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32  Abstract

33 In order to identify the molecular determinants of human diseases, such as cancer, that
34  arise from a diverse range of tissue, it is necessary to accurately distinguish normal and
35 pathogenic cellular programs.’ Here we present a novel approach for single-cell multi-
36  omic deconvolution of healthy and pathological molecular signatures within phenotypically
37  heterogeneous malignant cells. By first creating immunophenotypic, transcriptomic and
38  epigenetic single-cell maps of hematopoietic development from healthy peripheral blood
39 and bone marrow mononuclear cells, we identify cancer-specific transcriptional and
40 chromatin signatures from single cells in a cohort of mixed phenotype acute leukemia
41  (MPAL) clinical samples. MPALs are a high-risk subtype of acute leukemia characterized
42 by a heterogeneous malignant cell population expressing both myeloid and lymphoid

43  lineage-specific markers.*®

Our results reveal widespread heterogeneity in the
44  pathogenetic gene regulatory and expression programs across patients, yet relatively
45  consistent changes within patients even across malignant cells occupying diverse portions
46  of the hematopoietic lineage. An integrative analysis of transcriptomic and epigenetic
47  maps identifies 91,601 putative gene-regulatory interactions and classifies a number of
48 transcription factors that regulate leukemia specific genes, including RUNX7-linked
49  regulatory elements proximal to CD69. This work provides a template for integrative, multi-
50 omic analysis for the interpretation of pathogenic molecular signatures in the context of
51 developmental origin.
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58 Main

59 To identify pathologic features within neoplastic cells, we first aimed to establish molecular
60 features of normal development for comparison. Since MPALs present with features of
61 multiple hematopoietic lineages, we first constructed independent immunophenotypic,
62  transcriptomic and epigenetic maps of normal blood development using droplet-based
63  CITE-seq® (single-cell antibody derived tag and RNA sequencing) and single-cell ATAC-
64 seq (scATAC-seq, single-cell chromatin accessibility profiling)’ on bone marrow and
65 peripheral blood mononuclear cells (Figure 1a). For CITE-seq analyses, we
66  simultaneously generated 10x Genomics 3 single-cell RNA sequencing® (scRNA-seq) and
67 antibody derived tag sequencing® (scADT-seq) libraries from 35,882 bone marrow
68  mononuclear cells (BMMCs, n = 12,602), CD34" enriched BMMCs (n = 8,176), and
69  peripheral blood mononuclear cells (PBMC, n = 14,804). On average, 1,273 informative
70  genes (2,370 unique transcript molecules) were detected per cell and replicates were
71  highly correlated (Supplementary Figure 1a-b). We then selected a feature set of
72  transcripts to mitigate batch effects and linearly projected retained transcript counts into a
73  lower dimensional space using Latent Semantic Indexing (LSI, see Online Methods).>'°
74  Cells were clustered using Seurat’s Shared Nearest Neighbor approach', annotated
75 using a manually curated maker gene list, and visualized using uniform manifold
76  approximation and projection (UMAP)'? (Figure 1b, Supplementary Figure 1c-d).

77 We next established an epigenetic map of normal hematopoiesis by measuring
78  chromatin accessibility across 35,038 single BMMCs (n = 16,510), CD34" BMMCs (n =
79  10,160), and PBMCs (n = 8,368) using droplet scATAC-seq (10x Genomics)’. These cells
80  exhibited a canonical fragment size distribution with clearly resolved sub-, mono-, and
81  multi-nucleosomal modes, a high signal-to-noise ratio at transcription start sites, an
82 average of 11,597 uniquely accessible fragments per cell on average, and a majority

83  (61%) of Tn5 insertions aligning within peaks (Supplementary Figure 2a-c). After pooling
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84  all scATAC-seq profiles from each experiment, we confirmed higher reproducibility across
85 replicates than across different samples, similar to the scRNA-seq analysis
86  (Supplementary Figure 2d). Using LSI, Seurat’s Shared Nearest Neighbor clustering, and
87 UMAP, we generated a chromatin accessibility map of hematopoiesis that complements
88 the transcriptional map of hematopoiesis (Figure 1c, Supplementary 2e-f).
89 To validate the proposed transcriptomic and epigenetic single-cell maps of
90 hematopoiesis, we directly visualized lineage-restricted cell-surface marker and
91 transcription factor enrichment across each map. As anticipated, both scADT- and scRNA-
92  seq measurements of surface makers demonstrate CD3 enrichment across bone marrow
93  and peripheral T cells; CD74 enrichment within the monocytic lineage; broad up regulation
94  of CD19 across the B cell lineage; and CD8A enrichment within cytotoxic T lymphocytes
95  (Figure 1d)". Estimates of gene activity based on correlated variation in promoter and
96 distal peak accessibility (Cicero') broadly recapitulates this pattern, confirming that
97 lineage specification is consistently reflected across the phenotypic, transcriptional and
98  epigenetic maps of hematopoietic development (Figure 1d). We then visualized our high
99  quality scADT-seq using UMAP and found that we could broadly recapitulate our
100 transcriptomic hematopoietic map (Supplementary Figure 3a-d). To further support these
101 cell type identifications and developmental mappings, we show concordance between
102  three separate single-cell measurements, including direct transcript measurements from
103  the scRNA-seq dataset, inferred gene activity scores from the scATAC-seq dataset, and
104  TF activity using chromVAR', for key developmental transcription factors, including
105  CEBPB in monocytic development, GATA1 within the erythroid lineage, and TBX27 in NK
106 and CD8" T memory cells, and PAX5 in B cell and plasmacytoid dendritic cell development
107  (Figure 1e). High-resolution single cell multi-omic tracks for key marker genes in each of
108 the identified lineages further support these identifications (Figure 1f-h, Supplementary

109  Figure 4a-h). Collectively these results show that the proposed multi-omic maps of healthy
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110  hematopoiesis are consistent and broadly capture essential phenotypic, transcriptomic
111  and epigenetic features of blood development.

112 Recent work has shown that immunophenotypically-distinct subpopulations of
113  MPAL blasts share similar genomic lesions within a patient, and that cells from one lineage
114  can reconstitute the alternate lineage in xenograft models'®, suggesting that MPAL lineage
115 plasticity may be epigenetically regulated. To explore the nature of this regulatory and
116  phenotypic dysfunction, we assayed six MPAL samples including three T-myeloid (T/M)
117 MPALs (MPAL1-3), 1 B-myeloid (B/M) MPAL (MPAL4), and one T/M MPAL sampled
118 before CALGB chemotherapy (MPALS5) and after post-treatment relapse (MPAL5SR) (see
119 Supplementary Table 1). Across these samples, we observed extensive
120  immunophenotypic heterogeneity (via diagnostic flow cytometric analysis) including
121  bilineal patterns (multiple blast populations expressing both lymphoid and myeloid lineage
122  antigens), biphenotypic patterns (a dominant blast population that simultaneously
123  expresses both lymphoid and myeloid antigens), and both patterns (Supplementary
124  Figures 5a-c, 6a-c). We then performed Whole Exome Sequencing (WES) and found
125  mutational profiles similar to previous studies (Supplementary Figure 6d)'®"". To further
126  profile our MPAL samples, we performed CITE-seq (18,056 cells) and scATAC-seq
127 (35,423 cells) on either peripheral blood or bone marrow aspirates from these MPAL
128 patients, observing similar high data quality to that obtained for healthy samples
129  (Supplementary Figure 7a-f).

130 Using our transcriptomic and chromatin landscapes of healthy hematopoiesis, we
131 next sought to develop an analytical framework to identify the hematopoietic
132  developmental signature at single-cell resolution. First, the chromatin and gene
133  expression signatures of single cells are projected into our ATAC- and RNA-based healthy
134  hematopoietic map’s LS| subspace, and the results are then visualized using UMAP

135 (Figure 2a, Supplementary Figure 8a). Next, by determining the closest hematopoietic
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136 cells to the projected cells we can identify the hematopoietic developmental compartment.
137  This method does not require defining discrete cell type boundaries and uses a large
138 feature set to robustly position cells within the continuous landscape of hematopoiesis. To
139 validate this approach, we first projected downsampled, published bulk RNA-seq and
140 ATAC-seq data'® from FACS-sorted subpopulations into our chromatin and transcription
141  hematopoietic maps and found high concordance with our healthy hematopoietic map and
142  cluster definitions (Supplementary Figure 8b). To further validate our approach, we
143  projected published scRNA-seq'® and scATAC-seq®*2? data from different platforms and
144  different genomes on our chromatin and transcription hematopoietic maps and found
145  striking agreement (Supplementary Figure 8c). These results confirm that this method can
146  accurately identify the hematopoietic signature for chromatin and gene expression at
147  single-cell resolution.

148 Using this LSI projection framework and landscapes of healthy hematopoiesis, we
149 nextsoughtto deconvolve the normal and leukemic signatures of MPAL samples at single-
150 cell resolution. First, the leukemic single cells are projected into the hematopoietic linear
151 LSl subspace. Next we identify a non-redundant set of healthy hematopoietic cells that
152  were nearest neighbor normal cells to each leukemic cell, irrespective of their cell-type
153  boundaries. Lastly, we compute the differences between the leukemic cells and nearest
154 normal cells to identify the leukemic specific signature. We first tested our approach by
155  analyzing recently published scRNA-seq data from acute myeloid leukemia (AML) patient
156  samples'. By projecting the AMLs into our healthy hematopoietic map, we see general
157  agreement with previous classifications without need for the establishment of potential
158  arbitrary cell-type boundaries on normal hematopoiesis (Supplementary Figure 9a-c). We
159  next projected our phenotypically diverse MPAL patient samples onto our hematopoietic
160  maps and discovered broad epigenetic and gene expression diversity. To further resolve

161 this diversity, we grouped MPAL cells within individual patients into broad hematopoietic


https://doi.org/10.1101/696328
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/696328; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

7

162  developmental compartments: progenitors-like (purple) comprising human stem cell and
163  multipotent progenitor-like cells, lymphoid-like (blue) containing lymphoid-primed
164  multipotent progenitors, erythroid-like (red) which include megakaryocyte-erythroid
165  progenitors, myeloid-like (green) which include granulocyte-monocyte progenitors, and
166  T/NK-like (orange) which include differentiated T and NK cells? (Figure 2a-b). Strikingly,
167  we see that the scADT-seq data clearly resolves the dominant MPAL subpopulations in
168 MPAL1 and MPALS5; however it does not fully capture the transcriptional diversity of
169 MPALs 2-4 (Supplementary Figure 10a). We visualized these projected MPALs colored
170 by these broad hematopoietic compartments, observing the expected high concordance
171  between the scRNA-and scATAC-seq classifications (Figure 2b). Comparing MPAL gene
172  expression to this healthy nearest neighbor set allowed the identification of pathogenic
173  differential gene expression for MPALs from different compartments. In total, we identified
174 4,616 genes that were significantly up-regulated (LFC > 0.5 and FDR < 0.01) in at least
175 one MPAL subpopulation across the six patient samples, and grouped these genes with
176  k-means clustering (Figure 2c). We further categorized the most conserved differential
177  genes, TFs and KEGG pathways across the MPALs (Supplementary Figure 11a-c). Using
178  the same approach for the scATAC-seq data, we performed differential peak testing for
179  each MPAL subpopulation and found 72,196 significantly up-regulated peaks (LFC > 0.5
180 and FDR < 0.05) in at least one MPAL subpopulation (Figure 2¢). Multi-omic differential
181 tracks for the cyclin dependent kinase CDK711A and cyclin dependent kinase inhibitor
182 CDKN2A , genes that are recurrently mutated in MPAL'®?*, demonstrate these leukemia-
183  specific ATAC- and RNA-seq differences (Supplementary Figure 11d-e). Additionally, we
184  calculated Pearson correlations of the differential genes and peaks; and found that
185 transcription and accessibility differs significantly across patients, but is relatively

186  conserved across subpopulations within patients. (Figure 2d).
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187 To compare the MPAL hematopoietic compartments’ leukemic programs to
188  previous studies, we downsampled bulk leukemia RNA-seq and projected onto our
189 transcriptomic hematopoietic UMAP for childhood AMLs, B-acute lymphoblastic
190 leukemias (B-ALLs), early T-cell precursor T-acute lymphoblastic leukemias (ETP T-
191  ALLs), non-ETP T-ALLs and MPALs'® (Supplementary Figure 12a-b). We then calculated
192  differential expression with respect to the closest normal cell populations to identify their
193  respective leukemic programs. Next, we performed LS| on variable malignant genes
194  across all the leukemia subtypes, including MPALs 1-5, and then visualized these patients
195 with UMAP (Figure 2e, Supplementary Figure 12c-d). Interestingly, we found large
196 differences in the leukemic programs across various leukemias including T-ALLs, B-ALLs,
197  and across different cytogenetic subtypes. In addition, we found that the MPALs assayed
198 in this study were representative of previous characterized MPALs'® (Figure 2e). Given
199 that we were insufficiently powered to detect unique leukemic differences between AML
200 and our MPAL samples when analyzing downsampled bulk data, we compared the
201  malignant transcriptomic profiles identified from re-analyzing AML scRNA-seq data'® with
202  our MPALs in order to dissect further these unique malignant signatures (Figure 2c,
203  Supplementary Figure 9c). To this end, we identified genes that were more commonly
204  universally upregulated in AMLs, in MPALSs, or jointly upregulated in both leukemias
205  (Figure 2f, Supplementary Figure 9c). These gene sets provide fine-grained phenotypic
206  resolution comparing the differences and similarities between AML and MPAL leukemic
207  programs and suggest possible insight into why MPALs respond poorly to AML
208 treatment®?°.

209 Having compared our leukemic transcriptomic programs to other studies we
210 wanted to identify the key TFs that regulate these programs. First, we identified which TF
211  were differentially enriched in each k-means cluster of differentially accessible peaks

212  observed in Figure 2c. (Figure 3a). We found that RUNX1 motifs were highly enriched in
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213  both cluster 4 and 10 — the two clusters corresponding to the most commonly shared
214  accessible elements across MPAL subset populations. In addition, RUNX1 is significantly
215  up-regulated in about half (7/17) of the MPAL subpopulations. RUNXT is one of the most
216 frequently mutated genes across hematologic malignancies acting as both a tumor
217  suppressor with loss-of-function mutations in AML?, myelodysplastic syndrome (MDS)?,
218 and ETP T-ALL*%, and as a putative oncogene in non-ETP T-ALL'*2. Furthermore,
219 wildtype RUNX1 has been implicated as a potential driver of leukemogenesis in core-
220  binding factor (CBF) leukemia® and mixed lineage leukemia®.

221 To link RUNX1 and other putative regulatory TFs to their leukemic programs we
222  first developed an analytical framework that utilizes both our transcriptomic and chromatin
223 single-cell data to link putative regulator peaks to target genes. Using our matched
224  scATAC and scRNA data for all MPALs and concordant hematopoietic maps, and aligned
225 each single-cell into a common subspace using Canonical Correlation Analyses
226  (CCA)"™"3 For each scATAC cell, we identified the nearest scRNA-seq neighbor
227  (Figure 3b, Supplementary Figure 13a-b). We found that the mapping of scATAC cell
228  clusters to scRNA-defined cell clusters were highly consistent (single-cell overlap of 52%
229  across 26 clusters) (Supplementary Figure 14a-d). We then aggregated our scATAC cells
230 based on nearest neighbors in the LS| subspace using Cicero™ and created a
231  corresponding scRNA aggregate for each cluster using the constructed CCA alignment.
232  We nextidentified 91,601 peak-to-gene links by correlating accessibility changes of ATAC
233  peaks within 250 kb of the gene promoter with the expression of the gene independently
234  for both healthy and MPAL aggregates (Figure 3b). This analysis revealed peak-to-gene
235 links that were specific to healthy hematopoiesis, others that were specific to MPALs, and
236 a conserved subset that was shared across both hematopoiesis and MPALs. We
237 hypothesize that the MPAL-specific peak-to-gene links may be important for leukemic

238  gene regulation. Overall, the identified set of peak-to-gene links had similar distributions
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239 for peaks mapped per gene, genes mapped per peak, number of skipped genes and the
240  peak-to-gene as previously observed in a similar linkage analyses? (Supplementary Figure
241  14e). To further support these peak-to-gene links, we used previously published K27ac
242  HiChIP in primary T cells and a Human Coronary Artery Smooth Muscle Cells (HCASMC)
243  cell-line and found that the T/NK biased peak-to-gene links were more enriched in the T
244  cells than the HCASMC cell line*® (Supplementary Figure 14f). We next examined GTEx
245  eQTL mappings within our inferred peak-to-gene links, finding enrichment of eQTLs in
246  several functionally related categories such as Whole Blood and Lymphocytes
247  (Supplementary Figure 14g). To demonstrate the utility of these peak-to-gene links, we
248 linked differentially accessible regions to known leukemic genes such as the surface
249  protein CD96, the leukemic stem cell marker IL1RAP, the cytokine receptor FLT3, and
250 apoptosis regulator MCL1 (Supplementary Figure 15a-d). Overall, these analyses,
251  support that our peak-to-gene links are highly enriched in immune regulation and across
252  other previously published linkage data sets®*®.

253 Having established a high-quality set of peak-to-gene links, we aimed to identify
254  the set of malignant genes putatively regulated by RUNX1. First, we utilized our peak-to-
255  gene links to identify differential peaks linked to a differential gene within at least 2 MPAL
256  subpopulations. Next, we selected all linked differential accessibility sites that contain the
257  RUNXT motif. Finally, for each linked gene we combined all linked peaks to create a
258 differential linkage score (see methods) and compared this score to the proportion of
259  MPAL subpopulations that exhibited differential expression and accessibility in at least
260 one linked peak and target gene (a measure of how common this RUNX7-driven
261  dysfunction is across MPAL subsets) (Figure 3c). Using this approach, we found 732
262  genes putatively regulated by a RUNX1-containing distal element in at least 2 MPAL
263  subsets, and found that CD69, gene implicated in lymphocyte activation through initiation

264  of JAK/STAT signaling® and lymphocyte retention in lymphoid organs®®, was both highly
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265  enriched in the calculated differential linkage score and was observed to be differentially
266  up-regulated in almost every MPAL subpopulation (Figure 3d). To further support RUNX1
267  predicted regulation of CD69%, we incorporated T cell K27ac HiChIP*, CRISPRa
268  screens®, and RUNX1 ChiP-seq*' onto our multi-omic differential track. These orthogonal
269 data sets show RUNX1 binding to linked distal regulatory regions (Figure 3e). Finally, by
270 using the 732 identified RUNXT target genes to stratify TCGA AML* patients by
271  expression, we observe significantly decreased survival (p-value = 0.023) in donors with
272  ahigh RUNX1 target gene signature*? (Figure 3f). This analysis suggests that RUNX1 is
273  animportant TF that putatively up-regulates a portion of the leukemic signature in MPAL
274  and potentially AML.

275 Collectively, this work establishes an experimental and analytical approach for
276  deconstructing cancer-specific features using integrative analysis of multiple single-cell
277  technologies. We find that MPAL malignant programs are largely conserved across
278  phenotypically heterogenous cells within individual patients; this observation is consistent
279  with a previous report'® that MPAL cells likely originate from a multipotent progenitor cell,
280 thereby sharing a common mutational landscape while populating different regions of the
281 hematopoietic tree. We used integrative single-cell analyses to further define putative TF
282  regulation of these malignant programs. We inferred that RUNX17 acts as a potential
283 oncogene in MPAL, regulating malignant genes associated with poor survival. We
284  anticipate that similar approaches will be used in future studies to both identify the
285  differentiation status of different tumor types (i.e. identify the closest “normal” cell type) as
286  well as enable molecular dissection of molecular dysfunction in pathogenic cellular sub-
287  types, with the ultimate goal of identifying personalized therapeutic targets through
288 integrative single-cell molecular characterization.

289

290


https://doi.org/10.1101/696328
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/696328; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

12

291 METHODS

292 Experimental Methods

293  Description of Healthy Donors

294 PBMCs, BMMCs, and CD34+ bone marrow cells were obtained from healthy donors
295  (AlCells).

296

297  Description of Leukemic Patients/Donors

298 Patient samples were collected with informed consent prospectively under a protocol
299  approved by the Institutional Review Board (IRB) at Stanford University Medical Center
300 (Stanford IRB, 42949, 18329, and 6453). Peripheral blood and bone marrow aspirate
301 samples were processed by Lymphoprep (STEMCELL Technologies) gradient
302 centrifugation and fresh frozen in Bambanker media. Diagnostic flow cytometric performed
303 on bone marrow aspirate samples were analyzed. In all cases, a retrospective review of
304 clinical parameters, hemogram data, peripheral blood smears, bone marrow aspirates,
305 trephine biopsies, results of karyotype and flow cytometry studies was performed. Clinical
306 follow-up information was obtained by retrospective review of the medical record charts.
307  Cases were classified using the 2016 WHO classification of hematopoietic and lymphoid
308 neoplasms®.

309

310 CITE-seq (combined single-cell antibody derived tag and RNA sequencing)

311 Combined single-cell RNA and antibody derived tag sequencing (CITE-seq) was
312  performed as previously reported® using the (version 2) Chromium Single Cell 3’ Library
313 and Gel Bead Kit (Cat# 120237, 10X Genomics). Six thousand cells were targeted for
314  each sample. Oligo-coupled antibodies were obtained from Biolegend indexed by PCR
315 (10 cycles) with custom barcodes (see Supplementary Table 3), quantified by PCR using

316  a PhiX Control v3 (lllumina, Cat #FC-110-3001) standard curve, and then sequenced on
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317  an lllumina NextSeq 550 together with scRNA-seq at no more than 60% of the total library
318 composition (1.5pM loading concentration, 26 x 8 x 0 x 98 bp read configuration).

319

320 Single-cell ATAC-seq (scATAC-seq).

321 Single-cell ATAC-seq targeting four thousand cells per sample was performed using a
322  beta-version of Chromium Single Cell ATAC Library and Gel Bead Kit (Cat # 1000110,
323 10X Genomics). Each sample library was uniquely barcoded and quantified by PCR using
324 a PhiX Control v3 (lllumina, Cat #FC-110-3001) standard curve. Libraries were then
325 pooled and loaded on a NextSeq 550 lllumina sequencer (1.4pM loading concentration,
326 33 x8x16 x 33 bp read configuration) and sequenced to either 90% saturation or 30,000
327  unique reads per cell on average.

328

329 Whole-Exome Sequencing of Leukemic Patients/Donors

330 Genomic DNA was extracted from diagnostic peripheral blood mononuclear cells or bone
331 marrow samples using Zymo Clean and Concentrator Kit. Library construction (Agilent
332  SureSelect Human All Exon kit), quality assessment, and 150-bp paired-end sequencing
333 (HiSeq4000) were performed by Novogene (Beijing, China). Reads with adapter
334  contamination, uncertain nucleotides, and paired reads with >50% low-quality nucleotides
335  were discarded. Paired-end reads were then aligned to the reference genome (GRCh37)
336  using BWA software. Genome Analysis Toolkit (GATK) was used to ignore duplicates with
337  Picard-tool. Filtered variants (SNP, INDELs) were identified using GATK HaplotypeCaller
338 and variantFiltration. Variants obtained from initial analysis were further compared to
339 dbSNP and 1000 Genomes database. Finally, missense, stopgain and frameshift
340 mutations were compared against a custom panel of 300 genes that are recurrently
341 mutated in hematologic malignancies as described previously'®".

342
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343 Analytical Methods

344  FACS Analysis

345  Flow cytometry was performed on a FACSCalibur or FACSCanto Il (Becton Dickinson,
346  San Jose, Ca, USA) cytometer using commercially available antibodies (Supplementary
347  Table 2). Lymphocytes were identified by low side-scatter and bright CD45 expression.
348 The gate was validated by backgating on CD3-positive or CD19-positive events. Blasts
349 were identified by low side-scatter and dim CD45 expression. The gate was further
350 assessed by backgating on CD34-positive events. Gates were drawn by additionally using
351 isotype controls and internal positive and negative controls.

352

353 scADT-seq Analysis

354 Raw sequencing data were converted to fastq format using bcl2fastq (lllumina, version
355 v2.20.0.422). ADTs were then assigned to individual cells and antibodies (see reference
356 antibody barcodes in Supplementary Table 3) allowing for 2 and 3 barcode mismatches,
357  respectively. Unique molecular counts for each cell and antibody were then generated by
358  counting only barcodes with a unique molecular identifier. PBMC and BMMC ADT count
359  data were transformed using the centered log ratio (CLR) as previously described®. PBMC
360 and BMMC cells were visualized in two dimensions using uwot’s implementation of
361 UMAP*in R (n_neighbors = 50, min_dist = 0.4).

362

363 scATAC-seq Analytical Methods

364 scATAC-seq Processing

365 Raw sequencing data was converted to fastq format using cellranger atac mkfastq (10x
366 Genomics, version 1.0.0). Single-cell RNA-seq reads were aligned to the GRCh37 (hg19)
367 reference genome and quantified using cellranger count (10x Genomics, version 1.0.0).

368
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369 scATAC-seq Quality Control

370  To ensure that each single-cell was both adequately sequenced and had high signal to
371  background, we filtered cells with less than 1000 unique fragments and enrichment at
372  transcription start sites (TSS) was below 8. To calculate a TSS enrichment?, briefly Tn5
373  corrected insertions were aggregated +/- 2,000 bp relative (TSS strand-corrected) for each
374  unique TSS genome wide. This profile was normalized to the mean accessibility +/- 1,900-
375 2,000 bp from the TSS, smoothed every 51bp, and the maximum smoothed value was
376  reported as TSS enrichment in R. We estimate that the multiplet percentage for this study
377 was around 4%’.

378

379 scATAC-seq Counts Matrix

380 To construct a counts matrix for each cell by each feature (window or peaks), we read
381 each fragment.tsv.gz fill into a Genomic Ranges object. For each Tn5 insertion, the “start”
382 and “end” of the ATAC-fragments, we used findOverlaps” to find all overlaps with the
383 feature by insertions. Then we added a column with the unique id (integer) cell barcode to
384 the overlaps object and fed this into a sparseMatrix in R. To calculate the fraction of
385 reads/insertions in peaks, we used the colSums of the sparseMatrix and divided it by the
386  number of insertions for each cell id barcode using “table” in R.

387

388 scATAC-seq Union Peak Set from Latent Semantic Indexing Clustering

389 We adapted a previous workflow for generating a union peak set that will account for
390 diverse subpopulation structure®®'°. First, we created 2.5kb windows genome wide using
391  “tile(hg19chromSizes, width = 2500)” in R. Next, a cell by 2.5kb window sparse matrix was
392  constructed as described above. The top 20,000 accessible windows were kept and the
393  binarized matrix was transformed with the term frequency-inverse document frequency

394  (“TF-IDF”) transformation®. Briefly we divided each index by the colSums of the matrix to
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395  compute the cell “term frequency”. Next we multiplied these values by log(1 + ncol(matrix)
396 / rowSums(matrix)) which represents the “inverse document frequency”. This
397  normalization resulted in a TF-IDF matrix that was then used as input to irlba’s singular
398 value decomposition (SVD) implementation in R. The 2nd-25" SVD dimensions (1%
399 dimension is correlated with cell read depth') were used for creating a Seurat object and
400 identified clusters using Seurat’s SNN graph clustering (v2.3.4) with “FindClusters” with a
401  default resolution of 0.8. If the minimum cluster size was below 200 cells, the resolution
402  was decreased until this criterion was reached leading to a final resolution of 0.8 (where
403 N represents the iterations until the minimum cluster size is 200 cells). For each cluster,
404 peak calling was performed on Tn5-corrected insertions (each end of the Tn5-corrected
405  fragments) using the MACS2 callpeak command with parameters “--shift -75 --extsize 150
406 --nomodel --call-summits --nolambda --keep-dup all -q 0.05.” The peak summits were then
407  extended by 250bp on either side to a final width of 501bp, filtered by the ENCODE hg19

408  blacklist (hitps://www.encodeproject.org/annotations/ENCSR636HFF/), and then filtered

409 to remove peaks that extend beyond the ends of chromosomes.

410

411 Overlapping peaks called were handled using an iterative removal procedure as
412  previously described?. First, the most significant (MACS2 score) extended peak summit is
413  keptand any peak that directly overlaps with that significant peak is removed. This process
414 re-iterates to the next most significant peak until all peaks have either been kept or
415 removed due to direct overlap with a more significant peak. The most significant 200,000
416 extend peak summits for each cluster were quantile normalized using
417  “trunc(rank(v))/length(v)” in R (where v represents the vector of MACS2 peaks scores).
418 These cluster peak sets were then merged and the previous iterative removal procedure
419 was used. Lastly, we removed any peaks whose nucleotide content had any “N”

420 nucleotides and any peaks mapping to chrY.
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421

422  scATAC-seq-centric Latent Semantic Indexing clustering and visualization

423  scATAC-seq clustering was performed by adapting the strategy of Cusanovich et. al®'°,
424  to compute the term frequency-inverse document frequency (“TF-IDF”) transformation.
425  Briefly we divided each index by the colSums of the matrix to compute the cell “term
426  frequency.” Next, we multiplied these values by log(1 + ncol(matrix) / rowSums(matrix)),
427  which represents the “inverse document frequency.” This resulted in a TF-IDF matrix that
428  was used as input to irlba’s singular value decomposition (SVD) implementation in R. The
429 first 50 SVD dimensions were used as input into a Seurat object and initial clustering was
430 performed using Seurat’s (v2.3.4) SNN graph clustering “FindClusters” with a resolution
431 of 1.5 (25 SVD dimensions for Healthy Hematopoiesis and 50 for Healthy Hematopoiesis
432 and MPALs). We found that in some cases, that there was batch effect between
433  experiments. To minimize this effect, we identified the top 50,000 variable peaks across
434  the initial clusters (summed cell matrix for each cluster followed by edgeR logCPM
435 transformation*). These 50,000 variable peaks were then used to subset the sparse
436  binarized accessibility matrix and recomputed the “TF-IDF” transform. We used singular
437  value decomposition on the TF-IDF matrix to generate a lower dimensional representation
438 of the data by retaining the first 50 dimensions. We then used these reduced dimensions
439 as input into a Seurat object and then final clusters were identified by using Seurat’s
440  (v2.3.4) SNN graph clustering “FindClusters” with a resolution of 1.5 (50 SVD dimensions
441  for Healthy Hematopoiesis and 50 for Healthy Hematopoiesis and MPALSs). These same
447  reduced dimensions were used as input to uwots implementation of UMAP (n_neighbors
443 =55, n_components = 2, min_dist = 0.45) and plotted in ggplot2 using R. We merged
444  scATAC-seq clusters from a total of 36 clusters for hematopoiesis to 26 final clusters that

445  Dbest agreed with the scRNA-seq clusters (included in Supplemental Data). The objective
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446  of this analysis is to optimize feature selection, that minimizes batch effects, and enable
447  projection of future data into the same manifold as described further below.

448

449  scATAC-seq Visualization in Genomic Regions

450 To visualize scATAC-seq data, we read the fragments into a GenomicRanges object in R.
451  We then computed sliding windows across each region we wanted to visualize every 100
452  bp “slidingWindows(region,100,100)". We computed a counts matrix for Tn5-corrected
453 insertions as described above and then binarized this matrix. We then returned all non-
454  zero indices (binarization) from the matrix (cell x 100bp intervals) and plotted them in
455  ggplot2 in R with “geom_tile”. For visualizing aggregate scATAC-seq data, the binarized
456 matrix above was summed and normalized. Scale factors were computed by taking the
457  binarized sum in the global peakset and normalizing to 10,000,000. Tracks were then
458  plotted in ggplot in R.

459

460 chromVAR

461 We measured global TF activity using chromVAR'™. We used the cell by peaks and the
462  CIS-BP motif (from chromVAR motifs “human_pwms_v1”) matches within these peaks
463 from motifmatchr. We then computed the GC bias-corrected deviations using the
464 chromVAR “deviations” function. We then computed the GC bias-corrected deviation
465  scores using the chromVAR “deviationScores” function.

466

467  Gene Activity Scores using Cicero and Co-Accessibility

468  We calculated gene activities using the R package Cicero™. Briefly, we used the sparse
469 binary cell by peaks matrix and created a cellDataSet, detectedGenes, and
470  estimatedSizeFactors. We then created a “cicero_cds” with k=50 and the

471  “reduced_coordinates” being the latent semantic indexing singular value decompositions
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472  coordinates (Hematopoiesis =25, Hematopoiesis and MPALs = 50). This function returns
473  aggregated accessibility across groupings of cells based on nearest-neighbor rules from
474  FNN. We then identified all peak-peak linkages that were within 250 kb by resizing the
475 peaks to 250 kb and 1bp and using “findOverlaps” in R. We calculated the pearson
476  correlation for each unique peak-peak link and created a connections data.frame where
477  the first column is peak_i and the second column is peak j and third coaccessibility
478  (pearson correlation). We then created a gene data.frame from the TxDb
479  “TxDb.Hsapiens.UCSC.hg19.knownGene” in R. We then resized each gene from its TSS
480 and created a window +/- 2.5 kb centered at the TSS and then annoted the “cicero_cds”
481 using “annotate_cds by site”. We then calculated gene activities with
482  “build_gene_activity_matrix” (coaccess cutoff of 0.35). Lastly we normalized the gene
483 activities by using “normalize_gene_activities” and the read depth of the cells. We then
484 log normalized these gene activities scores for interpretability by computing
485  “log2(GA*1,000,000 +1)".

486

487 scRNA-seq Analytical Methods

488 scRNA-seq Processing

489 Raw sequencing data was converted to fastq format using cellranger mkfastq (10x
490 Genomics, version 3.0.0). Single-cell RNA-seq reads were aligned to the GRCh37 (hg19)
491 reference genome and quantified using cellranger count (10x Genomics, version 3.0.0).
492  We kept genes that were present in both 10x gene transfer format (GTF) files v3.0.0 for

493  hg19 and hg38 (https://support.10xgenomics.com/single-cell-gene-

494  expression/software/release-notes/build). Mitochondrial and ribosomal genes were also

495 filtered prior to further analysis. Genes remaining after these filtering steps we refer to as
496 “informative” genes and enable cross genome comparison.

497
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498 scRNA-seq Quality Control

499  We wanted to filter out cells whose transcripts were lowly captured and first plotted the
500 distribution of genes detected and UMIs for all experiments. Based on these plots we
501 chose to filter out cells that had less than 400 informative genes detected and 1000 UMls.
502 In addition, to lower multiplet representation, we filtered cells with above 10,000 UMIs. We
503 estimate that the multiplet percentage for this study was around 6%?2. We then plotted the
504 correlation for each replicate experiment and found high reproducibility.

505

506 scRNA-seq-centric Latent Semantic Indexing clustering and visualization

507  We initially tested out a few methods for clustering scRNA but settled on an approach that
508 enabled us to effectively capture the hematopoietic hierarchy without significant alteration
509 of transcripts expression. We first log-normalized the transcript counts by first depth
510 normalizing to 10,000 and adding a pseudo count prior to a log2 transform (log2(counts
511 per ten thousand transcripts + 1)). Next, we identified the top 3000 variable genes and
512  performed the TF-IDF transform on these 3000 genes. We then performed singular value
513  decomposition (SVD) on this transformed matrix keeping the first 25 dimensions and used
514 this as input to Seurat Shared Nearest Neighbor Clustering (v2.3.4) with an initial
515  resolution of 0.2. We then summed the individual clusters single cells and computed the
516 logCPM transformation, edgeR::cpm(mat,log=TRUE,prior.count=3), and then identified
517  the top 2500 variable genes across these initial clusters. These variable genes were then
518 used as input for a TF-IDF transform and then performed singular value decomposition
519 (SVD) on this transformed matrix keeping the first 25 dimensions and used this as input
520 to Seurat Shared Nearest Neighbor Clustering (v2.3.4) with an increased resolution of 0.6.
521 We then summed the individual clusters single cells and computed the logCPM
522  transformation, edgeR::cpm(mat,log=TRUE,prior.count=3), and then identified the top

523 2500 variable genes across these clusters. We then repeated this 1 more time (resolution
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524 1.0) and then saved the final features and clusters. To align our clusters better with the
525 scATAC-seq data we merged a total of 26 clusters from 31 initial clusters (included in
526  Supplemental Data). These LSI dimensions were used as input to uwots implementation
527  of UMAP (n_neighbors = 35, n_components = 2, min_dist = 0.45) and plotted in ggplot2
528 using R. The objective of this analysis is to optimize feature selection, that minimizes batch
529 effects, and enable projection of future data into the same manifold as described further
530 below.

531

532 scATAC-seq and scRNA-seq Analytical Methods

533 LSl Projection for scATAC and scRNA-seq

534  We designed the above analytical approach to clustering single cell data because it
535  optimized feature selection and enabled projection of new non-normalized data into low
536 dimension manifold. To enable this analyses, when computing the TF-IDF transformation
537 on the hematopoietic hierarchy, we kept the colSums, rowSums, and SVD from the
538 previous run and then when projecting new data into this subspace, we first identified
539  which row indices to zero out based on the initial TF-IDF rowSums. We then computed
540 the “term frequency” by dividing by the colSums in these features. Next, we computed the
541 “inverse document frequency” from the previous TF-IDF transform (diagonal(1+ncol(mat)/
542  rowSums(mat))) and computed the new TF-IDF transform. We then projected this TF-IDF
543  matrix into the SVD subspace previous generated. To do this calculation, we computed
544  the new coordinates by “t(TF_IDF) %*% SVD$u %*% diag(1/SVD$d)” where TF_IDF is
545  the transformed matrix and SVD is the previous SVD run using irlba in R (3.5.1). We then
546  computed the projected matrix by “SVD$u %*% diag(SVD$D) * t(V)’ where V is the
547  projected coordinates above. For projecting bulk RNA-seq, we downsampled previously
548 published data to 5,000 reads in genes 100 times and then made a sparse matrix for

549  projection as single cell data. For projecting bulk scATAC-seq, we downsampled
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550  previously published data to 10,000 reads in peaks 100 times and then made a binary
551  sparse matrix for projection as single cell data.

552

553 Classification of MPAL single cells with scATAC and scRNA-seq

554  We wanted to classify MPAL single cells based on their disease state and hematopoietic
555  progression. First, we determined which cells were healthy-like and disease-like. To do
556 this analysis, we clustered all of the healthy hematopoietic cells with the MPAL of interest
557  using our LSI workflow as described above (scRNA — 25 PCs, 1,000 variable genes and
558  Seurat SNN resolution of 0.2, 0.8 and 0.8; scATAC - 25 PCs, 25,000 variable peaks and
559  Seurat SNN resolution of 0.8 and 0.8). We then determined which clusters were “healthy-
560 like” if a high percentage (>80% for scRNA, >90% for scATAC) of the cells were from the
561 hematopoietic data. MPAL single cells belonging to these clusters were classified as
562  “healthy-like” and the remaining disease-like. We note that we did not detect significant
563 large-scale copy number amplifications with our previously described approach’, and the
564  proportion of “disease-like” classified cells were consistent with our FACS estimation of
565 percent blast cells. In order to accurately characterize these MPAL “disease-like” by their
566 hematopoietic state, we established “hematopoietic compartments” across our scRNA
567 and scATAC-seq maps that broadly characterized the hematopoietic continuum. The
568 borders for these compartments were determined empirically using “fhs” in R, guided by
569 theinitial clusters and agreement across the scRNA and scATAC-seq classifications. After
570 the hematopoietic continuum were classified, we then broadly classified the MPAL
571 “disease-like” cells based on their projected nearest neighbor in the UMAP subspace.
572  These classifications were used subsequently in differential analyses.

573

574 Identifying differential features with scATAC and scRNA-seq
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575 To identify differential features for previously published AML data and MPALs, we
576  constructed a nearest neighbor healthy aggregate using the following approach. First, we
577 used FNN to identify the nearest 25 cells using “get.knnx(svdHealthy, svdProjected,
578  k=25)" based on Euclidean distance between the projected cells and hematopoietic cells
579 inLSI-SVD space. For each projected population, we used a minimum of 50 and maximum
580 of 500 cells (random sampling) as input. Next, we took the unique of all hematopoietic
581 single-cells and if this number was greater than 1.25 times the number of the projected
582  populations, we took the nearest 24 cells and repeated this procedure until this criterion
583 was met. Then the projected population and non-redundant hematopoietic cells were
584 downsampled to an equal number of cells (maximum 500). For scATAC-seq, we binarized
585 the matrix for both the projected populations and hematopoietic matrices. Next, we scaled
586 the sparse matrices to 10,000 total counts for scRNA and 5,000 total promoter counts for
587  scATAC-seq (promoter peaks defined as peaks within 500 bp of TSS from hg19 10x v3.0.0
588  gfffile). Next, we computed row-wise t-tests for each feature. We then calculated the FDR
589  using p.adjust(method="fdr"). We then computed the log2 mean and log2 fold changes for
590 each feature. We chose these parameters based on Soneson et al., study comparing
591 analytical methods for differential expression®®. For scRNA-seq, differential expression
592  was determined by FDR < 0.01 and absolute log2 fold changes greater than 0.5. For
593  scRNA-seq, differential expression was determined by FDR < 0.05 and absolute log2 fold
594  changes greater than 0.05.

595

596 To identify differential genes for bulk leukemia RNA-seq, we downsampled the gene
597  counts to 10,000 counts randomly for 250 times. We then projected and used the above
598 framework to resolve differential genes with log2 fold change > 3 and FDR < 0.01. We
599 then removed genes that were differential in 33% or higher of the normal samples to

600 attempt to capture biased genes. In addition, we further removed genes differential in 50%
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601  or higher of the leukemia samples. This filtering biases our identified malignant genes to
602 those variable across the leukemic types vs conserved across all leukemic types. We then
603 took the average malignancy for each remaining gene for each leukemic type and used
604 the top 300 variable malignant genes across the leukemic types for heatmap and LSI. For
605  computing differential LSI, we binarized each gene being malignant or not for the 300
606 variable malignant genes and computed the TF-IDF transform followed by SVD (LSI). We
607  then visualized this in 2 dimensions using uwot’'s implementation of UMAP (50 SVD
608 dimensions, n_neighbors = 50, min_dist = 0.005).

609

610 Matching scATAC-scRNA-seq pairs using Seurat Canonical Correlation Analyses
611 We wanted to be able to integrate our epigenetic and transcriptomic data and built off of
612  previous approaches for integration'®3*. We found the approach that worked best for our
613 integrative analyses was using Seurat’s Canonical Correlation Analysis. We performed
614 integration for each biological group separately because (1) it improved alignment
615 accuracy and (2) required much less memory. First, for both the Gene Activity Scores
616 matrix and scRNA matrix we created a Seurat Object “CreateSeuratObject”, then
617 normalized with “NormalizeData”, and found the top 2000 variable genes/activities ranked
618 by dispersion with “FindVariableGenes”. We then defined the union of the top 2000
619 variable genes from scRNA-seq and gene scores from scATAC-seq and found this
620 increased the concordance downstream (defined by cluster to cluster mapping in
621 hematopoiesis and single cell spearman correlations). These genes were then used for
622  running Canonical Correlation analysis using “RunCCA” with the number of cc’s to
623 compute as 25. We then calculated the explained variance using “CalcVarExpRatio”
624  grouping by each of the individual experimental protocols scATAC (Gene Activity Scores)
625 and scRNA. We then filtered cells where the variance explained by CCA is less than 2 fold

626 compared to PCA. We then Aligned the subspaces with “AlignSubspace” and 25
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627  dimensions to align with reduction.type = “cca” and grouping.var = “protocol”. We then
628 identified for each scATAC cell the nearest scRNA cell based on minimizing the euclidean
629 distance. We then created a UMAP using the aligned CCA coordinates as input into uwot’s
630 UMAP implementation with n_neighbors = 50, min_dist = 0.5, metric = “euclidean” and
631 then plotting with ggplot2 in R. To enable more robust correlation based downstream
632  analyses, we used our initial KNN groupings (nGroups = 4998, KNN = 50) from Cicero'
633 to group scATAC accessibility, Gene Activity Scores, scRNA closest neighbor and
634  chromVAR' deviation scores.

635

636 Peak-To-Gene Linkage

637  Cicero™ allows us to infer Gene Activity Scores by linking distal correlated ATAC peaks
638 to the promoter peak. While this measure is extremely useful, it does not actually mean it
639 s correlated to the gene expression. To circumvent this limitation, we used our grouped
640 scATAC and grouped linked scRNA-seq to identify peak-to-gene links. First we log-
641 normalized the accessibility and gene expression with log2(Counts Per 10,000 + 1) and
642 then we resized each of the gene GRanges to the start using resize(gr,1,”start”) and then
643 resizing the start to a +- 250kb window using resize(gr, 2 * 250000 + 1, “center”). We then
644  overlapped all ATAC-seq peaks using “findOverlaps” to identify all putative peak-to-gene
645 links. We then split the aggregated ATAC and RNA matrices by whether majority of the
646 cells were from MPAL or Hematopoietic single cells. We then correlated the peaks and
647  genes for all putative peak-to-gene links. We used a previously described approach for
648 computing a null correlation based on trans correlations (correlating peaks and genes not
649  on the same chromosome)?. Briefly, for each chromosome 1000 peaks not on the same
650 chromosome are identified and correlated to every gene on that chromosome. Each
651 putative peak-to-gene correlation is converted into a z-score by using the mean and sd of

652  the null trans correlations. These are then converted to p-values and adjusted for multiple
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653  hypothesis using the benjamini Hochberg correction “p.adjust” in R. We retained links
654  whose correlation (Pearson) was above 0.35 and FDR < 0.1, same correlation cutoff as
655  co-accessibility in Cicero™, in either MPAL or Hematopoietic aggregations. We then kept
656  all peak-to-gene links that were greater than 2.5kb in distance. We identified peak-to-gene
657 links that are only present in hematopoiesis, MPALs or both. To visualize the peak-to-
658 gene links we plotted all of them as a heatmap with ComplexHeatmap. To determine the
659  column order we first computed PCA for the first 25 PCs using irlba. We then computed
660  Seurat' Shared Nearest Neighbor clustering with a resolution of 1 and then computed the
661 cluster means. We then computed the order of these clusters using hclust and the
662  dissimilarity 1-R as the distance. Next we then iterated through each cluster and
663  performed hclust with the dissimilarity calculations to get a final column order. The peak-
664  to-gene links were grouped by k-means clustering with 10 input centers 100 iterations and
665 10 random starts for healthy, disease and the overlapping links. We did this bi-clustering
666 because it enabled us to plot smaller rasterized chunks of the heatmap without
667  overwhelming the memory and put the individual rasterized k-means clusters together
668  post analysis.

669

670 Peak-To-Gene links enrichment with GTEx eQTLs

671  We adopted a previous approach for identifying the enrichment of our peak-to-gene links
672 in GTEx eQTL data. Briefly, we downloaded GTEx eQTL data (version 7) from

673  https://gtexportal.org/home/datasets and the *.signif_variant_gene_pairs.txt.gz files were

674  used. We in addition downloaded gencode v19 (matched to these eQTLs) and identified
675 all gene starts and identified all nearest gene starts to each peak and eQTL using
676  “distanceToNearest”. We filtered all eQTLs that were further than 250kb from their
677  predicted gene to be consistent with our linkage approach. To calculate a conservative

678  overlap enrichment, we further pruned all eQTL links that were to its nearest gene. We
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679 then created a null set (n = 250) of peak-to-gene links by randomly selecting distal ATAC-
680  seq peak-to-gene links (within 250 kb) that are distance matched to the links tested at 5kb
681 resolution. We then calculated a z-score and enrichment for each peak-to-gene link set
682  compared to the null set and calculated an FDR using p.adjust(method = “fdr”).

683

684  Peak-To-Gene links enrichment with K27ac HiChIP metaV4C

685 We wanted to determine the specify of our peak-to-gene links in published chromatin
686  conformation data as previously described. We downloaded previously published Naive T
687  cell and HCASMC K27ac HiChIP data. We then identified within each peak-to-gene links
688  subset the peaks that were most biased to T/NK cells. To do this analysis, we calculated
689 the z-score for each peak in the peak-to-gene links removed all links below 100kb and
690 floored each peak coordinate (start or end) to its nearest 10kb window. We then ranked
691 these links by the z-score for the peak, deduplicated the links at 10kb resolution and kept
692 the top 500 remaining peak-to-gene links. Next, we used juicer dump (no normalization
693 “NONE”) at 10kb resolution for each chromosome in the “.hic” file. Then we read each
694  chromosomes into an individual “sparseMatrix” in R. We then scaled the sparse matrices
695  such that the total cis interactions summed up to 10 million PETs. Then, for each peak-to-
696  gene link, the upstream or downstream window (Column or Row) (whether the peak was
697  upstream or downstream of the gene promoter) was identified. To scale each interactions
698  distance for interpretability, we linearly interpolated the data to be on a -50-150% scale to
699 visualize the focal interaction. The mean interaction signal was reported and repeated for
700  both replicates. The mean and sd across both replicates were calculated and plotted with
701  ggplotin R.

702

703 Identifying TF Malignant Target Genes and Survival Anlaysis
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704  We wanted to create a framework for identifying TFs that potentially directly regulate
705  malignant genes. To do this analysis, we first identified a set of transcription factors whose
706  hypergeometric enrichment in differential peaks were high across the MPAL
707  subpopulations (Comparing up-regulated peaks vs all peaks) and were identified as being
708 transcriptionally correlated with their motif’s accessibility (see above). Next for a given TF
709  and all identified peak-to-gene links, we further subsetted these links by those containing
710  the TF motif. Then for each MPAL subpopulation, we determined for each peak-to-gene
711  link if both the peak and gene are up-regulated. Then for each gene, we gave a binary
712  score whether or not that MPAL subpopulation has at least one differential peak-to-gene
713 link (whose peak and gene are differentially up-regulated) and report the proportion of
714  subpopulations that were up-regulated. In addition, for each gene that has at least 1
715  differential peak-to-gene links we summed their squared correlation R? and report that as
716  the differential linkage score. We kept all genes that had least 1 MPAL subpopulation with
717  corresponding differential peak-to-gene links.

718

719  For survival analysis, we downloaded the RPKM TCGA-LAML data*? (https:/tcga-

720 data.nci.nih.gov/docs/publications/laml 2012/laml.rnaseq.179 v1.0 gaf2.0 rpkm matrix

721 Ixt.tcgalD.txt.gz). We downloaded the survival data from Bioconductor RTCGA.clinical

722  (“patient.vital_status”) and matched using TCGA IDs the RPKM expression. Next, we took
723  all genes that were identified as target genes for RUNXT (n = 732), and computed row-
724  wise z-scores for each gene. Next, we took the column means of this matrix to get an
725 average z-score across all RUNX1 target genes. We then identified the top 33% and
726  bottom 33% of donors based on this expression. We computed the p-value using the R
727  package survival “survfit(Surv(times,patient.vital_status)~Runx1_TG_Expression,
728  LAML_Survival)’. We plotted the Kaplan-Meier curve using the R package survminer

729  “ggsurvplot”’ in R.
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730

731 FIGURE LEGENDS

732

733  Figure 1. Multi-omic epigenetic and phenotypic analysis of human hematopoiesis.
734  a, Schematic of multi-omic profiling of chromatin accessibility, transcription, and cell
735  surface antibody abundance on healthy bone marrow and peripheral blood mononuclear
736  cells using scATAC-seq and CITE-seq (combined single-cell RNA and antibody derived
737  tag sequencing).

738 b, scRNA-seq LSI UMAP projection of 35,882 single cells of healthy hematopoiesis.
739 ¢, scATAC-seq LSI UMAP projection of 35,038 single cells of healthy hematopoiesis.
740  d, Surface marker overlay on single-cell RNA UMAP (b) of (Top) ADT antibody signal
741  (CLR normalized), (Middle) single-cell RNA, and (Bottom) log2 gene activity scores for
742  CD3, CD14, CD19, and CD8A.

743 e, Transcription factor overlay on single-cell ATAC UMAP (c) of (Top) TF deviations,
744  (Middle) gene activity scores, and (Bottom) single-cell RNA for CEBPB, GATA1, TBX21,
745 and PAX5.

746  f-h, Multi-omic tracks; (Top) average track of all clusters displayed, (Middle) binarized 100
747  random scATAC-seq tracks for each locus at 100bp resolution and (right) scRNA-seq log2
748  distribution of normalized expression for each cluster.

749  f, Multi-omic track of CD14 (specific in these clusters for monocytes) across monocyte
750  development from HSC progenitor cells.

751 g, Multi-omic track of CD19 (specific in these clusters for pre B cells) across B cell
752  development.

753  h, Multi-omic track of PAX5 (specific in these clusters for pre B cells) across B cell
754  development.

755
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756  Figure 2. Multi-omic projection of MPALs into hematopoiesis identifies normal and
757  leukemic programs.

758 a, Schematic for projection of MPAL single cells onto hematopoiesis for both scRNA-seq
759  and scATAC-seq classified into broad hematopoietic compartments.

760 b, (Left) MPAL single cell projections into hematopoiesis for both scRNA-seq and
761  scATAC-seq. (Right) The proportion of MPAL cells that were broadly classified as healthy
762  ordisease and their respective hematopoietic compartment.

763 ¢, (Left) scRNA-seq heatmap of up-regulated genes log2 fold changes comparing MPAL
764  disease subpopulations to closest non-redundant normal cells. Differential genes were
765  clustered with k-means (k=10) based on their log2 fold changes. (Right) scATAC-seq
766  heatmap of differentially up-regulated accessible peaks log2 fold changes comparing
767  MPAL disease subpopulations to closest non-redundant normal cells. Differential peaks
768  were clustered with k-means (k=10) based on their log2 fold changes.

769 d, Pearson correlation of differentially up-regulated genes and peaks across all MPAL
770  subpopulations.

771 e, LSI UMAP of differentially up-regulated gene expression profiles across bulk
772  leukemias'® and MPAL samples assayed in this study, colored by WHO 2016
773  classifications®.

774  f, (Left) MA plot comparing the proportion of malignant (up-regulated) gene expression
775  profiles in AML and MPALs. The x-axis represents for each up-regulated gene, the
776  average proportion of AML and MPAL patient subpopulations broadly up-regulated (LFC
777 > 0.5). The y-axis represents for each up-regulated gene, the difference in the proportion
778  of MPAL and AML patient subpopulations up-regulated (LFC > 0.5). (Right) Genes that
779  are more malignant biased to AMLs, MPALs and conserved across both AMLs and
780 MPALs.

781
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782  Figure 3. Integrative scATAC and scRNA-seq analyses nominate putative
783  transcription factors that regulate leukemic programs.

784  a, (Left) Hypergeometric TF motif enrichment FDR in differentially accessible peaks
785  across each k-means clusters identified in Figure 2c. TFs are also identified as being
786  differentially expressed and enriched in at least 3 MPAL hematopoietic compartments.
787  (Top) Number of accessible peaks in each k-means cluster. (Right) Proportion of
788  differentially up-regulated TF gene expression profiles across MPAL hematopoietic
789  compartments.

790 b, (Left) Schematic for alignment of scATAC and scRNA-seq data to link putative
791  regulatory regions to target genes. First, scATAC-seq data is converted from accessible
792  peaks to inferred gene activity scores using Cicero. Second, these gene activity scores
793 and scRNA-seq expression are aligned into a common subspace using Seurat’'s
794  Canonical Correlation Analyses. Third, each scATAC-seq cell is assigned its nearest
795  scRNA-seq neighbor. Fourth, ATAC-seq peaks within 2.5-250kb to a gene promoter are
796  correlated within the healthy hematopoietic and MPAL knn groupings. Lastly, significant
797  peak-to-gene links are identified by correlating peaks to genes on different chromosomes.
798  (Right) Heatmaps of 91,601 peak-to-gene links across hematopoiesis and MPALs. (Top)
799  peak-to-gene links that are identified only within hematopoiesis, (Middle) peak-to-gene
800 links that are unique to MPALs, and (Bottom) peak-to-gene links identified in both
801 hematopoiesis and MPALs.

802 ¢, Schematic for identifying genes that are putatively regulated by the transcription factor
803  of interest.

804 d, RUNXT putative target genes differentially up-regulated in at least 1 MPAL
805  subpopulations. The x-axis represents the proportion of MPAL subpopulations that are

806 differential in both scRNA-seq and a linked accessible peak. The y-axis represents the
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807  cumulative linkage score between differentially up-regulated peaks linked to differentially
808  up-regulated genes.

809 e, CD69 multi-omic differential track (Top) T cell Th17 K27ac HiChlP virtual4C of the CD69
810 locus, shading represents standard deviation between biological replicates (n = 2).
811 (Middle) Aggregated scATAC tracks showing MPAL disease subpopulations (red) and
812  aggregated nearest-neighbor healthy (grey). (Right) Distribution of log2 normalized
813  expression of CD69 for MPAL disease subpopulations (red) and closest normal cells
814  (grey); black line represents the mean and asterisk denote significance (LFC > 0.5 and
815 FDR<0.01). (Bottom)HL60 AML line ChIP-seq data across CD69 locus, Jurkat CRISPRa
816 tiling screen across the CD69 locus and RUNX1 identified malignant peak-to-gene links.

817 f, Kaplan-Meier curve for TCGA AML patients (n=179) stratified by RUNX1 putative target
818  genes top 33% vs bottom 33% (p-value = 0.023).

819

820 SUPPLEMENTARY FIGURE LEGENDS

821

822  Supplementary Figure 1. Quality control of scRNA-seq data for hematopoiesis
823 samples.

824 a, (Top) Number of cells passing filter for each experimental replicate (number of
825 informative genes > 400 and number of unique molecular identifiers (UMI) > 1000),
826  (Middle) number of informative genes detected per single cell and (Bottom) number of
827  unique molecular identified (UMI) transcripts.

828 b, Aggregated scRNA-seq one to one reproducibility plots for experimental replicates and
829  across experiments.

830 ¢, scRNA-seq biological cluster labels assigned to each cluster overlay on UMAP of
831 hematopoiesis.

832 d, scRNA-seq experimental sample labels overlay on UMAP of hematopoiesis.
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833

834  Supplementary Figure 2. Quality control of scATAC-seq data for hematopoiesis
835 samples.

836  a, scATAC-seq cell filtering plot. The x-axis is the number of unique accessible fragments
837 and the y-axis is the enrichment of Tn5 insertions at transcription start sites, representing
838  the robust signal to background for each single cell.

839 b, Aggregated scATAC-seq fragment size distributions across individual experiments
840 demonstrating sub-, mono- and multi nucleosome spanning ATAC-seq fragments.

841 ¢, (Top) Number of cells passing filter for each experimental replicate (Unique fragments
842 > 1000 and TSS enrichment > 8), (Middle) log10 unique fragments, (Middle) fraction of
843 Tnb5 insertions in the healthy hematopoietic union peak set, and (Bottom) enrichment at
844  transcription start sites.

845 d, Aggregated scATAC-seq one to one reproducibility plots for experimental replicates
846  and across experiments.

847 e, scATAC-seq biological cluster labels assigned to each cluster overlay on UMAP of
848 hematopoiesis.

849 f, scATAC-seq experimental sample labels overlay on UMAP of hematopoiesis.

850

851 Supplementary Figure 3. Quality control of scADT-seq data for hematopoiesis.

852 a, Proportion of scRNA-seq cells passing filter that were matched with corresponding
853  scADT data.

854 b, Aggregated scADT-seq one to one reproducibility plots for experimental replicates and
855  across experiments.

856 ¢, scADT-seq UMAP of bmmc and pbmc samples across 14 antibodies. scADT overlay of

857  experimental sample labels, CD19, CD3, CD56, CD4, CD8A, CD14, CD16, CD45RA,
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858 CD45RO, TIGIT and PD-1. Color represents experimental labels or scADT-seq values
859  after CLR transformation.

860 d, Corresponding scRNA-seq biological cluster label overlay on the scADT-seq UMAP of
861 BMMC and PBMCs.

862

863  Supplementary Figure 4. Validation of key marker genes for both scRNA-seq and
864 scATAC-seq for hematopoiesis.

865  a-h, Multi-omic tracks; (Top) average track of all clusters displayed, (Middle) binarized 100
866 random scATAC-seq tracks for each locus at 100bp resolution and (right) scRNA-seq log2
867  distribution of normalized expression for each cluster, box-plot shows median and lower
868  and upper quartiles.

869 a, Multi-omic track of GATA1 (specific in these clusters for Erythroid) for erythroid
870  development from HSC progenitor cells.

871 b, Multi-omic track of GATAZ2 (specific in these clusters for Basophil) for erythroid
872  development from HSC progenitor cells.

873 ¢, Multi-omic track of ELANE (specific in these clusters for GMP/Neutrophil) for neutrophil
874  development from HSC progenitor cells.

875 d, Multi-omic track of IRF8 (specific in these clusters for pDC) across pDC development
876  from HSC progenitor cells.

877 e, Multi-omic track of SDC17 (specific in these clusters for Plasma cells) across B cell
878  development and plasma cells.

879  f, Multi-omic track of CD1C (specific in these clusters for cDC) across cDC development
880  from HSC progenitor cells.

881 g, Multi-omic track of SELL (specific in these clusters for Naive T cells vs memory, and
882  CD8 central memory vs CD8 effector memory) across NK and T cells.

883  h, Multi-omic track of GZMB (specific in these clusters for NK cells) across NKand T cells.
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884

885  Supplementary Figure 5. Diagnostic flow cytometry plots for MPALs 1-3.

886  a-c, Diagnostic flow cytometry plots from three different MPAL cases gated on blasts area
887  (highlighted in red) and lymphocytes (highlighted in black) from CD45 and side scatter
888 area (SSC-A).

889 a, MPAL 1 shows classic bilineal phenotype with both T-lymphoblasts (cCD3-positive and
890 CD7-positve) and myeloid blasts (MPO-positive and CD33-positive).

891 b, MPAL 2 demonstrates a more complex phenotype with both biphenotypic (single
892  population expressing lymphoid marker CD7 and myeloid marker CD33) and bilineal T-
893  Myeloid patterns (subpopulation expressing monocytic markers CD64, CD33, and CD14).
894 ¢, MPAL 3 demonstrates a classic biphenotypic case with coexpression of both T-lineage
895  markers (cCD3-positive) and myeloid markers (MPO-positive).

896

897  Supplementary Figure 6. Diagnostic flow cytometry plots for MPALs 4-5R.

898 a-c, Diagnostic flow cytometry plots from three different MPAL cases gated on blasts area
899  (highlighted in red) and lymphocytes (highlighted in black) from CD45 and side scatter
900 area (SSC-A).

901 a, MPAL4 demonstrates a classic bilineal B/M phenotype expressing B-lineage markers
902 (CD79a and CD19-positive) and myeloid markers (MPO-positive and CD33-positive).
903 b, MPAL5 demonstrates a more complicated phenotype with a subpopulation of blasts
904 expressing T-lineage markers (cCD3-positive and CD7-positive) and a subpopulation
905  expressing myeloid marker MPO.

906 ¢, MPALS5R post-treatment relapse of MPALS. Flow cytometry reveals expansion of the T-
907 lymphoblastic subpopulation (cCD3-positive, TdT-positive population) following

908 chemotherapy.
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909 d, High-confidence mutations detected in 5 MPAL cases by whole exome sequencing.
910 Missense mutations are shown in blue, frameshift deletions are shown in yellow, stopgain
911 mutations are shown in purple, frameshift insertions are shown in orange, and
912  nonframeshift deletions are shown in dark gray.

913

914 Supplementary Figure 7. Quality control of scRNA-seq and scATAC-seq data for
915 MPAL samples.

916 a, (Top) Number of cells passing filter for each experimental replicate (number of
917 informative genes > 400 and number of unique molecular identifiers (UMI) > 1000),
918 (Middle) number of informative genes detected per single cell and (Bottom) number of
919  unique molecular identified (UMI) transcripts.

920 b, Aggregated scRNA-seq one to one reproducibility plots for experimental replicates and
921  across experiments.

922 ¢, scATAC-seq cell filtering plot. The x-axis is the number of unique accessible fragments
923 and the y-axis is the enrichment of Tn5 insertions at transcription start sites, representing
924  the robust signal to background for each single cell.

925 d, Aggregated scATAC-seq fragment size distributions across individual experiments
926  demonstrating sub- , mono- and multi nucleosome spanning ATAC-seq fragments.

927 e, (Top) Number of cells passing filter for each experimental replicate (Unique fragments
928 > 1000 and TSS enrichment > 8), (Middle) log10 unique fragments, (Middle) fraction of
929  Tn5 insertions in the MPAL union peak set, and (Bottom) enrichment at transcription start
930 sites

931 f, Aggregated scATAC-seq one to one reproducibility plots for experimental replicates and
932  across experiments.

933
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934  Supplementary Figure 8. Evaluation of LSI projection workflow for previously
935 published bulk and single-cell hematopoietic data sets across different platforms.
936 a, Overview of LSI projection workflow. Briefly, using information from TF-IDF transform,
937  singular value decomposition and UMAP of hematopoiesis enables projection of new data
938 into the same subspace.

939 b, LSI projection of downsampled previously published bulk sorted hematopoietic data
940 sets'?° (Left) RNA-seq downsampled bulk projections for 49 samples (n=250
941 downsampled cells). (Right) ATAC-seq downsampled bulk projections for 90 samples
942  (n=250 downsampled cells).

943 ¢, LSI projection of downsampled previously published single-cell hematopoietic data sets

944  labeled by previous classifications?®-??

. (Left) scRNA-seq projections of previous study
945 healthy bone marrow cells (different platform and different aligned genome) colored by
946  previous classifications. (Right) scATAC-seq projections for healthy bone marrow and
947  peripheral blood samples (2 different platforms across 3 studies), colored by ground truth
948 isolated populations.

949

950 Supplementary Figure 9. LSI projection of previously published healthy and AML
951 scRNA-seq identifies malignant programs across AML subpopulations.

952  a, (Left) Schematic of LSI projection. (Right) Initial projection of all AML malignant single-
953  cells colored by previous classifications'®.

954 b, Re-classification of scRNA-seq AML single-cells based on closest normal cells in
955  healthy hematopoiesis (See Methods). Broader re-classification increases the number of
956 cells per category for improved power in differential analyses. LSI projection for each

957 individual AML samples onto scRNA-seq healthy hematopoiesis colored by re-

958 classifications (denoted is the sample id and number of cells).
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959 ¢, K-means differential scRNA-seq heatmap (k = 10), colored by log2 fold change,
960 comparing each AML sample subpopulations (classifications) vs their closest normal bone
961  marrow cells from the same study™.

962

963 Supplementary Figure 10. scADT-seq overlay of MPALs projected onto the
964 hematopoietic hierarchy

965 a, (Left) Projected MPALs colored by hematopoietic compartments. (Right) scADT-seq
966 overlay of CD7, CD33, CD14, CD4 and CD19 on MPAL single cells LSI projected onto
967 hematopoiesis.

968

969 Supplementary Figure 11. Visualization of differential genes and accessible peak
970 regions.

971 a, Top conserved differential genes across the MPAL hematopoietic compartments.

972 b, Top conserved differential transcription factors across the MPAL hematopoietic
973  compartments.

974 ¢, KEGG pathway enrichment in differential RNA k-means 2, 3, 4, and 10 (Figure 2c).
975 d-e, Multi-omic differential tracks (Left) scATAC tracks showing MPAL disease
976  subpopulations (red) closest normal cells (grey). (Right) Distribution of log2 normalized
977  expression for MPAL disease subpopulations (red) and closest normal cells (grey); black
978 line represents the mean and asterisk denote significance (LFC > 0.5 and FDR < 0.01).
979  d, Multi-omic differential track of CDK11A, up-regulated in MPALs 1, 2, 5 and 5R.

980 e, Multi-omic differential track of CDKN2A, up-regulated in MPALs 1, 2, 3, 4, and 5.

981

982  Supplementary Figure 12. Seurat canonical correlation analysis alignment of

983 scRNA and scATAC-seq hematopoietic and MPAL samples.
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984 a, Schematic of LSI projection of downsampled bulk leukemia RNA-seq onto healthy
985 hematopoiesis.
986 b, Representative downsampled LSI projections (n=250) for B-ALLs, non-ETP T-ALLs,
987 ETP T-ALLs, AMLs, T/M MPALs and B/M MPALs from previous studies’®.
988 ¢, LSI UMAP of differentially up-regulated gene expression profiles across bulk
989 leukemias'® and MPAL samples assayed in this study, colored by cytogenetics.
990 d, Binary heatmap of variable malignant genes across leukemia classifications. Each cell
991 in the heatmap is colored whether the gene was identified as malignant for the leukemic
992  sample.
993
994  Supplementary Figure 13. Seurat canonical correlation analysis alignment of
995 scRNA and scATAC-seq hematopoietic and MPAL samples.
996 a, UMAP of CCA alignment of scATAC-seq using Cicero gene activity scores and scRNA-
997  seq for (Left) bone marrow, (Middle) CD34+ enriched bone marrow, (Right) peripheral
998  blood.
999 b, UMAP of CCA alignment of scATAC-seq using Cicero gene activity scores and scRNA-
1000  seq for MPAL samples.
1001
1002  Supplementary Figure 14. Evaluation of scRNA and scATAC-seq alignment and
1003 peak-to-gene linkage across hematopoiesis and MPAL samples.
1004  a, Spearman rank correlation between scATAC-seq Cicero gene activity scores to sCRNA-
1005 seq for each mapped cell within across all biological experiments.
1006 b, Pearson correlation of CCA scRNA and scATAC-seq nearest-neighbors. The cutoff (R
1007 > 0.45) for high quality nearest neighbor mappings is shown.
1008 ¢, (Left) UMAP of scATAC-seq hematopoiesis colored by scATAC-seq clusters. (Right)

1009 UMAP of scATAC-seq hematopoiesis colored by mapped scRNA-seq clusters.
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1010 d, Confusion matrix of initial clusters for mapped scRNA-seq to scATAC-seq clusters for
1011  hematopoiesis (Figure 1b-c).

1012 e, (Left) Distribution of peak-to-gene distances. (Left-Middle) Distribution of number of
1013 peaks mapped per gene (median = 6). (Right-Middle) Distribution of number of genes
1014  mapped per peak (median = 1). (Right) Distribution of number of genes skipped for peak-
1015 to-gene links (median = 2).

1016 f, MetaV4C plots of K27ac HiChIP in Naive T and HCASMC cells for top 500 biased T/NK
1017  (broad classification) peak-to-gene links that are identified only in healthy hematopoiesis.
1018  Shading indicates standard deviation between replicate experiments (n = 2).

1019 g, Peak-to-genes enrichment in GTEx eQTLs over a permuted background distance-
1020  matched set (n=250) for the union set of peak-to-gene links.

1021

1022  Supplementary Figure 15. Peak-to-gene links nominate putative regulatory regions
1023 that nominate key leukemic genes.

1024  a-d, Multi-omic differential track; (Middle) Aggregated scATAC tracks showing MPAL
1025 disease subpopulations (red) and closest normal cells (grey). (Right) Distribution of log2
1026 normalized expression of gene of interest for MPAL disease subpopulations (red) and
1027  closest normal cells (grey); black line represents the mean and asterisk denote
1028 significance (LFC > 0.5 and FDR < 0.01). (Bottom) Peak-to-gene links for gene of interest.
1029  a, Multi-omic differential track for IL1RAP.

1030 b, Multi-omic differential track for CD96.

1031 ¢, Multi-omic differential track for FLT3.

1032 d, Multi-omic differential track for MCL1.

1033

1034  Supplementary Figure 16. Analysis workflows for processing of scRNA-seq and

1035 scATAC-seq data.
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1036 a, scRNA-seq analysis workflow. Briefly cells are aligned using 10x cell ranger, quality
1037 filtered, and clustered using a feature optimization approach (see methods).

1038 b, scATAC-seq analysis workflow. Briefly cells are aligned using 10x cell ranger atac,
1039  quality filtered, clustered in large windows genome-wide, peak-calling on clusters, creation
1040 of a counts matrix and clustered using a feature optimization approach (see methods).
1041

1042

1043  Supplementary Table 1. MPAL Patient Characteristics.

1044  MPAL patient WHO Diagnosis, Age, Sex, Blast %, White Blood Cell Count, Cytogenetics,
1045  Prior Treatment.

1046

1047  Supplementary Table 2. Antibodies used in flow cytometry of MPALs.

1048

1049 Supplementary Table 3. CITE-Seq Antibody List and Barcodes.

1050 Antibody information for Hematopoietic and MPAL samples. Barcodes used for
1051 sequencing ADT libraries.

1052

1053  Supplementary Table 4. Differential analyses for MPAL and AMLs.

1054 MPAL differential RNA-seq k-means, MPAL differential ATAC-seq k-means, AML
1055  differential RNA-seq k-means and MPAL vs AML comparison.

1056

1057  Supplementary Table 5. Motif enrichment and linkage to target genes.

1058 MPAL differential ATAC-seq k-means enrichment for CIS-BP motifs shown in figure 3A,
1059 all motifs, significant peak-to-gene links, and RUNX1 target genes.

1060
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