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Abstract:

Background: Genomic data can facilitate personalized treatment decisions by enabling therapeutic hypotheses in
individual patients. Conditional selection (encompassing both mutual exclusivity and co-occurrence) is commonly
used to consider rare genomic variants relative to established cancer drivers. However, the direct comparison of p-
values across multiple pairs of genes is confounded by the often-dramatic differences in sample size between
established driver mutations and novel findings.

Methods: We develop a resampling based method for the direct pairwise comparisons of conditional selection
between sets of gene pairs. This effectively creates quantitative positive control guideposts of conditional selection
that normalize differences in population size. We applied this method to a transcript variant of ALK in melanoma,
termed ALKAT!, which has been the subject of a recent controversy in the literature. We reproduced some of the
original cell transformation experiments, performed rescue experiments, and analyzed drug response data to revisit
the original ALKA™ findings.

Finding: We found that we are powered to quantitatively compare the degree of relative mutual exclusivity (down to
an abundance of 10 patients in a cohort of 500) between novel gene variants and positive controls. We also found
that ALKA™ is not as mutually exclusive as BRAF and NRAS are with each other. Our in vitro transformation
assays and rescue assays suggested that alternative transcript initiation in ALK is not likely to be necessary or
sufficient for cellular transformation or growth.

Interpretation: Pairwise comparisons of conditional selection represent a sensitive method of utilizing existing
genomic data to directly and quantitatively compare relative levels of conditional selection. The results of using our
method in ALKA™ and our experiments strongly disfavor the role of ALKA™ as a targetable oncogenic driver. The
progress of other experimental agents in late stage melanoma and our experimental and computational re-analysis
led us to conclude that further single agent testing of ALK inhibitors in patients with ALKA™ should be limited to
cases where no other treatment hypotheses can be identified.
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Introduction

In cancers, clonal selection influences tumor progression and responses to therapy (1), but in every patient, the process
of clonal selection creates independent tumors with independent, parallel evolutionary trajectories. These parallel
evolutionary paths can be conditioned upon the occurrence of a previous genetic event. Co-occurrence is when the
first variant predicts the presence of a second (2,3). Whereas, mutual exclusivity occurs when the presence of the first
predicts the absence of the second—and is the primary focus here. Mutual exclusivity is often viewed qualitatively or
used to build large scale networks (2,4-6). Here we aim to create quantitative guideposts of conditional selection that
will allow for direct comparisons of mutual exclusivity relative to known druggable oncogene pairs by controlling for
cohort size. These guideposts can be used to triage the translational actionability of rare genomic findings.

A strong example of mutual exclusivity in cancer is seen in the evolutionarily ancient mitogen-activated protein kinase
(MAPK) pathway that is present from yeast to metazoans (7). In higher eukaryotes, the MAPK pathway is often
canonically activated by receptor tyrosine kinases (RTK) that signal through MAPKs to achieve cellular growth and
development (8,9). Because of their critical role in growth and division, most known RTK-MAPK mutational events
that drive cancer growth lead to mutual exclusivity across patients during parallel evolution. Moreover, many of the
most impressive success stories for targeted cancer therapy in the past two decades have centered on this one pathway.
Multiple examples of mutual exclusivity have been found between ALK-fusion, EGFR, KRAS, and ERBB2 genes in
non-small cell lung cancer (NSCLC) (10-12). This has led to inhibitors of ALK, EGFR, and recently KRASgi2c
offering high rates of single agent therapeutic responses (13—17). In thyroid cancer, BRAF mutations have been found
to be mutually exclusive with RET fusions, and both have shown high single agent response rates in clinical trials
(18). Finally BRAF & NRAS are mutually exclusive in melanoma and single agent use of vemurafenib leads to clinical
responses (19-25). Therefore, mutually exclusive activating mutations in the RTK-MAPK pathway have shown
impressive clinical sensitivity to single agent targeted therapies (15,26).

There are at least two explanations for mutual exclusivity in gain of function oncogenes in the same pathway: 1)
Variants that are sufficient to activate the pathway may be functionally redundant. In this case there is no added benefit
to a second activating mutation. 2) If activation of the pathway is sufficient, further activation of that pathway might
be harmful to the cell i.e. the two events in the same pathway may be antagonistic because excess pathway activity is
selected against (27,28).

While mutual exclusivity is often measured in cancer genomics studies, it can be challenging to interpret. For instance,
KRAS and EGFR are well described as mutually exclusive in the literature, and their inhibitors have shown single
agent response rates. If a newly discovered variant appears to be mutually exclusive with one or both of these genes,
that would give confidence that the variant is important. However, when the variant is not mutually exclusive, the
important question becomes, how do we demonstrate a negative result? Answering this question requires estimating
the variability in effect size and significance that rarity would bring to positive control genes like KRAS and EGFR.
In the absence of such a quantitative test, it is easy to view the data qualitatively (29). Here we seek a direct and
quantitative test to rapidly interpret the relative mutual exclusivity of rare variants versus a positive control pair. Since
we use positive controls that are genes in the MAPK pathway with previously verified single agent responses to
targeted therapeutics (14-16,30), our method can also be used to triage rare genomic findings for potential single agent
drug efficacy. If a newly discovered alteration is as mutually exclusive as a therapeutically established mutually
exclusive gene pair, it gives greater confidence in the potential for single agent therapy.

As a test case for a method that can quantitatively compare mutual exclusivity between gene pairs, we re-examined
the observation that alternative transcription initiation in ALK, termed ALKAT, is a therapeutically actionable
oncogenic target (31). This novel ALK transcript has a transcription initiation site in intron 19 of ALK, just upstream
of ALK’s kinase domain. Wiesner et al posited that this transcript exhibits a novel mechanism of oncogenic activation
by overexpressing the kinase domain of ALK. Using in vitro transformation assays and inhibitor treatment, they
hypothesize that single agent ALK-inhibitor therapy can treat the 2-11% (31,32) of melanoma patients expressing
ALKAT!, However, Couts et al reported crizotinib (an ALK inhibitor) sensitivity in melanoma patient derived
xenografts (PDXs) expressing EML4-ALK but not ALKA™ jn vitro and in vivo (33). Exome sequencing of the
melanoma PDXs expressing ALKA™ revealed that 4 out of 6 of these cell lines had transforming mutations in well-
established melanoma oncogenes. Furthermore, out of the two ALKA™ melanoma patients treated with ALK-inhibitors
so far, one had a modest response that did not rise to the level of an objective response (31) and the other did not


https://doi.org/10.1101/696294
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/696294; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

respond (33). This literature controversy, and the small sample size of the Couts ef al. study suggest that reanalysis of
the original observation of ALKA™ is important to understanding if further investigation is warranted.

In this paper, we develop a simple and user-friendly resampling method to test the relative conditional selection across
sets of gene pairs. This will allow us to quantitatively compare any gene of interest (GOI) such as ALKAT with positive
control gene pairs like BRAF and NRAS in melanoma. Using this method, we show that ALKAT! is not as mutually
exclusive with BRAF or NRAS as BRAF or NRAS are with each other. Moreover, by large scale repetition of
experiments performed in the Wiesner paper, we uncovered mutations in ALKA™ that suggest that it is not sufficient
for growth factor independent transformation. We also find that ALKAT' cannot compensate for oncogenic signaling
in melanoma cells, and that ALK kinase domain overexpression does not predict ALK inhibitor sensitivity in the
cancer cell line encyclopedia (CCLE) (34). Given the stunning advances in melanoma therapy, and the rich clinical
trial landscape, we suggest that relapse/refractory melanoma patients with ALKA™ should not be given ALK inhibitors
in an investigational or off-label capacity unless no other options remain.
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Results
Pairwise comparisons of conditional selection allow direct comparisons between frequent and rare events

Highly mutually exclusive gene pairs such as KRAS/EGFR, EGFR/EML4-ALK , and NRAS/BRAF predict the
success of ALK, EGFR and BRAF inhibition in the clinic (15,26). These mutually exclusive gene pairs are positive
controls that could be compared with any gene/alteration of interest (GOI, in Fig 1A). A direct pairwise comparison
would allow us to ask whether a “BRAF/NRAS level” of mutual exclusivity exists between any new GOI (such as
ALKAT) and BRAF or NRAS (BRAF and NRAS are an example of a highly mutually exclusive gene pair in
melanoma, 20-24) . However, differences in sample size due to mutation frequency complicates our ability to directly
compare the p-values and odds ratios between distinct gene pairs. If the GOI is much less abundant than the positive
control, how often would the positive control have a similar odds ratio and p-value if it was only as abundant as the
test gene of interest? Resampling will allow us to compare mutual exclusivities between pairs of genes with unequal
abundances in cancer genomes.

To directly illustrate this idea, we analyzed how sample size affects the p-values and odds ratios observed for a
simulated mutually exclusive positive control gene pair. We simulated a mock clinical cohort with two abundant but
mutually exclusive genes (odds ratio of 0.025), and performed resampling experiments at different subsample sizes.
As expected, decreasing the abundance of one of the genes decreases the measured significance (Fig 1B, left). We
also noted a broader range in the observed odds ratios (OR) at smaller sample sizes: OR of 0-0.7 for a subsample size
of 5 and OR of 0-0.11 for a subsample size of 20 (Fig 1B, right). Therefore, the range of odds ratios that is observable
in highly mutually exclusive genes becomes noisier as sample size decreases. To more directly compare gene pairs
with different abundances, we propose resampling the more prevalent gene pairs at an abundance that is matched by
the gene of interest.

We term this idea, “pairwise comparisons of conditional selection”. We aim to directly compare two gene pairs while
controlling for the differences in sample size. Given a highly abundant and mutually exclusive positive control gene
pair (Fig 1A, top-right) and a GOI of unknown mutual exclusivity with either of the positive control genes (Fig 1A,
top-left), our method uses resampling to create a cohort in which the positive control genes have a similar abundance
and frequency as those of the GOI (Fig 1A, bottom). This is done by subsampling the positive control to the same
number of hits (abundance) and the same proportion in the cohort (frequency) as the GOI. Alongside this resampling,
we also perform bootstrap sampling of the GOI and the other positive control genes. Details of the pairwise comparison
strategy are included in the methods, and our GitHub repository.

To explore the sensitivity and specificity of our proposed method, we simulated gene sets (see methods) with varying
cohort sizes, GOI abundances, and mutual exclusivity odds ratios (Supplementary Fig 1A). As expected, when we
simulated two gene pairs with similar mutual exclusivities, no significant differences were detected (Fig 1C, left
panel). Furthermore, large differences in simulated odds ratios required relatively fewer observations of a genetic
event. (Fig 1C, Supplementary Fig 1B). Given simulated gene pairs with a range of different mutual exclusivities
(middle and right panel of Fig 1C), a statistically significant difference (red asterisks) in their p-value distributions
could be observed when the GOI was present in at least 10 patients in a simulated 500 patient cohort. Thus, in a cohort
size of 500 and simulated ORs of 0.1-1, an abundance of ~10 events are needed to conclude that a quantitative
difference in mutual exclusivity between two pairs of genes exists.

Our method is sensitive enough to detect meaningful differences in pairwise comparisons of mutual exclusivity in
~10/500 (2%) patients in a clinical cohort. Given that this sensitivity should be sufficient for the observed frequency
of ALKAT! (2-10%), we decided to re-examine the literature controversy surrounding this putatively oncogenic
alteration.

ALKA™ is not as mutually exclusive as other established therapeutic targets in melanoma

The Couts paper contained a sample size of 6 ALK”™ patients, but it identified NRAS and BRAF mutations in patients
that harbored the ALKA™ alteration. Thus, the lack of mutual exclusivity of ALKAT with the transforming melanoma
oncogenes BRAF and NRAS has been suggested, but not conclusively and quantitatively demonstrated with an
appropriately powered analysis. Pairwise conditional selection clearly showed that ALKAT is not as mutually
exclusive with BRAF or NRAS as they are with each other (p-value from Kolmogorov-Smirnov test: 9.33e-15, Fig
2A-C, see methods for description of data acquisition, sorting, and analysis). Because this analysis could be
confounded by the inclusion of all mutations in the BRAF and NRAS genes, we reperformed our analysis using only
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the hot spot mutations of BRAFvsoor and NRASqsiL. This hotspot analysis showed a similar result (p-value from KS
test: 2.61e-13, Fig 2C, right panel). Thus, ALKA™ is significantly less mutually exclusive with BRAF or NRAS than
they are with each other.

We also considered the possibility that the lack of mutual exclusivity of ALKA™ with BRAF and NRAS was due to
the definition of the initial filter cutoffs in the original RNA-seq analysis (the exact filters are mentioned in the
methods). By systematically changing the cutoffs for all of the filters combinatorically, we varied the sensitivity for
ALKAT! detection by orders of magnitude (Fig 3A, top). More stringent filter sets resulted in fewer ALKAT calls,
whereas less stringent filters resulted in more calls (Fig 3A, bottom). Performing pairwise comparisons of conditional
selection on all combinations of these filter cutoffs never created mutual exclusivity. This filter analyses indicated that
the lack of observed mutual exclusivity in AKLA™ was not due to sub-optimal cutoffs in the heuristic RNA-seq filters
that were used.

This analysis shows the utility of tests for pairwise conditional selection to demonstrate quantitative differences in the
degree of mutual exclusivity between a positive control gene pair and a new and potentially oncogenic alteration. We
also strongly demonstrate a lack of mutual exclusivity between ALKA™ and established MAPK pathway driver
mutations.

Kinase domain expression imbalance in ALK is nearly ubiquitous in melanoma and lung cancers

Given the conclusive lack of mutual exclusivity between ALKA™ and transforming melanoma oncogenes, we decided
to look deeper at the initial signal, i.e. the bias towards ALK expression in the kinase domain (Exons 20:29). We
expected to see a distribution centered at equivalent expression between the kinase domain and the upstream coding
region (the diagonal line in Fig 3B). We posited that expression levels in exons 1-19 and 20-29 should be distributed
above and below the diagonal, with ALK*™ patients being strong outliers from this expected relationship. However,
we observed a significant bias towards overexpression of the kinase domain of ALK across all melanoma patients, p-
value from KS-test: 2.2e-16. In fact, almost all the skin cutaneous melanoma (SKCM, n=340) and lung
adenocarcinoma (LUAD, n=477) patients in the TCGA (Fig 3B, Supplementary Fig 2A) expressed higher levels of
the ALK kinase domain than exons 1-19. The ubiquity of this deviation in all patients led us to suspect that a systematic
error could be at play. While multiple interpretations of this signal exist, it is concerning that all patients have some
propensity to overexpress the kinase domain. As a control, we also examined whether an imbalance of expression
towards the kinase domain is a unique feature of ALK. We did not see this propensity for kinase domain expression
in EGFR in SKCM or in EGFR in LUAD, p-value from KS-test:0.66 (Supplementary Fig 2B). Hence, the kinase
domain expression imbalance is not a generalizable finding and raises concerns of potential systemic biases in exon
specific expression levels in ALK in the TCGA.

ALKA™ is not sufficient for growth/transformation in vitro

Our computational re-analysis of ALK expression data in melanoma suggested that ALKAT is significantly less
mutually exclusive with NRAS and BRAF than they are with each other. In the original Wiesner et al. study (31),
ALKAT was argued to be sufficient for transformation of Ba/F3s to growth factor independence. When we transduced
Ba/F3s with ALKAT and EML4-ALK (9 independent replicates each), we found that ALKA™ took significantly longer
to grow out (two population doublings in 6.7+0.4 days for EML4-ALK and 10.0+1.0 days for ALKAT, Fig 4A).
However, we also reasoned that longer outgrowth times were indicative of a weaker transforming potential. As such,
we scaled up the number of transductions to 48 independent replicates by performing many parallel transductions of
ALKAT EML4-ALK, and vector. The results were striking. Growth factor independence was observed in 100% of
EMLA4-ALK replicate transductions, but only 37.5% ALKA™ replicate transductions, and in 16% of vector controls
(Fig 4B). Viral titers were essentially indistinguishable across these three constructs (Supplementary Fig 3);
puromycin resistance cassette transfer as indicated by time to outgrowth following puromycin selection was similar
as well. Thus, ALKAT exhibits only a modest increase in transformation efficiency when large scale replication is
performed.

Next, we reasoned that growth factor independence in ALKAT Ba/F3 cells was infrequent because it required a
relatively rare second genetic event. To test this hypothesis, we extracted the genomic DNA of the 18 ALKA™ Ba/F3
cell lines that achieved growth factor independence and sequenced their ALK kinase domain. Surprisingly, 3 of the
18 ALKAT cell lines had well known transforming mutations in the ALK kinase (F1174C, F1174V, and F11741, Fig
4A, Supplementary Fig 4). These point mutations are the primary cancer causing mutations in ALK-mutated
neuroblastoma and have been shown to constitutively activate the ALK kinase (35). These mutations are also sensitive
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to some ALK kinase inhibitors. This gives a concrete rationale for why ALKA™ could transform Ba/F3 cells, and that
those cells were sensitive ALK inhibition (31). While the mutations were not found in all cells, their existence in 3
independent selections strongly suggests that the transformation results and therapeutic treatments of ALKA™ can be
confounded by secondary genetic events. Alongside our re-analysis of the genomic data and the Couts et a/ data, our
transformation data strongly suggested that ALKA™ is not sufficient for growth/transformation in vitro, and that ALK
inhibitors will not be a good single agent treatment strategy in ALKAT! positive melanoma.

We also stress that plasmids and cell lines that contain these activating point mutations have never been used in our
lab (or a neighboring lab) which rules out contamination by another source. While we could only identify secondary
mutations in a minority of cell lines, we argue that the selection for 3 distinct activating mutations in the ALKA™
background strongly suggests that ALKAT! is not sufficient for transformation and requires a second genetic event.
Moreover, though other transformation experiments were performed in (33), we argue that the large scale replication
of the Ba/F3 results in our lab cast significant concerns on the other transformation studies in ALKA™,

ALKAT cannot rescue melanoma cell lines from a vemurafenib challenge

While our Ba/F3 analysis suggests that the ALKA™ alteration is not sufficient to transform to growth factor
independence, we decided to test the potential oncogenicity of ALKAT in a more realistic melanoma cell line model.
We transduced ALKA™ into two BRAFvegoe-harboring melanoma cell lines, and challenged them with a BRAFveooe
inhibitor, vemurafenib. The experimental rationale was simple, BRAFveoor is necessary for melanoma cell survival,
and sufficient for transformation (20,30). The drug vemurafenib inhibits only the mutant BRAF V600E protein as a
monomer (16,30,36), while receptor tyrosine kinases signal through dimeric RAF family proteins (37). A candidate
oncogenic RTK in melanoma with strong transforming potential should be able to rescue BRAFvesoor melanoma from
a BRAFvsoog inhibitor.

We transduced EML4-ALK, ALKA™, and vector into two different skin cancer cell lines, SKMEL28 and G361, both
of which have a transforming V600E point mutation and are sensitive to vemurafenib (34). When we did this, ALKAT!
and vector transduced melanoma cells had statistically indistinguishable vemurafenib dose responses (p-value: 0.49
for SKMEL28 and 0.97 for G361, Fig 4C). The inability of ALKA™ to rescue melanoma cell lines is in line with the
notion that ALKA™ is not an oncogenic driver in melanoma.

We proceeded with our vemurafenib challenge in the absence of a positive control because multiple transduction
attempts for EML4-ALK and MEKgqsep failed in our melanoma cell lines. Both EML4-ALK and MEKgqsep are
established oncogenic drivers in NSCLC and melanoma (10,38). We confirmed our viral titer and infectivity by
simultaneously transducing and transforming Ba/F3 to IL-3 independence, as well as infecting Hek293T and selecting
for puromycin resistance. Interestingly, virus packaged with the EML4-ALK or MEKgqs¢p oncogene readily
transformed Ba/F3 cells, and could be easily infected into Hek293T cells and selected with puromycin, but we could
not successfully select for EML4-ALK or MEKqsep containing SKMEL28 or G361 cells (Supplementary Table 1).
While this is a negative result, we believe that it is a strong one because of our simultaneous infections. We were able
to generate both vector control and ALKA™ containing SKMEL28 and G361 cells through puromycin infection each
time we attempted infection, and we were able to generate EML4-ALK and MEKqsep transformed Ba/F3 cells, and
puromycin selected Hek293T cells in every transduction attempt. We were never able to generate stable SKMEL28
or G361 cell lines expressing EML4-ALK or MEKgsep on three separate transduction attempts on three separate days.
Thus, we can rule out infection efficiency, and construct function as the source of this result. This is consistent with
the idea that conditional selection via mutual exclusivity occurs because two growth pathway activating variants in
the same cell can become toxic (27,28).

Because we could not generate a stable positive control, we resorted to transient transfection to show that we could
generate resistance to vemurafenib with an upstream oncogenic event. We transfected SOS1Wt, SOS1534K and
MEK®¢F into the BRAFveoor containing Skmel-28 melanoma cells. We used SOS because it has an intermediate level
of ERK activation. E§46K and Q56P represent activating mutations in SOS1 and MEK and have previously been
described to activate MAPK signaling (29). Our rationale was that constructs with upregulated MAPK signaling
(Supplementary Fig. 5a) should be able to rescue monomeric BRAFveooe-containing SKMEL-28 melanomas from a
vemurafenib challenge. Transient transfection of MEKgqsep and SOSlesssk was capable of partially rescuing
vemurafenib challenge in Skmel-28 cells compared to Skmel-28 cells transfected with SOS1w: (Supplementary Fig
5b). Thus, it seems unlikely that ALKA™ is sufficient to act as an oncogene in melanoma cells.
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ALK expression imbalance does not predict sensitivity to ALK inhibitors.

While previous experiments suggested that ALKAT! may not be sufficient for oncogenesis, we still wondered if ALK
was necessary for in vitro survival in some melanoma cell lines. To test this we analyzed ALK expression data and
data on dose response to an ALK inhibitor (TAE-684) for 54 melanoma cell lines from the CCLE (34). In this dataset,
2 of the 54 (~4%) cell lines had strong exon imbalance that was ALKAT-like (exceeded 2/3 filters).Neither of these
cell lines were sensitive to TAE-684 (Fig 4D). Furthermore, the degree of exon imbalance in ALK expression (when
treated as a continuous variable) did not predict TAE-684 responses in these 54 cell lines (linear regression p-value:
0.51). Although this test would have been helped by a larger number of cell lines or more dramatic ALKA™ like
phenotypes, we conclude that the degree of observed exon imbalance is not correlated with single agent sensitivity to
ALK-inhibition across 54 melanoma cell lines.
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Discussion

In summary, we develop a resampling method for the pairwise comparison of two gene pairs to quantitatively interpret
a conditional selection signal. Doing this allows us to quantify a negative finding relative to how often a lack of mutual
exclusivity would be seen in a positive control gene pair. Our simulations show that pairwise comparisons of
conditional selection are a sensitive and specific method to quantitatively compare rare genomic events to positive
controls.

We applied our pairwise comparisons of conditional selection to a transcript alteration in ALKAT because of the
controversy in the literature (31,33). Our analysis clearly demonstrates a lack of conditional selection for ALKAT,
ALKAT s significantly less mutually exclusive than BRAF and NRAS are with each other in melanoma. Moreover,
our experiments suggest that ALKA™ is not sufficient for cellular transformation, that kinase domain imbalance does
not predict inhibitor response, and that single agent ALK inhibition is unlikely to be therapeutic in melanoma cells.

In their original paper, Wiesner et. al. performed a substantive and detailed description of the ALKA™ event. They
found enrichment of H3K4me3 and RNA Pol II near the ATI transcription initiation site of tumors expressing
ALKATI(31). Wiesner et al also confirmed that ALKA™ is expressed at both ALK alleles by comparing DNA, RNA,
and H3k4me3 levels. They also performed gene expression profiling of RNA-Seq datasets showing that ALKA™-like
expression is found in 2-11% of melanoma samples and sporadically in various other tumor types and not in normal
tissue samples (31,32). The breadth and depth of the analysis leads us to believe that ALKA™ is likely a true
transcript variant. Moreover, while we believe our work (alongside the work of Couts et al) provides strong evidence
against single agent therapy, it would be unfair to ignore the potential for therapeutic relevance of ALKA™ in
contexts other than ALK inhibitor monotherapy. Moreover, from a biological perspective, it would also be unfair to
rule out some sort of unknown biological role for ALKA™ that does not fit conventional definitions of driver
oncogenes. However, combining Couts’ PDX data with the questionable transformation potential of ALKAT!, the
lack of objective responses in ALKA™ expressing melanomas to ALK inhibitors, and the clear the lack of mutual
exclusivity of ALKA™ in melanoma casts significant doubt upon the single agent therapeutic rationale for ALKAT.

In the melanoma landscape, dramatic responses to approved and investigational immunotherapy agents are yielding
important steps forward for patient care. We have systematically shown that the original ALKA™ data should be re-
evaluated in light of our data reproducing the original finding, and in light of the compelling recent reports in PDX
models (33,39). Combined with the fact that the patient data in the original manuscript did not achieve the typical
clinical criteria for an objective partial response, we strongly recommend that single agent ALK inhibitors receive
no further testing in ALKA™ patients when other investigational or off label options exist. Given the weight of
evidence, it seems unlikely that refractory patients will benefit from this treatment. We also suggest that pairwise
tests for conditional selection will be a useful tool to triage any rare genomic finding in the mountains of cancer
sequencing data generated in late stage patients.
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Methods

1.1 Pairwise comparisons for conditional selection workflow

Pairwise comparisons for conditional selection is a method that controls for the differences in sample size in a pairwise
comparison of the two mutually exclusive or co-occurring gene pairs. Given a highly abundant mutually exclusive
positive control gene pair (PC) and a gene pair with the gene of interest (GOI) with variable abundance, our method
corrects the frequency and the abundance for the highly abundant gene pair. This is done by bootstrapping the GOI
population and resampling the positive control to the same number of hits (abundance) and the same proportion in the
population (frequency) as the GOL.

The overall workflow of our pairwise comparisons for conditional selection is split into various steps. Data containing
abundances of two genes in a cohort, can be summarized using a contingency table. A Fisher’s exact test applied on
the summarized counts from the contingency table gives p-values for the mutual exclusivity of a gene pairs. Next, a
non-parametric test can compare the p-value distributions of two gene pairs to analyze how different their distributions
are. Two gene pairs can be downsampled to correct for bias by controlling for the abundance and frequency of the
positive control in the dataset. This requires calculating the subsample size of the bootstrap, and the number of
subsampling simulations. A step-by-step description of the workflow process is highlighted in our Github repository.

1.2 Calculating conditional selection in a gene pair

Cohort data containing counts of two genes was summarized in a 2x2 contingency table. The p-value for mutual
exclusivity between the two genes was obtained using the Fisher’s exact test. P-values were calculated for both the
positive control gene pair and the gene of interest gene pair (Fig 1A). Subsequently, the Kolmogorov-Smirnov test
(KS test), was used to calculate the pairwise difference in mutual exclusivity between two gene pairs by comparing
their p-value distributions. KS test is a two sample, non-parametric test of the equality of continuous, one dimensional
probability distributions. These pairwise analyses were also repeated using the Wilcoxon signed rank test, another two
sample non-parametric test, to yield mostly similar results.

1.3 Abundance and frequency resampling in gene pairs

Pairwise comparisons for conditional selection corrects for the abundance and the frequency of the abundant gene by
downsampling it to the abundance and frequency of the rare gene. The abundance of a gene is how many times it
appears in a cohort. The frequency of a gene of interest (GOI in Fig 1A), is the proportion of its hits of the gene of

interest to the size of the entire population (1).
abundancegor _ a+b

GOI frequency = . (1.1)
cohort size a+b+c+d

In (eq. 1), it can be seen that the abundance is directly proportional to the frequency if the genes are pulled from the

same cohort. Correcting for abundance corrects for frequency by default. Therefore, the positive control genes were

downsampled to the abundance of the GOI".

*It is sometimes impossible to simply downsample the positive control gene to the abundance of the GOI. If the
positive control gene is very prevalent in the population (a; and c; in Fig 1A), there may not be enough events that do
not have the positive control (c; and d; in Fig 1A) to achieve the low frequency of the GOI. In that case, we chose the
maximum possible subsample size of the positive control given that its frequency could not exceed the frequency of
the GOI:

PClCompliment ¢ PCZCompliment

—PC 1Complimen

, _ Pczcompllment}
1-frequencygor 1-frequencygor

(1.2)

Subsamplesize,,,, = min{abundanceg, ,

Once a subsample size was chosen, downsampling was repeated to yield multiple bootstrapped simulated datasets.
The number of downsampling simulations did not exceed the maximum possible combinations of sampling with
replacement of the abundance of the GOI:

. . _ (n+k-1\ _ (2xabundancegor —1
Simulations,,,, = ( X ) = ( abundance oy (1.3)

No more than 1,000 simulations were allowed for computational efficiency.

2. Generating simulated cohorts:
We simulated cohorts of gene pairs to test our pairwise comparisons method and to characterize its sensitivity. Each
simulated gene pair was varied by cohort size, odds ratio, and abundance of the GOI (eq. 2.1-2.3, illustrated in
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Supplementary Fig. 1A). Given these inputs, the counts of individual elements {a:}, {bi}, {c1}, {di}, {az}, {b2}, {c2},
{d>}, were calculated (elements illustrated in Fig. 1 A). The individual elements enabled the calculation of the unknown
abundances of the positive control genes (eq. 2.6-2.7). We assumed that both the gene pairs were pulled from cohort
of the same size (eq. 6), and that {c}={d} for both gene pairs (eq.2.5). We also assume that the positive control takes
the same abundance for both gene pairs (eq. 2.6). All count data were rounded to the nearest integer.

Cohort size = {a,b,c,d} = (2.1)
Odds ratio = 5= 2.2)
Abundance;o; = {ay, by} (2.3)
Cohort sizegenepair, = COhOTt SiZ€genepair, (2.4)
{c} ={d} (2.5)
Abundancepc, = {ay,c1} = {ay, ¢;} (2.6)
Abundancepc, = {a,, b,} 2.7

The following steps outline how the individual elements for gene pair 1 and 2 were calculated. For both the gene pair
1, given the assumption that ¢;=d; (eq. 2.5), eq. 5 can be substituted into (eq. 2.1) to give:

cohort size—abundancegoy

Cl = dl = 2 (2.8)
Next, substituting (2.2) into (2.3) helps solve for a;:
a, = incidencegy, * —genepairt (2.9)

1+0Rgenepair1
b1 can be calculated by using (2.3) as b= abundancecor-a;
Finally, abundance of the positive control 1 (eq. 2.6) can be calculated by adding a; and b;.
The abundance for gene pair 2 can be found in a similar manner. Given the assumption in (eq. 2.5), eq. 2.6 can be

substituted into eq. 2.1 to give:
Cohort size—abundancepc,

0, =dy = (2.10)

2
By substituting (2.2) into (2.6), the odds ratio for the gene pair 2 helps solve for a>
a, = incidencepg, * —genepairz_ (2.11)
1+0RGenepair2
b, can be calculated by using (2.6) as bo= abundancepc;-a:
Finally, abundance of the positive control 2 (eq. 2.7) can be calculated by adding a; and b;. These parameters were
summarized in two contingency tables (one for each gene pair), and used for downstream analyses.

3. Analysis of public data sets:

We downloaded our level 3 TCGA data from the Broad Institute TCGA GDAC Firehose
(http://gdac.broadinstitute.org/) 2016_01 28 run. In our original ALK expression filters (Fig 2), ALKA™ candidates
were identified as samples with an ALK expression level of RSEM > 100, > 500 total reads across all ALK exons,
and > 10-fold greater average expression in exons 20-29 compared to exons 1-19. When varying filters, ALKAT!
patients were identified as samples with an ALK expression level of 100<RSEM<500, number of ALK reads<1000,
and 10<Exon20-29/Exonl-19 ratio<100 (Fig 3).

4. In vitro transformation and drug treatment assays:

We used a standard Ba/F3 transformation protocol for lentiviral transduction. Lentiviral particles were made by
transfecting HEK293T cells with the plasmid of interest and with packaging plasmids (3™ generation Lentiviral system
from Addgene). Replication incompetent virus was collected using a BL2+ safety protocol. Upon virus collection,
Ba/F3 cells at 500k/mL in 4mLs were infected with an equal volume of virus. A minimum of three replicates were
used for each infection condition. Three days after infection, the Ba/F3s cells were spun out of virus and selected for
IL3 independence and/or puromycin resistance (0.5ug/mL Puromycin was used). An infection was determined to be
successful Ba/F3 cells for a given construct grew out for both IL3 independence and puromycin resistance. During
selection, cell growth was quantified by doing daily counts of live/dead cells on a daily basis. These live/dead analyses
were performed by supplementing 20uLs of cell culture with 0.4% trypan blue and subsequently counting live cells
using a hemocytometer. Alternatively, live dead cells were counted using flow cytometry analysis (BD Accuri C6
Sampler Plus).
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5. Lentiviral Particle Quantification:

For each infection, before transducing Ba/F3s with virus, 500uL of virus was set aside and frozen at -20C. The number
of lentiviral particles were quantified using the QuikTiter Lentivirus Quantitation Kit from Cell Biolabs (HIV P24
ELISA). All reported viral titers were within the linear range of the standard curve made using a positive control.
Transduction efficiency was verified by counting outgrowth rates using puromycin selections across multiple
infections.

6. Cell Lines:

Cell lines used were: SK-MEL-28 (ATCC HTB-72), G361 (ATCC CRL-1424), Ba/F3 (DSMZ ACC-300), HEK-293T
(ATCC CRL-1573). Prior to use, all cell lines were tested to be free of mycoplasma using a biochemical-based test
(Mycoalert plus, Lonza). Ba/F3 cell lines were cultures in RPMI while HEK-293T, Skmel-28 and G361 cell lines
were cultured in DMEM. Media was supplemented with a final concentration of 10% FBS, and 1%
Penicillin/Streptomycin/L-Glutamine. Wt Ba/F3 cell lines were grown in media supplemented with 10ng/mL IL3
(R&D systems). Stable transductions were verified for puromycin resistance by using kill curve concentrations
ranging from 0.25ug/mL to 2ug/mL.

Cells were split when they were 70-80% confluent. The subculture ratios used for all of our cell lines included splitting
ratios of 1:5 every 2-4 days when cells were 70-80% confluent.

Ba/F3w; cell lines were grown in 10ng/mL IL3. After transduction with an oncogene, cell lines were selected with
Puromycin to test transduction efficiency and subsequently with -IL3 to assess growth factor independence.

7. Plasmids:

The sequence of ALKA™ was obtained from the European Nucleotide Archive under the expression number
LN964494. The coding sequences, cloned into a pLVX-IRES-Puro backbone, was prepared by Genscript Gene
Services.

Note on reproducibility: All of the analyses in this paper were performed in R v3.5.2. GraphPad prism v8 was used
for dose response curve analysis. Amazon Web Services were used for the simulations in Fig. 1 and Supplementary
Fig. 1. Version controlled html Rmarkdown files that include descriptions of the methods for all figures may be
accessed via Github at here. This includes the code for the analysis of mutual exclusivity of gene pairs using pairwise
comparisons of conditional selection. The results of all statistical analyses mentioned in this figure are included in the
code. The workflow, outlined in our Github repository, requires an input dataset in the form of a table with columns
for data on a gene of interest, and two positive control genes. We have also made available a function, named
tcga skem data parser.Rmd, that can generate estimated counts for a gene of interest based on filters applied to
RSEM, RPKM, and count data. The entire workflow was tested for reproducibility on simulated datasets and on
expression data in LUAD for ALK and EGFR from the TCGA (40).
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Figure 1: Pairwise comparisons of conditional selection between a GOI gene pair and a positive control gene
pair in simulated cohorts. (A) Top: Pairwise comparisons of two gene pairs in which the GOI is rare relative to the
positive control genes. Bottom: downsampled pairwise comparisons two gene pairs matches the abundance and
frequency of the positive control genes to those of the rare GOI. (B) P-value distributions of a gene pair across
different subsample sizes of the gene of interest. (C) Pairwise comparisons of conditional selection on simulated
genes. The positive control gene pair is simulated at a constant, highly mutually exclusive OR of 0.01. Red asterisks
mark significantly lower p-value distributions for the positive control gene pair compared to the GOI gene pair

(Kolmogorov-Smirnov test).
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Figure 2: Performing pairwise comparisons of conditional selection on ALKA™ reveals a lack of mutual
exclusivity with transforming melanoma oncogenes BRAF and NRAS. (A) An illustration of the parameter
space of ALKA™ and the melanoma oncogenes BRAF and NRAS. The overall counts of the original data are: cohort
size of 340 patients; abundances of ALKAT BRAF, NRAS: 38, 175, and 95. BRAFNALKAT: 12, BRAFNNRAS:
25, NRASNALKAT: 8. (B) ALKA™ is not mutually exclusive with BRAF or NRAS. BRAF and NRAS are mutually
exclusive with each other (Fisher’s exact test). (C) Pairwise comparisons of the FET p-value distributions of
downsampled ALKA™ vs BRAF and NRAS vs BRAF reveals a significant difference in their mutual exclusivities
(red asterisks represent a KS test p-value <.05).
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Figure 3: Changing the RNA-Seq filter cutoffs does not identify mutual exclusivity in ALKAT. (A) Top:
Changing the filter cutoffs for RSEM (41), RPKM (42), and count data did not result in mutually exclusive regions.
Filters used were RSEM 10-1000, counts 100-1000, ex20-29/ex1-19 ratio 10-100. Only the minimum p-value
observed amongst the exon ratios is displayed. The midpoint of the p-value color gradient is 0.3. Regions that filtered
for <10 ALKAT patients were not included in the pairwise comparison analysis and are colored gray. Bottom: The
number of patients that are categorized as ALKA™ positive decreases as the filter stringency increases. (B) The kinase

domain of ALK (ex. 20-29) is significantly overexpressed in the majority of SKCM patients (y test).
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Figure 4: ALKATI is neither necessary nor sufficient in melanoma. (A) Time to growth factor independence, as
measured by number of cell doublings, between ALKA™-transduced Ba/F3 cells (green), EML4ALK-transduced
cells (orange), and vector-transduced cells (purple). Activating mutations in the kinase domain of ALK were
detected after sequencing the genomic DNA of all growth factor independent outgrowths (see Supp. Fig. 4). (B)
Proportion of infections that transformed for growth factor independence () test p-value for ALKAT vs EML4ALK:
2.2e-10, ALKAT vs Vector: .038). (C) Dose response of ALKAT and vector-transduced SKMEL-28 and G-361 cell
lines. ALKAT" does not improve the dose response of SKMEL-28 (p-val: 0.49) and G361 (p-val: 0.99) to
vemurafenib. P-value calculated using a one-sided paired t-test test between ALKA™ and vector. Error bars represent
standard deviation on 3 replicates of 3 different cell lines (9 total replicates). (D) No SKCM cell lines that have
ALKATL]ike expression levels confer sensitivity to an ALK-inhibitor, TAE684 (n=53). ALKATI-like expression
does not predict TAE-684 sensitivity (linear regression p-value: 0.51). An ALK-fusion from a SUP-M2 lymphoma
cell line is shown as an example of a sensitizing ALK alteration.

A B

F1174C, V, L

-
o

00+ 48/48

[3)]

60

30 18/48

1
[3)]

8/48

Number of Cell Doublings

(=]
GF independent infections %

0 5 10 ALKATI EML4ALK VECTOR

Days after Transduction

1.00- 100001 SUP-M2 ALK
Fusion Lymphoma
s
g 0.75 t =
o é X 100 ° ALKATI-like region
E [+ L )
2 0.501 = ° @ [
o 3 dee &
[ [ .
= § L, ]
= 0.251 1 » °
. L]
0.00 T T - T T -
0.1 1.0 10.0 1 100 10000
Vemurafenib Dose (uM) Ratio ALK Ex20-29 to Ex1-19
Cell Line IC50 (uM) Mutation
o 2 DoubleNegati
Skmel-28 Vector }~NS -@- G361 Vector }»N s ® 1 B?lllj\FeM :tg?\ t|ve
-@- Skmel-28 ALKATI -@- G361 ALKATI ® 6 NRAS Mutant
® 8

17


https://doi.org/10.1101/696294
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/696294; this version posted July 9, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supplementary 1: Pairwise comparisons of conditional

selection in simulated cohorts. (A) Schematic of the different A Varying a,+b,
parameters that were varied when generating simulated Abundant Rare
cohorts. (B). The minimum required abundance of the GOI
decreases as the simulated odds ratios between the two gene @
pairs increases. The positive control gene pair (PC1 vs PC2) is
simulated to be mutually exclusive (OR of 0.01) while the GOI
gene pair is simulated at a range of mutual exclusivities (ORs
between 0.01 and 1). Cohort is simulated at a size of the cohort
500 patients. Red asterisks mark significantly lower p-value Varying ad/bc

distributions for the PC gene pair compared to the GOI gene HighoR [~ LowOR
pair (Kolmogorov-Smirnov test).
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Supplementary figure 2: Propensity in expression towards kinase domain is ubiquitous in ALK. (A).
Expression profile of ALKA™! patients in LUAD showing an exon imbalance towards the kinase domain (ex20-29).
One of the patients matching ALKATI expression filters had an EML4ALK translocation. (B) Expression profile of
EGFR in LUAD showing a lack of exon imbalance towards EGFR’s kinase domain (ex20-24).
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Supplementary figure 3: Counts of lentiviral particles across multiple infection attempts. Virus samples were
collected prior to transducing Ba/F3s and SKML cell lines.
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Supplementary 4: Nucleotide sanger sequencing of a part of the kinase domain of ALK showing the F1174C,
V, and I transforming mutations. The three missense mutations represent the only mismatch in a conserved kinase
domain.

gaagccctgatcatcagcaaattcaaccaccagaacattgttcge
E AL I I SKJFNHZ OQNIUWVR R

template sequence LN864494 (ALK-Ati) F1174V

GAAGCCCTGATCATCAGCAAAGTCAACCACCAGAACATTGTTCGC
\%

aligned sequence BaF3_Transformation_ALKATL F1174C

GAAGCCCTGATCATCAGCAAATGCAACCACCAGAACATTGTTCGC
C

aligned sequence BaF3_Transformation_ALKATI_ F1174l

GAAGCCCTGATCATCAGCAAAATCAACCACCAGAACATTGTTCGC
I

aligned sequence BaF3_Transformation_ALKATI_3
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Supplementary Figure 5: Vemurafenib dose response of MEKqssp-transfected Skmel-28 melanoma cells. (A)
[lustration of some of the genes involved in the MAPK signaling pathway. SOS1 is upstream and MEK is downstream
of dimeric BRAF. Vemurafenib inhibits monomeric BRAFvesoe. (B) Vemurafenib dose response of Skmel-28
transiently transfected with SOS1Wt, SOS1E486K, and MEKQS56P. Transient transfection of MEK gsep and SOS1g4g6x
into BRAFvsooe-contianing Skmel-28 melanoma improves their dose response to vemurafenib (n=3 replicates, error
bars are SD, p-value: 0.031 for SOS1Wt and SOS1E846K and 0.004 for SOS1Wt and MEKQS56P, one-sided paired
t-test).
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Supplementary Table 1. Multiple attempts to transduce oncogenes into BRAFveoor melanoma lines fail.

*Note: Replicates represent different infection attempts (biological replicates). All technical replicates for a given infection behaved similarly.
**Replicate 3 not attempted for MEKgsep

Cell Line SKMEL28 G361 SKMEL28 | G361 SKMEL28 | G361 SKMEL28 G361 BAF3 | HEK293
Plasmid Vector Vector ALKAT! ALKAT EML4ALK | EML4ALK | MEKgqsep MEKqsep | EML4 | EML4AL
ALK K
Selection Puro Puro Puro Puro Puro Puro Puro Puro iL.3 Puro
Replicate 1* + + + + - - - - T T
Replicate 2* + + + + - - - - T T
Replicate 3" + + + + - - N/A™ N/A™ + +
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