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27  Abstract
28 The recent availability of large-scale neuroimaging cohorts (here the UK Biobank

29  [UKB] and the Human Connectome Project [HCP]) facilitates deeper characterisation of the
30 relationship between phenotypic and brain architecture variation in humans. We tested the
31  association between 654,386 vertex-wise measures of cortical and subcortical morphology
32  (from Tiw and T2w MRI images) and behavioural, cognitive, psychiatric and lifestyle data.
33  We found a significant association of grey-matter structure with 58 out of 167 UKB

34  phenotypes spanning substance use, blood assay results, education or income level, diet,
35 depression, being a twin as well as cognition domains (UKB discovery sample: N=9,888).

36 Twenty-three of the 58 associations replicated (UKB replication sample: N=4,561; HCP,

37 N=1,110). In addition, differences in body size (height, weight, BMI, waist and hip

38 circumference, body fat percentage) could account for a substantial proportion of the

39  association, providing possible insight into previous MRI case-control studies for psychiatric
40 disorders where case status is associated with body mass index. Using the same linear

41  mixed model, we showed that most of the associated characteristics (e.g. age, sex, body

42  size, diabetes, being a twin, maternal smoking, body size) could be significantly predicted
43  using all the brain measurements in out-of-sample prediction. Finally, we demonstrated

44  other applications of our approach including a Region Of Interest (ROI) analysis that retain

45  the vertex-wise complexity and ranking of the information contained across MRI processing

46  options.

47

48  Highlights

49 e Our linear mixed model approach unifies association and prediction analyses for
50 highly dimensional vertex-wise MRI data
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Grey-matter structure is associated with measures of substance use, blood assay
results, education or income level, diet, depression, being a twin as well as cognition
domains

Body size (height, weight, BMI, waist and hip circumference) is an important source
of covariation between the phenome and grey-matter structure

Grey-matter scores quantify grey-matter based risk for the associated traits and
allow to study phenotypes not collected

The most general cortical processing (“fsaverage” mesh with no smoothing)

maximises the brain-morphometricity for all UKB phenotypes
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60 1. Introduction

61 The field of MRI studies is at a turning point owing to the recent availability of large data
62  sets to researchers, including the UKB (Miller et al., 2016) and HCP (Van Essen et al., 2013;
63  VanEssen et al., 2012b) samples. These datasets promote not only the replication of

64  previous findings, but also expand the range of phenotypes available for study (e.g.

65  psychiatric symptoms and lifestyle factors). In addition, such data sets can offer insights into
66  the brain markers that may be shared between phenotypes, helping to draw new links

67  between brain and behaviour. Finally, these community samples can complement the

68  typical case-control paradigm by identifying confounders of MRI analyses or by studying

69 related traits (e.g. cognition domains relevant in Alzheimer’s disease).

70 Here, we introduce a set of analyses that leverages large sample sizes to fully exploit the
71  spatial resolution of MRI images using linear mixed models (LMM) implemented in the OSCA
72 software tool (Zhang et al., 2019). Our high-resolution approach (i.e. vertex-wise

73  morphological measures) has the advantage of retaining all the brain complexity data of

74  current MRI acquisitions rather than relying on prior-based data reduction techniques (e.g.
75  the region-of-interest [ROI] approach), and allows for the elucidation of precise brain-

76 phenotype associations.

77 Specifically, we used an efficient implementation of LMMs to estimate the multivariate
78  correlation of 600,000+ cortical and subcortical measurement at vertices extracted from T1
79  weighted (T1w) and T2 weighted (T2w) MRI images with a phenotype of interest (previously
80  coined morphometricity (Sabuncu et al., 2016), here we prefer the more specific brain-

81  morphometricity). We extended this framework to also estimate the proportion of variance
82  in a trait associated with the vertex-wise data from specific brain features, hemispheres and

83  regions of interest. We further introduce multi-trait LMMs that can further quantify shared
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brain-morphometricity (grey-matter correlation) between traits, reflecting causal, bi-
directional or confounded relationships. In addition, we show how LMMs can estimate the
joint effects of all brain features on a trait to construct a trait predictor from brain features
(grey-matter score) that can be applied and tested in an independent sample. As such, our
approach unifies association studies and prediction analyses, in order to unravel the brain-
phenome relationships (Rosenberg et al., 2018).

We analysed two of the largest MRI datasets available (UKB [split into discovery N=9,888
and replication N=4,561] and HCP [N=1,110]) and considered a wide range of phenotypes
spanning demographics, blood cell composition, diet, psychiatric and traumatic history,
physical capacities or substance use. We have released our image processing and analysis
software/scripts as well as all summary statistics to facilitate replication and re-use of the

results.

2. Materialsand Methods
2.1.UK Biobank (UKB) sample
2.1.1. Participantsrecruitment, inclusion and exclusion criteria
The UKB participants were unselected volunteers from the United Kingdom (Sudlow
et al., 2015). Participants who had participated in the baseline UKB data collection were
invited to undergo the imaging study if they lived within travelling distance of the imaging
centre. Exclusion criteria were limited to: presence of metal implant, recent surgery and

health conditions problematic for MRI imaging (e.g. hearing, breathing problems or extreme

claustrophobia) (Miller et al., 2016).

2.1.2. Tland T2 FLAIR image collection
MRI images were collected in Cheadle (greater Manchester) using a 3T Siemens

Skyra machine (software platform VD13) and a 32-channel head coil (Miller et al., 2016).
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110 The T1 weighted (T1w) images were acquired over 4:54 minutes, voxel size 1.0x1.0x1.0mm,
111 matrix of 208x256x256mm, using a 3D MPRAGE sequence (Mugler and Brookeman, 1990),
112 sagittal orientation of slice acquisition, R=2 (in plane acceleration factor), TI/TR=880/2000
113 ms (Miller et al., 2016). The T2 FLAIR acquisition lasted 5:52 minutes, voxel size 1.05x1.0x1.0
114  mm, matrix of 192x256x256 voxels, 3D SPACE sequence (Mugler et al., 2000), sagittal

115  orientation, R=2, partial Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical (Miller et

116  al., 2016).

117
118 2.1.3. Image processing
119 We processed the T1lw and T2 FLAIR images using the ENIGMA (Thompson et al.,

120  2014) protocols for cortical surface and thickness (Stein et al., 2012) as well as subcortical
121  structure (Gutman et al., 2013; Gutman et al., 2012). When both Tlw and T2 FLAIR were
122 available for a participant, we processed them together to enhance the tissue segmentation
123 in FreeSurfer 6.0 (Fischl, 2012), hence a more precise skull stripping and pial surfaces

124  definition. When the T2 FLAIR was not acquired or not usable, we processed the T1lw image
125 by itself. We retained the full image information by using the (fsaverage) vertex-wise level
126  data in the cortical surface and thickness analyses. This corresponded to 149,960 cortical
127  vertices in the left hemisphere and 149,933 in the right hemisphere, for each modality. In
128  addition, we extracted subcortical radial thickness and log Jacobian determinant (that

129  measures surface deformation from a template, somewhat analogous to a relative surface
130 area(Roshchupkin et al., 2016)) for 27,300 vertices per hemisphere mapping 7 subcortical
131  volumes (hippocampus, putamen, amygdala, thalamus, caudate, pallidum and accumbens)
132  (Gutman et al., 2013). Overall, the imaging data used in the analyses comprised 654,386

133 vertex measurements per individual: 299,893 describing cortical thickness, another 299,893
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134  for cortical surface area, 27,300 for subcortical thickness and 27,300 for subcortical

135  curvature.

136 For comparison with previous ENIGMA publications, we also extracted cortical

137  thickness and surface area of 34 cortical regions delimited by the Desikan atlas {(Desikan et
138  al., 2006; Fischl et al., 2004), as described on the ENIGMA website. To further the

139  comparison of processing options, we extracted cortical measurements from smoothed
140 fsaverage meshes (fwhm 5, 10, 15, 20 and 25mm) as well as {unsmoothed) coarser meshes
141 provided by FreeSurfer: fsaverage6 (149,091 vertices for both hemispheres and modalities),

142  fsaverage5 (37,455 vertices), fsaverage4 (9,457 vertices) and fsaverage3 (2,414).

143
144 2.1.4. Discovery Sample description
145 At the time of download (July 2017), Tlw images were available for 10,102

146  participants of the UK Biobank (UKB) project. None of the participants had withdrawn

147  consent after the data was collected. We excluded 175 participants with T1w images

148 labelled as unusable by the UKB, leaving 9,928 MRI scans to process. T2 FLAIR images were
149  available for 9,755 of those. The FreeSurfer processing failed or did not complete within 48
150  hours for a handful of participants: 37 for cortical processing, 19 for subcortical, including 17
151  for whom both processing failed. For simplicity, we chose not to re-run image processing on
152  these participants as their exclusion should have a minimal impact on the results obtained
153  from the full sample. Excluded individuals are described in Dataset S1. Our final sample

154  comprised 9,890 participants with usable cortical data, 9,908 with subcortical data and

155 9,888 with both cortical and subcortical data. This sample consisted of 9,888 adults aged

156  62.5 on average (SD=7.5, range 44.6—79.6) and comprised 52.4% of female participants.
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We excluded 391 participants with extreme brains (outliers) or likely to have a large effect
on the analyses (see Appendix S1 for details of QC and Dataset S1 for description of the

excluded participants).

2.15. Variablesused
We included 168 variables grouped in several categories: demographics, cognition,

physical test, psychiatry, recent feelings, stress and traumas, substance use, miscellaneous,
brain measurements, blood assay and diet (see Dataset S2 for details). When longitudinal
observations were available for a participant, we used the one collected as part of the

imaging assessment (when available) or the closest in time.

2.1.6. Replication Sample description
Replication data set was downloaded in May 2018 and consisted in an additional

4,942 participants with a T1lw image. Image processing and phenotype selection were
identical to that of the discovery sample. This led to the exclusion of 381 participants whose
processing failed and 238 excluded from QC. The final sample (N=4,323) included in the
replication analysis was on average 63.1 years old (SD=7.46, range 46.1-80.3) with 52.1% of
females. The age difference between discovery and replication sample was small but
significant (p=9.02e-7). See Dataset S1 for a full description of replication participants (final,
QCed and failed processing) in addition to a comparison of the discovery and replication

samples.

2.2.Human Connectome Project (HCP) sample
2.2.1. Participantsrecruitment, inclusion and exclusion criteria
HCP participants were recruited from ongoing longitudinal studies of the Missouri

Family Study {(Edens et al., 2010; Sartor et al., 2011) and had to be between 22 and 35 years
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183  of age. Inclusion and exclusion criteria have been described previously (Van Essen et al.,

184  2012b).

185

186 2.2.2. Tland T2 weighted image collection

187 Tiw and T2 weighted (T2w) images were collected at the Washington University (St

188  Louis, Missouri) on a 3T Siemens Skyra scanner using a standard 32-channel head coil (Van
189  Essenet al,, 2013; Van Essen et al., 2012b). Two T1w images were acquired, each over 7
190  minutes and 40 seconds with a voxel size of 0.7x0.7x0.7mm, matrix/FOV of

191  224x224x224mm using a 3D MPRAGE sequence {Mugler and Brookeman, 1990),

192  TR/TE/TI=2400/2.14/1000ms, flip angle 8degrees, R=2, sagittal orientation of slice

193  acquisition (Glasser et al., 2013). Similarly, two T2w images were acquired over 8:24 min
194  each, voxel size 0.7x0.7x0.7mm, matrix of 224x224x224mm, 3DSPACE sequence (Mugler et

195  al., 2000), sagittal orientation, R=2, TR/TE=3200/565, no fat suppression pulse.

196
197 2.2.3. Image processing
198 The HCP team {Glasser et al., 2013; Marcus et al., 2013; Van Essen et al., 2012a) pre-

199  processed the structural scans to facilitate scan comparison across individuals, removing
200  spatial artefacts and improve T1w and T2w alignment using FSL (Jenkinson et al., 2002;

201  Jenkinson et al., 2012) and FreeSurfer (Fischl, 2012). When both passed HCP quality control
202  (QQC), T1w and T2w images they processed them together in FreeSurfer 6.0 (Fischl, 2012),
203  otherwise data extraction relied on a single scan (Glasser et al., 2013). Participants with

204  poor quality Tlw and T2w scans were re-imaged (Glasser et al., 2013). Cortical processing
205  (recon-all procedure in FreeSurfer) was also performed by the HCP team and included down
206  sampling to 1mm size voxels and 256x256x256 matrix, aided registration using customised

207  brain mask, and two manual steps performed outside of the recon-all procedure to enhance

10
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208  white matter and pial reconstruction (Glasser et al., 2013). We downloaded the processed
209  images (Marcus et al., 2011) and performed ENIGMA shape analysis (Gutman et al., 2013;

210  Gutman et al., 2012) to extract vertex-wise measurements of the subcortical thickness and
211  curvature. As for the UKB sample, a total of 654,386 vertex measurements were extracted
212  foreach individual. We excluded 24 outliers with extreme brains or likely to bias the

213  analyses (see Appendix S1 and Dataset S2 for description of excluded participants).

214
215 2.2.4. Sample description
216 As per the HCP “1200 Subjects data release” (1% of March 2017), 1,113 participants

217  were scanned on the 3T MRI and underwent extensive behavioural testing. Participants
218  were mostly (54.4%) females and were 28.8 years old on average {(SD=3.7, range 22-37).
219  The sample comprised 455 twins (41.0%), 286 monozygotic twins (138 complete pairs) and
220 169 dizygotic twins (78 complete pairs). In addition, siblings and half siblings of twins were

221  also recruited which resulted in only 445 distinct families in the sample.

222
223 2.2.5. Variables used
224 For the HCP sample, we included 161 variables, some of which were also available in

225  the UKB (e.g. demographics, cognition, physical assessment, blood assay or psychiatry). We
226  also included interesting variables only present in the HCP sample: personality, emotion, in
227  depth mental health assessment (Semi-Structured Assessment for the Genetics of

228  Alcoholism (SSAGA) and Adult Self Report (ASR) (Achenbach, 2009; Achenbach et al., 2003)),
229  detailed cognition, Pittsburgh sleep index (PSQI) (Buysse et al., 1989), or results from the
230  urine drug tests (see Dataset S2).

231

232 2.3.Variance component analyses and brain relatedness matrix calculation

11
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233 2.3.1. Thelinear mixed mode
234
235 We aimed to estimate the variance of a trait accounted for by brain features, which

236  Sabuncu et al., called “morphometricity” (Sabuncu et al., 2016). To do so we consider the
237  following linear mixed model that allows estimating the association between a phenotype
238  and M vertices even when M is greater than the sample size (N):

239 Y=XB+b+e (1)

240  where Yy ; is the phenotype considered with N the number of observations, Xy . is a matrix
241 of c covariates (as such does not include any vertex variable), B 1 is a vector of fixed effects,
242  bis a random effect with b~N(0, Bcﬁ) and e is the error term with e~V (0, 162). In this
243 formulation Iy y is the identity matrix as we assume the error terms to be independent and
244 identically distributed. By y is a matrix of variance-covariance between individuals

245  calculated from all vertex measurements, which we will refer to as the brain relatedness
246  matrix (BRM). Off diagonal elements of the BRM can be interpreted as a measure of brain
247  similarity between two individuals (see S2 Appendix). Finally, 6% and o are the variance
248  components for the random effects e and b. For context, this model is analogous to that
249  used in complex trait genetics to estimate SNP-based heritability, where a Genetic

250 Relatedness Matrix (GRM) replaces the BRM (Yang et al., 2010; Yang et al., 2011). The

251  elementi,j of the BRM can be calculated as the inner product of brain measurements of

M .
_ 21 Zim Zj,m

252 individualsiandj: b;; = . Here, z; ,, represents the value of vertex m for

253  individual i centred and standardised by its standard deviation over all individuals, z; , the
254  value of vertex m for individual j centred and standardised over all individuals, M is the total

255  number of vertices or brain features included. We can equivalently use matrix notation,

Zr . . . : :
256  then:B = V,' with Zy y a matrix of the centred and standardised brain observations, for N

12
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257  individuals and M brain features. We are interested in estimating the parameters 62 and o}
258  so we can derive the proportion of the trait variance captured by the brain similarities:

2
259 RZ=_7b —. To do so we used the REstricted Maximum Likelihood (REML) method

o3+ o2

260  (Patterson and Thompson, 1971) implemented in OSCA.

261
262 2.3.2. Mixed model with several random effects
263 Here, we are dealing with several types of brain measurements: cortical vs.

264  subcortical or thickness vs. surface area for instance. To accommodate the different

265  modalities, we can extend the LMM presented above to jointly estimate the variance

266  accounted for by the different types of measurements: Y=XB+b; +b, +b; +b, + e
267  now, with bi~]\f(0, Biof,i) ,1 € [1;47], and all other parameters left unchanged. Note that
268  since all b; are estimated jointly, each estimate is conditional on the other three parameters
269 fitted in the model. We constructed the BRM B4 from the cortical thickness measurements,
270 B, from the cortical surface area, B3 from the subcortical radial thickness and B, from the

271  subcortical curvature. The variance components 63; quantify the specific variance attributed

2 2 2 2
b1+ 0b2+0hat Oba

272 to each type of measurement and the quantity — - represents the

0}, +0f,+ 085+ 0f 4+ 0%
273  proportion of the trait variance captured by all our brain measurements not biased towards

274  the cortical measurements.

275
276 2.3.3. Bivariate models to estimate grey-matter correlation
277 Finally, we are interested in estimating the correlation {or covariance) between two

278  traits that is attributable to the same brain similarities, which we call grey-matter
279  correlation rgyv. This can be achieved by fitting a bivariate LMM, a direct extension of the

280 models presented above (Thompson, 1973). We used the AI-REML algorithm in GCTA (Lee

13
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et al., 2012) as the multivariate option is not yet available in OSCA. We restricted our
bivariate analysis to variables that were significantly associated with grey-matter structure.

We derived the residual correlations (rg) from the phenotypic (r) and grey-matter

r=-rgm* R2xR2
—— N~ *  with R?and RZ the brain-
(1-R+*(1-R3)

correlations estimated by GCTA: rg =

morphometricity of the two traits included in the bivariate model. For significance testing,
we derived SE of rg) from a first order Taylor series approximation (delta method, see

Appendix S3 and (Bijma and Bastiaansen, 2014; Lee et al., 2012; Visscher, 1998)).

2.4.Covariates used
Our baseline model included commonly used covariates in MRI analyses: acquisition

variables (UKB imaging wave, processing with T1lw or with combined T1w+T2w), age, sex,
and head size (intra-cranial volume (ICV) as well as left and right total cortical surface area
and cortical thickness that correspond to the measurements used here). In a follow-up
analysis, we included other covariates such as height, weight and BMI to evaluate their
confounding effect on the reported associations. We reported the associations between
phenotypes and covariates using the adjusted R-squared calculated from linear models
estimated in R3.3.3 (R Development Core Team, 2012). As some of the covariates are
correlated we report the R’ calculated by adding progressively the covariates (same order as
above). Thus, the fixed effect R* should not be compared between covariates, but can be
contrasted between phenotypes or with the random effect R”. We compared the covariates’
associations with our phenotypes of interest in the UKB discovery and replication samples

and found highly concordant results between the two samples (Figure S1). Thus, any brain-

14
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303 morphometricity difference found between UKB discovery and replication sample should
304 reflect a true difference in the phenotype grey-matter structure association.

305 2.5.Test statisticsin mixed linear models
306 We tested whether the variance accounted for by the brain similarities was

307 significantly different from O using a likelihood ratio test on nested models (with and

308 without the random effect). The test statistic follows a chi-square distribution with x degree
309  of freedom (x being the number of variance components tested) for a ¢ value inside the
310 parameter space. However, when testing HO: crg =0vs.H1: 012 > 0, the p-value should be
311 interpreted with caution as the estimator may not be asymptotically normally distributed
312  because O is a boundary of the parameter space (Self and Liang, 1987; Stram and Lee, 1994).
313  Some have suggested that the p-value could be better approximated using a mixture of chi-
314  square distributions in the test of significance (Self and Liang, 1987; Stram and Lee, 1994).
315 However, a 50:50 mixture has been shown to be sometimes inappropriate (Crainiceanu and
316 Ruppert, 2004; Pinheiro and Bates, 2000) as the test relies on assumptions often not met in
317 LMM (such as i.i.d. observations) (Crainiceanu and Ruppert, 2004). Thus, we preferred using
318 a2 (xdf.), the only consequence being a less powerful hence conservative test (Bates et
319  al,, 2015; Crainiceanu and Ruppert, 2004; Pinheiro and Bates, 2000). Such test is

320 implemented in OSCA (Zhang et al., 2019), as well as in GCTA (Yang et al., 2011).

321
322 2.6.Satistical power of the current analyses
323 In the UKB discovery sample (assuming N=9,500), we have 80% power to detect an

324  effect >2.2% of variance accounted for by the combined BRM (gathering all features), while
325 taking into account multiple testing (pvalue significance threshold p<0.05/175, to ensure a
326  type | error<5%). In the HCP sample (assuming N=1,000), considering the number of tests

327  performed (p<0.05/160), we would need an effect of 20% of variance accounted for to yield
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328 the same power (Appendix S4 and (Visscher et al., 2014)). For brain correlations, the

329 calculation of statistical power depends on the sample size (set to 9,500), the variance

330 accounted for in each phenotype (we chose 5%), the phenotypic correlation (set to r=0.2),
331 the significance threshold (p<4.2e-5, based on our number of tests) as well as the variance
332 of off-diagonal elements of the BRM var(B;;) (0.00096, for the BRM of all brain features)
333  (Visscher et al., 2014). In this example, we had 80% power to detect a brain correlation

334  greater than 0.35, but only a 7% power for a brain correlation of 0.2. Using a sample of

335 N=1,000, as per the HCP, and selecting phenotypes with >20% variance accounted for

336  (everything else being equal), we have a 1% power to detect a brain correlation of 0.35, and

337  we would need a brain correlation greater than 0.99 to achieve 80% power.

338
339 2.7.Vertex level associations of specific brain features and regions
340 We conducted post-hoc analyses to identify associations with each type of brain

341  measurement (i.e. left or right measurements of cortical thickness, cortical surface area,
342  subcortical curvature and subcortical thickness) in each cortical (Desikan-Killiany atlas

343  (Desikan et al., 2006)) or subcortical region. For this, we used BRMs specific to each region
344  and brain measurement. Brain regions of interest (ROI) contained between 272 and 12,179
345  vertices in the left cortex, and between 369 and 11,878 for the right hemisphere. The

346  smallest ROl was the frontal pole and the largest the superior frontal gyrus. Subcortical
347  structures ranged from 930 vertices (Accumbens) to 2502 (Caudate, Hippocampus and

348  Putamen) (Gutman et al., 2013; Gutman et al., 2012). We used the same covariates as in
349  previous LMMs.

350

351 2.8.In sample prediction (10-fold cross-validation)
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352 We derived brain prediction scores using the Best Linear Unbiased Predictors (BLUP)
353  (Henderson, 1950, 1975; Robinson, 1991) and evaluated them in the UKB discovery sample
354  using a 10-fold cross-validation design. Note that the BLUP predictor was derived from the
355  LMM (REML) analysis described above. When measuring the correlation between grey-

356  matter scores and observed value, we controlled for the same covariates used in the LMMs
357 and included dummy variables to account for hypothetical differences between the groups
358 selected in the cross-validation design. BLUP estimates the predicted values of the random
359  effects (here, b, see equation 1) instead of relying on the estimates of fixed effects for all
360  brain features (Goddard et al., 2009; Robinson, 1991). In short, BLUP scores integrate the
361 correlations between vertices to derive weights that correspond to the joint effects of all
362  the vertices. BLUP have desirable statistical properties: they are unbiased and are best

363  predictors in the sense that they minimise the mean square error in the class of linear

364  unbiased predictors (Henderson, 1975; Robinson, 1991), leading to more accurate

365  prediction than other linear predictors (Robinson et al., 2017; Vilhjalmsson et al., 2015).
366  Among others, BLUP scores are routinely used in animal breeding (Robinson, 1991),

367  prediction of individual genetic risk (Robinson et al., 2017) as well as to calculate

368 transcriptomic or methylation age (Peters et al., 2015). BLUP predictors can be calculated in
369  OSCA (Zhang et al., 2019) from summary statistics (analogous to GCTA-SBLUP (Robinson et

370 al., 2017)) and known correlation between vertex measurements.

371
372 2.9.0ut of sample prediction
373 Finally, we derived BLUP brain prediction scores constructed from the UKB discovery

374  sample, and applied them to the UKB replication and HCP participants. We evaluated the
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375  predictive performance using the correlation between grey-matter score and corresponding

376  observed phenotype, controlling for covariates used in the LMMs.

377
378 2.10. Application of LMMs to identify “ best” cortical processing
379 Here, we defined as “best” processing the MRI cortical processing that maximises

380 the association with a trait of interest, from the minimal number of features (vertices).

381  Thus, we evaluated which of our 10 FreeSurfer processing (fsaverage — no smoothing;

382 fsaverage — smoothing fwhmb5, 10, 15, 20, 25; fsaverage6, 5, 4, 3 — no smoothing; ENIGMA
383 ROl processing; see 2.1.3) maximised the brain-morphometricity, for all UKB traits

384  considered.

385 As the ENIGMA processing only consists of 150 measurements (14 subcortical volumes
386 measurements, cortical surface or thickness averaged over 78 ROI defined by the Desikan-
387 Killiany atlas (Desikan et al., 2006)) we used generalised linear models (GLMs — multiple

388  regression) to estimate the brain-morphomometricity. For context, the LMM approach used
389 inthe vertex level analyses is a direct extension of GLMs that allows the number of features

390 to exceed the number of participants (p>N).

391
392 211 Data and code availability statement
393 Data used in this manuscript is held and distributed by the HCP and UKB teams. We

394  have released the scripts used in image processing and LMM analyses to facilitate

395  replication and dissemination of the results (see URLs). We have also released BLUP weights
396 to allow meta-analyses or application of the grey-matter scores in independent cohorts.
397

398 3. Results
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399 3.1.Associations between phenotypes and all grey-matter structure vertices

400 For the phenotypes of interest, we summarised in circular barplots (Figure 1) the
401  association (R?) with all 654,386 vertex-wise grey-matter measures extracted during image
402 processing, as well as with covariates (acquisition, age, sex and brain/head size variables -
403  see Methods). The R* may be interpreted as the proportion of variance in a phenotype
404  captured by all grey-matter morphology. Figure 1 shows only the significant results

405  (Bonferroni significance threshold; puks_discovery=0.05/175=2.8e-4, p.cp=0.05/160=2.9¢-4)
406  with the full results available in Dataset S3, $4 (see Figure S2 for positive control

407  associations).

408 Grey-matter structure was strongly associated with age (R%yxs=0.77, SE=0.018;

409  R’ucp=0.88, SE=0.10), sex (R*uks=0.66, SE=0.012; R’4»=0.56, SE=0.059), as well as height
410  (R°uks=0.22, SE=0.011; R*4cp=0.47, SE=0.060) weight (R°yks=0.47, SE=0.019; R’yp=0.81,

411  SE=0.099) and BMI (RZUKB=O.57, SE=0.024; RZHcp:O.QZ, SE=0.12). Measures of build, body fat
412 and metabolism were also associated with grey-matter structure (R%yks=0.45, SE=0.019 with
413 waist circumference, R*yxs=0.24, SE=0.013 with body fat percentage, R*uxs=0.19, SE=0.009
414  with basal metabolic rate; corresponding measures not available in the HCP dataset). In
415  addition, grey-matter structure was associated with measures of strength in both samples
416  (e.g. hand grip: R%uks=0.074, SE=0.009; R%cp=0.23, SE=0.58) and levels of physical activity
417  (R%uksranging between 0.059-0.25, not-significant in the HCP).

418 Grey-matter structure was further associated with cognitive domains (R’yks ranging
419  in0.048-0.13, R%ycp in 0.34-0.57), smoking (R%yke ranging in 0.11-0.28, R%ycp in 0.45-0.65),
420  alcohol consumption (R’uks ranging between 0.071-0.14, R*4cp=0.63, SE=0.13), educational
421  attainment (R*y=0.097, SE=0.029; R’4cp=0.39, SE=0.11) and income level (R =0.042,

422 SE=0.014; R’4cp=0.32, SE=0.10). Associations with diet, blood assay results, depression score
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423  and symptoms, diabetes, bone density, lifestyle and maternal smoking around birth were
424  only observed in the UKB, the phenotypes not being available in the HCP (Figure 1).

425 We replicated 23 of the 58 associations listed above in the UKB replication sample
426  (p<0.05/58; Figure S3a). Replication of blood assay phenotypes was limited due to the small
427  sample sizes (N~300), being only collected for the first imaging waves. Beyond statistical
428  significance that depends on sample and effect sizes, the brain-morphometricity estimates
429  were highly similar between the discovery and replication UKB samples (cor=0.95, excluding
430  blood assay, Figure S3b). Full replication results have been added to Dataset S4.

431 In the UKB {discovery), results and conclusions did not change regardless of fitting a
432  single random effect or several random effects each corresponding to one of the grey-

433  matter modalities (i.e. cortical thickness, cortical surface, subcortical thickness, and

434  subcortical area) (Figure S4). In the HCP, we observed 3 extra significant associations

435  between grey-matter structure and cocaine {(urine test), self-reported number of times used
436  cocaine or hallucinogens. Similar to the association found with opiate {urine test), the small
437  number of positive participants warrants replication. We chose not to include these 3

438  variables in the subsequent analyses.
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440  Figure 1: Circular barplot of the associations (R?) between phenotypes and grey-matter structure vertices (morphometricity)

441  For clarity, we only plotted the significant associations in the UKB discovery (panel a) and HCP sample (panel b). We applied Bonferroni
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correcting to account for multiple testing in each sample. The black bars represent the 95% confidence intervals of the morphometricity
estimates. For context, we also present the association R” between phenotypes and covariates of the baseline model, as per the legend under
the barplot. As some covariates may be correlated, the R? was calculated by adding progressively the covariates in that order: acquisition and
processing variables (labelled “other”), age, sex and head size (ICV, total cortical thickness and surface area). Age and sex were not included as

covariates when studying them as phenotypes. See Dataset S3-4 for full results. See Figure S1 for positive control associations.
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448 3.2.Controlling for body size
449 The large associations between grey-matter structure and height, weight, BMI, waist

450 and hip circumference (even after controlling for acquisition, age, sex and head size

451  differences, Figure 1) led us to perform a sensitivity analysis to evaluate their contribution
452  to the brain-morphometricity of the traits studied. We repeated the analysis further

453  controlling for height, weight and BMI, which yielded lower R? estimates (Figure S5) and
454  fewer significant associations with grey-matter structure. Thus, when correcting for height
455  in the UKB, 4 of the 58 associations with grey-matter structure did not remain significant:
456  household income, monocyte percentage, beef intake, and time spent using computer, see
457  Dataset $3). Such finding is consistent with the reported association between body size and
458  income or socio-economic status in the UKB (Tyrrell et al., 2016). When further correcting
459  for weight and BMI another 14 associations did not remain significant including educational
460  attainment, frequency drinking alcohol, most diet items (cereal, dried fruits, poultry,

461  processed meat), time spent driving, red blood cell count, frequency of walks and small
462  exercise. Notably, the brain-morphometricity of the depression score could be completely
463  explained by differences in weight and BMI (R’paseline=0.050, SE=0.018; R paseline+height=0.048,
464  SE=0.017, szase|ine+height+3,\,..+Weight<0.001, SE=0.007) and none of the associations between
465  grey-matter structure and depression symptoms remained significant (Tiredness,

466  Anhedonia, Poor appetite- overeating, sza5e|ine+height+5.\,..+Weight<0.014). The brain-

467  morphometricity estimates (correcting for body size) in the UKB replication sample aligned
468  with results from the discovery sample (cor=0.90), except for age and sex showing larger
469  associations with grey-matter structure in the replication analysis (Figure S6).

470 Similarly, 4 of the 27 associations did not remain significant in the HCP dataset: with

471  fluid intelligence (total skipped), hand grip strength, ASR thought and attention problems
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472  and frequency of being drunk in the past year. Though we had limited power to detect

473  associations smaller than R” of 0.2 in this sample (see 2.6).

474 In light of these results, we chose a conservative approach to present in the main
475  text results that include body size variables as covariates, though the analyses using baseline
476  covariates can be found in the supplementary. We acknowledge (see discussion) that this
477  may be overly conservative, by implicitly making strong assumptions about the direction of
478  causation between body shape, grey-matter morphology and the rest of the phenome. On
479  the other hand, it avoids reporting associations that may be fully or in part caused by

480 differences in body shape.
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showing significant morphometricity after controlling for baseline covariates, as well as height, weight and BMI.

1

Figure 2: Matrices of grey-matter correlations (upper diagonals) and residual correlations (lower diagonals) between all the variables
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Panel (a) shows the results for the UKB and panel {b) the HCP results. Correlations significant after multiple testing correction (Bonferroni) are

indicated by a star. Blocks circled in black indicate the different phenotype categories used previously (see Figure 1). Most grey-matter
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486  correlations are observed within categories (e.g. cognition or substance use) but they can also help identifying shared brain-morphometricity
487  between different types of variables (e.g. cheese intake and pulse rate). rgm is @ measure of the shared brain-morphometricity between 2 traits
488  and can arise from causal, bi-directional or confounded relationships between phenotypes. Contrasting rgv and residual correlation (rg) can
489 indicate how much of the phenotypic correlation is attributable to individual’s resemblance in term of grey-matter structure, compared to

490  other factors (brain or non-brain resemblances).
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492 3.3.Grey-matter correlations
493 We estimated grey-matter and residual correlations (rgm and re) between the

494  phenotypes that showed significant brain-morphometricity in the univariate analyses. rgm
495  can be interpreted as the proportion of grey-matter vertices similarly associated with both
496 traits, while rg offers insight into factors, shared between the traits, but that do not relate to
497  grey-matter structure (e.g. other brain modalities, non-brain contribution). A weighted sum
498  of rgmand rg make up the phenotypic correlation (see 2.3.3). In this section, we controlled
499  for height, weight and BMI on top of the baseline covariates, which yields a conservative set
500 of 39 phenotypes and prevents results from being confounded by body size (Figure 2;

501 Datasets S5 (UKB), S6 (HCP) for point estimates). We excluded phenotypes used as

502  covariates {age, sex, head and body size) as regressing them out makes them orthogonal
503 (i.e. not associated) with the remaining traits. We used conservative significance thresholds
504  of 0.05/(35*%34)=4.2e-5 for UKB and 0.05/(18*17)=1.6e-4 for HCP that account for the total
505 number of correlations performed in each sample. We highlighted below which grey-matter
506  correlations were also significant in the UKB replication sample (significance threshold

507 p<0.05/ntest i.e. p<1.9e-3).

508 In the UKB, we observed significant positive grey-matter (and residual) correlations
509 between cognition domains {rgy ranging between 0.71, SE=0.12 and 1.0, SE=0.007;

510 corresponding re ranging between 0.26, SE=0.014 and 0.94, SE=0.005; Figure 2). In addition,
511 we identified grey-matter correlations between measures of physical activity. For example,
512  body fat percentage correlated with waist circumference (rgu=0.52, SE=0.12), forced vital
513  capacity (rew=-0.66, SE=0.14), basal metabolic rate (rgm=-0.69, SE=0.094, rgm-replication=-0.75,
514  SE=0.13) and time spent watching TV (rem=0.73, SE=0.13, rem-replication=0.81, SE=0.16). Pulse

515 rate correlated with waist circumference (rgm=0.67, SE=0.13) and basal metabolic rate
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516  (rgm=-0.55, SE=0.11), acceleration force correlated with frequency of vigorous activity (rem=-
517  0.64, SE=0.17) while hand grip strength (left and right) was associated with forced vital

518 capacity (replicated) and forced expiratory volume (replicated). In addition, we found

519 significant grey matter correlations between substance use phenotypes such as amount of
520 usual alcohol intake and alcohol intake (rgm=-0.89, SE=0.086; rem-replication=-1.0, SE=0.12; sign
521  due to coding of the variable, see Dataset S1), smoking status {rgu=0.71, SE=0.13) and past
522  tobacco use (rem=-0.64, SE=0.14). Finally, we identified unexpected large grey-matter

523  correlations. For example, cheese intake and forced expiratory volume were both correlated
524  (rgm=1.0, SE=0.11) with fluid intelligence, and waist circumference correlated with overall
525  health rating and pulse rate (rgu>0.67). Overall, 9 out of the 26 significant correlations

526  replicated in the UKB replication sample; sign of the grey-matter correlation was always
527  consistent between discovery and replication analyses (Table S1).

528 In the HCP, we observed positive grey-matter correlations between cognition

529  domains (Figure 2 and Dataset S6) and between IQ dimensions and education level. In

530 addition, the two tobacco related phenotypes were associated with most of the same grey-
531 matter vertices (rem=0.92, SE=0.045). To note, residual correlations and grey-matter

532  correlations were of opposite signs between IQ domains and delay discounting variables,
533  and between cognition and substance use phenotypes. These observations remained after
534  rank-inverse transformation of the variable, suggesting it is not an artefact of the trait

535 distribution. More work is needed to confirm these results in larger samples.

536 For completeness, grey-matter (and residual) correlations under the baseline model
537  arereported in Figure S7, which reveals many large grey-matter correlations between

538 measures of body size and diet, blood assay, activity levels and depression symptoms and

539  score. This further highlights that in the phenome, the brain-morphometricity of some traits
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540 may be accounted for by the covariation between these phenotypes and body size

541  measuremements. In particular, depression score was correlated (rgu=1) with weight, BMI
542  waist or hip circumference, consistent with its brain-morphometricity lowered to 0 when
543  controlling for body size. In addition, depression score was also correlated (rgm=-1) with
544  activity levels and acceleration force, but also with poultry or cheese intake, happiness in
545  own’s health, diabetes and time spent watching television (rgm=1), variable themselves

546  strongly associated with measures of body shape (Figure S7, section 3.2).

547
548 3.4.Associations with grey-matter structure of specific cortical and subcortical regions
549 We investigated the brain-morphometricity of traits by estimating the association

550  with grey-matter structure of specific cortical and subcortical regions (Desikan-Killiany atlas
551  (Desikan et al., 2006)). All phenotypes were corrected for height, weight and BMI in addition
552  to the baseline covariates. Associations with BMI and other body size variables under the
553  baseline model are also presented. In this post-hoc analysis, we used Bonferroni correction
554  to account for the number of tests performed (significance threshold of

555  0.05/(164*39)=7.2e-6 in the UKB, 1.2e-5 in the HCP).

556 In the UKB, the largest associations were observed between age of the participants
557  and subcortical volumes (R* ranging between 0.22 and 0.35 for subcortical thickness, 0.20
558  0.38 for subcortical area), but most cortical regions were also significantly associated with
559  age, albeit to a lesser extent (R® in the 0.0083-0.15 range for cortical thickness, 0.0048-0.15
560 range for cortical surface area). Next, significant ROI associations included sex, associated
561  with all subcortical volumes (R? in the 0.0049-0.024 range for thickness, 0.0058-0.027 for
562  area) and with many cortical regions (R® in the 0.0011-0.0076 range for cortical thickness,

563  0.0019-0.014 for cortical surface area) (Figure S8 and Dataset S7). Maternal smoking around
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564  birth was further associated with 28 ROI, mostly located in the occipital and temporal lobes
565 (R2 in the 0.013-0.026 range with cortical thickness, R? in 0.014-0.071 with cortical surface
566 and R?in the 0.010-0.039 range with subcortical structure). In addition, we found significant
567  associations between cognition domains and structure of thalamus, putamen, pallidum and
568  hippocampus (R? in the 0.0043-0.024 range). Notably, fluid intelligence was associated with
569  all aspects of thalamus anatomy (left and right, thickness and surface area) while the other
570  cognition domains considered were associated with some aspects of thalamus structure. No
571  association between cognition and cortical structure survived multiple testing correction.
572 Diabetes diagnosis correlated with (left) superior frontal surface area (R?=0.054), as
573  well as with thalamus, putamen, and pallidum thickness (R” ranging between 0.0067 and
574  0.015), or thalamus and hippocampus surface (R* in the 0.0061-0.014 range). Alcohol intake
575  was associated with left thalamus thickness (R*=0.018) while smoking status and past

576  tobacco use were associated with thalamus, caudate, putamen and pallidum thickness, as
577  well as with thalamus surface area (R* in the 0.007-0.020 range). Finally, we also observed
578  small associations between cortical or subcortical regions and overall health rating, time
579  spend watching TV, body fat percentage and physiological measurements (Figure S8).

580 Using the replication UKB sample, we replicated 633 out of the 975 significant ROI-
581  trait associations {p<0.05/975). Most associations were found with age, sex and body size
582  variables, though we also replicated associations between subcortical volumes and hand
583  grip strength or time spent watching TV (Dataset S8). In addition, the magnitude of the

584  associations with age, and body size were greatly similar between discovery and replication
585  analyses (Figure S9). For sex, we observed larger ROl associations in the UKB replication

586  sample (Figure S9), consistent with the larger brain-morphometricity observed in this

587  sample (Figure S6).
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588 In the HCP sample, age was associated with thickness (R? in the 0.020-0.049 range)
589  and surface area (R” ranging between 0.067-0.10) throughout the cortex, as well as with
590  subcortical structure (R? in the 0.016-0.087 range). Sex was associated with cortical

591 thickness of the lateral orbitofrontal cortex (R?in the 0.059-0.073 range), as well as with
592  subcortical structure (R? in the 0.042-0.19 range). In addition, we found large associations
593  between cocaine, opiate or hallucinogens use and surface area of several cortical regions
594  located in the temporal lobe (fusiform, superior temporal, insula), frontal (pars-triangularis,
595  pars-opercularis, caudal-middle frontal), parietal (supramarginal, superior and inferior-

596  parietal, precuneus) or in the cingulate (R®in the 0.25-1.00 range for cocaine test, R* in the
597  0.43-0.46 range for opiates, R” in 0.25-0.56 for number of times used hallucinogens).

598 However, the small numbers and possible outliers in the vertex-wise measurements make
599  such associations prone to false positives. Alcohol consumption was also associated with
600 surface are of the frontal cortex (right rostral middle frontal, paracentral and precentral gyri,
601  R”inthe 0.28-0.36 range). No other association survived multiple testing correction (Figure
602  S10 and Dataset S9).

603 Body size variables were strongly associated with subcortical structure under the
604  baseline model (R? ranging between 0.010-0.059 for height, R* between 0.048-0.30 for the
605  others) and to a lesser extent with cortical surface area (R* between 0.0078-0.026 for

606  height, R* between 0.0061-0.060 for the others) and cortical thickness (R” in 0.0039 0.016
607  for height, R? in 0.0017 0.045 for the others). The associations between grey-matter

608  structure and body size were pervasive (72/164 significant ROIs associations with height,
609 109 with waist circumference, 105 with BMI) (Figure S11, Dataset S10), suggesting that
610  when acting as confounders height, weight or BMI could lead to false positives in many

611  brain regions.
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612
613 3.5.Ten-fold cross-validation in the UKB and prediction into the UKB replication sample
614 For each UKB participant, we calculated grey-matter scores relative to phenotypes

615  showing significant brain-morphometricity, by estimating the marginal association between
616  each vertex and the trait of interest. As in previous sections, we used height, weight and
617  BMI controlled for baseline covariates; and further regressed out body size for all other

618 phenotypes. We evaluated the prediction accuracy of the grey-matter BLUP scores by

619  computing their correlations with the observed values (10-fold cross validation design).

620 Most grey-matter scores significantly correlated (positively) with their corresponding
621  phenotypes (significance threshold of 0.05/39=1.2e-3, Table 1, S3, Figure 3). Albeit

622  significant, prediction accuracy was overall low (typically r<0.10, including r=0.11 for sex,
623  r<0.09 with cognition, r=0.08 for alcohol intake, r=0.06 with smoking status) except for age
624  (r=0.60), and maternal smoking around birth (r=0.26) whose grey-matter score correlated
625  more strongly with the observed values. We found similar prediction results in the UKB

626  replication sample, with 29 associations reaching significance at p<1.2e-3 (Table 1, S3).

627  Prediction accuracy was on par for most traits, though greater in the replication sample for
628 age and sex (Figure 3, Table 1, S3), consistent with a larger training sample being used and
629 larger morphomometricity observed in the replication set (Figure S6).

630 When not correcting for body size, 56/58 BLUP scores significantly correlated with
631 the observed values in the 10-fold cross validation and 42 associations replicated using the
632  UKB replication sample (p<0.05/58, See FigureS12 and DatasetS11). Predicted age

633  correlated with chronological age (r=0.72 in the discovery, r=0.70 in the replication), while
634  predicted sex also strongly associated with the observed value (AUC of 0.90 and 0.89). Grey-

635  matter scores of body shape (under the baseline covariates) were also significantly
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636  correlated with the observed values {r=0.25 for height, r=0.29 for body fat percentage,

637  r=0.39 for weight and hip or waist circumference, r=0.45 for BMI). Finally, grey-matter

638  scores of BMI correlated positively with depression symptom count {r=0.10, p-value<le-14),
639  as expected from the brain-morphometricity of depression being limited the covariation
640  with body size. It even outperformed the grey-matter score built from the depression score

641 itself (r=0.05, p-value<le.5).

642
643 3.6.0ut of sample prediction — application in the HCP sample
644 Out of sample prediction validates that the morphometric associations are

645  generalizable to independent brain images, beyond population and scanner differences. We
646  trained our prediction models on the UKB discovery cohort and calculated grey matter

647  scores for each HCP participant. We tested the association between predicted value (brain
648  scores) and the observed phenotype in the HCP. For traits only available in the UKB (e.g.
649  waist circumference) we used a proxy in the HCP (e.g. BMI).

650 Grey matter scores for age, sex, and being a twin significantly correlated with the
651  observed values (rage=0.15, rsex=0.25, rtwin-status=0.31, p-value significant after multiple testing
652  correction) (Table 1, S3 and Figure 3). Grey-matter score for maternal smoking around birth
653  correlated with smoking status (r=0.19). None of the other grey-matter scores significantly
654  correlated with a similar HCP variable.

655 Without correcting for body size, 19 BLUP scores correlated to corresponding

656  variables {Dataset S11, Figure S12). For example, scores for BMI, body fat percentage, hip or
657  waist circumference also correlated positively with BMI (r=0.21, p-value<1.2e-3), while

658  scores for height and weight also correlated with the observed phenotypes (rueignt=0.17,
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659  rweight=0.19). Finally, scores build from diet items or quantifying activity levels significantly

660 predicted BMI in the HCP.

661
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663  Figure 3: In sample and out of sample prediction accuracy as a function of the total

664  association R’.

665 Labels highlight some of the significant prediction having the greatest accuracy. As

666  predicted by the theory, the prediction accuracy is capped by the total association R? (points

667  below the diagonal). In addition, out of sample prediction results in a lower prediction
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accuracy than in-sample prediction. We hypothesise that the low prediction accuracy of age
in the HCP is due to the much younger age range of the HCP participants, compared to the
UKB). Participants born from multiple pregnancy appear better identified (predicted) in the
HCP than within the UKB sample, which is due to a greater proportion of females and twins
in the HCP compared to the UKB, as well as greater morphometricity in the HCP. Such
mechanism has been discussed in the field of genetic and solutions exist to correct results
for differences in prevalence between samples (Lee et al., 2012). We reported the AUC in
Table 1 (for discrete variables) as it is independent of the proportion of twins and males,
thus differences in AUC likely reflect differences in morphometricity between the UKB and

HCP samples.
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Table 1: Summary of the prediction accuracy (R?) of the BLUP grey-matter scores. We constructed BLUP scores for the 39 UKB variables

showing significant morphometricity and evaluated their predictive power in the UKB (10 fold-cross validation) and HCP sample. When the

phenotype corresponding to the grey-matter score was not available in the HCP, we chose the closest available (e.g. waist circumference grey-

matter score evaluated against BMI). We evaluate the prediction accuracy by fitting GLM controlling for height, weight and BMI as well as for

the baseline covariates (acquisition, age, sex and head size); except for (#) denoting associations not controlling for height, weight and BMI.

Rows in bold indicate significant association after correcting for multiple testing (p<0.05/39=1.3e-3) both in and out of sample. This reduced

table only shows prediction results significant in all 3 scenarios, see Table S3 for full table of results.

Prediction into UKB replication

In sample prediction (UKB)
2

Out of sample prediction (HCP)
2

r pvalue R AUC (SE) | r pvalue R’ AUC (SE) HCP variable | r pvalue | R AUC
predicted (SE)
3.1e-
Age 0.64 0.0e+00 | 0.41 0.68 | 0.0e+00 | 0.46 Age 0.15 08 0.024
0.58 0.8 8.0e- 0.68
Sex 0.26 0.0e+00 | 0.067 (0.0059) | 0.33 | 9.8e-305 | 0.11 (0.0064) Sex -0.25 42 0.061 | (0.016)
Part of multiple 0.66 0.72 1l.1e- 0.69
birth 0.078 | 4.1e-14 | 0.0061 | (0.022) | 0.13 | 1.5e-03 | 0.016 (0.065) Being a twin | 0.31 28 0.098 | (0.016)
Body fat 5.6e-
percentage# 0.29 0.0e+00 | 0.085 0.31 | 7.7e-190 | 0.095 BMI 0.21 13 0.045
Waist 3.5e-
circumferencett 0.39 0.0e+00 | 0.16 0.38 | 2.0e-205 | 0.14 BMI 0.21 13 0.046
2.4e-
BMI# 0.45 0.0e+00 | 0.2 0.45 | 7.4e-235 | 0.20 BMI 0.21 12 0.042
Hip 5.2e-
circumference# 0.38 0.0e+00 | 0.15 0.36 | 7.3e-143 | 0.13 BMI 0.21 13 0.045
Height# 0.25 | 6.5e- 0.062 0.23 | 2.6e-132 | 0.054 Height 0.17 1.8e- 0.03
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3.7.Best cortical processing
We compared the brain-morphometricity estimates obtained by varying the cortical

processing options: smoothing of the cortical meshes and applying coarser meshes available
in FreeSurfer (see 2.10). We performed this analysis on the UKB discovery and replication
samples as the large SE of the estimates in HCP would limit the interpretation of the results.
We used baseline covariates as in Figure 1. We found that applying smoothing (5-25mm) or
reducing the cortical mesh complexity always led to a lower point estimate of brain
morphometricity in the UKB discovery (Figure 4) and replication {SFigure 13, Datasets $12-
13 for full tables) samples. As such, the fsaverage cortical mesh with no smoothing can be
deemed “best” processing for all phenotypes considered.

In addition, we compared results from Figure 1 to those from Region-Of-Interest
(ROI) based processing (taking the average of each cortical or subcortical region, here
ENIGMA processing). We found that the vertex-wise approach always yielded greater
association R?, thus retained more information than a ROI based dimension reduction

(Figure S14).
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705  Figure 4: Comparison of brain-morphometricity estimates varying cortical processing
706  options in FreeSurfer.

707  The reduction of brain-morphometricity as a function of mesh smoothing is presented on
708 the left panel (a), while the right panel (b) shows the effect of reducing the cortical mesh
709  complexity. The black bar indicates the lower bound of the 95% confidence interval of the
710 fsaverage-no smoothing estimate (identical to results presented in Figurel). Note that
711 brain-morphometricity estimates below the 95%Cl lower bound cannot be deemed

712  significantly lower. Rather the 95%Cl are presented for context and to remind that all

713  estimate from Figure 1 do not have the same SE.
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715
716 4. Discussion
717 We report the associations between vertex-wise measurements of grey-matter

718  structure and a large set of phenotypes capturing aspects of demographics, physical

719  capacities, substance use, psychiatry, lifestyle and stress/traumas (Figure 1). In addition, we
720 introduced the concept of between-trait grey-matter correlation (Figure 2, Figure S7) that
721  quantifies the proportion of brain markers shared between two traits. We demonstrated
722  the versatility of our vertex-wise LMM approach by identifying specific cortical and

723 subcortical regions (Figure S8, S10, S11) associated with the phenotypes of interest. Finally,
724  we derived BLUP (Best Linear Unbiased Predictor) grey-matter scores and demonstrated
725  their significant predictive abilities in the UKB discovery sample (10-fold cross validation)
726  and in completely independent samples (HCP, and replication UKB, Table 2, S3, Figure 3).
727 Our vertex-wise analyses retained the complexity of the cortical ribbon and

728  subcortical structure, leading to larger associations compared to the standard ROl based
729  data reduction (Figure $14). Similarly, reducing the cortical complexity via local averages
730  (smoothing) or halving the number of vertices also led to reduced brain-morphometricity
731  estimates for all phenotypes considered (Figure 4, S13). These results indicate that grey-
732  matter scores from “fsaverage-no smoothing” cortical measurements can achieve greater
733  level of prediction, but may require larger training samples to counterbalance their

734  increased complexity (Dudbridge, 2013).

735 In both the UKB and HCP samples, the largest brain-morphometricity (Figure 1)
736  were found between grey-matter structure and age, sex and with measures of body size
737  (height, weight, BMI, body fat percentage, waist or hip circumference). In our post-hoc
738 LMM-ROI analysis, we found those phenotypes to be associated with most cortical and

739  subcortical regions (Figure $8-11). Our results for sex are consistent with results from the
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740  UKB first release {N=5,216, using ROl average (Ritchie et al., 2018)), while several studies
741  have previously reported associations between BMI and several grey-matter measurements
742  (Cole et al., 2013; Gupta et al., 2015; Kurth et al., 2013; Masouleh et al., 2016; Medic et al.,
743  2016; Opel et al., 2017). Despite such large and widespread pattern of association between
744  body-size and grey-matter we did not observe significant brain-morphometricity for (self-
745  reported) anorexia, bulimia or binge eating though the small numbers (<30 cases in the

746  UKB, Dataset S1) limit the interpretability of the results.

747 We observed moderate to small associations (R?<0.4) between grey-matter and
748  substance use (tobacco and alcohol), maternal smoking around birth, blood assay results,
749  education and income level, diet, depression score and symptoms, twin-status as well as
750  cognition domains (Figure 1). The latter replicated and expanded the result of an analogous
751  analysis on an early release of the HCP (N=150) and the ADNI dataset (Sabuncu et al., 2016).
752  We note that handedness was only weakly (R%ykg=0.04, R%4cp<0.001, not significant)

753  associated with cortical or subcortical grey-matter coherent with the conflicting results

754  reviewed in (Jin Kang et al., 2017). Our results indicate that individuals that display similar
755  grey-matter structure tend to also be similar in term of age, sex, body size, cognition,

756  activity levels, substance use and lifestyle. We did not detect significant association

757  between grey-matter morphometry and psychiatric diagnoses (lifetime self-reported), sleep
758  phenotypes or lifetime stress/traumas (Dataset $S3) despite previous morphometricity

759  reports from case-control samples of autism, schizophrenia and ADHD (Sabuncu et al.,

760  2016).

761 When controlling for height, weight and BMI in the analyses, many of the

762  associations became non-significant: such as those between grey-matter and diet, activity

763 levels or depression score/symptoms (R2<0.O4; Dataset S3). Furthermore, we did not detect
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764  any significant association between grey-matter structure and other depression related
765  phenotypes (e.g. self-reported diagnosis by a doctor, MDD case-control status as used by
766  the Psychiatric Genetic Consortium (Wray et al., 2018), and neuroticism; Dataset S3). Our
767  findings shed a new light on previously published results, as even the largest case-control
768  international initiatives (e.g. ENIGMA-MDD (Schmaal et al., 2016a; Schmaal et al., 2016b))
769  may reflect, at least in part, variance shared between depression and BMI (such as the

770  causal effect of BMI on depression(Wray et al., 2018)). Understanding the relationship

771  between brain and depression may call to analyse brain regions or features not extracted in
772  the current processing (e.g. brain stem and cerebellum) or features collected from another
773  type of images (e.g. Diffusion Weighted Images (DWI), fMRI).

774 To summarise, body size is associated with large, widespread variations of grey-
775  matter structure (Figure 1, Figure S11) and more work is needed to understand its

776  contribution to published results linking grey-matter anatomy to psychiatric disorders

777 (MDD, bipolar, schizophrenia and substance use are associated with BMI {Luppino et al.,
778  2010; McElroy and Keck, 2012; Rajan and Menon, 2017; Saarni et al., 2009; Wray et al.,
779  2018)) or sexually dimorphic traits (likely associated with height and weight). In addition,
780  body size may be differently associated with the phenome across countries or age groups,
781  which may limit the replication of findings and predictive abilities of body size dependent
782  scores. Note that the possible confounding effects of body size are exacerbated in small
783  case-control samples, leading to increased chances of false positive associations (Button et
784  al., 2013; loannidis, 2005). Body size being associated to many brain regions (Figure S11),
785  such confounding effect could lead to widespread cortical or subcortical false positives.
786 In subsequent association and prediction analyses, we made a conservative choice to

787  correct for height, weight and BMI. This meant that we likely reported conservative
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788  estimates of brain-morphometricity and fewer significant grey-matter correlations,

789  predictive grey-matter scores or trait-ROI associations (see Figures S7, S12 and Dataset S3
790 foruncorrected results). The large covariation of body-size with the phenome (at least with
791  the variables we selected) is still of interest but it may be more powerful to study directly
792  BMI for example. This is exemplified by the greater prediction accuracy achieved by a BMI
793  grey-matter score (vs. depression specific score) when predicting depression score. Such
794  behaviour can be anticipated based on the large rem between BMI and depression score
795  (Figure S7), combined to the larger brain-morphometricity of BMI (Dudbridge, 2013).

796  Finally, our conservative approach should remind us to be careful when interpreting

797  associations. For example, one should not conclude about actionable links between diet and
798  depression based on the large and significant grey-matter correlations, as it might be

799  mediated by body size. Though, directionality of the associations will need to be established
800 to conclude in this case.

801 We estimated between-trait grey-matter correlation (Figure 2, Dataset S5, S6) that
802 quantifies the proportion of brain markers shared between two traits and found significant
803 relationships between cognition domains, between tobacco and alcohol consumption or
804  between measures of fitness. Large grey-matter correlations between seemingly unrelated
805 traits {e.g. fluid IQ and cheese intake [replicated], waist circumference and pulse rate or
806  overall health rating) raise questions about the nature of the relationships between those
807  variables {causality, true positive or confounded association?). Note that rem would also
808  capture correlated measurement errors between traits, for example due to head motion or
809  other sources of noise in MRI acquisition.

810 We further characterised the brain-morphometricity by identifying specific cortical

811  and subcortical regions (ROI) associated with our phenotypes (Figure S8-S11). In the UKB,
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812  smoking status was associated with thickness and surface of the thalamus (left and right),
813  although we also found associations with the caudate and pallidum. Previous studies have
814  reported association between tobacco usage and volume of left thalamus (Gallinat et al.,
815  2006; Gillespie et al., 2018; Hanlon et al., 2016), which might be due to faster age related
816  volume loss in smokers (Durazzo et al., 2017). We did not replicate other cortical or

817  subcortical associations previously reported (Gallinat et al., 2006; Hanlon et al., 2016; Prom-
818 Wormley et al., 2015). Alcohol intake was also associated with left thalamus thickness in the
819  UKB, consistent with the significant grey-matter correlation (Figure 2) between the two

820 traits. The thalamus has been implicated in alcohol-related neurological complications (e.g.
821  Korsakoff's syndrome)(Pitel et al., 2015) but may also be associated with regular alcohol
822  usage (Cardenas et al., 2007; Pitel et al., 2015) or alcohol use disorder (van Holst et al.,

823  2012). Maternal smoking around birth was further associated with the thalamus, putamen,
824  hippocampus and pallidum, as well as temporal and occipital ROIs. In addition, diagnosis of
825  diabetes was associated with area of the left superior-frontal cortex (Dataset S8, Figure S8).
826  Nervous system complications of diabetes (sometimes labelled diabetic encephalopathy)
827  are widely accepted (Mijnhout et al., 2006) but little is known about the specific brain

828  regions associated with the condition (Moheet et al., 2015).

829 Finally, we derived and evaluated BLUP (Best Linear Unbiased Predictor) grey-matter
830  scores for each individual and the 39 phenotypes showing brain-morphometricity in the UKB
831 (after correcting for body size). The prediction accuracy above what is expected by chance
832  confirmed that the traits associations with grey-matter structure are transferable to

833 independent samples and even samples imaged on a different scanner with different

834  demographics (e.g. HCP, Table 2, S3, Figure 3). Overall, the prediction accuracy was below a

835 few percent (of variance) except for age, sex, being a twin, maternal smoking at birth and
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body size measurements (Table 2, Figure 3). Grey-matter score for maternal smoking
around birth predicted FTND score in the HCP sample suggesting that passive and active
smoking may be associated with similar grey-matter morphology. Our ability to predict (in
part) the twin status of participants (Table 2) suggests that twins’ grey-matter structure may
be more similar than average even if the twins are not from the same family.

Other methods allow to derive prediction from a large number of brain features (e.g.
penalised regression, or deep learning) though direct comparison with prediction accuracy
from previous publications is limited by the use of different samples, MRI scanners,
processing options, input data and prediction algorithm. To note, BLUP is computationally
efficient as it does not require estimation of hyper-parameters (as in penalised regression).
Similar to polygenic risk scores (Dudbridge, 2013), the prediction R” of grey-matter BLUP
scores increases with the training sample size and is capped by the association R? with all
vertices (Figure 3). Future application of the grey-matter scores include studying correlates
of brain age (Cole, 2017; Cole et al., 2017; Liem et al., 2017), body size and substance use,
especially in samples where this information was not collected.

To note, most of the results observed in the UKB discovery sample (brain-
morphometricity, rem, ROl based associations) replicated in an independent UKB sample
(replication). On the other hand, the UKB and HCP samples differed in term of data
collected, age range, country of origin, MRI acquisition, processing and participants’
recruitment, which might explain some of the differences in results (brain-morphometricity
of cognition for example).

In the UKB, we chose to add the T2 FLAIR (when available) to improve pial
reconstruction in the FreeSurfer processing, though the effect of such option and the

possible differences with T1lw only processing is not well described in the literature. We
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860 observed a large difference in total cortical thickness between participants processed either
861  way (Figure S2). This warrants further investigation though it is unlikely to have impacted
862  the results presented here. Indeed, our QC step excluded more than 80% of the 400-odd
863  participants processed using Tdlw only, likely because they showed outlying brains

864  compared to the T1w+T2 FLAIR processing. In addition, availability of T2 FLAIR was not

865  associated with any of the phenotypes. Finally, the replication of the UKB associations and
866  the out of sample prediction suggest that our results are robust to the presence of these
867  few outliers.

868 The HCP comprises many twin pairs {thus, non-independent observations), though
869  we modelled the grey-matter relatedness in all analyses, which should account for the grey-
870  matter resemblances arising from shared genetics or environment. A bias due to twins is
871  unlikely as our results on the full HCP sample yielded always similar (e.g. Fluid 1Q) or lower
872  (e.g. attention) brain-morphometricity estimates than reported by Sabuncu et al., who

873  selected 1 subject per family {Sabuncu et al., 2016). Finally, the grey-matter similarity of
874  twins was greater than average but in line with the similarity seen between unrelated

875 individuals {Appendix S2), which led us not to exclude twin pairs from the analyses (contrary
876  to what is seen/done in genetics).

877 Due to recruitment choices, the UKB and HCP samples do not contain many

878  psychiatric cases (outside of the highly prevalent MDD, see (Fry et al., 2017) on the healthy
879  volunteer bias in the UKB) and cannot replace the large case-control initiatives (e.g. ENIGMA
880 disease groups). Despite using some of the largest imaging samples available, our ROl based
881  and grey-matter score analyses suffered from limited statistical power, though more data is

882  currently being collected by the UKB.
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883 To complement our analyses (limited to young and older adults), more work is

884  required to understand the relationship between grey-matter morphology and the

885  phenome during development (e.g. in children or adolescents) as well as in specific

886  age/disease groups (Rosenberg et al., 2018), or using different scanners or processing

887  options {e.g. 1.5 Tesla MRI, scanning time, FSL or SPM processing (Flandin and Friston, 2008;
888  Jenkinson et al., 2012)). Note that all associations reported here must be interpreted

889  carefully as they may be causes or consequences of the disorder or trait, or a result of the
890 pervasive pleiotropy underlying human complex phenotypes {Solovieff et al., 2013). Future
891 application or LMM include determining the best MRI image processing for a trait (i.e. the
892  processing options that maximise the association R%; e.g. Figure 4) by extending our analysis
893  to other measures of grey-matter structure (e.g. voxel-based morphometry (Wright et al.,
894  1995)).

895 We have released the scripts used in image processing and LMM analyses to

896 facilitate replication and dissemination of the results (see URLs). We have also released

897  BLUP weights to allow meta-analyses or application of the grey-matter scores in

898  independent cohorts.

899

900 5. URLs
901 Summary-level data (BLUP weights) and vertex membership in the Desikan atlas:

902  http://cnsgenomics.com/data.html ; OSCA: http://cnsgenomics.com/software/osca/ ;

903 ENIGMA protocols: http://enigma.ini.usc.edu/protocols/imaging-protocols/ ;

904
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