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 2 

Abstract 32	
In order to identify the molecular determinants of human diseases, such as cancer, that 33	

arise from a diverse range of tissue, it is necessary to accurately distinguish normal and 34	
pathogenic cellular programs.1–3 Here we present a novel approach for single-cell multi-35	

omic deconvolution of healthy and pathological molecular signatures within phenotypically 36	
heterogeneous malignant cells. By first creating immunophenotypic, transcriptomic and 37	
epigenetic single-cell maps of hematopoietic development from healthy peripheral blood 38	

and bone marrow mononuclear cells, we identify cancer-specific transcriptional and 39	
chromatin signatures from single cells in a cohort of mixed phenotype acute leukemia 40	

(MPAL) clinical samples. MPALs are a high-risk subtype of acute leukemia characterized 41	
by a heterogeneous malignant cell population expressing both myeloid and lymphoid 42	
lineage-specific markers.4,5 Our results reveal widespread heterogeneity in the 43	

pathogenetic gene regulatory and expression programs across patients, yet relatively 44	
consistent changes within patients even across malignant cells occupying diverse portions 45	

of the hematopoietic lineage. An integrative analysis of transcriptomic and epigenetic 46	
maps identifies 91,601 putative gene-regulatory interactions and classifies a number of 47	

transcription factors that regulate leukemia specific genes, including RUNX1-linked 48	
regulatory elements proximal to CD69. This work provides a template for integrative, multi-49	
omic analysis for the interpretation of pathogenic molecular signatures in the context of 50	

developmental origin. 51	
 52	

 53	
 54	
 55	

 56	
 57	
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Main 58	
To identify pathologic features within neoplastic cells, we first aimed to establish molecular 59	

features of normal development for comparison. Since MPALs present with features of 60	
multiple hematopoietic lineages, we first constructed independent immunophenotypic, 61	

transcriptomic and epigenetic maps of normal blood development using droplet-based 62	
CITE-seq6 (single-cell antibody derived tag and RNA sequencing) and single-cell ATAC-63	
seq (scATAC-seq, single-cell chromatin accessibility profiling)7 on bone marrow and 64	

peripheral blood mononuclear cells (Figure 1a). For CITE-seq analyses, we 65	
simultaneously generated 10x Genomics 3’ single-cell RNA sequencing8 (scRNA-seq) and 66	

antibody derived tag sequencing6 (scADT-seq) libraries from 35,882 bone marrow 67	
mononuclear cells (BMMCs, n = 12,602), CD34+ enriched BMMCs (n = 8,176), and 68	
peripheral blood mononuclear cells (PBMC, n = 14,804). On average, 1,273 informative 69	

genes (2,370 unique transcript molecules) were detected per cell and replicates were 70	
highly correlated (Supplementary Figure 1a-b). We then selected a feature set of 71	

transcripts to mitigate batch effects and linearly projected retained transcript counts into a 72	
lower dimensional space using Latent Semantic Indexing (LSI, see Online Methods).9,10 73	

Cells were clustered using Seurat’s Shared Nearest Neighbor approach11, annotated 74	
using a manually curated maker gene list, and visualized using uniform manifold 75	
approximation and projection (UMAP)12 (Figure 1b, Supplementary Figure 1c-d). 76	

We next established an epigenetic map of normal hematopoiesis by measuring 77	
chromatin accessibility across 35,038 single BMMCs (n = 16,510), CD34+ BMMCs (n = 78	

10,160), and PBMCs (n = 8,368) using droplet scATAC-seq (10x Genomics)7. These cells 79	
exhibited a canonical fragment size distribution with clearly resolved sub-, mono-, and 80	
multi-nucleosomal modes, a high signal-to-noise ratio at transcription start sites, an 81	

average of 11,597 uniquely accessible fragments per cell on average, and a majority 82	
(61%) of Tn5 insertions aligning within peaks (Supplementary Figure 2a-c). After pooling 83	
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all scATAC-seq profiles from each experiment, we confirmed higher reproducibility across 84	
replicates than across different samples, similar to the scRNA-seq analysis 85	

(Supplementary Figure 2d). Using LSI, Seurat’s Shared Nearest Neighbor clustering, and 86	
UMAP, we generated a chromatin accessibility map of hematopoiesis that complements 87	

the transcriptional map of hematopoiesis (Figure 1c, Supplementary 2e-f).  88	
To validate the proposed transcriptomic and epigenetic single-cell maps of 89	

hematopoiesis, we directly visualized lineage-restricted cell-surface marker and 90	

transcription factor enrichment across each map. As anticipated, both scADT- and scRNA-91	
seq measurements of surface makers demonstrate CD3 enrichment across bone marrow 92	

and peripheral T cells; CD14 enrichment within the monocytic lineage; broad up regulation 93	
of CD19 across the B cell lineage; and CD8A enrichment within cytotoxic T lymphocytes 94	
(Figure 1d)13. Estimates of gene activity based on correlated variation in promoter and 95	

distal peak accessibility (Cicero14) broadly recapitulates this pattern, confirming that 96	
lineage specification is consistently reflected across the phenotypic, transcriptional and 97	

epigenetic maps of hematopoietic development (Figure 1d). We then visualized our high 98	
quality scADT-seq using UMAP and found that we could broadly recapitulate our 99	

transcriptomic hematopoietic map (Supplementary Figure 3a-d). To further support these 100	
cell type identifications and developmental mappings, we show concordance between 101	
three separate single-cell measurements, including direct transcript measurements from 102	

the scRNA-seq dataset, inferred gene activity scores from the scATAC-seq dataset, and 103	
TF activity using chromVAR15, for key developmental transcription factors, including 104	

CEBPB in monocytic development, GATA1 within the erythroid lineage, and TBX21 in NK 105	
and CD8+ T memory cells, and PAX5 in B cell and plasmacytoid dendritic cell development 106	
(Figure 1e). High-resolution single cell multi-omic tracks for key marker genes in each of 107	

the identified lineages further support these identifications (Figure 1f-h, Supplementary 108	
Figure 4a-h). Collectively these results show that the proposed multi-omic maps of healthy 109	
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hematopoiesis are consistent and broadly capture essential phenotypic, transcriptomic 110	
and epigenetic features of blood development. 111	

Recent work has shown that immunophenotypically-distinct subpopulations of 112	
MPAL blasts share similar genomic lesions within a patient, and that cells from one lineage 113	

can reconstitute the alternate lineage in xenograft models16, suggesting that MPAL lineage 114	
plasticity may be epigenetically regulated. To explore the nature of this regulatory and 115	
phenotypic dysfunction, we assayed six MPAL samples including three T-myeloid (T/M) 116	

MPALs (MPAL1-3), 1 B-myeloid (B/M) MPAL (MPAL4), and one T/M MPAL sampled 117	
before CALGB chemotherapy (MPAL5) and after post-treatment relapse (MPAL5R) (see 118	

Supplementary Table 1). Across these samples, we observed extensive 119	
immunophenotypic heterogeneity (via diagnostic flow cytometric analysis) including 120	
bilineal patterns (multiple blast populations expressing both lymphoid and myeloid lineage 121	

antigens), biphenotypic patterns (a dominant blast population that simultaneously 122	
expresses both lymphoid and myeloid antigens), and both patterns (Supplementary 123	

Figures 5a-c, 6a-c). We then performed Whole Exome Sequencing (WES) and found 124	
mutational profiles similar to previous studies (Supplementary Figure 6d)16,17. To further 125	

profile our MPAL samples, we performed CITE-seq (18,056 cells) and scATAC-seq 126	
(35,423 cells) on either peripheral blood or bone marrow aspirates from these MPAL 127	
patients, observing similar high data quality to that obtained for healthy samples 128	

(Supplementary Figure 7a-f). 129	
Using our transcriptomic and chromatin landscapes of healthy hematopoiesis, we 130	

next sought to develop an analytical framework to identify the hematopoietic 131	
developmental signature at single-cell resolution. First, the chromatin and gene 132	
expression signatures of single cells are projected into our ATAC- and RNA-based healthy 133	

hematopoietic map’s LSI subspace, and the results are then visualized using UMAP 134	
(Figure 2a, Supplementary Figure 8a). Next, by determining the closest hematopoietic 135	
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cells to the projected cells we can identify the hematopoietic developmental compartment. 136	
This method does not require defining discrete cell type boundaries and uses a large 137	

feature set to robustly position cells within the continuous landscape of hematopoiesis. To 138	
validate this approach, we first projected downsampled, published bulk RNA-seq and 139	

ATAC-seq data18 from FACS-sorted subpopulations into our chromatin and transcription 140	
hematopoietic maps and found high concordance with our healthy hematopoietic map and 141	
cluster definitions (Supplementary Figure 8b). To further validate our approach, we 142	

projected published scRNA-seq19 and scATAC-seq20–22 data from different platforms and 143	
different genomes on our chromatin and transcription hematopoietic maps and found 144	

striking agreement (Supplementary Figure 8c). These results confirm that this method can 145	
accurately identify the hematopoietic signature for chromatin and gene expression at 146	
single-cell resolution. 147	

Using this LSI projection framework and landscapes of healthy hematopoiesis, we 148	
next sought to deconvolve the normal and leukemic signatures of MPAL samples at single-149	

cell resolution. First, the leukemic single cells are projected into the hematopoietic linear 150	
LSI subspace. Next we identify a non-redundant set of healthy hematopoietic cells that 151	

were nearest neighbor normal cells to each leukemic cell, irrespective of their cell-type 152	
boundaries. Lastly, we compute the differences between the leukemic cells and nearest 153	
normal cells to identify the leukemic specific signature. We first tested our approach by 154	

analyzing recently published scRNA-seq data from acute myeloid leukemia (AML) patient 155	
samples19. By projecting the AMLs into our healthy hematopoietic map, we see general 156	

agreement with previous classifications without need for the establishment of potential 157	
arbitrary cell-type boundaries on normal hematopoiesis (Supplementary Figure 9a-c). We 158	
next projected our phenotypically diverse MPAL patient samples onto our hematopoietic 159	

maps and discovered broad epigenetic and gene expression diversity. To further resolve 160	
this diversity, we grouped MPAL cells within individual patients into broad hematopoietic 161	
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developmental compartments: progenitors-like (purple) comprising human stem cell and 162	
multipotent progenitor-like cells, lymphoid-like (blue) containing lymphoid-primed 163	

multipotent progenitors, erythroid-like (red) which include megakaryocyte-erythroid 164	
progenitors, myeloid-like (green) which include granulocyte-monocyte progenitors, and 165	

T/NK-like (orange) which include differentiated T and NK cells23 (Figure 2a-b). Strikingly, 166	
we see that the scADT-seq data clearly resolves the dominant MPAL subpopulations in 167	
MPAL1 and MPAL5; however it does not fully capture the transcriptional diversity of 168	

MPALs 2-4 (Supplementary Figure 10a). We visualized these projected MPALs colored 169	
by these broad hematopoietic compartments, observing the expected high concordance 170	

between the scRNA- and scATAC-seq classifications (Figure 2b). Comparing MPAL gene 171	
expression to this healthy nearest neighbor set allowed the identification of pathogenic 172	
differential gene expression for MPALs from different compartments. In total, we identified 173	

4,616 genes that were significantly up-regulated (LFC > 0.5 and FDR < 0.01) in at least 174	
one MPAL subpopulation across the six patient samples, and grouped these genes with 175	

k-means clustering (Figure 2c). We further categorized the most conserved differential 176	
genes, TFs and KEGG pathways across the MPALs (Supplementary Figure 11a-c). Using 177	

the same approach for the scATAC-seq data, we performed differential peak testing for 178	
each MPAL subpopulation and found 72,196 significantly up-regulated peaks (LFC > 0.5 179	
and FDR < 0.05) in at least one MPAL subpopulation (Figure 2c). Multi-omic differential 180	

tracks for the cyclin dependent kinase CDK11A and cyclin dependent kinase inhibitor 181	
CDKN2A , genes that are recurrently mutated in MPAL16,24, demonstrate these leukemia-182	

specific ATAC- and RNA-seq differences (Supplementary Figure 11d-e). Additionally, we 183	
calculated Pearson correlations of the differential genes and peaks; and found that 184	
transcription and accessibility differs significantly across patients, but is relatively 185	

conserved across subpopulations within patients. (Figure 2d).  186	
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To compare the MPAL hematopoietic compartments’ leukemic programs to 187	
previous studies, we downsampled bulk leukemia RNA-seq and projected onto our 188	

transcriptomic hematopoietic UMAP for childhood AMLs, B-acute lymphoblastic 189	
leukemias (B-ALLs), early T-cell precursor T-acute lymphoblastic leukemias (ETP T-190	

ALLs), non-ETP T-ALLs and MPALs16 (Supplementary Figure 12a-b). We then calculated 191	
differential expression with respect to the closest normal cell populations to identify their 192	
respective leukemic programs. Next, we performed LSI on variable malignant genes 193	

across all the leukemia subtypes, including MPALs 1-5, and then visualized these patients 194	
with UMAP (Figure 2e, Supplementary Figure 12c-d). Interestingly, we found large 195	

differences in the leukemic programs across various leukemias including T-ALLs, B-ALLs, 196	
and across different cytogenetic subtypes. In addition, we found that the MPALs assayed 197	
in this study were representative of previous characterized MPALs16 (Figure 2e). Given 198	

that we were insufficiently powered to detect unique leukemic differences between AML 199	
and our MPAL samples when analyzing downsampled bulk data, we compared the 200	

malignant transcriptomic profiles identified from re-analyzing AML scRNA-seq data18 with 201	
our MPALs in order to dissect further these unique malignant signatures (Figure 2c, 202	

Supplementary Figure 9c). To this end, we identified genes that were more commonly 203	
universally upregulated in AMLs, in MPALs, or jointly upregulated in both leukemias 204	
(Figure 2f, Supplementary Figure 9c). These gene sets provide fine-grained phenotypic 205	

resolution comparing the differences and similarities between AML and MPAL leukemic 206	
programs and suggest possible insight into why MPALs respond poorly to AML 207	

treatment25,26. 208	
 Having compared our leukemic transcriptomic programs to other studies we 209	
wanted to identify the key TFs that regulate these programs. First, we identified which TF 210	

were differentially enriched in each k-means cluster of differentially accessible peaks 211	
observed in Figure 2c. (Figure 3a). We found that RUNX1 motifs were highly enriched in 212	
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both cluster 4 and 10 – the two clusters corresponding to the most commonly shared 213	
accessible elements across MPAL subset populations. In addition, RUNX1 is significantly 214	

up-regulated in about half (7/17) of the MPAL subpopulations. RUNX1 is one of the most 215	
frequently mutated genes across hematologic malignancies acting as both a tumor 216	

suppressor with loss-of-function mutations in AML27, myelodysplastic syndrome (MDS)28, 217	
and ETP T-ALL29,30, and as a putative oncogene in non-ETP T-ALL31,32. Furthermore, 218	
wildtype RUNX1 has been implicated as a potential driver of leukemogenesis in core-219	

binding factor (CBF) leukemia33 and mixed lineage leukemia34.  220	
To link RUNX1 and other putative regulatory TFs to their leukemic programs we 221	

first developed an analytical framework that utilizes both our transcriptomic and chromatin 222	
single-cell data to link putative regulator peaks to target genes. Using our matched 223	
scATAC and scRNA data for all MPALs and concordant hematopoietic maps, and aligned 224	

each single-cell into a common subspace using Canonical Correlation Analyses 225	
(CCA)10,11,35. For each scATAC cell, we identified the nearest scRNA-seq neighbor 226	

(Figure 3b, Supplementary Figure 13a-b). We found that the mapping of scATAC cell 227	
clusters to scRNA-defined cell clusters were highly consistent (single-cell overlap of 52% 228	

across 26 clusters) (Supplementary Figure 14a-d). We then aggregated our scATAC cells 229	
based on nearest neighbors in the LSI subspace using Cicero14 and created a 230	
corresponding scRNA aggregate for each cluster using the constructed CCA alignment. 231	

We next identified 91,601 peak-to-gene links by correlating accessibility changes of ATAC 232	
peaks within 250 kb of the gene promoter with the expression of the gene independently 233	

for both healthy and MPAL aggregates (Figure 3b). This analysis revealed peak-to-gene 234	
links that were specific to healthy hematopoiesis, others that were specific to MPALs, and 235	
a conserved subset that was shared across both hematopoiesis and MPALs. We 236	

hypothesize that the MPAL-specific peak-to-gene links may be important for leukemic 237	
gene regulation. Overall, the identified set of peak-to-gene links had similar distributions 238	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696328doi: bioRxiv preprint 

https://doi.org/10.1101/696328
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

for peaks mapped per gene, genes mapped per peak, number of skipped genes and the  239	
peak-to-gene as previously observed in a similar linkage analyses2 (Supplementary Figure 240	

14e). To further support these peak-to-gene links, we used previously published K27ac 241	
HiChIP in primary T cells and a Human Coronary Artery Smooth Muscle Cells (HCASMC) 242	

cell-line and found that the T/NK biased peak-to-gene links were more enriched in the T 243	
cells than the HCASMC cell line36 (Supplementary Figure 14f). We next examined GTEx 244	
eQTL mappings within our inferred peak-to-gene links, finding enrichment of eQTLs in 245	

several functionally related categories such as Whole Blood and Lymphocytes 246	
(Supplementary Figure 14g). To demonstrate the utility of these peak-to-gene links, we 247	

linked differentially accessible regions to known leukemic genes such as the surface 248	
protein CD96, the leukemic stem cell marker IL1RAP, the cytokine receptor FLT3, and 249	
apoptosis regulator MCL1 (Supplementary Figure 15a-d). Overall, these analyses, 250	

support that our peak-to-gene links are highly enriched in immune regulation and across 251	
other previously published linkage data sets2,36. 252	

Having established a high-quality set of peak-to-gene links, we aimed to identify 253	
the set of malignant genes putatively regulated by RUNX1. First, we utilized our peak-to-254	

gene links to identify differential peaks linked to a differential gene within at least 2 MPAL 255	
subpopulations. Next, we selected all linked differential accessibility sites that contain the 256	
RUNX1 motif. Finally, for each linked gene we combined all linked peaks to create a 257	

differential linkage score (see methods) and compared this score to the proportion of 258	
MPAL subpopulations that exhibited differential expression and accessibility in at least 259	

one linked peak and target gene (a measure of how common this RUNX1-driven 260	
dysfunction is across MPAL subsets) (Figure 3c). Using this approach, we found 732 261	
genes putatively regulated by a RUNX1-containing distal element in at least 2 MPAL 262	

subsets, and found that CD69, gene implicated in lymphocyte activation through initiation 263	
of JAK/STAT signaling37 and lymphocyte retention in lymphoid organs38, was both highly 264	
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enriched in the calculated differential linkage score and was observed to be differentially 265	
up-regulated in almost every MPAL subpopulation (Figure 3d). To further support RUNX1 266	

predicted regulation of CD6939, we incorporated T cell K27ac HiChIP36, CRISPRa 267	
screens40, and RUNX1 ChIP-seq41 onto our multi-omic differential track. These orthogonal 268	

data sets show RUNX1 binding to linked distal regulatory regions (Figure 3e). Finally, by 269	
using the 732 identified RUNX1 target genes to stratify TCGA AML42 patients by 270	
expression, we observe significantly decreased survival (p-value = 0.023) in donors with 271	

a high RUNX1 target gene signature42 (Figure 3f). This analysis suggests that RUNX1 is 272	
an important TF that putatively up-regulates a portion of the leukemic signature in MPAL 273	

and potentially AML. 274	
 Collectively, this work establishes an experimental and analytical approach for 275	
deconstructing cancer-specific features using integrative analysis of multiple single-cell 276	

technologies. We find that MPAL malignant programs are largely conserved across 277	
phenotypically heterogenous cells within individual patients; this  observation is consistent 278	

with a previous report16 that MPAL cells likely originate from a multipotent progenitor cell, 279	
thereby sharing a common mutational landscape while populating different regions of the 280	

hematopoietic tree. We used integrative single-cell analyses to further define putative TF 281	
regulation of these malignant programs. We inferred that RUNX1 acts as a potential 282	
oncogene in MPAL, regulating malignant genes associated with poor survival. We 283	

anticipate that similar approaches will be used in future studies to both identify the 284	
differentiation status of different tumor types (i.e. identify the closest “normal” cell type) as 285	

well as enable molecular dissection of molecular dysfunction in pathogenic cellular sub-286	
types, with the ultimate goal of identifying personalized therapeutic targets through 287	
integrative single-cell molecular characterization. 288	

 289	
 290	
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METHODS 291	
Experimental Methods 292	

Description of Healthy Donors 293	
PBMCs, BMMCs, and CD34+ bone marrow cells were obtained from healthy donors 294	

(AllCells). 295	
 296	
Description of Leukemic Patients/Donors 297	

Patient samples were collected with informed consent prospectively under a protocol 298	
approved by the Institutional Review Board (IRB) at Stanford University Medical Center 299	

(Stanford IRB, 42949, 18329, and 6453). Peripheral blood and bone marrow aspirate 300	
samples were processed by Lymphoprep (STEMCELL Technologies) gradient 301	
centrifugation and fresh frozen in Bambanker media. Diagnostic flow cytometric performed 302	

on bone marrow aspirate samples were analyzed. In all cases, a retrospective review of 303	
clinical parameters, hemogram data, peripheral blood smears, bone marrow aspirates, 304	

trephine biopsies, results of karyotype and flow cytometry studies was performed. Clinical 305	
follow-up information was obtained by retrospective review of the medical record charts. 306	

Cases were classified using the 2016 WHO classification of hematopoietic and lymphoid 307	
neoplasms5.  308	
 309	

CITE-seq (combined single-cell antibody derived tag and RNA sequencing) 310	
Combined single-cell RNA and antibody derived tag sequencing (CITE-seq) was 311	

performed as previously reported6 using the (version 2) Chromium Single Cell 3’ Library 312	
and Gel Bead  Kit  (Cat # 120237, 10X Genomics). Six thousand cells were targeted for 313	
each sample. Oligo-coupled antibodies were obtained from Biolegend indexed by PCR 314	

(10 cycles) with custom barcodes (see Supplementary Table 3), quantified by PCR using 315	
a PhiX Control v3 (Illumina, Cat #FC-110-3001) standard curve, and then sequenced on 316	
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an Illumina NextSeq 550 together with scRNA-seq at no more than 60% of the total library 317	
composition (1.5pM loading concentration, 26 x 8 x 0 x 98 bp read configuration).  318	

 319	
Single-cell ATAC-seq (scATAC-seq).  320	

Single-cell ATAC-seq targeting four thousand cells per sample was performed using a 321	
beta-version of Chromium Single Cell ATAC Library and Gel Bead Kit (Cat # 1000110, 322	
10X Genomics). Each sample library was uniquely barcoded and  quantified by PCR using 323	

a PhiX Control v3 (Illumina, Cat #FC-110-3001) standard curve. Libraries were then 324	
pooled and loaded on a NextSeq 550 Illumina sequencer (1.4pM loading concentration, 325	

33 x 8 x 16 x 33 bp read configuration) and sequenced to either  90% saturation or 30,000 326	
unique reads per cell on average.  327	
 328	

Whole-Exome Sequencing of Leukemic Patients/Donors 329	
Genomic DNA was extracted from diagnostic peripheral blood mononuclear cells or bone 330	

marrow samples using Zymo Clean and Concentrator Kit. Library construction (Agilent 331	
SureSelect Human All Exon kit), quality assessment, and 150-bp paired-end sequencing 332	

(HiSeq4000) were performed by Novogene (Beijing, China). Reads with adapter 333	
contamination, uncertain nucleotides, and paired reads with >50% low-quality nucleotides 334	
were discarded. Paired-end reads were then aligned to the reference genome (GRCh37) 335	

using BWA software. Genome Analysis Toolkit (GATK) was used to ignore duplicates with 336	
Picard-tool. Filtered variants (SNP, INDELs) were identified using GATK HaplotypeCaller 337	

and variantFiltration. Variants obtained from initial analysis were further compared to 338	
dbSNP and 1000 Genomes database. Finally, missense, stopgain and frameshift 339	
mutations were compared against a custom panel of 300 genes that are recurrently 340	

mutated in hematologic malignancies as described previously16,17. 341	
 342	
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Analytical Methods  343	
FACS Analysis 344	

Flow cytometry was performed on a FACSCalibur or FACSCanto II (Becton Dickinson, 345	
San Jose, Ca, USA) cytometer using commercially available antibodies (Supplementary 346	

Table 2). Lymphocytes were identified by low side-scatter and bright CD45 expression. 347	
The gate was validated by backgating on CD3-positive or CD19-positive events. Blasts 348	
were identified by low side-scatter and dim CD45 expression. The gate was further 349	

assessed by backgating on CD34-positive events. Gates were drawn by additionally using 350	
isotype controls and internal positive and negative controls.  351	

 352	
scADT-seq Analysis 353	
Raw sequencing data were converted to fastq format using bcl2fastq (Illumina, version 354	

v2.20.0.422). ADTs were then assigned to individual cells and antibodies (see reference 355	
antibody barcodes in Supplementary Table 3) allowing for 2 and 3 barcode mismatches, 356	

respectively. Unique molecular counts for each cell and antibody were then generated by 357	
counting only barcodes with a unique molecular identifier. PBMC and BMMC ADT count 358	

data were transformed using the centered log ratio (CLR) as previously described6. PBMC 359	
and BMMC cells were visualized in two dimensions using uwot’s implementation of 360	
UMAP43 in R (n_neighbors = 50, min_dist = 0.4).  361	

 362	
scATAC-seq Analytical Methods 363	

scATAC-seq Processing 364	
Raw sequencing data was converted to fastq format using cellranger atac mkfastq (10x 365	
Genomics, version 1.0.0). Single-cell RNA-seq reads were aligned to the GRCh37 (hg19) 366	

reference genome and quantified using cellranger count (10x Genomics, version 1.0.0). 367	
 368	
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scATAC-seq Quality Control 369	
To ensure that each single-cell was both adequately sequenced and had high signal to 370	

background, we filtered cells with less than 1000 unique fragments and enrichment at 371	
transcription start sites (TSS) was below 8. To calculate a TSS enrichment2, briefly Tn5 372	

corrected insertions were aggregated +/- 2,000 bp relative (TSS strand-corrected) for each 373	
unique TSS genome wide. This profile was normalized to the mean accessibility +/- 1,900-374	
2,000 bp from the TSS, smoothed every 51bp, and the maximum smoothed value was 375	

reported as TSS enrichment in R. We estimate that the multiplet percentage for this study 376	
was around 4%7. 377	

 378	
scATAC-seq Counts Matrix 379	
To construct a counts matrix for each cell by each feature (window or peaks), we read 380	

each fragment.tsv.gz fill into a Genomic Ranges object. For each Tn5 insertion, the “start” 381	
and “end” of the ATAC-fragments, we used  findOverlaps” to find all overlaps with the 382	

feature by insertions. Then we added a column with the unique id (integer) cell barcode to 383	
the overlaps object and fed this into a sparseMatrix in R. To calculate the fraction of 384	

reads/insertions in peaks, we used the colSums of the sparseMatrix and divided it by the 385	
number of insertions for each cell id barcode using “table” in R. 386	
 387	

scATAC-seq Union Peak Set from Latent Semantic Indexing Clustering 388	
We adapted a previous workflow for generating a union peak set that will account for 389	

diverse subpopulation structure2,9,10. First, we created 2.5kb windows genome wide using 390	
“tile(hg19chromSizes, width = 2500)” in R. Next, a cell by 2.5kb window sparse matrix was 391	
constructed as described above. The top 20,000 accessible windows were kept and the 392	

binarized matrix was transformed with the term frequency-inverse document frequency 393	
(“TF-IDF”) transformation8. Briefly we divided each index by the colSums of the matrix to 394	
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compute the cell “term frequency”. Next we multiplied these values by log(1 + ncol(matrix) 395	
/ rowSums(matrix)) which represents the “inverse document frequency”. This 396	

normalization resulted in a TF-IDF matrix that was then used as input to irlba’s singular 397	
value decomposition (SVD) implementation in R. The 2nd-25th SVD dimensions (1st 398	

dimension is correlated with cell read depth15) were used for creating a Seurat object and 399	
identified clusters using Seurat’s SNN graph clustering (v2.3.4) with “FindClusters” with a 400	
default resolution of 0.8. If the minimum cluster size was below 200 cells, the resolution 401	

was decreased until this criterion was reached leading to a final resolution of 0.8N (where 402	
N represents the iterations until the minimum cluster size is 200 cells). For each cluster, 403	

peak calling was performed on Tn5-corrected insertions (each end of the Tn5-corrected 404	
fragments) using the MACS2 callpeak command with parameters “--shift -75 --extsize 150 405	
--nomodel --call-summits --nolambda --keep-dup all -q 0.05.” The peak summits were then 406	

extended by 250bp on either side to a final width of 501bp, filtered by the ENCODE hg19 407	
blacklist (https://www.encodeproject.org/annotations/ENCSR636HFF/), and then filtered 408	

to remove peaks that extend beyond the ends of chromosomes. 409	
  410	

Overlapping peaks called were handled using an iterative removal procedure as 411	
previously described2. First, the most significant (MACS2 score) extended peak summit is 412	
kept and any peak that directly overlaps with that significant peak is removed. This process 413	

re-iterates to the next most significant peak until all peaks have either been kept or 414	
removed due to direct overlap with a more significant peak. The most significant 200,000 415	

extend peak summits for each cluster were quantile normalized using 416	
“trunc(rank(v))/length(v)” in R (where v represents the vector of MACS2 peaks scores). 417	
These cluster peak sets were then merged and the previous iterative removal procedure 418	

was used. Lastly, we removed any peaks whose nucleotide content had any “N” 419	
nucleotides and any peaks mapping to chrY. 420	
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 421	
scATAC-seq-centric Latent Semantic Indexing clustering and visualization 422	

scATAC-seq clustering was performed by adapting the strategy of Cusanovich et. al9,10, 423	
to compute the term frequency-inverse document frequency (“TF-IDF”) transformation. 424	

Briefly we divided each index by the colSums of the matrix to compute the cell “term 425	
frequency.” Next, we multiplied these values by log(1 + ncol(matrix) / rowSums(matrix)), 426	
which represents the “inverse document frequency.” This resulted in a TF-IDF matrix that 427	

was used as input to irlba’s singular value decomposition (SVD) implementation in R. The 428	
first 50 SVD dimensions were used as input into a Seurat object and initial clustering was 429	

performed using Seurat’s (v2.3.4) SNN graph clustering “FindClusters” with a resolution 430	
of 1.5 (25 SVD dimensions for Healthy Hematopoiesis and 50 for Healthy Hematopoiesis 431	
and MPALs). We found that in some cases, that there was batch effect between 432	

experiments. To minimize this effect, we identified the top 50,000 variable peaks across 433	
the initial clusters (summed cell matrix for each cluster followed by edgeR logCPM 434	

transformation44). These 50,000 variable peaks were then used to subset the sparse 435	
binarized accessibility matrix and recomputed the “TF-IDF” transform. We used singular 436	

value decomposition on the TF-IDF matrix to generate a lower dimensional representation 437	
of the data by retaining the first 50 dimensions. We then used these reduced dimensions 438	
as input into a Seurat object and then final clusters were identified by using Seurat’s 439	

(v2.3.4) SNN graph clustering “FindClusters” with a resolution of 1.5 (50 SVD dimensions 440	
for Healthy Hematopoiesis and 50 for Healthy Hematopoiesis and MPALs). These same 441	

reduced dimensions were used as input to uwots implementation of UMAP (n_neighbors 442	
= 55, n_components = 2, min_dist = 0.45) and plotted in ggplot2 using R. We merged 443	
scATAC-seq clusters from a total of 36 clusters for hematopoiesis to 26 final clusters that 444	

best agreed with the scRNA-seq clusters (included in Supplemental Data). The objective 445	
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of this analysis is to optimize feature selection, that minimizes batch effects, and enable 446	
projection of future data into the same manifold as described further below.  447	

 448	
scATAC-seq Visualization in Genomic Regions 449	

To visualize scATAC-seq data, we read the fragments into a GenomicRanges object in R. 450	
We then computed sliding windows across each region we wanted to visualize every 100 451	
bp “slidingWindows(region,100,100)”. We computed a counts matrix for Tn5-corrected 452	

insertions as described above and then binarized this matrix. We then returned all non-453	
zero indices (binarization) from the matrix (cell x 100bp intervals) and plotted them in 454	

ggplot2 in R with “geom_tile”. For visualizing aggregate scATAC-seq data, the binarized 455	
matrix above was summed and normalized. Scale factors were computed by taking the 456	
binarized sum in the global peakset and normalizing to 10,000,000. Tracks were then 457	

plotted in ggplot in R. 458	
 459	

chromVAR 460	
We measured global TF activity using chromVAR15. We used the cell by peaks and the 461	

CIS-BP motif (from chromVAR motifs “human_pwms_v1”) matches within these peaks 462	
from motifmatchr. We then computed the GC bias-corrected deviations using the 463	
chromVAR “deviations” function. We then computed the GC bias-corrected deviation 464	

scores using the chromVAR “deviationScores” function.  465	
 466	

Gene Activity Scores using Cicero and Co-Accessibility 467	
We calculated gene activities using the R package Cicero14. Briefly, we used the sparse 468	
binary cell by peaks matrix and created a cellDataSet, detectedGenes, and 469	

estimatedSizeFactors. We then created a “cicero_cds” with k=50 and the 470	
“reduced_coordinates” being the latent semantic indexing singular value decompositions 471	
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coordinates (Hematopoiesis  = 25, Hematopoiesis and MPALs = 50). This function returns 472	
aggregated accessibility across groupings of cells based on nearest-neighbor rules from 473	

FNN. We then identified all peak-peak linkages that were within 250 kb by resizing the 474	
peaks to 250 kb and 1bp and using “findOverlaps” in R. We calculated the pearson 475	

correlation for each unique peak-peak link and created a connections data.frame where 476	
the first column is peak_i and the second column is peak_j and third coaccessibility 477	
(pearson correlation). We then created a gene data.frame from the TxDb 478	

“TxDb.Hsapiens.UCSC.hg19.knownGene” in R. We then resized each gene from its TSS 479	
and created a window +/- 2.5 kb centered at  the TSS and then annoted the “cicero_cds” 480	

using “annotate_cds_by_site”. We then calculated gene activities with 481	
“build_gene_activity_matrix” (coaccess cutoff of 0.35). Lastly we normalized the gene 482	
activities by using “normalize_gene_activities” and the read depth of the cells. We then 483	

log normalized these gene activities scores for interpretability by computing 484	
“log2(GA*1,000,000 +1)”. 485	

 486	
scRNA-seq Analytical Methods 487	

scRNA-seq Processing 488	
Raw sequencing data was converted to fastq format using cellranger mkfastq (10x 489	
Genomics, version 3.0.0). Single-cell RNA-seq reads were aligned to the GRCh37 (hg19) 490	

reference genome and quantified using cellranger count (10x Genomics, version 3.0.0). 491	
We kept genes that were present in both 10x gene transfer format (GTF) files v3.0.0 for 492	

hg19 and hg38 (https://support.10xgenomics.com/single-cell-gene-493	
expression/software/release-notes/build). Mitochondrial and ribosomal genes were also 494	
filtered prior to further analysis. Genes remaining after these filtering steps we refer to as 495	

“informative” genes and enable cross genome comparison. 496	
 497	
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scRNA-seq Quality Control 498	
We wanted to filter out cells whose transcripts were lowly captured and first plotted the 499	

distribution of genes detected and UMIs for all experiments. Based on these plots we 500	
chose to filter out cells that had less than 400 informative genes detected and 1000 UMIs. 501	

In addition, to lower multiplet representation, we filtered cells with above 10,000 UMIs. We 502	
estimate that the multiplet percentage for this study was around 6%8. We then plotted the 503	
correlation for each replicate experiment and found high reproducibility.  504	

 505	
scRNA-seq-centric Latent Semantic Indexing clustering and visualization 506	

We initially tested out a few methods for clustering scRNA but settled on an approach that 507	
enabled us to effectively capture the hematopoietic hierarchy without significant alteration 508	
of transcripts expression. We first log-normalized the transcript counts by first depth 509	

normalizing to 10,000 and adding a pseudo count prior to a log2 transform (log2(counts 510	
per ten thousand transcripts + 1)). Next, we identified the top 3000 variable genes and 511	

performed the TF-IDF transform on these 3000 genes. We then performed singular value 512	
decomposition (SVD) on this transformed matrix keeping the first 25 dimensions and used 513	

this as input to Seurat Shared Nearest Neighbor Clustering (v2.3.4) with an initial 514	
resolution of 0.2. We then summed the individual clusters single cells and computed the 515	
logCPM transformation, edgeR::cpm(mat,log=TRUE,prior.count=3), and then identified 516	

the top 2500 variable genes across these initial clusters. These variable genes were then 517	
used as input for a TF-IDF transform and then performed singular value decomposition 518	

(SVD) on this transformed matrix keeping the first 25 dimensions and used this as input 519	
to Seurat Shared Nearest Neighbor Clustering (v2.3.4) with an increased resolution of 0.6. 520	
We then summed the individual clusters single cells and computed the logCPM 521	

transformation, edgeR::cpm(mat,log=TRUE,prior.count=3), and then identified the top 522	
2500 variable genes across these clusters. We then repeated this 1 more time (resolution 523	
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1.0) and then saved the final features and clusters. To align our clusters better with the 524	
scATAC-seq data we merged a total of 26 clusters from 31 initial clusters (included in 525	

Supplemental Data). These LSI dimensions were used as input to uwots implementation 526	
of UMAP (n_neighbors = 35, n_components = 2, min_dist = 0.45) and plotted in ggplot2 527	

using R. The objective of this analysis is to optimize feature selection, that minimizes batch 528	
effects, and enable projection of future data into the same manifold as described further 529	
below.  530	

 531	
scATAC-seq and scRNA-seq Analytical Methods 532	

LSI Projection for scATAC and scRNA-seq 533	
We designed the above analytical approach to clustering single cell data because it 534	
optimized feature selection and enabled projection of new non-normalized data into low 535	

dimension manifold. To enable this analyses, when computing the TF-IDF transformation 536	
on the hematopoietic hierarchy, we kept the colSums, rowSums, and SVD from the 537	

previous run and then when projecting new data into this subspace, we first identified 538	
which row indices to zero out based on the initial TF-IDF rowSums. We then computed 539	

the “term frequency” by dividing by the colSums in these features. Next, we computed the 540	
“inverse document frequency” from the previous TF-IDF transform (diagonal(1+ncol(mat)/ 541	
rowSums(mat))) and computed the new TF-IDF transform. We then projected this TF-IDF 542	

matrix into the SVD subspace previous generated. To do this calculation, we computed 543	
the new coordinates by “t(TF_IDF) %*% SVD$u %*% diag(1/SVD$d)” where TF_IDF is 544	

the transformed matrix and SVD is the previous SVD run using irlba in R (3.5.1). We then 545	
computed the projected matrix by “SVD$u %*% diag(SVD$D) * t(V)” where V is the 546	
projected coordinates above. For projecting bulk RNA-seq, we downsampled previously 547	

published data to 5,000 reads in genes 100 times and then made a sparse matrix for 548	
projection as single cell data. For projecting bulk scATAC-seq, we downsampled 549	
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previously published data to 10,000 reads in peaks 100 times and then made a binary 550	
sparse matrix for projection as single cell data. 551	

 552	
Classification of MPAL single cells with scATAC and scRNA-seq 553	

We wanted to classify MPAL single cells based on their disease state and hematopoietic 554	
progression. First, we determined which cells were healthy-like and disease-like. To do 555	
this analysis, we clustered all of the healthy hematopoietic cells with the MPAL of interest 556	

using our LSI workflow as described above (scRNA – 25 PCs, 1,000 variable genes and 557	
Seurat SNN resolution of 0.2, 0.8 and 0.8; scATAC - 25 PCs, 25,000 variable peaks and 558	

Seurat SNN resolution of 0.8 and 0.8). We then determined which clusters were “healthy-559	
like” if a high percentage (>80% for scRNA, >90% for scATAC) of the cells were from the 560	
hematopoietic data. MPAL single cells belonging to these clusters were classified as 561	

“healthy-like” and the remaining disease-like. We note that we did not detect significant 562	
large-scale copy number amplifications with our previously described approach7, and the 563	

proportion of “disease-like” classified cells were consistent with our FACS estimation of 564	
percent blast cells. In order to accurately characterize these MPAL “disease-like” by their 565	

hematopoietic state, we established “hematopoietic compartments” across our scRNA 566	
and scATAC-seq maps that broadly characterized the hematopoietic continuum. The 567	
borders for these compartments were determined empirically using “fhs” in R, guided by 568	

the initial clusters and agreement across the scRNA and scATAC-seq classifications. After 569	
the hematopoietic continuum were classified, we then broadly classified the MPAL 570	

“disease-like” cells based on their projected nearest neighbor in the UMAP subspace. 571	
These classifications were used subsequently in differential analyses. 572	
 573	

Identifying differential features with scATAC and scRNA-seq 574	
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To identify differential features for previously published AML data and MPALs, we 575	
constructed a nearest neighbor healthy aggregate using the following approach. First, we 576	

used FNN to identify the nearest 25 cells using “get.knnx(svdHealthy, svdProjected, 577	
k=25)” based on Euclidean distance between the projected cells and hematopoietic cells 578	

in LSI-SVD space. For each projected population, we used a minimum of 50 and maximum 579	
of 500 cells (random sampling) as input. Next, we took the unique of all hematopoietic 580	
single-cells and if this number was greater than 1.25 times the number of the projected 581	

populations, we took the nearest 24 cells and repeated this procedure until this criterion 582	
was met. Then the projected population and non-redundant hematopoietic cells were 583	

downsampled to an equal number of cells (maximum 500). For scATAC-seq, we binarized 584	
the matrix for both the projected populations and hematopoietic matrices. Next, we scaled 585	
the sparse matrices to 10,000 total counts for scRNA and 5,000 total promoter counts for 586	

scATAC-seq (promoter peaks defined as peaks within 500 bp of TSS from hg19 10x v3.0.0 587	
gtf file). Next, we computed row-wise t-tests for each feature. We then calculated the FDR 588	

using p.adjust(method=”fdr”). We then computed the log2 mean and log2 fold changes for 589	
each feature. We chose these parameters based on Soneson et al., study comparing 590	

analytical methods for differential expression45. For scRNA-seq, differential expression 591	
was determined by FDR < 0.01 and absolute log2 fold changes greater than 0.5. For 592	
scRNA-seq, differential expression was determined by FDR < 0.05 and absolute log2 fold 593	

changes greater than 0.05.  594	
 595	

To identify differential genes for bulk leukemia RNA-seq, we downsampled the gene 596	
counts to 10,000 counts randomly for 250 times. We then projected and used the above 597	
framework to resolve differential genes with log2 fold change > 3 and FDR < 0.01. We 598	

then removed genes that were differential in 33% or higher of the normal samples to 599	
attempt to capture biased genes. In addition, we further removed genes differential in 50% 600	
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or higher of the leukemia samples. This filtering biases our identified malignant genes to 601	
those variable across the leukemic types vs conserved across all leukemic types. We then 602	

took the average malignancy for each remaining gene for each leukemic type and used 603	
the top 300 variable malignant genes across the leukemic types for heatmap and LSI. For 604	

computing differential LSI, we binarized each gene being malignant or not for the 300 605	
variable malignant genes and computed the TF-IDF transform followed by SVD (LSI). We 606	
then visualized this in 2 dimensions using uwot’s implementation of UMAP (50 SVD 607	

dimensions, n_neighbors = 50, min_dist = 0.005). 608	
 609	

Matching scATAC-scRNA-seq pairs using Seurat Canonical Correlation Analyses 610	
We wanted to be able to integrate our epigenetic and transcriptomic data and built off of 611	
previous approaches for integration10,35. We found the approach that worked best for our 612	

integrative analyses was using Seurat’s Canonical Correlation Analysis. We performed 613	
integration for each biological group separately because (1) it improved alignment 614	

accuracy and (2) required much less memory. First, for both the Gene Activity Scores 615	
matrix and scRNA matrix we created a Seurat Object “CreateSeuratObject”, then 616	

normalized with “NormalizeData”, and found the top 2000 variable genes/activities ranked 617	
by dispersion with “FindVariableGenes”. We then defined the union of the top 2000 618	
variable genes from scRNA-seq and gene scores from scATAC-seq and found this 619	

increased the concordance downstream (defined by cluster to cluster mapping in 620	
hematopoiesis and single cell spearman correlations). These genes were then used for 621	

running Canonical Correlation analysis using “RunCCA” with the number of cc’s to 622	
compute as 25. We then calculated the explained variance using “CalcVarExpRatio” 623	
grouping by each of the individual experimental protocols scATAC (Gene Activity Scores) 624	

and scRNA. We then filtered cells where the variance explained by CCA is less than 2 fold 625	
compared to PCA. We then Aligned the subspaces with “AlignSubspace” and 25 626	
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dimensions to align with reduction.type = “cca” and grouping.var = “protocol”. We then 627	
identified for each scATAC cell the nearest scRNA cell based on minimizing the euclidean 628	

distance. We then created a UMAP using the aligned CCA coordinates as input into uwot’s 629	
UMAP implementation with n_neighbors = 50, min_dist = 0.5, metric = “euclidean” and 630	

then plotting with ggplot2 in R. To enable more robust correlation based downstream 631	
analyses, we used our initial KNN groupings (nGroups = 4998, KNN = 50) from Cicero14 632	
to group scATAC accessibility, Gene Activity Scores, scRNA closest neighbor and 633	

chromVAR15 deviation scores. 634	
 635	

Peak-To-Gene Linkage 636	
Cicero14 allows us to infer Gene Activity Scores by linking distal correlated ATAC peaks 637	
to the promoter peak. While this measure is extremely useful, it does not actually mean it 638	

is correlated to the gene expression. To circumvent this limitation, we used our grouped 639	
scATAC and grouped linked scRNA-seq to identify peak-to-gene links. First we log-640	

normalized the accessibility and gene expression with log2(Counts Per 10,000 + 1) and 641	
then we resized each of the gene GRanges to the start using resize(gr,1,”start”) and then 642	

resizing the start to a +- 250kb window using resize(gr, 2 * 250000 + 1, “center”). We then 643	
overlapped all ATAC-seq peaks using “findOverlaps” to identify all putative peak-to-gene 644	
links. We then split the aggregated ATAC and RNA matrices by whether majority of the 645	

cells were from MPAL or Hematopoietic single cells. We then correlated the peaks and 646	
genes for all putative peak-to-gene links. We used a previously described approach for 647	

computing a null correlation based on trans correlations (correlating peaks and genes not 648	
on the same chromosome)2. Briefly, for each chromosome 1000 peaks not on the same 649	
chromosome are identified and correlated to every gene on that chromosome. Each 650	

putative peak-to-gene correlation is converted into a z-score by using the mean and sd of 651	
the null trans correlations. These are then converted to p-values and adjusted for multiple 652	
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hypothesis using the benjamini Hochberg correction “p.adjust” in R. We retained links 653	
whose correlation (Pearson) was above 0.35 and FDR < 0.1, same correlation cutoff as 654	

co-accessibility in Cicero14, in either MPAL or Hematopoietic aggregations. We then kept 655	
all peak-to-gene links that were greater than 2.5kb in distance. We identified peak-to-gene 656	

links that are only present in hematopoiesis, MPALs or both. To visualize the peak-to-657	
gene links we plotted all of them as a heatmap with ComplexHeatmap. To determine the 658	
column order we first computed PCA for the first 25 PCs using irlba. We then computed 659	

Seurat11 Shared Nearest Neighbor clustering with a resolution of 1 and then computed the 660	
cluster means. We then computed the order of these clusters using hclust and the 661	

dissimilarity 1-R as the distance. Next we then iterated through each cluster and 662	
performed hclust with the dissimilarity calculations to get a final column order. The peak-663	
to-gene links were grouped by k-means clustering with 10 input centers 100 iterations and 664	

10 random starts for healthy, disease and the overlapping links. We did this bi-clustering 665	
because it enabled us to plot smaller rasterized chunks of the heatmap without 666	

overwhelming the memory and put the individual rasterized k-means clusters together 667	
post analysis. 668	

 669	
Peak-To-Gene links enrichment with GTEx eQTLs 670	
We adopted a previous approach for identifying the enrichment of our peak-to-gene links 671	

in GTEx eQTL data. Briefly, we downloaded GTEx eQTL data (version 7) from 672	
https://gtexportal.org/home/datasets and the *.signif_variant_gene_pairs.txt.gz files were 673	

used. We in addition downloaded gencode v19 (matched to these eQTLs) and identified 674	
all gene starts and identified all nearest gene starts to each peak and eQTL using 675	
“distanceToNearest”. We filtered all eQTLs that were further than 250kb from their 676	

predicted gene to be consistent with our linkage approach. To calculate a conservative 677	
overlap enrichment,  we further pruned all eQTL links that were to its nearest gene. We 678	
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then created a null set (n = 250) of peak-to-gene links by randomly selecting distal ATAC-679	
seq peak-to-gene links (within 250 kb) that are distance matched to the links tested at 5kb 680	

resolution. We then calculated a z-score and enrichment for each peak-to-gene link set 681	
compared to the null set and calculated an FDR using p.adjust(method = “fdr”).  682	

 683	
Peak-To-Gene links enrichment with K27ac HiChIP metaV4C 684	
We wanted to determine the specify of our peak-to-gene links in published chromatin 685	

conformation data as previously described. We downloaded previously published Naive T 686	
cell and HCASMC K27ac HiChIP data. We then identified within each peak-to-gene links 687	

subset the peaks that were most biased to T/NK cells. To do this analysis, we calculated 688	
the z-score for each peak in the peak-to-gene links removed all links below 100kb and 689	
floored each peak coordinate (start or end) to its nearest 10kb window. We then ranked 690	

these links by the z-score for the peak, deduplicated the links at 10kb resolution and kept 691	
the top 500 remaining peak-to-gene links. Next, we used juicer dump (no normalization 692	

“NONE”) at 10kb resolution for each chromosome in the “.hic” file. Then we read each 693	
chromosomes into an individual “sparseMatrix” in R. We then scaled the sparse matrices 694	

such that the total cis interactions summed up to 10 million PETs. Then, for each peak-to-695	
gene link, the upstream or downstream window (Column or Row) (whether the peak was 696	
upstream or downstream of the gene promoter) was identified. To scale each interactions 697	

distance for interpretability, we linearly interpolated the data to be on a -50-150% scale to 698	
visualize the focal interaction. The mean interaction signal was reported and repeated for 699	

both replicates. The mean and sd across both replicates were calculated and plotted with 700	
ggplot in R. 701	
 702	

Identifying TF Malignant Target Genes and Survival Anlaysis 703	
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We wanted to create a framework for identifying TFs that potentially directly regulate 704	
malignant genes. To do this analysis, we first identified a set of transcription factors whose 705	

hypergeometric enrichment in differential peaks were high across the MPAL 706	
subpopulations (Comparing up-regulated peaks vs all peaks) and were identified as being 707	

transcriptionally correlated with their motif’s accessibility (see above). Next for a given TF 708	
and all identified peak-to-gene links, we further subsetted these links by those containing 709	
the TF motif. Then for each MPAL subpopulation, we determined for each peak-to-gene 710	

link if both the peak and gene are up-regulated. Then for each gene, we gave a binary 711	
score whether or not that MPAL subpopulation has at least one differential peak-to-gene 712	

link (whose peak and gene are differentially up-regulated) and report the proportion of 713	
subpopulations that were up-regulated. In addition, for each gene that has at least 1 714	
differential peak-to-gene links we summed their squared correlation R2 and report that as 715	

the differential linkage score. We kept all genes that had least 1 MPAL subpopulation with 716	
corresponding differential peak-to-gene links. 717	

 718	
For survival analysis, we downloaded the RPKM TCGA-LAML data42 (https://tcga-719	

data.nci.nih.gov/docs/publications/laml_2012/laml.rnaseq.179_v1.0_gaf2.0_rpkm_matrix720	
.txt.tcgaID.txt.gz). We downloaded the survival data from Bioconductor RTCGA.clinical 721	
(“patient.vital_status”) and matched using TCGA IDs the RPKM expression. Next, we took 722	

all genes that were identified as target genes for RUNX1 (n = 732), and computed row-723	
wise z-scores for each gene. Next, we took the column means of this matrix to get an 724	

average z-score across all RUNX1 target genes. We then identified the top 33% and 725	
bottom 33% of donors based on this expression. We computed the p-value using the R 726	
package survival “survfit(Surv(times,patient.vital_status)~Runx1_TG_Expression, 727	

LAML_Survival)”. We plotted the Kaplan-Meier curve using the R package survminer 728	
“ggsurvplot” in R. 729	
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 730	
FIGURE LEGENDS 731	

 732	
Figure 1. Multi-omic epigenetic and phenotypic analysis of human hematopoiesis. 733	

a, Schematic of multi-omic profiling of chromatin accessibility, transcription, and cell 734	
surface antibody abundance on healthy bone marrow and peripheral blood mononuclear 735	
cells using scATAC-seq and CITE-seq (combined single-cell RNA and antibody derived 736	

tag sequencing).  737	
b,  scRNA-seq LSI UMAP projection of 35,882 single cells of healthy hematopoiesis.  738	

c, scATAC-seq LSI UMAP projection of 35,038 single cells of healthy hematopoiesis.  739	
d, Surface marker overlay on single-cell RNA UMAP (b) of (Top) ADT antibody signal 740	
(CLR normalized), (Middle) single-cell RNA, and (Bottom) log2 gene activity scores for 741	

CD3, CD14, CD19, and CD8A.  742	
e, Transcription factor overlay on single-cell ATAC UMAP (c) of (Top) TF deviations, 743	

(Middle) gene activity scores, and (Bottom) single-cell RNA for CEBPB, GATA1, TBX21, 744	
and PAX5.  745	

f-h, Multi-omic tracks; (Top) average track of all clusters displayed, (Middle) binarized 100 746	
random scATAC-seq tracks for each locus at 100bp resolution and (right) scRNA-seq log2 747	
distribution of normalized expression for each cluster.  748	

f, Multi-omic track of CD14 (specific in these clusters for monocytes) across monocyte 749	
development from HSC progenitor cells.  750	

g, Multi-omic track of CD19 (specific in these clusters for pre B cells) across B cell 751	
development.  752	
h, Multi-omic track of PAX5 (specific in these clusters for pre B cells) across B cell 753	

development. 754	
 755	
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Figure 2. Multi-omic projection of MPALs into hematopoiesis identifies normal and 756	
leukemic programs.  757	

a, Schematic for projection of MPAL single cells onto hematopoiesis for both scRNA-seq 758	
and scATAC-seq classified into broad hematopoietic compartments.  759	

b, (Left) MPAL single cell projections into hematopoiesis for both scRNA-seq and 760	
scATAC-seq. (Right) The proportion of MPAL cells that were broadly classified as healthy 761	
or disease and their respective hematopoietic compartment.  762	

c, (Left) scRNA-seq heatmap of up-regulated genes log2 fold changes comparing MPAL 763	
disease subpopulations to closest non-redundant normal cells. Differential genes were 764	

clustered with k-means (k=10) based on their log2 fold changes. (Right) scATAC-seq 765	
heatmap of differentially up-regulated accessible peaks log2 fold changes comparing 766	
MPAL disease subpopulations to closest non-redundant normal cells. Differential peaks 767	

were clustered with k-means (k=10) based on their log2 fold changes. 768	
d, Pearson correlation of differentially up-regulated genes and peaks across all MPAL 769	

subpopulations.  770	
e, LSI UMAP of differentially up-regulated gene expression profiles across bulk 771	

leukemias16 and MPAL samples assayed in this study, colored by WHO 2016 772	
classifications5.  773	
f, (Left) MA plot comparing the proportion of malignant (up-regulated) gene expression 774	

profiles in AML and MPALs. The x-axis represents for each up-regulated gene, the 775	
average proportion of AML and MPAL patient subpopulations broadly up-regulated (LFC 776	

> 0.5). The y-axis represents for each up-regulated gene, the difference in the proportion 777	
of MPAL and AML patient subpopulations up-regulated (LFC > 0.5). (Right) Genes that 778	
are more malignant biased to AMLs, MPALs and conserved across both AMLs and 779	

MPALs. 780	
 781	
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Figure 3. Integrative scATAC and scRNA-seq analyses nominate putative 782	
transcription factors that regulate leukemic programs.  783	

a, (Left) Hypergeometric TF motif enrichment FDR in differentially accessible peaks 784	
across each k-means clusters identified in Figure 2c. TFs are also identified as being 785	

differentially expressed and enriched in at least 3 MPAL hematopoietic compartments. 786	
(Top) Number of accessible peaks in each k-means cluster. (Right) Proportion of 787	
differentially up-regulated TF gene expression profiles across MPAL hematopoietic 788	

compartments. 789	
b, (Left) Schematic for alignment of scATAC and scRNA-seq data to link putative 790	

regulatory regions to target genes. First, scATAC-seq data is converted from accessible 791	
peaks to inferred gene activity scores using Cicero. Second, these gene activity scores 792	
and scRNA-seq expression are aligned into a common subspace using Seurat’s 793	

Canonical Correlation Analyses. Third, each scATAC-seq cell is assigned its nearest 794	
scRNA-seq neighbor. Fourth, ATAC-seq peaks within 2.5-250kb to a gene promoter are 795	

correlated within the healthy hematopoietic and MPAL knn groupings. Lastly, significant 796	
peak-to-gene links are identified by correlating peaks to genes on different chromosomes. 797	

(Right) Heatmaps of 91,601 peak-to-gene links across hematopoiesis and MPALs. (Top) 798	
peak-to-gene links that are identified only within hematopoiesis, (Middle) peak-to-gene 799	
links that are unique to MPALs, and (Bottom) peak-to-gene links identified in both 800	

hematopoiesis and MPALs.  801	
c, Schematic for identifying genes that are putatively regulated by the transcription factor 802	

of interest.  803	
d, RUNX1 putative target genes differentially up-regulated in at least 1 MPAL 804	
subpopulations. The x-axis represents the proportion of MPAL subpopulations that are 805	

differential in both scRNA-seq and a linked accessible peak. The y-axis represents the 806	
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cumulative linkage score between differentially up-regulated peaks linked to differentially 807	
up-regulated genes.  808	

e, CD69 multi-omic differential track (Top) T cell Th17 K27ac HiChIP virtual4C of the CD69 809	
locus, shading represents standard deviation between biological replicates (n = 2). 810	

(Middle) Aggregated scATAC tracks showing MPAL disease subpopulations (red) and 811	
aggregated nearest-neighbor healthy (grey). (Right) Distribution of log2 normalized 812	
expression of CD69 for MPAL disease subpopulations (red) and closest normal cells 813	

(grey); black line represents the mean and asterisk denote significance (LFC > 0.5 and 814	
FDR < 0.01). (Bottom) HL60 AML line ChIP-seq data across CD69 locus, Jurkat CRISPRa 815	

tiling screen across the CD69 locus and RUNX1 identified malignant peak-to-gene links.  816	
f, Kaplan-Meier curve for TCGA AML patients (n=179) stratified by RUNX1 putative target 817	
genes top 33% vs bottom 33% (p-value = 0.023). 818	

 819	
SUPPLEMENTARY FIGURE LEGENDS 820	

 821	
Supplementary Figure 1. Quality control of scRNA-seq data for hematopoiesis 822	

samples.  823	
a, (Top) Number of cells passing filter for each experimental replicate (number of 824	
informative genes > 400 and number of unique molecular identifiers (UMI) > 1000), 825	

(Middle) number of informative genes detected per single cell and (Bottom) number of 826	
unique molecular identified (UMI) transcripts. 827	

b, Aggregated scRNA-seq one to one reproducibility plots for experimental replicates and 828	
across experiments.  829	
c, scRNA-seq biological cluster labels assigned to each cluster overlay on UMAP of 830	

hematopoiesis.  831	
d, scRNA-seq experimental sample labels overlay on UMAP of hematopoiesis. 832	
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 833	
Supplementary Figure 2. Quality control of scATAC-seq data for hematopoiesis 834	

samples.  835	
a, scATAC-seq cell filtering plot. The x-axis is the number of unique accessible fragments 836	

and the y-axis is the enrichment of Tn5 insertions at transcription start sites, representing 837	
the robust signal to background for each single cell.  838	
b, Aggregated scATAC-seq fragment size distributions across individual experiments 839	

demonstrating sub- , mono- and multi nucleosome spanning ATAC-seq fragments.  840	
c, (Top) Number of cells passing filter for each experimental replicate (Unique fragments 841	

> 1000 and TSS enrichment > 8), (Middle) log10 unique fragments, (Middle) fraction of 842	
Tn5 insertions in the healthy hematopoietic union peak set, and (Bottom) enrichment at 843	
transcription start sites.  844	

d, Aggregated scATAC-seq one to one reproducibility plots for experimental replicates 845	
and across experiments.  846	

e, scATAC-seq biological cluster labels assigned to each cluster overlay on UMAP of 847	
hematopoiesis.  848	

f, scATAC-seq experimental sample labels overlay on UMAP of hematopoiesis. 849	
 850	
Supplementary Figure 3. Quality control of scADT-seq data for hematopoiesis.  851	

a, Proportion of scRNA-seq cells passing filter that were matched with corresponding 852	
scADT data.  853	

b, Aggregated scADT-seq one to one reproducibility plots for experimental replicates and 854	
across experiments.  855	
c, scADT-seq UMAP of bmmc and pbmc samples across 14 antibodies. scADT overlay of 856	

experimental sample labels, CD19, CD3, CD56, CD4, CD8A, CD14, CD16, CD45RA, 857	
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CD45RO, TIGIT and PD-1. Color represents experimental labels or scADT-seq values 858	
after CLR transformation.  859	

d, Corresponding scRNA-seq biological cluster label overlay on the scADT-seq UMAP of 860	
BMMC and PBMCs. 861	

 862	
Supplementary Figure 4. Validation of key marker genes for both scRNA-seq and 863	
scATAC-seq for hematopoiesis.   864	

a-h, Multi-omic tracks; (Top) average track of all clusters displayed, (Middle) binarized 100 865	
random scATAC-seq tracks for each locus at 100bp resolution and (right) scRNA-seq log2 866	

distribution of normalized expression for each cluster, box-plot shows median and lower 867	
and upper quartiles.  868	
a, Multi-omic track of GATA1 (specific in these clusters for Erythroid) for erythroid 869	

development from HSC progenitor cells.  870	
b, Multi-omic track of GATA2 (specific in these clusters for Basophil) for erythroid 871	

development from HSC progenitor cells.  872	
c, Multi-omic track of ELANE (specific in these clusters for GMP/Neutrophil) for neutrophil 873	

development from HSC progenitor cells.  874	
d, Multi-omic track of IRF8 (specific in these clusters for pDC) across pDC development 875	
from HSC progenitor cells.  876	

e, Multi-omic track of SDC1 (specific in these clusters for Plasma cells) across B cell 877	
development and plasma cells. 878	

f, Multi-omic track of CD1C (specific in these clusters for cDC) across cDC development 879	
from HSC progenitor cells.  880	
g, Multi-omic track of SELL (specific in these clusters for Naive T cells vs memory, and 881	

CD8 central memory vs CD8 effector memory) across NK and T cells.  882	
h, Multi-omic track of GZMB (specific in these clusters for NK cells) across NK and T cells. 883	
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 884	
Supplementary Figure 5. Diagnostic flow cytometry plots for MPALs 1-3. 885	

a-c, Diagnostic flow cytometry plots from three different MPAL cases gated on blasts area 886	
(highlighted in red) and lymphocytes (highlighted in black) from CD45 and side scatter 887	

area (SSC-A).  888	
a, MPAL 1 shows classic bilineal phenotype with both T-lymphoblasts (cCD3-positive and 889	
CD7-positve) and myeloid blasts (MPO-positive and CD33-positive).  890	

b, MPAL 2 demonstrates a more complex phenotype with both biphenotypic (single 891	
population expressing lymphoid marker CD7 and myeloid marker CD33) and bilineal T-892	

Myeloid patterns (subpopulation expressing monocytic markers CD64, CD33, and CD14).  893	
c, MPAL 3 demonstrates a classic biphenotypic case with coexpression of both T-lineage 894	
markers (cCD3-positive) and myeloid markers (MPO-positive).  895	

 896	
Supplementary Figure 6. Diagnostic flow cytometry plots for MPALs 4-5R. 897	

a-c, Diagnostic flow cytometry plots from three different MPAL cases gated on blasts area 898	
(highlighted in red) and lymphocytes (highlighted in black) from CD45 and side scatter 899	

area (SSC-A).  900	
a, MPAL4 demonstrates a classic bilineal B/M phenotype expressing B-lineage markers 901	
(CD79a and CD19-positive) and myeloid markers (MPO-positive and CD33-positive).  902	

b, MPAL5 demonstrates a more complicated phenotype with a subpopulation of blasts 903	
expressing T-lineage markers (cCD3-positive and CD7-positive) and a subpopulation 904	

expressing myeloid marker MPO. 905	
c, MPAL5R post-treatment relapse of MPAL5. Flow cytometry reveals expansion of the T-906	
lymphoblastic subpopulation (cCD3-positive, TdT-positive population) following 907	

chemotherapy. 908	
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d, High-confidence mutations detected in 5 MPAL cases by whole exome sequencing. 909	
Missense mutations are shown in blue, frameshift deletions are shown in yellow, stopgain 910	

mutations are shown in purple, frameshift insertions are shown in orange, and 911	
nonframeshift deletions are shown in dark gray.   912	

 913	
Supplementary Figure 7. Quality control of scRNA-seq and scATAC-seq data for 914	
MPAL samples.  915	

a, (Top) Number of cells passing filter for each experimental replicate (number of 916	
informative genes > 400 and number of unique molecular identifiers (UMI) > 1000), 917	

(Middle) number of informative genes detected per single cell and (Bottom) number of 918	
unique molecular identified (UMI) transcripts. 919	
b, Aggregated scRNA-seq one to one reproducibility plots for experimental replicates and 920	

across experiments.  921	
c, scATAC-seq cell filtering plot. The x-axis is the number of unique accessible fragments 922	

and the y-axis is the enrichment of Tn5 insertions at transcription start sites, representing 923	
the robust signal to background for each single cell.  924	

d, Aggregated scATAC-seq fragment size distributions across individual experiments 925	
demonstrating sub- , mono- and multi nucleosome spanning ATAC-seq fragments.  926	
e, (Top) Number of cells passing filter for each experimental replicate (Unique fragments 927	

> 1000 and TSS enrichment > 8), (Middle) log10 unique fragments, (Middle) fraction of 928	
Tn5 insertions in the MPAL union peak set, and (Bottom) enrichment at transcription start 929	

sites 930	
f, Aggregated scATAC-seq one to one reproducibility plots for experimental replicates and 931	
across experiments. 932	

 933	
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Supplementary Figure 8. Evaluation of LSI projection workflow for previously 934	
published bulk and single-cell hematopoietic data sets across different platforms. 935	

a, Overview of LSI projection workflow. Briefly, using information from TF-IDF transform, 936	
singular value decomposition and UMAP of hematopoiesis enables projection of new data 937	

into the same subspace.  938	
b, LSI projection of downsampled previously published bulk sorted hematopoietic data 939	
sets18,20. (Left) RNA-seq downsampled bulk projections for 49 samples (n=250 940	

downsampled cells). (Right) ATAC-seq downsampled bulk projections for 90 samples 941	
(n=250 downsampled cells). 942	

c, LSI projection of downsampled previously published single-cell hematopoietic data sets 943	
labeled by previous classifications20–22. (Left) scRNA-seq projections of previous study 944	
healthy bone marrow cells (different platform and different aligned genome) colored by 945	

previous classifications. (Right) scATAC-seq projections for healthy bone marrow and 946	
peripheral blood samples (2 different platforms across 3 studies), colored by ground truth 947	

isolated populations. 948	
 949	

Supplementary Figure 9. LSI projection of previously published healthy and AML 950	
scRNA-seq identifies malignant programs across AML subpopulations.  951	
a, (Left) Schematic of LSI projection. (Right) Initial projection of all AML malignant single-952	

cells colored by previous classifications19.  953	
b, Re-classification of scRNA-seq AML single-cells based on closest normal cells in 954	

healthy hematopoiesis (See Methods). Broader re-classification increases the number of 955	
cells per category for improved power in differential analyses. LSI projection for each 956	
individual AML samples onto scRNA-seq healthy hematopoiesis colored by re-957	

classifications (denoted is the sample id and number of cells).  958	
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c, K-means differential scRNA-seq heatmap (k = 10), colored by log2 fold change, 959	
comparing each AML sample subpopulations (classifications) vs their closest normal bone 960	

marrow cells from the same study19. 961	
 962	

Supplementary Figure 10. scADT-seq overlay of MPALs projected onto the 963	
hematopoietic hierarchy 964	
a, (Left) Projected MPALs colored by hematopoietic compartments. (Right) scADT-seq 965	

overlay of CD7, CD33, CD14, CD4 and CD19 on MPAL single cells LSI projected onto 966	
hematopoiesis. 967	

 968	
Supplementary Figure 11. Visualization of differential genes and accessible peak 969	
regions.  970	

a, Top conserved differential genes across the MPAL hematopoietic compartments. 971	
b, Top conserved differential transcription factors across the MPAL hematopoietic 972	

compartments. 973	
c, KEGG pathway enrichment in differential RNA k-means 2, 3, 4, and 10 (Figure 2c). 974	

d-e, Multi-omic differential tracks (Left) scATAC tracks showing MPAL disease 975	
subpopulations (red) closest normal cells (grey). (Right) Distribution of log2 normalized 976	
expression for MPAL disease subpopulations (red) and closest normal cells (grey); black 977	

line represents the mean and asterisk denote significance (LFC > 0.5 and FDR < 0.01). 978	
d, Multi-omic differential track of CDK11A, up-regulated in MPALs 1, 2, 5 and 5R.  979	

e, Multi-omic differential track of CDKN2A, up-regulated in MPALs 1, 2, 3, 4, and 5. 980	
 981	
Supplementary Figure 12. Seurat canonical correlation analysis alignment of 982	

scRNA and scATAC-seq  hematopoietic and MPAL samples. 983	
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a, Schematic of LSI projection of downsampled bulk leukemia RNA-seq onto healthy 984	
hematopoiesis. 985	

b, Representative downsampled LSI projections (n=250) for B-ALLs, non-ETP T-ALLs, 986	
ETP T-ALLs, AMLs, T/M MPALs and B/M MPALs from previous studies16. 987	

c, LSI UMAP of differentially up-regulated gene expression profiles across bulk 988	
leukemias16 and MPAL samples assayed in this study, colored by cytogenetics.  989	
d, Binary heatmap of variable malignant genes across leukemia classifications. Each cell 990	

in the heatmap is colored whether the gene was identified as malignant for the leukemic 991	
sample. 992	

 993	
Supplementary Figure 13. Seurat canonical correlation analysis alignment of 994	
scRNA and scATAC-seq  hematopoietic and MPAL samples. 995	

a, UMAP of CCA alignment of scATAC-seq using Cicero gene activity scores and scRNA-996	
seq for (Left) bone marrow, (Middle) CD34+ enriched bone marrow, (Right) peripheral 997	

blood.  998	
b, UMAP of CCA alignment of scATAC-seq using Cicero gene activity scores and scRNA-999	

seq for MPAL samples. 1000	
 1001	
Supplementary Figure 14. Evaluation of scRNA and scATAC-seq alignment and 1002	

peak-to-gene linkage across hematopoiesis and MPAL samples. 1003	
a, Spearman rank correlation between scATAC-seq Cicero gene activity scores to scRNA-1004	

seq for each mapped cell within across all biological experiments.  1005	
b, Pearson correlation of CCA scRNA and scATAC-seq nearest-neighbors. The cutoff (R 1006	
> 0.45) for high quality nearest neighbor mappings is shown.  1007	

c, (Left) UMAP of scATAC-seq hematopoiesis colored by scATAC-seq clusters. (Right) 1008	
UMAP of scATAC-seq hematopoiesis colored by mapped scRNA-seq clusters.  1009	
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d, Confusion matrix of initial clusters for mapped scRNA-seq to scATAC-seq clusters for 1010	
hematopoiesis (Figure 1b-c).  1011	

e, (Left) Distribution of peak-to-gene distances. (Left-Middle) Distribution of number of 1012	
peaks mapped per gene (median = 6). (Right-Middle) Distribution of number of genes 1013	

mapped per peak (median = 1). (Right) Distribution of number of genes skipped for peak-1014	
to-gene links (median = 2).  1015	
f, MetaV4C plots of K27ac HiChIP in Naive T and HCASMC cells for top 500 biased T/NK 1016	

(broad classification) peak-to-gene links that are identified only in  healthy hematopoiesis. 1017	
Shading indicates standard deviation between replicate experiments (n = 2).  1018	

g, Peak-to-genes enrichment in GTEx eQTLs over a permuted background distance-1019	
matched set (n=250) for the union set of peak-to-gene links. 1020	
 1021	

Supplementary Figure 15. Peak-to-gene links nominate putative regulatory regions 1022	
that nominate key leukemic genes.  1023	

a-d, Multi-omic differential track; (Middle) Aggregated scATAC tracks showing MPAL 1024	
disease subpopulations (red) and closest normal cells (grey). (Right) Distribution of log2 1025	

normalized expression of gene of interest for MPAL disease subpopulations (red) and 1026	
closest normal cells (grey); black line represents the mean and asterisk denote 1027	
significance (LFC > 0.5 and FDR < 0.01). (Bottom) Peak-to-gene links for gene of interest.  1028	

a, Multi-omic differential track for IL1RAP. 1029	
b, Multi-omic differential track for CD96.  1030	

c, Multi-omic differential track for FLT3.  1031	
d, Multi-omic differential track for MCL1. 1032	
 1033	

Supplementary Figure 16. Analysis workflows for processing of scRNA-seq and 1034	
scATAC-seq data.  1035	
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a, scRNA-seq analysis workflow. Briefly cells are aligned using 10x cell ranger, quality 1036	
filtered, and clustered using a feature optimization approach (see methods).  1037	

b, scATAC-seq analysis workflow. Briefly cells are aligned using 10x cell ranger atac, 1038	
quality filtered, clustered in large windows genome-wide, peak-calling on clusters, creation 1039	

of a counts matrix and clustered using a feature optimization approach (see methods).  1040	
 1041	
 1042	

Supplementary Table 1. MPAL Patient Characteristics.  1043	
MPAL patient WHO Diagnosis, Age, Sex, Blast %, White Blood Cell Count, Cytogenetics, 1044	

Prior Treatment. 1045	
 1046	
Supplementary Table 2. Antibodies used in flow cytometry of MPALs.  1047	

 1048	
Supplementary Table 3. CITE-Seq Antibody List and Barcodes.  1049	

Antibody information for Hematopoietic and MPAL samples. Barcodes used for 1050	
sequencing ADT libraries. 1051	

 1052	
Supplementary Table 4. Differential analyses for MPAL and AMLs.  1053	
MPAL differential RNA-seq k-means, MPAL differential ATAC-seq k-means, AML 1054	

differential RNA-seq k-means and MPAL vs AML comparison. 1055	
 1056	

Supplementary Table 5. Motif enrichment and linkage to target genes.  1057	
MPAL differential ATAC-seq k-means enrichment for CIS-BP motifs shown in figure 3A, 1058	
all motifs, significant peak-to-gene links, and RUNX1 target genes. 1059	

 1060	
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