 range for opiates, R
2
 in 0.25-0.56 for number of times used hallucinogens). 597 

However, the small numbers and possible outliers in the vertex-wise measurements make 598 

such associations prone to false positives. Alcohol consumption was also associated with 599 

surface are of the frontal cortex (right rostral middle frontal, paracentral and precentral gyri, 600 

R
2
 in the 0.28-0.36 range). No other association survived multiple testing correction (Figure 601 

S10 and Dataset S9).  602 

 Body size variables were strongly associated with subcortical structure under the 603 

baseline model (R
2
 ranging between 0.010-0.059 for height, R

2
 between 0.048-0.30 for the 604 

others) and to a lesser extent with cortical surface area (R
2
 between 0.0078-0.026 for 605 

height, R
2
 between 0.0061-0.060 for the others) and cortical thickness (R

2
 in 0.0039 0.016 606 

for height, R
2
 in 0.0017 0.045 for the others).  The associations between grey-matter 607 

structure and body size were pervasive (72/164 significant ROIs associations with height, 608 

109 with waist circumference, 105 with BMI) (Figure S11, Dataset S10), suggesting that 609 

when acting as confounders height, weight or BMI could lead to false positives in many 610 

brain regions. 611 
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  612 

3.5.Ten-fold cross-validation in the UKB and prediction into the UKB replication sample 613 

For each UKB participant, we calculated grey-matter scores relative to phenotypes 614 

showing significant brain-morphometricity, by estimating the marginal association between 615 

each vertex and the trait of interest. As in previous sections, we used height, weight and 616 

BMI controlled for baseline covariates; and further regressed out body size for all other 617 

phenotypes. We evaluated the prediction accuracy of the grey-matter BLUP scores by 618 

computing their correlations with the observed values (10-fold cross validation design). 619 

Most grey-matter scores significantly correlated (positively) with their corresponding 620 

phenotypes (significance threshold of 0.05/39=1.2e-3, Table 1, S3, Figure 3). Albeit 621 

significant, prediction accuracy was overall low (typically r<0.10, including r=0.11 for sex, 622 

r<0.09 with cognition, r=0.08 for alcohol intake, r=0.06 with smoking status) except for age 623 

(r=0.60), and maternal smoking around birth (r=0.26) whose grey-matter score correlated 624 

more strongly with the observed values. We found similar prediction results in the UKB 625 

replication sample, with 29 associations reaching significance at p<1.2e-3 (Table 1, S3). 626 

Prediction accuracy was on par for most traits, though greater in the replication sample for 627 

age and sex (Figure 3, Table 1, S3), consistent with a larger training sample being used and 628 

larger morphomometricity observed in the replication set (Figure S6). 629 

When not correcting for body size, 56/58 BLUP scores significantly correlated with 630 

the observed values in the 10-fold cross validation and 42 associations replicated using the 631 

UKB replication sample (p<0.05/58, See FigureS12 and DatasetS11). Predicted age 632 

correlated with chronological age (r=0.72 in the discovery, r=0.70 in the replication), while 633 

predicted sex also strongly associated with the observed value (AUC of 0.90 and 0.89). Grey-634 

matter scores of body shape (under the baseline covariates) were also significantly 635 
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correlated with the observed values (r=0.25 for height, r=0.29 for body fat percentage, 636 

r=0.39 for weight and hip or waist circumference, r=0.45 for BMI). Finally, grey-matter 637 

scores of BMI correlated positively with depression symptom count (r=0.10, p-value<1e-14), 638 

as expected from the brain-morphometricity of depression being limited the covariation 639 

with body size. It even outperformed the grey-matter score built from the depression score 640 

itself (r=0.05, p-value<1e.5). 641 

 642 

3.6.Out of sample prediction – application in the HCP sample 643 

Out of sample prediction validates that the morphometric associations are 644 

generalizable to independent brain images, beyond population and scanner differences. We 645 

trained our prediction models on the UKB discovery cohort and calculated grey matter 646 

scores for each HCP participant. We tested the association between predicted value (brain 647 

scores) and the observed phenotype in the HCP. For traits only available in the UKB (e.g. 648 

waist circumference) we used a proxy in the HCP (e.g. BMI).  649 

Grey matter scores for age, sex, and being a twin significantly correlated with the 650 

observed values (rage=0.15, rsex=0.25, rtwin-status=0.31, p-value significant after multiple testing 651 

correction) (Table 1, S3 and Figure 3). Grey-matter score for maternal smoking around birth 652 

correlated with smoking status (r=0.19). None of the other grey-matter scores significantly 653 

correlated with a similar HCP variable. 654 

Without correcting for body size, 19 BLUP scores correlated to corresponding 655 

variables (Dataset S11, Figure S12). For example, scores for BMI, body fat percentage, hip or 656 

waist circumference also correlated positively with BMI (r=0.21, p-value<1.2e-3), while 657 

scores for height and weight also correlated with the observed phenotypes (rHeight=0.17, 658 
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rWeight=0.19). Finally, scores build from diet items or quantifying activity levels significantly 659 

predicted BMI in the HCP. 660 

 661 

 662 

Figure 3: In sample and out of sample prediction accuracy as a function of the total 663 

association R
2
.  664 

Labels highlight some of the significant prediction having the greatest accuracy. As 665 

predicted by the theory, the prediction accuracy is capped by the total association R
2
 (points 666 

below the diagonal). In addition, out of sample prediction results in a lower prediction 667 
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accuracy than in-sample prediction. We hypothesise that the low prediction accuracy of age 668 

in the HCP is due to the much younger age range of the HCP participants, compared to the 669 

UKB). Participants born from multiple pregnancy appear better identified (predicted) in the 670 

HCP than within the UKB sample, which is due to a greater proportion of females and twins 671 

in the HCP compared to the UKB, as well as greater morphometricity in the HCP. Such 672 

mechanism has been discussed in the field of genetic and solutions exist to correct results 673 

for differences in prevalence between samples (Lee et al., 2012). We reported the AUC in 674 

Table 1 (for discrete variables) as it is independent of the proportion of twins and males, 675 

thus differences in AUC likely reflect differences in morphometricity between the UKB and 676 

HCP samples.  677 
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Table 1: Summary of the prediction accuracy (R
2
) of the BLUP grey-matter scores. We constructed BLUP scores for the 39 UKB variables 678 

showing significant morphometricity and evaluated their predictive power in the UKB (10 fold-cross validation) and HCP sample. When the 679 

phenotype corresponding to the grey-matter score was not available in the HCP, we chose the closest available (e.g. waist circumference grey-680 

matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM controlling for height, weight and BMI as well as for 681 

the baseline covariates (acquisition, age, sex and head size); except for (#) denoting associations not controlling for height, weight and BMI. 682 

Rows in bold indicate significant association after correcting for multiple testing (p<0.05/39=1.3e-3) both in and out of sample. This reduced 683 

table only shows prediction results significant in all 3 scenarios, see Table S3 for full table of results. 684 

 In sample prediction (UKB) Prediction into UKB replication Out of sample prediction (HCP) 

 r pvalue R
2
 AUC (SE) r pvalue R

2
 AUC (SE) HCP variable 

predicted 

r pvalue R
2
 AUC 

(SE) 

Age 0.64  0.0e+00 0.41  0.68  0.0e+00 0.46  Age 0.15 

3.1e-

08 0.024  

Sex 0.26  0.0e+00 0.067 

0.58 

(0.0059) 0.33 9.8e-305 0.11 

0.8 

(0.0064) Sex -0.25 

8.0e-

42 0.061 

0.68 

(0.016) 

Part of multiple 

birth 0.078  4.1e-14 0.0061 

0.66 

(0.022) 0.13  1.5e-03 0.016 

0.72 

(0.065) Being a twin 0.31 

1.1e-

28 0.098 

0.69 

(0.016) 

Body fat 

percentage# 0.29  0.0e+00 0.085  0.31 7.7e-190 0.095  BMI 0.21 

5.6e-

13 0.045  

Waist 

circumference# 0.39  0.0e+00 0.16  0.38 2.0e-205 0.14  BMI 0.21 

3.5e-

13 0.046  

BMI# 0.45  0.0e+00 0.2  0.45 7.4e-235 0.20  BMI 0.21 

2.4e-

12 0.042  

Hip 

circumference# 0.38  0.0e+00 0.15  0.36 7.3e-143 0.13  BMI 0.21 

5.2e-

13 0.045  

Height# 0.25 6.5e- 0.062  0.23 2.6e-132 0.054  Height 0.17 1.8e- 0.03  

.
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318 17 

Weight# 0.39  0.0e+00 0.15  0.39 5.8e-231 0.15  Weight 0.19 

1.2e-

12 0.036  

Maternal smoking 

around birth 0.26 

9.8e-

132 0.069 

0.66 

(0.0067) 0.25  1.7e-08 0.063 

0.65 

(0.027) FTND score 0.19 

8.9e-

04 0.037  

 685 

 686 

 687 
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3.7.Best cortical processing 688 

 We compared the brain-morphometricity estimates obtained by varying the cortical 689 

processing options: smoothing of the cortical meshes and applying coarser meshes available 690 

in FreeSurfer (see 2.10). We performed this analysis on the UKB discovery and replication 691 

samples as the large SE of the estimates in HCP would limit the interpretation of the results. 692 

We used baseline covariates as in Figure 1. We found that applying smoothing (5-25mm) or 693 

reducing the cortical mesh complexity always led to a lower point estimate of brain 694 

morphometricity in the UKB discovery (Figure 4) and replication (SFigure 13, Datasets S12-695 

13 for full tables) samples. As such, the fsaverage cortical mesh with no smoothing can be 696 

deemed “best” processing for all phenotypes considered.   697 

In addition, we compared results from Figure 1 to those from Region-Of-Interest 698 

(ROI) based processing (taking the average of each cortical or subcortical region, here 699 

ENIGMA processing). We found that the vertex-wise approach always yielded greater 700 

association R
2
, thus retained more information than a ROI based dimension reduction 701 

(Figure S14).  702 

 703 
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 704 

Figure 4: Comparison of brain-morphometricity estimates varying cortical processing 705 

options in FreeSurfer.  706 

The reduction of brain-morphometricity as a function of mesh smoothing is presented on 707 

the left panel (a), while the right panel (b) shows the effect of reducing the cortical mesh 708 

complexity. The black bar indicates the lower bound of the 95% confidence interval of the 709 

fsaverage-no smoothing estimate (identical to results presented in Figure1). Note that 710 

brain-morphometricity estimates below the 95%CI lower bound cannot be deemed 711 

significantly lower. Rather the 95%CI are presented for context and to remind that all 712 

estimate from Figure 1 do not have the same SE.  713 

 714 
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 715 

4. Discussion 716 

We report the associations between vertex-wise measurements of grey-matter 717 

structure and a large set of phenotypes capturing aspects of demographics, physical 718 

capacities, substance use, psychiatry, lifestyle and stress/traumas (Figure 1). In addition, we 719 

introduced the concept of between-trait grey-matter correlation (Figure 2, Figure S7) that 720 

quantifies the proportion of brain markers shared between two traits. We demonstrated 721 

the versatility of our vertex-wise LMM approach by identifying specific cortical and 722 

subcortical regions (Figure S8, S10, S11) associated with the phenotypes of interest. Finally, 723 

we derived BLUP (Best Linear Unbiased Predictor) grey-matter scores and demonstrated 724 

their significant predictive abilities in the UKB discovery sample (10-fold cross validation) 725 

and in completely independent samples (HCP, and replication UKB, Table 2, S3, Figure 3).  726 

Our vertex-wise analyses retained the complexity of the cortical ribbon and 727 

subcortical structure, leading to larger associations compared to the standard ROI based 728 

data reduction (Figure S14). Similarly, reducing the cortical complexity via local averages 729 

(smoothing) or halving the number of vertices also led to reduced brain-morphometricity 730 

estimates for all phenotypes considered (Figure 4, S13). These results indicate that grey-731 

matter scores from “fsaverage-no smoothing” cortical measurements can achieve greater 732 

level of prediction, but may require larger training samples to counterbalance their 733 

increased complexity (Dudbridge, 2013).  734 

 In both the UKB and HCP samples, the largest brain-morphometricity (Figure 1) 735 

were found between grey-matter structure and age, sex and with measures of body size 736 

(height, weight, BMI, body fat percentage, waist or hip circumference). In our post-hoc 737 

LMM-ROI analysis, we found those phenotypes to be associated with most cortical and 738 

subcortical regions (Figure S8-11). Our results for sex are consistent with results from the 739 
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UKB first release (N=5,216, using ROI average (Ritchie et al., 2018)), while several studies 740 

have previously reported associations between BMI and several grey-matter measurements 741 

(Cole et al., 2013; Gupta et al., 2015; Kurth et al., 2013; Masouleh et al., 2016; Medic et al., 742 

2016; Opel et al., 2017). Despite such large and widespread pattern of association between 743 

body-size and grey-matter we did not observe significant brain-morphometricity for (self-744 

reported) anorexia, bulimia or binge eating though the small numbers (<30 cases in the 745 

UKB, Dataset S1) limit the interpretability of the results. 746 

 We observed moderate to small associations (R
2
<0.4) between grey-matter and 747 

substance use (tobacco and alcohol), maternal smoking around birth, blood assay results, 748 

education and income level, diet, depression score and symptoms, twin-status as well as 749 

cognition domains (Figure 1). The latter replicated and expanded the result of an analogous 750 

analysis on an early release of the HCP (N=150) and the ADNI dataset (Sabuncu et al., 2016). 751 

We note that handedness was only weakly (R
2

UKB=0.04, R
2

HCP<0.001, not significant) 752 

associated with cortical or subcortical grey-matter coherent with the conflicting results 753 

reviewed in (Jin Kang et al., 2017). Our results indicate that individuals that display similar 754 

grey-matter structure tend to also be similar in term of age, sex, body size, cognition, 755 

activity levels, substance use and lifestyle. We did not detect significant association 756 

between grey-matter morphometry and psychiatric diagnoses (lifetime self-reported), sleep 757 

phenotypes or lifetime stress/traumas (Dataset S3) despite previous morphometricity 758 

reports from case-control samples of autism, schizophrenia and ADHD (Sabuncu et al., 759 

2016).  760 

When controlling for height, weight and BMI in the analyses, many of the 761 

associations became non-significant: such as those between grey-matter and diet, activity 762 

levels or depression score/symptoms (R
2
<0.04; Dataset S3). Furthermore, we did not detect 763 
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any significant association between grey-matter structure and other depression related 764 

phenotypes (e.g. self-reported diagnosis by a doctor, MDD case-control status as used by 765 

the Psychiatric Genetic Consortium (Wray et al., 2018), and neuroticism; Dataset S3). Our 766 

findings shed a new light on previously published results, as even the largest case-control 767 

international initiatives (e.g. ENIGMA-MDD (Schmaal et al., 2016a; Schmaal et al., 2016b)) 768 

may reflect, at least in part, variance shared between depression and BMI (such as the 769 

causal effect of BMI on depression(Wray et al., 2018)). Understanding the relationship 770 

between brain and depression may call to analyse brain regions or features not extracted in 771 

the current processing (e.g. brain stem and cerebellum) or features collected from another 772 

type of images (e.g. Diffusion Weighted Images (DWI), fMRI).  773 

To summarise, body size is associated with large, widespread variations of grey-774 

matter structure (Figure 1, Figure S11) and more work is needed to understand its 775 

contribution to published results linking grey-matter anatomy to psychiatric disorders 776 

(MDD, bipolar, schizophrenia and substance use are associated with BMI (Luppino et al., 777 

2010; McElroy and Keck, 2012; Rajan and Menon, 2017; Saarni et al., 2009; Wray et al., 778 

2018)) or sexually dimorphic traits (likely associated with height and weight). In addition, 779 

body size may be differently associated with the phenome across countries or age groups, 780 

which may limit the replication of findings and predictive abilities of body size dependent 781 

scores. Note that the possible confounding effects of body size are exacerbated in small 782 

case-control samples, leading to increased chances of false positive associations (Button et 783 

al., 2013; Ioannidis, 2005). Body size being associated to many brain regions (Figure S11), 784 

such confounding effect could lead to widespread cortical or subcortical false positives.  785 

In subsequent association and prediction analyses, we made a conservative choice to 786 

correct for height, weight and BMI. This meant that we likely reported conservative 787 
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estimates of brain-morphometricity and fewer significant grey-matter correlations, 788 

predictive grey-matter scores or trait-ROI associations (see Figures S7, S12 and Dataset S3 789 

for uncorrected results). The large covariation of body-size with the phenome (at least with 790 

the variables we selected) is still of interest but it may be more powerful to study directly 791 

BMI for example. This is exemplified by the greater prediction accuracy achieved by a BMI 792 

grey-matter score (vs. depression specific score) when predicting depression score. Such 793 

behaviour can be anticipated based on the large rGM between BMI and depression score 794 

(Figure S7), combined to the larger brain-morphometricity of BMI (Dudbridge, 2013). 795 

Finally, our conservative approach should remind us to be careful when interpreting 796 

associations. For example, one should not conclude about actionable links between diet and 797 

depression based on the large and significant grey-matter correlations, as it might be 798 

mediated by body size. Though, directionality of the associations will need to be established 799 

to conclude in this case.  800 

 We estimated between-trait grey-matter correlation (Figure 2, Dataset S5, S6) that 801 

quantifies the proportion of brain markers shared between two traits and found significant 802 

relationships between cognition domains, between tobacco and alcohol consumption or 803 

between measures of fitness. Large grey-matter correlations between seemingly unrelated 804 

traits (e.g. fluid IQ and cheese intake [replicated], waist circumference and pulse rate or 805 

overall health rating) raise questions about the nature of the relationships between those 806 

variables (causality, true positive or confounded association?). Note that rGM would also 807 

capture correlated measurement errors between traits, for example due to head motion or 808 

other sources of noise in MRI acquisition.  809 

We further characterised the brain-morphometricity by identifying specific cortical 810 

and subcortical regions (ROI) associated with our phenotypes (Figure S8-S11). In the UKB, 811 
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smoking status was associated with thickness and surface of the thalamus (left and right), 812 

although we also found associations with the caudate and pallidum. Previous studies have 813 

reported association between tobacco usage and volume of left thalamus (Gallinat et al., 814 

2006; Gillespie et al., 2018; Hanlon et al., 2016), which might be due to faster age related 815 

volume loss in smokers (Durazzo et al., 2017). We did not replicate other cortical or 816 

subcortical associations previously reported (Gallinat et al., 2006; Hanlon et al., 2016; Prom-817 

Wormley et al., 2015). Alcohol intake was also associated with left thalamus thickness in the 818 

UKB, consistent with the significant grey-matter correlation (Figure 2) between the two 819 

traits. The thalamus has been implicated in alcohol-related neurological complications (e.g. 820 

Korsakoff’s syndrome)(Pitel et al., 2015) but may also be associated with regular alcohol 821 

usage (Cardenas et al., 2007; Pitel et al., 2015) or alcohol use disorder (van Holst et al., 822 

2012). Maternal smoking around birth was further associated with the thalamus, putamen, 823 

hippocampus and pallidum, as well as temporal and occipital ROIs. In addition, diagnosis of 824 

diabetes was associated with area of the left superior-frontal cortex (Dataset S8, Figure S8). 825 

Nervous system complications of diabetes (sometimes labelled diabetic encephalopathy) 826 

are widely accepted (Mijnhout et al., 2006) but little is known about the specific brain 827 

regions associated with the condition (Moheet et al., 2015).  828 

Finally, we derived and evaluated BLUP (Best Linear Unbiased Predictor) grey-matter 829 

scores for each individual and the 39 phenotypes showing brain-morphometricity in the UKB 830 

(after correcting for body size). The prediction accuracy above what is expected by chance 831 

confirmed that the traits associations with grey-matter structure are transferable to 832 

independent samples and even samples imaged on a different scanner with different 833 

demographics (e.g. HCP, Table 2, S3, Figure 3). Overall, the prediction accuracy was below a 834 

few percent (of variance) except for age, sex, being a twin, maternal smoking at birth and 835 
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body size measurements (Table 2, Figure 3). Grey-matter score for maternal smoking 836 

around birth predicted FTND score in the HCP sample suggesting that passive and active 837 

smoking may be associated with similar grey-matter morphology. Our ability to predict (in 838 

part) the twin status of participants (Table 2) suggests that twins’ grey-matter structure may 839 

be more similar than average even if the twins are not from the same family.  840 

Other methods allow to derive prediction from a large number of brain features (e.g. 841 

penalised regression, or deep learning) though direct comparison with prediction accuracy 842 

from previous publications is limited by the use of different samples, MRI scanners, 843 

processing options, input data and prediction algorithm. To note, BLUP is computationally 844 

efficient as it does not require estimation of hyper-parameters (as in penalised regression). 845 

Similar to polygenic risk scores (Dudbridge, 2013), the prediction R
2
 of grey-matter BLUP 846 

scores increases with the training sample size and is capped by the association R
2
 with all 847 

vertices (Figure 3). Future application of the grey-matter scores include studying correlates 848 

of brain age (Cole, 2017; Cole et al., 2017; Liem et al., 2017), body size and substance use, 849 

especially in samples where this information was not collected.  850 

To note, most of the results observed in the UKB discovery sample (brain-851 

morphometricity, rGM, ROI based associations) replicated in an independent UKB sample 852 

(replication). On the other hand, the UKB and HCP samples differed in term of data 853 

collected, age range, country of origin, MRI acquisition, processing and participants’ 854 

recruitment, which might explain some of the differences in results (brain-morphometricity 855 

of cognition for example).  856 

In the UKB, we chose to add the T2 FLAIR (when available) to improve pial 857 

reconstruction in the FreeSurfer processing, though the effect of such option and the 858 

possible differences with T1w only processing is not well described in the literature. We 859 
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observed a large difference in total cortical thickness between participants processed either 860 

way (Figure S2). This warrants further investigation though it is unlikely to have impacted 861 

the results presented here. Indeed, our QC step excluded more than 80% of the 400-odd 862 

participants processed using T1w only, likely because they showed outlying brains 863 

compared to the T1w+T2 FLAIR processing. In addition, availability of T2 FLAIR was not 864 

associated with any of the phenotypes. Finally, the replication of the UKB associations and 865 

the out of sample prediction suggest that our results are robust to the presence of these 866 

few outliers.    867 

The HCP comprises many twin pairs (thus, non-independent observations), though 868 

we modelled the grey-matter relatedness in all analyses, which should account for the grey-869 

matter resemblances arising from shared genetics or environment. A bias due to twins is 870 

unlikely as our results on the full HCP sample yielded always similar (e.g. Fluid IQ) or lower 871 

(e.g. attention) brain-morphometricity estimates than reported by Sabuncu et al., who 872 

selected 1 subject per family (Sabuncu et al., 2016). Finally, the grey-matter similarity of 873 

twins was greater than average but in line with the similarity seen between unrelated 874 

individuals (Appendix S2), which led us not to exclude twin pairs from the analyses (contrary 875 

to what is seen/done in genetics). 876 

Due to recruitment choices, the UKB and HCP samples do not contain many 877 

psychiatric cases (outside of the highly prevalent MDD, see (Fry et al., 2017) on the healthy 878 

volunteer bias in the UKB) and cannot replace the large case-control initiatives (e.g. ENIGMA 879 

disease groups). Despite using some of the largest imaging samples available, our ROI based 880 

and grey-matter score analyses suffered from limited statistical power, though more data is 881 

currently being collected by the UKB. 882 
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To complement our analyses (limited to young and older adults), more work is 883 

required to understand the relationship between grey-matter morphology and the 884 

phenome during development (e.g. in children or adolescents) as well as in specific 885 

age/disease groups (Rosenberg et al., 2018), or using different scanners or processing 886 

options (e.g. 1.5 Tesla MRI, scanning time, FSL or SPM processing (Flandin and Friston, 2008; 887 

Jenkinson et al., 2012)). Note that all associations reported here must be interpreted 888 

carefully as they may be causes or consequences of the disorder or trait, or a result of the 889 

pervasive pleiotropy underlying human complex phenotypes (Solovieff et al., 2013). Future 890 

application or LMM include determining the best MRI image processing for a trait (i.e. the 891 

processing options that maximise the association R
2
; e.g.

 
Figure 4) by extending our analysis 892 

to other measures of grey-matter structure (e.g. voxel-based morphometry (Wright et al., 893 

1995)). 894 

We have released the scripts used in image processing and LMM analyses to 895 

facilitate replication and dissemination of the results (see URLs). We have also released 896 

BLUP weights to allow meta-analyses or application of the grey-matter scores in 897 

independent cohorts.  898 

 899 

5. URLs 900 

Summary-level data (BLUP weights) and vertex membership in the Desikan atlas: 901 

http://cnsgenomics.com/data.html ; OSCA: http://cnsgenomics.com/software/osca/ ;  902 

ENIGMA protocols: http://enigma.ini.usc.edu/protocols/imaging-protocols/ ; 903 
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and genetic data, including download, formatting and curation. LS downloaded and 908 

processed the HCP MRI images under MJW supervision. BCD downloaded and processed the 909 

UKB MRI images. BCD performed the analyses and wrote the manuscript. All the authors 910 

reviewed the manuscript.  911 

 912 

7. Acknowledgements  913 

This research was supported by the Australian National Health and Medical Research 914 

Council (1078037, 1078901, 1113400, 1161356 and 1107258), the Australian Research 915 

Council (FT180100186 and FL180100072), and the Sylvia & Charles Viertel Charitable 916 

Foundation. 917 

Informed consent was obtained from all UK Biobank participants. Procedures are 918 

controlled by a dedicated Ethics and Guidance Council 919 

(http://www.ukbiobank.ac.uk/ethics), with the Ethics and Governance Framework available 920 

at http://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf. IRB approval 921 

was also obtained from the North West Multi-centre Research Ethics Committee. This 922 

research has been conducted using the UK Biobank Resource under Application Number 923 

12505. 924 

Informed consent was obtained from all HCP participants. HCP Data were provided 925 

by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David 926 

Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centres 927 

that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Centre for 928 

Systems Neuroscience at Washington University. 929 

 We used R(R Development Core Team, 2012) (v3.3.3) for analyses not performed 930 

using OSCA (Zhang et al., 2019) and for plots. We used the colour-blind friendly R palette 931 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 49

(http://jfly.iam.u-tokyo.ac.jp/color/), qqman(Turner, 2014) for QQ-plots, ggplot2(Wickham, 932 

2009) and ggsignif(Ahlmann-Eltze, 2017) for circular bar plots, corrplot(Wei and Simko, 933 

2017) for correlation matrix plots, ukbtools(Hanscombe, 2017) to facilitate UKB phenotype 934 

manipulation. Other packages used to assist analyses and data handling include 935 

FactoMineR(Husson et al., 2015; Husson et al., 2009), Hmisc(Harrell, 2017), rowr(Varrichio, 936 

2016), pwr(Champely, 2017), XML(Temple and the CRAN Team, 2017), tidyverse(Wickham, 937 

2017a), dplyr(Wickham and Francois, 2015), readr(Wickham, 2017b), reshape2(Wickham, 938 

2007) and rmarkdown(Allaire, 2018). 939 

 We would like to thank Allan McRae, the Institute of Molecular Bioscience (IMB) and 940 

the Research Computing Centre (RCC) IT teams at the University of Queensland for their 941 

support with high performance computing, data handling, storage and processing. 942 

 943 

8. Competing financial Interests statement 944 

The authors declare no conflict of interests. 945 

  946 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 50

References 947 

Achenbach, T.M., 2009. Achenbach system of empirically based assessment (ASEBA): 948 

Development, findings, theory, and applications. University of Vermont, Research Center of 949 

Children, Youth & Families. 950 

Achenbach, T.M., Dumenci, L., Rescorla, L.A., 2003. Ratings of Relations Between DSM-IV 951 

Diagnostic Categories and Items of the Adult Self-Report (ASR) and Adult Behavior Checklist 952 

(ABCL). 953 

Ahlmann-Eltze, C., 2017. ggsignif: Significance Bars for 'ggplot2'. 954 

Allaire, J.X., Yihui.; McPherson, Jonathan.; Luraschi, Javier.; Ushey, Kevin.; Atkins, Aron.; 955 

Wickham, Hadley.; Cheng, Joe.; Chang, Winston. , 2018. rmarkdown: Dynamic Documents 956 

for R. 957 

Bates, D., Machler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models 958 

Using lme4. Journal of Statistical Software 67, 1-48. 959 

Bijma, P., Bastiaansen, J.W., 2014. Standard error of the genetic correlation: how much data 960 

do we need to estimate a purebred-crossbred genetic correlation? Genetics Selection 961 

Evolution 46, 79. 962 

Button, K.S., Ioannidis, J.P.A., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S.J., Munafo, 963 

M.R., 2013. Power failure: why small sample size undermines the reliability of neuroscience. 964 

Nature Reviews Neuroscience 14, 365-376. 965 

Buysse, D.J., Reynolds, C.F., 3rd, Monk, T.H., Berman, S.R., Kupfer, D.J., 1989. The Pittsburgh 966 

Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 967 

28, 193-213. 968 

Cardenas, V.A., Studholme, C., Gazdzinski, S., Durazzo, T.C., Meyerhoff, D.J., 2007. 969 

Deformation-based morphometry of brain changes in alcohol dependence and abstinence. 970 

Neuroimage 34, 879-887. 971 

Champely, S., 2017. pwr: Basic Functions for Power Analysis. 972 

Cole, J.H., 2017. Neuroimaging-derived brain-age: an ageing biomarker? Aging (Albany NY) 973 

9, 1861-1862. 974 

Cole, J.H., Boyle, C.P., Simmons, A., Cohen-Woods, S., Rivera, M., McGuffin, P., Thompson, 975 

P.M., Fu, C.H., 2013. Body mass index, but not FTO genotype or major depressive disorder, 976 

influences brain structure. Neuroscience 252, 109-117. 977 

Cole, J.H., Poudel, R.P.K., Tsagkrasoulis, D., Caan, M.W.A., Steves, C., Spector, T.D., 978 

Montana, G., 2017. Predicting brain age with deep learning from raw imaging data results in 979 

a reliable and heritable biomarker. Neuroimage 163, 115-124. 980 

Crainiceanu, C.M., Ruppert, D., 2004. Likelihood ratio tests in linear mixed models with one 981 

variance component. Journal of the Royal Statistical Society Series B-Statistical Methodology 982 

66, 165-185. 983 

Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., 984 

Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 2006. An automated 985 

labeling system for subdividing the human cerebral cortex on MRI scans into gyral based 986 

regions of interest. Neuroimage 31, 968-980. 987 

Dudbridge, F., 2013. Power and predictive accuracy of polygenic risk scores. PLoS Genet 9, 988 

e1003348. 989 

Durazzo, T.C., Meyerhoff, D.J., Yoder, K.K., Murray, D.E., 2017. Cigarette smoking is 990 

associated with amplified age-related volume loss in subcortical brain regions. Drug and 991 

Alcohol Dependence 177, 228-236. 992 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 51

Edens, E.L., Glowinski, A.L., Pergadia, M.L., Lessov-Schlaggar, C.N., Bucholz, K.K., 2010. 993 

Nicotine Addiction in Light Smoking African American Mothers. Journal of Addiction 994 

Medicine 4, 55-60. 995 

Fischl, B., 2012. FreeSurfer. Neuroimage 62, 774-781. 996 

Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Busa, E., 997 

Seidman, L.J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., Dale, A.M., 998 

2004. Automatically parcellating the human cerebral cortex. Cerebral Cortex 14, 11-22. 999 

Flandin, G., Friston, K.J., 2008. Statistical parametric mapping (SPM). Scholarpedia 3(4), 1000 

6232. 1001 

Fry, A., Littlejohns, T.J., Sudlow, C., Doherty, N., Adamska, L., Sprosen, T., Collins, R., Allen, 1002 

N.E., 2017. Comparison of Sociodemographic and Health-Related Characteristics of UK 1003 

Biobank Participants With Those of the General Population. American Journal of 1004 

Epidemiology 186, 1026-1034. 1005 

Gallinat, J., Meisenzahl, E., Jacobsen, L.K., Kalus, P., Bierbrauer, J., Kienast, T., Witthaus, H., 1006 

Leopold, K., Seifert, F., Schubert, F., Staedtgen, M., 2006. Smoking and structural brain 1007 

deficits: a volumetric MR investigation. European Journal of Neuroscience 24, 1744-1750. 1008 

Gillespie, N.A., Neale, M.C., Bates, T.C., Eyler, L.T., Fennema‐Notestine, C., Vassileva, J., 1009 

Lyons, M.J., Prom‐Wormley, E.C., McMahon, K.L., Thompson, P.M., Zubicaray, G., Hickie, 1010 

I.B., McGrath, J.J., Strike, L.T., Rentería, M.E., Panizzon, M.S., Martin, N.G., Franz, C.E., 1011 

Kremen, W.S., Wright, M.J., 2018. Testing associations between cannabis use and 1012 

subcortical volumes in two large population‐based samples. Addiction 0. 1013 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., 1014 

Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., Consortium, W.U.-1015 

M.H., 2013. The minimal preprocessing pipelines for the Human Connectome Project. 1016 

Neuroimage 80, 105-124. 1017 

Goddard, M.E., Wray, N.R., Verbyla, K., Visscher, P.M., 2009. Estimating Effects and Making 1018 

Predictions from Genome-Wide Marker Data. Statistical Science 24, 517-529. 1019 

Gupta, A., Mayer, E.A., Sanmiguel, C.P., Van Horn, J.D., Woodworth, D., Ellingson, B.M., 1020 

Fling, C., Love, A., Tillisch, K., Labus, J.S., 2015. Patterns of brain structural connectivity 1021 

differentiate normal weight from overweight subjects. Neuroimage-Clinical 7, 506-517. 1022 

Gutman, B.A., Madsen, S.K., Toga, A.W., Thompson, P.M., 2013. A Family of Fast Spherical 1023 

Registration Algorithms for Cortical Shapes. In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, 1024 

D., Westin, C.-F. (Eds.), Multimodal Brain Image Analysis: Third International Workshop, 1025 

MBIA 2013, Held in Conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013, 1026 

Proceedings. Springer International Publishing, Cham, pp. 246-257. 1027 

Gutman, B.A., Wang, Y.L., Rajagopalan, P., Toga, A.W., Thompson, P.M., 2012. Shape 1028 

Matching with Medial Curves and 1-D Group-Wise Registration. 2012 9th Ieee International 1029 

Symposium on Biomedical Imaging (Isbi), 716-719. 1030 

Hanlon, C.A., Owens, M.M., Joseph, J.E., Zhu, X., George, M.S., Brady, K.T., Hartwell, K.J., 1031 

2016. Lower subcortical gray matter volume in both younger smokers and established 1032 

smokers relative to non-smokers. Addiction Biology 21, 185-195. 1033 

Hanscombe, K., 2017. ukbtools: Manipulate and Explore UK Biobank Data. 1034 

Harrell, F.E.J., 2017. Hmisc: Harrell Miscellaneous. 1035 

Henderson, C.R., 1950. Estimation of Genetic Parameters. Annals of Mathematical Statistics 1036 

21, 309-310. 1037 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 52

Henderson, C.R., 1975. Best Linear Unbiased Estimation and Prediction under a Selection 1038 

Model. Biometrics 31, 423-447. 1039 

Husson, F., Josse, J., Le, S., Mazet, J., 2015. FactoMineR: Multivariate Exploratory Data 1040 

Analysis and Data Mining. 1041 

Husson, F., Josse, J., Pagès, L., 2009. FactoMineR, An R package dedicated to exploratory 1042 

multivariate analysis. 1043 

Ioannidis, J.P., 2005. Why most published research findings are false. PLoS Med 2, e124. 1044 

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the 1045 

robust and accurate linear registration and motion correction of brain images. Neuroimage 1046 

17, 825-841. 1047 

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. 1048 

Neuroimage 62, 782-790. 1049 

Jin Kang, S., A Kang, K., Jang, H., Youn Lee, J., Il Lee, K., Seok Kwoen, M., Soo Kim, J., Park, 1050 

K.M., 2017. Brain morphology according to age, sex, and handedness. 1051 

Kurth, F., Levitt, J.G., Phillips, O.R., Luders, E., Woods, R.P., Mazziotta, J.C., Toga, A.W., Narr, 1052 

K.L., 2013. Relationships between gray matter, body mass index, and waist circumference in 1053 

healthy adults. Human Brain Mapping 34, 1737-1746. 1054 

Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M., Wray, N.R., 2012. Estimation of pleiotropy 1055 

between complex diseases using single-nucleotide polymorphism-derived genomic 1056 

relationships and restricted maximum likelihood. Bioinformatics 28, 2540-2542. 1057 

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Kharabian Masouleh, S., Huntenburg, J.M., 1058 

Lampe, L., Rahim, M., Abraham, A., Craddock, R.C., Riedel-Heller, S., Luck, T., Loeffler, M., 1059 

Schroeter, M.L., Witte, A.V., Villringer, A., Margulies, D.S., 2017. Predicting brain-age from 1060 

multimodal imaging data captures cognitive impairment. Neuroimage 148, 179-188. 1061 

Luppino, F.S., de Wit, L.M., Bouvy, P.F., Stijnen, T., Cuijpers, P., Penninx, B.W.J.H., Zitman, 1062 

F.G., 2010. Overweight, Obesity, and Depression A Systematic Review and Meta-analysis of 1063 

Longitudinal Studies. Archives of General Psychiatry 67, 220-229. 1064 

Marcus, D.S., Harms, M.P., Snyder, A.Z., Jenkinson, M., Wilson, J.A., Glasser, M.F., Barch, 1065 

D.M., Archie, K.A., Burgess, G.C., Ramaratnam, M., Hodge, M., Horton, W., Herrick, R., 1066 

Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J., Coalson, T., Schindler, J., 1067 

Elam, J.S., Curtiss, S.W., Van Essen, D.C., Consortium, W.U.-M.H., 2013. Human Connectome 1068 

Project informatics: quality control, database services, and data visualization. Neuroimage 1069 

80, 202-219. 1070 

Marcus, D.S., Harwell, J., Olsen, T., Hodge, M., Glasser, M.F., Prior, F., Jenkinson, M., 1071 

Laumann, T., Curtiss, S.W., Van Essen, D.C., 2011. Informatics and data mining tools and 1072 

strategies for the human connectome project. Front Neuroinform 5, 4. 1073 

Masouleh, S.K., Arelin, K., Horstmann, A., Lampe, L., Kipping, J.A., Luck, T., Riedel-Heller, 1074 

S.G., Schroeter, M.L., Stumvoll, M., Villringer, A., Witte, A.V., 2016. Higher body mass index 1075 

in older adults is associated with lower gray matter volume: implications for memory 1076 

performance. Neurobiology of Aging 40, 1-10. 1077 

McElroy, S.L., Keck, P.E., 2012. Obesity in Bipolar Disorder: An Overview. Current Psychiatry 1078 

Reports 14, 650-658. 1079 

Medic, N., Ziauddeen, H., Ersche, K.D., Farooqi, I.S., Bullmore, E.T., Nathan, P.J., Ronan, L., 1080 

Fletcher, P.C., 2016. Increased body mass index is associated with specific regional 1081 

alterations in brain structure. International Journal of Obesity 40, 1177-1182. 1082 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 53

Mijnhout, G.S., Scheltens, P., Diamant, M., Biessels, G.J., Wessels, A.M., Simsek, S., Snoek, 1083 

F.J., Heine, R.J., 2006. Diabetic encephalopathy: A concept in need of a definition. 1084 

Diabetologia 49, 1447-1448. 1085 

Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J., Bartsch, A.J., 1086 

Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L., Griffanti, L., Douaud, G., Okell, T.W., Weale, P., 1087 

Dragonu, I., Garratt, S., Hudson, S., Collins, R., Jenkinson, M., Matthews, P.M., Smith, S.M., 1088 

2016. Multimodal population brain imaging in the UK Biobank prospective epidemiological 1089 

study. Nature Neuroscience 19, 1523-1536. 1090 

Moheet, A., Mangia, S., Seaquist, E.R., 2015. Impact of diabetes on cognitive function and 1091 

brain structure. Ann N Y Acad Sci 1353, 60-71. 1092 

Mugler, J.P., 3rd, Bao, S., Mulkern, R.V., Guttmann, C.R., Robertson, R.L., Jolesz, F.A., 1093 

Brookeman, J.R., 2000. Optimized single-slab three-dimensional spin-echo MR imaging of 1094 

the brain. Radiology 216, 891-899. 1095 

Mugler, J.P., 3rd, Brookeman, J.R., 1990. Three-dimensional magnetization-prepared rapid 1096 

gradient-echo imaging (3D MP RAGE). Magn Reson Med 15, 152-157. 1097 

Opel, N., Redlich, R., Kaehler, C., Grotegerd, D., Dohm, K., Heindel, W., Kugel, H., 1098 

Thalamuthu, A., Koutsouleris, N., Arolt, V., Teuber, A., Wersching, H., Baune, B.T., Berger, K., 1099 

Dannlowski, U., 2017. Prefrontal gray matter volume mediates genetic risks for obesity. 1100 

Molecular Psychiatry 22, 703-710. 1101 

Patterson, H.D., Thompson, R., 1971. Recovery of Inter-Block Information when Block Sizes 1102 

are Unequal. Biometrika 58, 545-554. 1103 

Peters, M.J., Joehanes, R., Pilling, L.C., Schurmann, C., Conneely, K.N., Powell, J., Reinmaa, E., 1104 

Sutphin, G.L., Zhernakova, A., Schramm, K., Wilson, Y.A., Kobes, S., Tukiainen, T., 1105 

Consortium, N.U., Ramos, Y.F., Goring, H.H., Fornage, M., Liu, Y., Gharib, S.A., Stranger, B.E., 1106 

De Jager, P.L., Aviv, A., Levy, D., Murabito, J.M., Munson, P.J., Huan, T., Hofman, A., 1107 

Uitterlinden, A.G., Rivadeneira, F., van Rooij, J., Stolk, L., Broer, L., Verbiest, M.M., Jhamai, 1108 

M., Arp, P., Metspalu, A., Tserel, L., Milani, L., Samani, N.J., Peterson, P., Kasela, S., Codd, V., 1109 

Peters, A., Ward-Caviness, C.K., Herder, C., Waldenberger, M., Roden, M., Singmann, P., 1110 

Zeilinger, S., Illig, T., Homuth, G., Grabe, H.J., Volzke, H., Steil, L., Kocher, T., Murray, A., 1111 

Melzer, D., Yaghootkar, H., Bandinelli, S., Moses, E.K., Kent, J.W., Curran, J.E., Johnson, M.P., 1112 

Williams-Blangero, S., Westra, H.J., McRae, A.F., Smith, J.A., Kardia, S.L., Hovatta, I., Perola, 1113 

M., Ripatti, S., Salomaa, V., Henders, A.K., Martin, N.G., Smith, A.K., Mehta, D., Binder, E.B., 1114 

Nylocks, K.M., Kennedy, E.M., Klengel, T., Ding, J., Suchy-Dicey, A.M., Enquobahrie, D.A., 1115 

Brody, J., Rotter, J.I., Chen, Y.D., Houwing-Duistermaat, J., Kloppenburg, M., Slagboom, P.E., 1116 

Helmer, Q., den Hollander, W., Bean, S., Raj, T., Bakhshi, N., Wang, Q.P., Oyston, L.J., Psaty, 1117 

B.M., Tracy, R.P., Montgomery, G.W., Turner, S.T., Blangero, J., Meulenbelt, I., Ressler, K.J., 1118 

Yang, J., Franke, L., Kettunen, J., Visscher, P.M., Neely, G.G., Korstanje, R., Hanson, R.L., 1119 

Prokisch, H., Ferrucci, L., Esko, T., Teumer, A., van Meurs, J.B., Johnson, A.D., 2015. The 1120 

transcriptional landscape of age in human peripheral blood. Nat Commun 6, 8570. 1121 

Pinheiro, J., Bates, D., 2000. Mixed-Effects Models in S and S-PLUS. Springer New York. 1122 

Pitel, A.L., Segobin, S.H., Ritz, L., Eustache, F., Beaunieux, H., 2015. Thalamic abnormalities 1123 

are a cardinal feature of alcohol-related brain dysfunction. Neurosci Biobehav Rev 54, 38-45. 1124 

Prom-Wormley, E., Maes, H.H.M., Schmitt, J.E., Panizzon, M.S., Xian, H., Eyler, L.T., Franz, 1125 

C.E., Lyons, M.J., Tsuang, M.T., Dale, A.M., Fennema-Notestine, C., Kremen, W.S., Neale, 1126 

M.C., 2015. Genetic and Environmental Contributions to the Relationships Between Brain 1127 

Structure and Average Lifetime Cigarette Use. Behavior Genetics 45, 157-170. 1128 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 54

R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. 1129 

R Foundation for Statistical Computing, Vienna, Austria. 1130 

Rajan, T.M., Menon, V., 2017. Psychiatric disorders and obesity: A review of association 1131 

studies. Journal of Postgraduate Medicine 63, 182-190. 1132 

Ritchie, S.J., Cox, S.R., Shen, X., Lombardo, M.V., Reus, L.M., Alloza, C., Harris, M.A., 1133 

Alderson, H.L., Hunter, S., Neilson, E., Liewald, D.C.M., Auyeung, B., Whalley, H.C., Lawrie, 1134 

S.M., Gale, C.R., Bastin, M.E., McIntosh, A.M., Deary, I.J., 2018. Sex Differences in the Adult 1135 

Human Brain: Evidence from 5216 UK Biobank Participants. Cereb Cortex 28, 2959-2975. 1136 

Robinson, G.K., 1991. That BLUP is a Good Thing: The Estimation of Random Effects. 1137 

Statistical Science 6, 15-32. 1138 

Robinson, M.R., Kleinman, A., Graff, M., Vinkhuyzen, A.A.E., Couper, D., Miller, M.B., Peyrot, 1139 

W.J., Abdellaoui, A., Zietsch, B.P., Nolte, I.M., van Vliet-Ostaptchouk, J.V., Snieder, H., The 1140 

LifeLines Cohort, S., Genetic Investigation of Anthropometric Traits, c., Medland, S.E., 1141 

Martin, N.G., Magnusson, P.K.E., Iacono, W.G., McGue, M., North, K.E., Yang, J., Visscher, 1142 

P.M., 2017. Genetic evidence of assortative mating in humans.  1, 0016. 1143 

Rosenberg, M.D., Casey, B.J., Holmes, A.J., 2018. Prediction complements explanation in 1144 

understanding the developing brain. Nat Commun 9, 589. 1145 

Roshchupkin, G.V., Gutman, B.A., Vernooij, M.W., Jahanshad, N., Martin, N.G., Hofman, A., 1146 

McMahon, K.L., van der Lee, S.J., van Duijn, C.M., de Zubicaray, G.I., Uitterlinden, A.G., 1147 

Wright, M.J., Niessen, W.J., Thompson, P.M., Ikram, M.A., Adams, H.H.H., 2016. Heritability 1148 

of the shape of subcortical brain structures in the general population. Nat Commun 7, 1149 

13738. 1150 

Saarni, S.E., Saarni, S.I., Fogelholm, M., Heliovaara, M., Perala, J., Suvisaari, J., Lonnqvist, J., 1151 

2009. Body composition in psychotic disorders: a general population survey. Psychological 1152 

Medicine 39, 801-810. 1153 

Sabuncu, M.R., Ge, T., Holmes, A.J., Smoller, J.W., Buckner, R.L., Fischl, B., Initia, A.D.N., 1154 

2016. Morphometricity as a measure of the neuroanatomical signature of a trait. 1155 

Proceedings of the National Academy of Sciences of the United States of America 113, 1156 

E5749-E5756. 1157 

Sartor, C.E., Bucholz, K.K., Nelson, E.C., Madden, P.A.F., Lynskey, M.T., Heath, A.C., 2011. 1158 

Reporting Bias in the Association Between Age at First Alcohol Use and Heavy Episodic 1159 

Drinking. Alcoholism-Clinical and Experimental Research 35, 1418-1425. 1160 

Schmaal, L., Hibar, D.P., Samann, P.G., Hall, G.B., Baune, B.T., Jahanshad, N., Cheung, J.W., 1161 

van Erp, T.G., Bos, D., Ikram, M.A., Vernooij, M.W., Niessen, W.J., Tiemeier, H., Hofman, A., 1162 

Wittfeld, K., Grabe, H.J., Janowitz, D., Bulow, R., Selonke, M., Volzke, H., Grotegerd, D., 1163 

Dannlowski, U., Arolt, V., Opel, N., Heindel, W., Kugel, H., Hoehn, D., Czisch, M., Couvy-1164 

Duchesne, B., Renteria, M.E., Strike, L.T., Wright, M.J., Mills, N.T., de Zubicaray, G.I., 1165 

McMahon, K.L., Medland, S.E., Martin, N.G., Gillespie, N.A., Goya-Maldonado, R., Gruber, 1166 

O., Kramer, B., Hatton, S.N., Lagopoulos, J., Hickie, I.B., Frodl, T., Carballedo, A., Frey, E.M., 1167 

van Velzen, L.S., Penninx, B.W., van Tol, M.J., van der Wee, N.J., Davey, C.G., Harrison, B.J., 1168 

Mwangi, B., Cao, B., Soares, J.C., Veer, I.M., Walter, H., Schoepf, D., Zurowski, B., Konrad, C., 1169 

Schramm, E., Normann, C., Schnell, K., Sacchet, M.D., Gotlib, I.H., MacQueen, G.M., 1170 

Godlewska, B.R., Nickson, T., McIntosh, A.M., Papmeyer, M., Whalley, H.C., Hall, J., 1171 

Sussmann, J.E., Li, M., Walter, M., Aftanas, L., Brack, I., Bokhan, N.A., Thompson, P.M., 1172 

Veltman, D.J., 2016a. Cortical abnormalities in adults and adolescents with major depression 1173 

based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder 1174 

Working Group. Mol Psychiatry. 1175 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 55

Schmaal, L., Veltman, D.J., van Erp, T.G., Samann, P.G., Frodl, T., Jahanshad, N., Loehrer, E., 1176 

Tiemeier, H., Hofman, A., Niessen, W.J., Vernooij, M.W., Ikram, M.A., Wittfeld, K., Grabe, 1177 

H.J., Block, A., Hegenscheid, K., Volzke, H., Hoehn, D., Czisch, M., Lagopoulos, J., Hatton, 1178 

S.N., Hickie, I.B., Goya-Maldonado, R., Kramer, B., Gruber, O., Couvy-Duchesne, B., Renteria, 1179 

M.E., Strike, L.T., Mills, N.T., de Zubicaray, G.I., McMahon, K.L., Medland, S.E., Martin, N.G., 1180 

Gillespie, N.A., Wright, M.J., Hall, G.B., MacQueen, G.M., Frey, E.M., Carballedo, A., van 1181 

Velzen, L.S., van Tol, M.J., van der Wee, N.J., Veer, I.M., Walter, H., Schnell, K., Schramm, E., 1182 

Normann, C., Schoepf, D., Konrad, C., Zurowski, B., Nickson, T., McIntosh, A.M., Papmeyer, 1183 

M., Whalley, H.C., Sussmann, J.E., Godlewska, B.R., Cowen, P.J., Fischer, F.H., Rose, M., 1184 

Penninx, B.W., Thompson, P.M., Hibar, D.P., 2016b. Subcortical brain alterations in major 1185 

depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. 1186 

Mol Psychiatry 21, 806-812. 1187 

Self, S.G., Liang, K.Y., 1987. Asymptotic Properties of Maximum-Likelihood Estimators and 1188 

Likelihood Ratio Tests under Nonstandard Conditions. Journal of the American Statistical 1189 

Association 82, 605-610. 1190 

Solovieff, N., Cotsapas, C., Lee, P.H., Purcell, S.M., Smoller, J.W., 2013. Pleiotropy in complex 1191 

traits: challenges and strategies. Nat Rev Genet 14, 483-495. 1192 

Stein, J.L., Medland, S.E., Vasquez, A.A., Hibar, D.P., Senstad, R.E., Winkler, A.M., Toro, R., 1193 

Appel, K., Bartecek, R., Bergmann, O., Bernard, M., Brown, A.A., Cannon, D.M., Chakravarty, 1194 

M.M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A.J., Homuth, G., 1195 

Hottenga, J.J., Langan, C., Lopez, L.M., Hansell, N.K., Hwang, K.S., Kim, S., Laje, G., Lee, P.H., 1196 

Liu, X., Loth, E., Lourdusamy, A., Mattingsdal, M., Mohnke, S., Maniega, S.M., Nho, K., 1197 

Nugent, A.C., O'Brien, C., Papmeyer, M., Putz, B., Ramasamy, A., Rasmussen, J., Rijpkema, 1198 

M., Risacher, S.L., Roddey, J.C., Rose, E.J., Ryten, M., Shen, L., Sprooten, E., Strengman, E., 1199 

Teumer, A., Trabzuni, D., Turner, J., van Eijk, K., van Erp, T.G., van Tol, M.J., Wittfeld, K., 1200 

Wolf, C., Woudstra, S., Aleman, A., Alhusaini, S., Almasy, L., Binder, E.B., Brohawn, D.G., 1201 

Cantor, R.M., Carless, M.A., Corvin, A., Czisch, M., Curran, J.E., Davies, G., de Almeida, M.A., 1202 

Delanty, N., Depondt, C., Duggirala, R., Dyer, T.D., Erk, S., Fagerness, J., Fox, P.T., Freimer, 1203 

N.B., Gill, M., Goring, H.H., Hagler, D.J., Hoehn, D., Holsboer, F., Hoogman, M., Hosten, N., 1204 

Jahanshad, N., Johnson, M.P., Kasperaviciute, D., Kent, J.W., Jr., Kochunov, P., Lancaster, J.L., 1205 

Lawrie, S.M., Liewald, D.C., Mandl, R., Matarin, M., Mattheisen, M., Meisenzahl, E., Melle, I., 1206 

Moses, E.K., Muhleisen, T.W., Nauck, M., Nothen, M.M., Olvera, R.L., Pandolfo, M., Pike, 1207 

G.B., Puls, R., Reinvang, I., Renteria, M.E., Rietschel, M., Roffman, J.L., Royle, N.A., Rujescu, 1208 

D., Savitz, J., Schnack, H.G., Schnell, K., Seiferth, N., Smith, C., Steen, V.M., Valdes 1209 

Hernandez, M.C., Van den Heuvel, M., van der Wee, N.J., Van Haren, N.E., Veltman, J.A., 1210 

Volzke, H., Walker, R., Westlye, L.T., Whelan, C.D., Agartz, I., Boomsma, D.I., Cavalleri, G.L., 1211 

Dale, A.M., Djurovic, S., Drevets, W.C., Hagoort, P., Hall, J., Heinz, A., Jack, C.R., Jr., Foroud, 1212 

T.M., Le Hellard, S., Macciardi, F., Montgomery, G.W., Poline, J.B., Porteous, D.J., Sisodiya, 1213 

S.M., Starr, J.M., Sussmann, J., Toga, A.W., Veltman, D.J., Walter, H., Weiner, M.W., 1214 

Alzheimer's Disease Neuroimaging, I., Consortium, E., Consortium, I., Saguenay Youth Study, 1215 

G., Bis, J.C., Ikram, M.A., Smith, A.V., Gudnason, V., Tzourio, C., Vernooij, M.W., Launer, L.J., 1216 

DeCarli, C., Seshadri, S., Cohorts for, H., Aging Research in Genomic Epidemiology, C., 1217 

Andreassen, O.A., Apostolova, L.G., Bastin, M.E., Blangero, J., Brunner, H.G., Buckner, R.L., 1218 

Cichon, S., Coppola, G., de Zubicaray, G.I., Deary, I.J., Donohoe, G., de Geus, E.J., Espeseth, 1219 

T., Fernandez, G., Glahn, D.C., Grabe, H.J., Hardy, J., Hulshoff Pol, H.E., Jenkinson, M., Kahn, 1220 

R.S., McDonald, C., McIntosh, A.M., McMahon, F.J., McMahon, K.L., Meyer-Lindenberg, A., 1221 

Morris, D.W., Muller-Myhsok, B., Nichols, T.E., Ophoff, R.A., Paus, T., Pausova, Z., Penninx, 1222 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 56

B.W., Potkin, S.G., Samann, P.G., Saykin, A.J., Schumann, G., Smoller, J.W., Wardlaw, J.M., 1223 

Weale, M.E., Martin, N.G., Franke, B., Wright, M.J., Thompson, P.M., Enhancing Neuro 1224 

Imaging Genetics through Meta-Analysis, C., 2012. Identification of common variants 1225 

associated with human hippocampal and intracranial volumes. Nat Genet 44, 552-561. 1226 

Stram, D.O., Lee, J.W., 1994. Variance components testing in the longitudinal mixed effects 1227 

model. Biometrics 50, 1171-1177. 1228 

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., 1229 

Green, J., Landray, M., Liu, B., Matthews, P., Ong, G., Pell, J., Silman, A., Young, A., Sprosen, 1230 

T., Peakman, T., Collins, R., 2015. UK biobank: an open access resource for identifying the 1231 

causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779. 1232 

Temple, D.L., the CRAN Team, R., 2017. XML: Tools for Parsing and Generating XML Within R 1233 

and S-Plus. 1234 

Thompson, P.M., Stein, J.L., Medland, S.E., Hibar, D.P., Vasquez, A.A., Renteria, M.E., Toro, 1235 

R., Jahanshad, N., Schumann, G., Franke, B., Wright, M.J., Martin, N.G., Agartz, I., Alda, M., 1236 

Alhusaini, S., Almasy, L., Almeida, J., Alpert, K., Andreasen, N.C., Andreassen, O.A., 1237 

Apostolova, L.G., Appel, K., Armstrong, N.J., Aribisala, B., Bastin, M.E., Bauer, M., Bearden, 1238 

C.E., Bergmann, O., Binder, E.B., Blangero, J., Bockholt, H.J., Boen, E., Bois, C., Boomsma, 1239 

D.I., Booth, T., Bowman, I.J., Bralten, J., Brouwer, R.M., Brunner, H.G., Brohawn, D.G., 1240 

Buckner, R.L., Buitelaar, J., Bulayeva, K., Bustillo, J.R., Calhoun, V.D., Cannon, D.M., Cantor, 1241 

R.M., Carless, M.A., Caseras, X., Cavalleri, G.L., Chakravarty, M.M., Chang, K.D., Ching, C.R., 1242 

Christoforou, A., Cichon, S., Clark, V.P., Conrod, P., Coppola, G., Crespo-Facorro, B., Curran, 1243 

J.E., Czisch, M., Deary, I.J., de Geus, E.J., den Braber, A., Delvecchio, G., Depondt, C., de 1244 

Haan, L., de Zubicaray, G.I., Dima, D., Dimitrova, R., Djurovic, S., Dong, H., Donohoe, G., 1245 

Duggirala, R., Dyer, T.D., Ehrlich, S., Ekman, C.J., Elvsashagen, T., Emsell, L., Erk, S., Espeseth, 1246 

T., Fagerness, J., Fears, S., Fedko, I., Fernandez, G., Fisher, S.E., Foroud, T., Fox, P.T., Francks, 1247 

C., Frangou, S., Frey, E.M., Frodl, T., Frouin, V., Garavan, H., Giddaluru, S., Glahn, D.C., 1248 

Godlewska, B., Goldstein, R.Z., Gollub, R.L., Grabe, H.J., Grimm, O., Gruber, O., Guadalupe, 1249 

T., Gur, R.E., Gur, R.C., Goring, H.H., Hagenaars, S., Hajek, T., Hall, G.B., Hall, J., Hardy, J., 1250 

Hartman, C.A., Hass, J., Hatton, S.N., Haukvik, U.K., Hegenscheid, K., Heinz, A., Hickie, I.B., 1251 

Ho, B.C., Hoehn, D., Hoekstra, P.J., Hollinshead, M., Holmes, A.J., Homuth, G., Hoogman, M., 1252 

Hong, L.E., Hosten, N., Hottenga, J.J., Hulshoff Pol, H.E., Hwang, K.S., Jack, C.R., Jr., 1253 

Jenkinson, M., Johnston, C., Jonsson, E.G., Kahn, R.S., Kasperaviciute, D., Kelly, S., Kim, S., 1254 

Kochunov, P., Koenders, L., Kramer, B., Kwok, J.B., Lagopoulos, J., Laje, G., Landen, M., 1255 

Landman, B.A., Lauriello, J., Lawrie, S.M., Lee, P.H., Le Hellard, S., Lemaitre, H., Leonardo, 1256 

C.D., Li, C.S., Liberg, B., Liewald, D.C., Liu, X., Lopez, L.M., Loth, E., Lourdusamy, A., Luciano, 1257 

M., Macciardi, F., Machielsen, M.W., Macqueen, G.M., Malt, U.F., Mandl, R., Manoach, D.S., 1258 

Martinot, J.L., Matarin, M., Mather, K.A., Mattheisen, M., Mattingsdal, M., Meyer-1259 

Lindenberg, A., McDonald, C., McIntosh, A.M., McMahon, F.J., McMahon, K.L., Meisenzahl, 1260 

E., Melle, I., Milaneschi, Y., Mohnke, S., Montgomery, G.W., Morris, D.W., Moses, E.K., 1261 

Mueller, B.A., Munoz Maniega, S., Muhleisen, T.W., Muller-Myhsok, B., Mwangi, B., Nauck, 1262 

M., Nho, K., Nichols, T.E., Nilsson, L.G., Nugent, A.C., Nyberg, L., Olvera, R.L., Oosterlaan, J., 1263 

Ophoff, R.A., Pandolfo, M., Papalampropoulou-Tsiridou, M., Papmeyer, M., Paus, T., 1264 

Pausova, Z., Pearlson, G.D., Penninx, B.W., Peterson, C.P., Pfennig, A., Phillips, M., Pike, G.B., 1265 

Poline, J.B., Potkin, S.G., Putz, B., Ramasamy, A., Rasmussen, J., Rietschel, M., Rijpkema, M., 1266 

Risacher, S.L., Roffman, J.L., Roiz-Santianez, R., Romanczuk-Seiferth, N., Rose, E.J., Royle, 1267 

N.A., Rujescu, D., Ryten, M., Sachdev, P.S., Salami, A., Satterthwaite, T.D., Savitz, J., Saykin, 1268 

A.J., Scanlon, C., Schmaal, L., Schnack, H.G., Schork, A.J., Schulz, S.C., Schur, R., Seidman, L., 1269 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 57

Shen, L., Shoemaker, J.M., Simmons, A., Sisodiya, S.M., Smith, C., Smoller, J.W., Soares, J.C., 1270 

Sponheim, S.R., Sprooten, E., Starr, J.M., Steen, V.M., Strakowski, S., Strike, L., Sussmann, J., 1271 

Samann, P.G., Teumer, A., Toga, A.W., Tordesillas-Gutierrez, D., Trabzuni, D., Trost, S., 1272 

Turner, J., Van den Heuvel, M., van der Wee, N.J., van Eijk, K., van Erp, T.G., van Haren, N.E., 1273 

van 't Ent, D., van Tol, M.J., Valdes Hernandez, M.C., Veltman, D.J., Versace, A., Volzke, H., 1274 

Walker, R., Walter, H., Wang, L., Wardlaw, J.M., Weale, M.E., Weiner, M.W., Wen, W., 1275 

Westlye, L.T., Whalley, H.C., Whelan, C.D., White, T., Winkler, A.M., Wittfeld, K., 1276 

Woldehawariat, G., Wolf, C., Zilles, D., Zwiers, M.P., Thalamuthu, A., Schofield, P.R., Freimer, 1277 

N.B., Lawrence, N.S., Drevets, W., Alzheimer's Disease Neuroimaging Initiative, 1278 

E.C.I.C.S.Y.S.G., 2014. The ENIGMA Consortium: large-scale collaborative analyses of 1279 

neuroimaging and genetic data. Brain Imaging Behav 8, 153-182. 1280 

Thompson, R., 1973. Estimation of Variance and Covariance Components with an 1281 

Application When Records Are Subject to Culling. Biometrics 29, 527-550. 1282 

Turner, S.D., 2014. qqman: an R package for visualizing GWAS results using Q-Q and 1283 

manhattan plots. 1284 

Tyrrell, J., Jones, S.E., Beaumont, R., Astley, C.M., Lovell, R., Yaghootkar, H., Tuke, M., Ruth, 1285 

K.S., Freathy, R.M., Hirschhorn, J.N., Wood, A.R., Murray, A., Weedon, M.N., Frayling, T.M., 1286 

2016. Height, body mass index, and socioeconomic status: mendelian randomisation study 1287 

in UK Biobank. Bmj-British Medical Journal 352. 1288 

Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T., 2012a. Parcellations and 1289 

hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. 1290 

Cereb Cortex 22, 2241-2262. 1291 

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, 1292 

W.U.-M.H., 2013. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 1293 

62-79. 1294 

Van Essen, D.C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T.E., Bucholz, R., Chang, A., 1295 

Chen, L., Corbetta, M., Curtiss, S.W., Della Penna, S., Feinberg, D., Glasser, M.F., Harel, N., 1296 

Heath, A.C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., Oostenveld, R., 1297 

Petersen, S.E., Prior, F., Schlaggar, B.L., Smith, S.M., Snyder, A.Z., Xu, J., Yacoub, E., 1298 

Consortium, W.U.-M.H., 2012b. The Human Connectome Project: a data acquisition 1299 

perspective. Neuroimage 62, 2222-2231. 1300 

van Holst, R.J., de Ruiter, M.B., van den Brink, W., Veltman, D.J., Goudriaan, A.E., 2012. A 1301 

voxel-based morphometry study comparing problem gamblers, alcohol abusers, and healthy 1302 

controls. Drug and Alcohol Dependence 124, 142-148. 1303 

Varrichio, C., 2016. rowr: Row-Based Functions for R Objects. 1304 

Vilhjalmsson, B.J., Yang, J., Finucane, H.K., Gusev, A., Lindstrom, S., Ripke, S., Genovese, G., 1305 

Loh, P.R., Bhatia, G., Do, R., Hayeck, T., Won, H.H., Kathiresan, S., Pato, M., Pato, C., Tamimi, 1306 

R., Stahl, E., Zaitlen, N., Pasaniuc, B., Belbin, G., Kenny, E.E., Schierup, M.H., De Jager, P., 1307 

Patsopouos, N.A., Mc Carroll, S., Daly, M., Purce, S., Chasman, D., Neale, B., Goddard, M., 1308 

Visscher, P.M., Kraft, P., Patterson, N., Price, A.L., Consortium, P.G., Inherited, D.B.R., 2015. 1309 

Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. American 1310 

Journal of Human Genetics 97, 576-592. 1311 

Visscher, P.M., 1998. On the sampling variance of intraclass correlations and genetic 1312 

correlations. Genetics 149, 1605-1614. 1313 

Visscher, P.M., Hemani, G., Vinkhuyzen, A.A.E., Chen, G.B., Lee, S.H., Wray, N.R., Goddard, 1314 

M.E., Yang, J., 2014. Statistical Power to Detect Genetic (Co)Variance of Complex Traits 1315 

Using SNP Data in Unrelated Samples. Plos Genetics 10. 1316 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 58

Wei, T., Simko, V., 2017. R package "corrplot": Visualization of a Correlation Matrix. 1317 

Wickham, H., 2007. Reshaping data with the reshape package. Journal of Statistical Software 1318 

21, 1-20. 1319 

Wickham, H., 2009. Elegant Graphics for Data Analysis. Springer-Verlag, New York. 1320 

Wickham, H., 2017a. tidyverse: Easily Install and Load 'Tidyverse' Packages. 1321 

Wickham, H., Francois, R., 2015. dplyr: A Grammar of Data Manipulation. 1322 

Wickham, H.H., J.; Francois, R., 2017b. readr: Read Rectangular Text Data. 1323 

Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Abdellaoui, A., Adams, 1324 

M.J., Agerbo, E., Air, T.M., Andlauer, T.M.F., Bacanu, S.A., Baekvad-Hansen, M., Beekman, 1325 

A.F.T., Bigdeli, T.B., Binder, E.B., Blackwood, D.R.H., Bryois, J., Buttenschon, H.N., Bybjerg-1326 

Grauholm, J., Cai, N., Castelao, E., Christensen, J.H., Clarke, T.K., Coleman, J.I.R., Colodro-1327 

Conde, L., Couvy-Duchesne, B., Craddock, N., Crawford, G.E., Crowley, C.A., Dashti, H.S., 1328 

Davies, G., Deary, I.J., Degenhardt, F., Derks, E.M., Direk, N., Dolan, C.V., Dunn, E.C., Eley, 1329 

T.C., Eriksson, N., Escott-Price, V., Kiadeh, F.H.F., Finucane, H.K., Forstner, A.J., Frank, J., 1330 

Gaspar, H.A., Gill, M., Giusti-Rodriguez, P., Goes, F.S., Gordon, S.D., Grove, J., Hall, L.S., 1331 

Hannon, E., Hansen, C.S., Hansen, T.F., Herms, S., Hickie, I.B., Hoffmann, P., Homuth, G., 1332 

Horn, C., Hottenga, J.J., Hougaard, D.M., Hu, M., Hyde, C.L., Ising, M., Jansen, R., Jin, F., 1333 

Jorgenson, E., Knowles, J.A., Kohane, I.S., Kraft, J., Kretzschmar, W.W., Krogh, J., Kutalik, Z., 1334 

Lane, J.M., Li, Y., Li, Y., Lind, P.A., Liu, X., Lu, L., MacIntyre, D.J., MacKinnon, D.F., Maier, 1335 

R.M., Maier, W., Marchini, J., Mbarek, H., McGrath, P., McGuffin, P., Medland, S.E., Mehta, 1336 

D., Middeldorp, C.M., Mihailov, E., Milaneschi, Y., Milani, L., Mill, J., Mondimore, F.M., 1337 

Montgomery, G.W., Mostafavi, S., Mullins, N., Nauck, M., Ng, B., Nivard, M.G., Nyholt, D.R., 1338 

O'Reilly, P.F., Oskarsson, H., Owen, M.J., Painter, J.N., Pedersen, C.B., Pedersen, M.G., 1339 

Peterson, R.E., Pettersson, E., Peyrot, W.J., Pistis, G., Posthuma, D., Purcell, S.M., Quiroz, 1340 

J.A., Qvist, P., Rice, J.P., Riley, B.P., Rivera, M., Saeed Mirza, S., Saxena, R., Schoevers, R., 1341 

Schulte, E.C., Shen, L., Shi, J., Shyn, S.I., Sigurdsson, E., Sinnamon, G.B.C., Smit, J.H., Smith, 1342 

D.J., Stefansson, H., Steinberg, S., Stockmeier, C.A., Streit, F., Strohmaier, J., Tansey, K.E., 1343 

Teismann, H., Teumer, A., Thompson, W., Thomson, P.A., Thorgeirsson, T.E., Tian, C., 1344 

Traylor, M., Treutlein, J., Trubetskoy, V., Uitterlinden, A.G., Umbricht, D., Van der Auwera, 1345 

S., van Hemert, A.M., Viktorin, A., Visscher, P.M., Wang, Y., Webb, B.T., Weinsheimer, S.M., 1346 

Wellmann, J., Willemsen, G., Witt, S.H., Wu, Y., Xi, H.S., Yang, J., Zhang, F., eQtlgen, andMe, 1347 

Arolt, V., Baune, B.T., Berger, K., Boomsma, D.I., Cichon, S., Dannlowski, U., de Geus, E.C.J., 1348 

DePaulo, J.R., Domenici, E., Domschke, K., Esko, T., Grabe, H.J., Hamilton, S.P., Hayward, C., 1349 

Heath, A.C., Hinds, D.A., Kendler, K.S., Kloiber, S., Lewis, G., Li, Q.S., Lucae, S., Madden, 1350 

P.F.A., Magnusson, P.K., Martin, N.G., McIntosh, A.M., Metspalu, A., Mors, O., Mortensen, 1351 

P.B., Muller-Myhsok, B., Nordentoft, M., Nothen, M.M., O'Donovan, M.C., Paciga, S.A., 1352 

Pedersen, N.L., Penninx, B., Perlis, R.H., Porteous, D.J., Potash, J.B., Preisig, M., Rietschel, M., 1353 

Schaefer, C., Schulze, T.G., Smoller, J.W., Stefansson, K., Tiemeier, H., Uher, R., Volzke, H., 1354 

Weissman, M.M., Werge, T., Winslow, A.R., Lewis, C.M., Levinson, D.F., Breen, G., Borglum, 1355 

A.D., Sullivan, P.F., Major Depressive Disorder Working Group of the Psychiatric Genomics, 1356 

C., 2018. Genome-wide association analyses identify 44 risk variants and refine the genetic 1357 

architecture of major depression. Nat Genet 50, 668-681. 1358 

Wright, I.C., McGuire, P.K., Poline, J.B., Travere, J.M., Murray, R.M., Frith, C.D., Frackowiak, 1359 

R.S., Friston, K.J., 1995. A voxel-based method for the statistical analysis of gray and white 1360 

matter density applied to schizophrenia. Neuroimage 2, 244-252. 1361 

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A., 1362 

Heath, A.C., Martin, N.G., Montgomery, G.W., Goddard, M.E., Visscher, P.M., 2010. 1363 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/


 59

Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42, 1364 

565-569. 1365 

Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011. GCTA: a tool for genome-wide 1366 

complex trait analysis. American Journal of Human Genetics 88, 76-82. 1367 

Zhang, F., Chen, W., Zhu, Z., Zhang, Q., Nabais, M.F., Qi, T., Deary, I.J., Wray, N.R., Visscher, 1368 

P.M., McRae, A.F., Yang, J., 2019. OSCA: a tool for omic-data-based complex trait analysis. 1369 

Genome Biology 20, 107. 1370 

 1371 

 1372 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696864doi: bioRxiv preprint 

https://doi.org/10.1101/696864
http://creativecommons.org/licenses/by-nc/4.0/

