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ABSTRACT

The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same
period a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of
persistence in declining populations. However, we have little theory to predict and generalize how persistence — by sufficiently
rapid adaptation — might be realized in this explicitly demographic scenario. Here we use Fisher’s geometric model with absolute
fitness to begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations
that adapt through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to
multiple as mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes
that themselves go extinct provide a ‘springboard’ to rescue genotypes. Comparing to a scenario where persistence is assured,
our approach allows us to quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is
composed of fewer loci of larger effect. We hope this work brings awareness to the impact of demography on the genetic basis
of adaptation.

KEYWORDS Antimicrobial drug resistance; Evolutionary escape; Fisher's geometric model; Genetic basis of adaptation; Mathematical theory

ur understanding of the genetic basis of adaptation is 3= 1995; Bell 2017), where persistence requires sufficiently fast adap-
O rapidly improving due to the now widespread use of ge- 3¢ tive evolution.
nomic sequencing (see examples in Bell 2009; Stapley et al. 2010;
Dettman et al. 2012; Schlotterer et al. 2015). A recurrent observa-
tion, especially in experimental evolution with asexual microbes,
is that the more novel the environment and the stronger the
selection pressure, the more likely it is that adaptation primarily
proceeds by fewer mutations of larger effect (i.e., that adaptation
is oligogenic sensu Bell 2009). An extreme case is the evolution
of drug resistance, which is often achieved by just one or two
mutations (e.g., Bataillon ef al. 2011; Pennings et al. 2014).
However, drugs, and other sufficiently novel environments,
will often induce not only strong selection but also population
decline. Such declines hinder both the production and mainte-
nance of adaptive genetic variation (Otto and Whitlock 1997),
thus impeding evolution and threatening extinction. Drug re-
sistance evolution is a particular instance of the more general
phenomenon of evolutionary rescue (Gomulkiewicz and Holt

3 Most theory on the genetics of adaptation (reviewed in Orr
s 2005) assumes constant population size and therefore does not
s capture the characteristic ‘race’ between adaptation and extinc-
ss tion that occurs during evolutionary rescue. Many models have
39 been created to describe this race (reviewed in Alexander et al.
s 2014) but so far largely focus on two extreme genetic bases, both
41 already introduced in Gomulkiewicz and Holt (1995): rescue
2 is either caused by minute changes in allele frequencies across
s many loci in sexuals (i.e., the infinitesimal model; Fisher 1918) or
4 by the substitution of a single large effect 'resistance” mutation
s (e.g., one locus, two allele models). We therefore largely lack
s a theoretical framework for the genetic basis of evolutionary
47 rescue that captures the arguably more realistic situation where
s an intermediate number of mutations are at play (but see excep-

tions below). The near absence of such a framework prevents
so  us from predicting the number of mutations that evolutionary
st rescue will take and the distribution of their effect sizes. The
Manuscript compiled: Friday 8% November, 2019 sz existence gf a more complete fran.nework cogld therefore Providg
"mmosmond@zoology.ubc.ca; Current add,ress: Center for Population Biology, s valuable 1r'fformat10n for those mvestlgatmg the genetlc. basis
University of California, Davis s« of drug resistance (e.g., the expected number and effect sizes of
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mutations) and would extend our understanding of the genetic
basis of adaptation to cases of non-equilibrial demography (i.e.,
rapid evolution and "eco-evo" dynamics).

Despite these gaps in the theory on the genetic basis of evolu-
tionary rescue, there is a wealth of data. For example, the genetic
basis of resistance to a variety of drugs is known in many species
of bacteria (reviewed in MacLean et al. 2010), fungi (reviewed
in Robbins et al. 2017), and viruses (reviewed in Yilmaz et al.
2016). This abundance of data reflects both the applied need
to prevent drug resistance and the relative ease of isolating the
genotypes that survive (hereafter "rescue genotypes"), e.g., in
a Luria-Delbriick fluctuation assay (reviewed in Bataillon and
Bailey 2014). Assaying fitness in the environment used to isolate
mutants (e.g., in the drug) then provides the distribution of fit-
ness effects of potential rescue genotypes. Additional data on
the genetic basis of drug resistance arise from the construction
of mutant libraries (e.g., Weinreich et al. 2006) and the sequenc-
ing of natural populations (e.g., Pennings et al. 2014). Together,
the data show that resistance often appears to arise by a single
mutation (e.g., MacLean and Buckling 2009; Lindsey et al. 2013;
Gerstein et al. 2012) but not always (e.g., Bataillon et al. 2011;
Pennings et al. 2014; Gerstein et al. 2015; Williams and Pennings
2019). The data also indicate that the fitness effect of rescue geno-
types is more often large than small, creating a hump-shaped
distribution of selection coefficients (e.g., Kassen and Bataillon
2006; MacLean and Buckling 2009; Gerstein et al. 2012; Lindsey
et al. 2013; Gerstein et al. 2015) that is similar in shape to that
proposed by Kimura (1983) (see Orr 1998, for more discussion)
but with a lower bound that is often much greater than zero.

Theory on evolutionary rescue (reviewed in Alexander ef al.
2014) has primarily focused on the probability of rescue rather
than its genetic basis. However, a few studies have varied the
potential genetic basis enough to make some inference about
how evolutionary rescue is likely to happen. For instance, in the
context of pathogen host-switching, Antia et al. (2003) numer-
ically explored the probability of rescue starting from a single
ancestral individual when k sequential mutations are required
for a positive growth rate, each mutation occurring from the
previous genotype with the same probability and all intermedi-
ate genotypes being selectively neutral. The authors found that
rescue became less likely as the number of intermediate muta-
tions increased, suggesting that rescue will generally proceed by
the fewest possible mutations. This framework was expanded
greatly by Iwasa et al. (2004a), who allowed for arbitrary muta-
tional networks (i.e., different mutation rates between any two
genotypes) and standing genetic variation in the ancestral popu-
lation. Assuming the probability of mutation between any two
genotypes is of the same order, they showed that genetic paths
with fewer mutational steps contributed more to the total proba-
bility of rescue, again suggesting rescue will occur by the fewest
possible mutations. Iwasa et al. (2004a) also found that multiple
simultaneous mutations (i.e., arising in the same meiosis) can
contribute more to rescue than paths that gain these same mu-
tations sequentially (i.e., over multiple generations) when the
growth rates of the intermediate mutations are small enough,
suggesting that rare large mutations can be the most likely path
to rescue when the population is very maladapted or there is a
fitness valley separating the wildtype and rescue genotype. This
point was also demonstrated by Alexander and Day (2010), who
emphasized that multiple simultaneous mutations become the
dominant path to rescue in the most challenging environments.
As a counterpoint, Uecker and Hermisson (2016) explored a
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greater range of fitness values in a two-locus two-allele model,
showing that, with standing genetic variation, rescue by sequen-
tial mutations at two loci (two mutational steps) can be more
likely than rescue by mutation at a single locus (one simulta-
neous mutational step), particularly when the wildtype is very
maladapted, where the single mutants can act as a buffer in
the face of environmental change. In summary, current theory
indicates that the genetic basis of rescue hinges on the chosen
set of genotypes, their fitnesses, and the mutation rates between
them. So far these choices have been in large part arbitrary or
chosen for mathematical convenience.

Here we follow the lead of Anciaux et al. (2018) in allowing
the genotypes that contribute to rescue, as well as their fitnesses
and the mutational distribution, to arise from an empirically-
justified fitness-landscape model (Tenaillon 2014). In particular,
we use Fisher’s geometric model to describe adaptation follow-
ing an abrupt environmental change that instigates population
decline. There are two key differences between this approach
and earlier models using Fisher’s geometric model (e.g., Orr
1998): here 1) the dynamics of each genotype depends on their
absolute fitness (instead of only on their relative fitness) and 2)
multiple mutations can segregate simultaneously (instead of as-
suming only sequential fixation), allowing multiple mutations to
fix — and in our case, rescue the population — together as a single
haplotype (i.e., stochastic tunnelling, Iwasa et al. 2004b). In this
non-equilibrium scenario, variation in absolute fitness, which
allows population size to vary, can create feedbacks between
demography and evolution, which could strongly impact the
genetic basis of adaptation relative to the constant population
size case. In contrast to Anciaux ef al. (2018), our focus here is
on the genetic basis of evolutionary rescue and we also explore
the possibility of rescue by mutant haplotypes containing more
than one mutation. In particular, we ask: (1) How many muta-
tional steps is evolutionary rescue likely to take? and (2) What
is the expected distribution of fitness effects of the surviving
genotypes and their component mutations?

We first introduce the modelling framework before summa-
rizing our main results. We then present the mathematical anal-
yses we have used to understand these results and end with a
discussion of our key findings.

Data availability

Code used to derive analytical and numerical results and pro-
duce figures (referred to here as File S1; Mathematica, ver-
sion 9.0; Wolfram Research Inc. 2012) and code used to create
individual-based simulation data (Python, version 3.5; Python
Software Foundation), as well as simulation data and freely
accessible versions of File S1 (CDF and PDF), are available at
https://github.com/mmosmond/GeneticBasisOfRescue.

Model

Fisher’s geometric model

We map genotype to phenotype to fitness using Fisher’s geo-
metric model, originally introduced by Fisher (1930, p. 38-41)
and reviewed by Tenaillon (2014). In this model each geno-
type is characterized by a point in n-dimensional phenotypic
space, Z. We ignore environmental effects, and thus the phe-
notype is the breeding value. At any given time there is a
phenotype, 0, that has maximum fitness and fitness declines
monotonically as phenotypes depart from 6. We assume that
n phenotypic axes can be chosen and scaled such that fitness
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is described by a multivariate Gaussian function with vari-
ance 1 in each dimension, no covariance, and height Wi,y
(which can always be done when considering genotypes close
enough to an non-degenerate optimum; Martin 2014). Thus
the fitness of phenotype Z is W(Z) = Wiy exp(—||Z —d]2/2),

where ||Z — 3] = " 1(z; — 0;)? is the Euclidean distance of
Z from the optimum, 0. Here we are interested in absolute fit-
ness; we take In[W(Z)] = m(Z) = myax — ||Z — 0]|>/2 to be the
continuous-time growth rate (m is for Malthusian fitness) of
phenotype Z. We ignore density- and frequency-dependence
in m(Z) for simplicity. The fitness effect, i.e., selection coeffi-
cient, of phenotype z’ relative to z in a continuous-time model
is exactly s = log[W(z')/W(z)] = m(z') — m(z) (Martin and
Lenormand 2015). This is approximately equal to the selection
coefficient in discrete time (W(z') /W (z) — 1) when selection is
weak (W(z') — W(z) << 1).

To make analytical progress we use the isotropic version of
Fisher’s geometric model, where mutations (in addition to se-
lection) are assumed to be uncorrelated across the scaled traits.
Universal pleiotropy is also assumed, so that each mutation af-
fects all scaled phenotypes. In particular we use the “classic”
form of Fisher’s geometric model (Harmand et al. 2017), where
the probability density function of a mutant phenotype is multi-
variate normal, centred on the current phenotype, with variance
A in each dimension and no covariance. Using a probability
density function of mutant phenotypes implies a continuum-of-
alleles (Kimura 1965), i.e., phenotype is continuous and each
mutation is unique. Mutations are assumed to be additive in
phenotype, which induces epistasis in fitness (as well as domi-
nance under diploid selection), as fitness is a non-linear function
of phenotype. We assume asexual reproduction, i.e., no recom-
bination, which is appropriate for many cases of antimicrobial
drug resistance and experimental evolution, while recognizing
the value of expanding this work to sexual populations.

An obvious and important extension would be to relax the
simplifying assumptions of isotropy and universal pleiotropy,
which we leave for future work. Note that mild anisotropy
yields the same bulk distribution of fitness effects as an isotropic
model with fewer dimensions (Martin and Lenormand 2006),
but this does not extend to the tails of the distribution. There-
fore, whether anisotropy can be reduced to isotropy with fewer
dimensions in the case of evolutionary rescue, where the tails
are essential, is unknown. In the Discussion we briefly explore
the effects of non-Gaussian distributions of mutant phenotypes.

Given this phenotype-to-fitness mapping and phenotypic
distribution of new mutations, the distribution of fitness effects
(and therefore growth rates) of new mutations can be derived ex-
actly. Let m be the growth rate of some particular focal genotype
and m’ the growth rate of a mutant immediately derived from it.
Then let s, = m;. — m be the selective effect of a mutant with
the optimum genotype and s = m' — m the selective effect of
the mutant with growth rate m’. The probability density func-
tion of the selective effects of new mutations, s, is then given by
equation 3 in Martin and Lenormand (2015). Converting fitness
effects to growth rate (m’ = s + m), the probability density func-
tion for mutant growth rate m’ from an ancestor with growth
rate m is (cf. equation 2 in Anciaux et al. 2018)

Fo'm) = 2 (z(mmif ), At m)) ;o

where f2 (x, c) is the probability density function over positive

282

283
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286

real numbers x of x2(c), a non-central chi-square deviate with
degrees of freedom and noncentrality ¢ > 0 (equation 26.4.25 in
Abramowitz and Stegun 1972).

Lifecycle

We are envisioning a scenario where Ny wildtype individuals,
each of which have phenotype Zj, experience an environmental
change, causing population decline, my = m(Zy) < 0. Each
generation, an individual with phenotype Z produces a Poisson
number of offspring, with mean In[m(Z)], and dies. This pro-
cess implicitly assumes no interaction between individuals, i.e.,
a branching process with density- and frequency-independent
growth and fitness and no clonal interference. Each offspring
mutates with probability U (we ignore the possibility of multi-
ple simultaneous mutations within a single genome), and muta-
tions are distributed as described above (see Fisher’s geometric
model).

Simulation procedure

We ran individual-based simulations of the above process to
compare with our numeric and analytic results. Populations
were considered rescued when there were > 1000 individuals
(Figures 1-3) or > 100 individuals (Figures 6-7, S1, and S3) with
positive growth rates (all other replicates went extinct). The
most common genotype at the time of rescue was considered the
rescue genotype, and the number of mutational steps to rescue
was set as the number of mutations in that genotype.

Probability of rescue

Let pg be the probability that a given wildtype individual is
"successful", i.e., has descendants that rescue the population.
The probability of rescue is then one minus the probability that
none of the initial wildtype individuals are successful,

P=1-(1-po)N =~ 1—exp(—Nopo), @

where the approximation assumes small py and large Ny. What
remains is to find py.

Summary of Results

We start with a heuristic explanation of our main results before
turning to more detailed derivations in the next section.

Rescue by multiple mutations

A characteristic pattern of evolutionary rescue is a "U"-shaped
population size trajectory (e.g., Orr and Unckless 2014). This is
the result of an exponentially-declining wildtype genotype being
replaced by an exponentially-increasing mutant genotype. On
a log scale this population size trajectory becomes "V"-shaped
(we denote it a “V-shaped log-trajectory’). On this scale, the pop-
ulation declines at a constant rate (producing a line with slope
mg < 0) until the growing mutant subpopulation becomes rela-
tively common, at which point the population begins growing
at a constant rate (a line with slope m; > 0). This characteristic
V-shaped log-trajectory is observed in many of our simulations
where evolutionary rescue occurs (Figure 1A). Alternatively,
when the wildtype declines faster and the mutation rate is larger
we sometimes see ‘U-shaped log-trajectories’ (e.g., the red and
blue replicates in Figure 2A). Here there are three phases instead
of two; the initial rate of decline (a line with slope mg < 0) is
first reduced (transitioning to a line with slope m; < 0) before
the population begins growing (a line with slope my > 0).

Genetic basis of evolutionary rescue 3
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Figure 1 Typical dynamics with a relatively slow wildtype
decline and a small mutation rate (mg = —0.1, U = 10~%).
(A) Population size trajectories on a log scale. Each line is a
unique replicate simulation (100 replicates). Replicates that
went extinct are grey, replicates that were rescued are in colour
(and are roughly V-shaped). (B) The number of individuals
with a given derived allele, again on a log scale, for the yellow
replicate in A. The number of individuals without any derived
alleles (wildtypes) is shown in grey, the rescue mutation is
shown in yellow, and all other mutations are shown in black.
Other parameters: n = 4, A = 0.005, 11,4 = 0.5.

As expected, V-shaped log-trajectories are the result of a sin-
gle mutation creating a genotype with a positive growth rate
that escapes loss when rare and rescues the population (Figure
1B), i.e., 1-step rescue. U-shaped log-trajectories, on the other
hand, occur when a single mutation creates a genotype with a
negative (or potentially very small positive) growth rate, itself
doomed to extinction, which out-persists the wildtype and gives
rise to a double mutant genotype that rescues the population
(Figure 2B), i.e., 2-step rescue. These two types of rescue com-
prise the overwhelming majority of rescue events observed in
our simulations, across a wide range of wildtype decline rates
(e.g., Figure 3).

In the text, we focus on low to moderate mutation rates af-
fecting growth rate. With sufficiently high mutation rates res-
cue by 3 or more mutations comes to dominate (Figure S1). It
has recently been suggested that when the mutation rate, U, is
substantially less than a critical value, U = An?/4, we are in
a “strong selection, weak mutation" regime where selection is
strong enough relative to mutation that essentially all mutations
arise on a wildtype background (Martin and Roques 2016), con-
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sistent with the House of Cards approximation (Turelli 1984,
1985). Thus in this regime rescue tends to occur by a single
mutation of large effect (Anciaux et al. 2018). In the other ex-
treme, when U >> Uc, we are in a “weak selection, strong
mutation” regime where selection is weak enough relative to
mutation that many cosegregating mutations are present within
each genome, creating a multivariate normal phenotypic distri-
bution (Martin and Roques 2016), consistent with the Gaussian
approximation (Kimura 1965; Lande 1980). Thus in this regime
rescue tends to occur by many mutations of small effect (An-
ciaux et al. 2019). As shown in Figure 3 (where U = U/10)
and Figure S1 (where Uc = 0.02), rescue by a small number
of mutations (but more than one) can become commonplace in
the transition zone (where U is neither much smaller or much
larger than U¢), where there are often a considerable number of
cosegregating mutations (e.g., Figure 2B, where U = U /2).

The probability of k-step rescue

Approximations for the probability of 1-step rescue under the
strong selection, weak mutation regime were derived by Anci-
aux et al. (2018). Here we extend this study by exploring the
contribution of k-step rescue, deriving approximations for the
probability of such events, as well as dissecting the genetic basis
of both 1- and 2-step rescue in terms of the distribution of fitness
effects of rescue genotypes and their component mutations.
Although requiring a sufficiently beneficial mutation to arise
on a rare mutant genotype doomed to extinction, multi-step
evolutionary rescue can be the dominant form of rescue when
the wildtype is sufficiently maladapted (Figures 3 and S1). In-
deed, on this fitness landscape, the probability of producing
a rescue genotype in one mutational step mutant drops very
sharply with maladaptation (Anciaux et al. 2018); the probabil-
ity of multi-step rescue declines more slowly as mutants with
intermediate growth rates can be a “springboard" — albeit not
always a very bouncy one — from which rescue mutants are pro-
duced. These intermediates contribute more as mutation rates
and the decline rate of the wildtype increase (Figures 3 and S1),
the former because double mutants become more likely and the
latter because the springboard becomes more necessary. With a
large enough number of wildtype individuals or a high enough
mutation rate (Figure S1), multi-step rescue can not only be more
likely than 1-step, but also very likely in an absolute sense.

Classifying 2-step rescue regimes

2-step rescue can occur through first-step mutants with a wide
range of growth rates. As shown below (see Approximating
the probability of 2-step rescue), these first-step mutants can
be divided into three regimes: "sufficiently subcritical”, "suffi-
ciently critical", and "sufficiently supercritical” (we will often
drop "sufficiently" for brevity; Figure 4). Sufficiently critical first-
step mutants are defined by having growth rates close enough
to zero that the most likely way for such a mutation to lead to
2-step rescue is for it to persist for such an unusually long period
of time, and accordingly grow to such an unusually large sub-
population size, that it will almost certainly produce successful
double mutants. Sufficiently subcritical first-step mutants are
then defined by having growth rates that are negative enough
to almost certainly prevent such long persistence times. Instead,
these mutations tend to persist for an expected number of gener-
ations, proportional to the inverse of their growth rate (1/|m]|),
while maintaining relatively small subpopulation sizes (on the
order of one individual per generation). Mutations conferring
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Figure 2 Typical dynamics with a relatively fast wildtype de-
cline and a large mutation rate (my = —0.3, U = 10~2). (A)
Population size trajectories on a log scale. Each line is a unique
replicate simulation (500 replicates). Replicates that went ex-
tinct are grey, replicates that were rescued are in colour. Note
that the blue and red replicates are cases of 2-step rescue (and
roughly U-shaped), while the yellow replicate is 1-step rescue
(and therefore V-shaped). (B) The number of individuals with
a given derived allele, again on a log scale, for the red replicate
in A. The number of individuals without any derived alleles
(wildtypes) is shown in grey, the rescue mutations are shown
in red, and all other mutations in black. Here a single mu-
tant with growth rate less than zero arises early and outlives
the wildtype (solid red). A second mutation then arises on
that background (dashed red), making a double mutant with
a growth rate greater than zero that rescues the population.
Other parameters: n = 4, A = 0.005, 1,42 = 0.5.

a positive growth rate can also go extinct, and thus can also
act as springboards to rescue. Conditioned on extinction, su-
percritical mutations behave like subcritical mutations with a
growth rate of the same absolute value (Maruyama and Kimura
1974). Sufficiently supercritical first-step mutants are therefore
defined analogously to subcritical first-step mutants, having pos-
itive (rather than negative) growth rates that are large enough
to prevent sufficiently long persistence times once conditioned
on extinction. Despite having similar extinction trajectories as
subcritical mutations, ‘doomed” supercritical mutations arise
less frequently by mutation from the wildtype but mutate to res-
cue genotypes at a higher rate. Overall, they too can contribute
substantially to rescue. Note that supercritical 2-step rescue is
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not 1-step rescue with subsequent adaptation as we condition
on the first-step mutation going extinct in the absence of the
second mutation. However, empirically it will be impossible
to tell if the first-step mutation was indeed doomed to extinc-
tion if it is found to have a positive growth rate in the selective
environment.

The relative contribution of each regime changes with both
the initial degree of maladaptation and the mutation rate (Fig-
ures 5 and S2). When the wildtype is very maladapted (relative
to mutational variance), most 2-step rescue events occur through
subcritical first-step mutants (Figure 5A), which arise at a higher
rate than critical or supercritical mutants and yet persist longer
than the wildtype. When the wildtype is less maladapted, how-
ever, critical and supercritical mutations become increasingly
likely to arise and contribute to 2-step rescue, both due to their
closer proximity to the wildtype in phenotypic space as well
as the slower decline of the wildtype increasing the cumulative
number of mutations that occur. The mutation rate also plays
an interesting role in determining the relative contributions of
each regime (Figures 5B and S2). When mutations are rare, only
first-step mutations that are very nearly neutral (m ~ 0) will
persist long enough to give rise to a 2-step rescue mutation. As
the mutation rate increases, however, the range of first-step mu-
tant growth rates that can persist long enough to lead to 2-step
rescue widens because fewer individuals carrying the first-step
mutation are needed before a successful double mutant arises.

The distribution of fitness effects among rescue mutations

Mutants causing 1-step rescue have growth rates that cluster
around small positive values (m 2 0; blue curves in Figure 6).
Consequently, the distribution of fitness effects (DFE) among
these rescue mutants is shifted to the right relative to mutations
that establish in a population of constant size (compare solid
blue and gray curves in Figure 6), with a DFE beginning at
s =m —mg > —mg > 0 rather than s = 0 (Kimura 1983). As a
result of this increased threshold, the 1-step rescue DFE has a
smaller variance than both the DFE of random mutations and
the DFE of mutations that establish in a constant population
(compare blue and gray curves in Figure 6). Further, while the
variance in the DFE of random mutations and of those that
establish in a population of constant size increases slightly with
initial maladaptation (due to the curvature of the phenotype-to-
fitness function), the variance in the 1-step rescue DFE decreases
substantially (compare panels in Figure 6), as rescue becomes
restricted to a rapidly decreasing proportion of the available
mutants.

The DFE of genotypes that cause 2-step rescue (the combined
effect of two mutations) is also clustered at small positive growth
rates, but it has a variance that is less affected by the rate of wild-
type decline (red curves in Figure 6). This is because double
mutant rescue genotypes are created via first-step mutant geno-
types that have larger growth rates than the wildtype (i.e., are
closer to the optimum), allowing them to create double mutants
with a larger range of positive growth rates.

Finally, we can also look at the distribution of growth rates
among first-step mutations that lead to 2-step rescue, i.e., ‘spring-
board mutants” (Figures 7 and S2). Here there are two main
factors to consider: 1) the probability that a mutation with a
given growth rate arises on the wildtype background but does
not by itself rescue the population and 2) the probability that
such a mutation persists long enough for a sufficiently beneficial
second mutation to arise on that same background and together

Genetic basis of evolutionary rescue 5
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rescue the population. Subcritical mutations conferring growth
rates closer to zero persist longer but are less likely to arise from
the wildtype, creating a trade-off between mutational input and
the probability of rescue that can lead to a wide distribution
of contributing subcritical growth rates (blue shading in Fig-
ure 7). In contrast, supercritical mutations with growth rates
nearer to zero are more likely arise by mutation, to go extinct in
the absence of further mutation, and to persist for longer once
conditioned on extinction, together creating a relatively narrow
distribution of contributing supercritical growth rates (yellow
shading in Figure 7). As explained above, increasing the rate of
wildtype decline (or decreasing the rate of mutation) increases
the contribution of subcritical first-step mutants and the impor-
tance of mutational input, lowering the mode and increasing the
variance of the first-step DFE (compare panels in Figure 7).

Note that, given 2-step rescue, the growth rate of both the
first-step and second-step mutation may be negative when con-
sidered by themselves in the wildtype background. This poten-
tially obscures empirical detection of the individual mutations
involved in evolutionary rescue.

Mathematical Analysis

The probability of k-step rescue

Generic expressions for the probability of 1- and 2-step rescue
were given by Martin et al. (2013), using a diffusion approxima-
tion of the underlying demographics. The key result that we
will use is the probability that a single copy of a genotype with
growth rate m, itself fated for extinction but which produces
rescue mutants at rate A(m), rescues the population (equation
S1.5 in Martin et al. 2013). With our lifecycle this is (c.f., equation
A.3 in Iwasa et al. 2004a)

p(m,A(m)) =1—exp {|m (1— 1+ 2/’\11(;11)>} .

We can therefore use py = p(mg, A(my)) as the probability that a
wildtype individual has descendants that rescue the population
and what remains in calculating the total probability of rescue
(Equation 2) is A(myg). We break this down by letting A;(m) be
the rate at which rescue genotypes with i mutations are created;
the total probability of rescue is then given by Equation 2 with
po = p(mo, 324 Ai(my)).

In 1-step rescue, A (my) is just the rate of production of res-
cue mutants directly from a wildtype genotype. This is the
probability that a wildtype gives rise to a mutant with growth
rate m (given by Uf (m|mg)) times the probability that a geno-
type with growth rate m establishes. Again approximating our
discrete time process with a diffusion process, the probability
that a lineage with growth rate m << 1 establishes, ignoring
further mutation, is (e.g., Martin et al. 2013)

®)

m<0
m>0"

0
m) ~ 4
Pest (m) {1 —exp(—2m) )
This reduces to the 2(s + my) result in Otto and Whitlock (1997)
when m = s+ mjg is small, which further reduces to 2s in a
population of constant size, where m = 0 (Haldane 1927). Using
this, the rate of 1-step rescue is

Aa(mo) = U [ (o) pes () m )
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492

493

494

495

496

Symbol Meaning
number of (scaled) phenotypic dimensions

A variance in mutant phenotypes along each di-
mension

Mmax maximum growth rate

f(m'|m) distribution of growth rates among mutants
from a genotype with growth rate m (eq. 1)

u per genome mutation probability

No initial number of wildtype individuals

my wildtype growth rate

Po probability a wildtype individual has descen-
dants that rescue the population

P probability of rescue (eq. 2)

p(m,A(m)) probability a genotype with growth rate m, it-
self fated for extinction, has descendants that
rescue the population (eq. 3)

Pest () probability a genotype with growth rate m es-
tablishes, i.e., rescues the population (eq. 4)

A(m) probability that an individual with growth rate
m produces a mutant that has descendants that
rescue the population

Aj(m) probability that an individual with growth rate
m produces a mutant that has descendants with
i — 1 additional mutations that rescue the pop-
ulation

Ab(m) probability that an individual with growth rate

m produces sufficiently subcritical (i = 7 — "),
critical (i = 0), or supercritical (i = 7 + ) first-
step mutants that eventually lead to 2-step res-
cue (eq. 8)

P 2(1— /1 —m/mpgayx)

IPO 2(1 — \/1 — mo/mmgx)
Pmax Miax /A
® Pmuxlp(z)/4

Table 1 Frequently used notation.

Taking the first order approximation of p(mg, A1(mg)) with
Aq(mp)/m} small gives the probability of 1-step rescue (equa-
tion 5 of Anciaux et al. 2018), which effectively assumes deter-
ministic wildtype decline. For completeness we rederive their
closed-form approximation in File S1 (and give the results in the
Appendix, see Approximating the probability of 1-step rescue).

The probability of 2-step rescue is only slightly more compli-
cated. Here Ap(myp) is the probability that a mutation arising on
the wildtype background creates a genotype that is also fated
for extinction but persists long enough for a second mutation
to arise on this mutant background, creating a double mutant
genotype that rescues the population. We therefore have
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Aa(mo) = U [ Fmlmo) 1= pes ()] plom, A ) lm
(6)

Following this logic, we can retrieve the probability of k-step
rescue, for arbitrary k > 2, using the recursion

f(m|mg) [L — pest(m)]

mo U/

@)
p(m, Ag_q(m))dm,
with the initial condition given by Equation 5.
51
40.1
(0]
>
10.01 @
g
G
o 40.001 >
— 1-step 3
D 110% ®
— 2-step 8
—_— I ~ 5
total — 3-step 1108 o
—_— 4 step 1106
-0.4 -0.3 -0.2 —O 1 0.0

Wildtype growth rate

Figure 3 The probability of evolutionary rescue as a function
of initial maladaptation. Shown are the probabilities of 1-, 2-,
3-, and 4-step rescue (using Equations 2-7), as well as the prob-
ability of rescue by up to 4 mutational steps ("total", using
A(my) = Z;l:l A;(myg)). Circles are individual-based simula-
tion results (ranging from 10° to 10° replicates per wildtype
growth rate). Open circles denote the fraction of simulations
where the rescue genotype (see Simulation procedure) had a
given number of mutations and closed circles are the sum of
these fractions. Parameters: Ny = 10, U = 2 x 1073, n = 4,
A = 0.005, My = 0.5.

Approximating the probability of 2-step rescue

The probability of 2-step rescue is given by Equation 2 with
po = p(mg, Ax(mp)) (Equations 3-6). We next develop some
intuition by approximating this for different classes of single
mutants.

First, note that when the growth rate of a first-step mutation
is close enough to zero such that m? << Aq(m), we can ap-
proximate the probability that such a genotype leads to rescue
before itself going extinct, p(m, Aj(m)), using a Taylor series,
as \/2A1(m) (c.f. equation A.4b in Iwasa et al. 2004a, see also
File S1). We can also derive this result heuristically by consid-
ering the probability that a lineage will persist long enough
that it will incur a secondary rescue mutation. As shown in the
Appendix (see Mutant lineage dynamics), while t < 1/|m| a
mutant lineage with growth rate m that is destined for extinction
persists for t generations with probability ~ 2/t (Equation 21)
and in generation ¢ since it has arisen has ~ t/2 individuals
(Equation 22). Thus, while T < 1/|m| a mutant lineage that
persists for T generations will have produced a cumulative num-
ber ~ T?/4 individuals. Such lineages will then lead to 2-step
rescue with probability ~ A1 (m)T?/4 until this approaches 1,
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near T = 2//A(m). Since the probability of rescue increases
like T2 while the probability of persisting to time T declines only
like 1/ T, most rescue events will be the result of rare long-lived
single mutant genotypes. Considering only the most long-lived
genotypes, the probability that a first-step mutation leads to
rescue is then the probability that it survives long enough to
almost surely rescue, i.e., for T ~ 2/,/A1(m) generations. Since
the probability of such a long-lived lineage is 2/T ~ \/A1(m),
this heuristic result agrees with our Taylor series approximation
of Equation 5. Thus, for first-step mutants with growth rates
satisfying 2/ /A1 (m) < 1/|m|, implying m?> << Aq(m), which
occur with probability ~ /A1 (m), persistence is long enough
to almost certainly ensure rescue. This same reasoning has been
used to explain why the probability that a neutral mutation seg-
regates long enough to produce a second mutation is ~ /U in a
population of constant size (Weissman et al. 2009).

At the other extreme, when the growth rate of a first-step
mutation is far enough from zero such that m? >> A;(m), we
can approximate p(m, Aq(m)), again using a Taylor series, with
A1(m)/|m| (c.f. equation A.4c in Iwasa et al. 2004a, see also File
S1). Conditioned on extinction such genotypes cannot persist
long enough to almost surely lead to 2-step rescue. Instead, we
expect such mutations to persist for at most ~ 1/|m| genera-
tions (Equation 21) with a lineage size of ~ 1 individual per
generation (Equation 22), and thus produce a cumulative total
of ~ 1/|m| individuals. The probability of 2-step rescue from
such a first-step mutation is therefore A1 (m)/|m|, and again this
heuristic argument matches our Taylor series approach. This
same reasoning explains why a rare mutant genotype with selec-
tion coefficient |s| >> 0 in a constant population size model is
expected to have a cumulative number of ~ 1/|s| descendants,
given it eventually goes extinct (Weissman et al. 2009).

The transitions between these two regimes occur when
Ai(m)/|m| = /2A1(m), ie., when |m| = /A{(m)/2. We
call single mutants with growth rates m < —y/Aq(m)/2 "suf-
ficiently subcritical”, those with |m| < /A1 (m)/2 "sufficiently
critical”, and those with m > /A (m)/2 "sufficiently supercrit-
ical". Given that U and thus Aj(m) will generally be small, m
will also be small at these transition points, meaning we can
approximate the transition points as m* = y/A1(0)/2 and —m*.
We then have an approximation for the rate of 2-step rescue,

Az(mo) = Aé”(mo) + A (mo) + ALY (mo)

2 mo U/

AP o) =t [ ) (1~ sy ()] /201 ()

f(m|mg)Ay(m)/|m|dm

Minax
A5 (mo) = U [ plomlmo) [1 = pesa ()] Aa () |l

. ®)
where Agl) (my) is the rate of 2-step rescue through sufficiently
subcritical first-step mutants (i = ” — "), sufficiently critical
first-step mutants (i = 0), or sufficiently supercritical first-step
mutants (i = ” +”). A schematic depicting the 1- and 2-step
genetic paths to rescue is given in Figure 4.

Closed-form approximation for critical 2-step rescue When U
is small m* is also small, allowing us to use m = 0 within the

(0)

integrand of A5’ (), which spans a range, [—m*, m*], of width

* = /2A4(0), giving

Genetic basis of evolutionary rescue 7
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Figure 4 1- and 2-step genetic paths to evolutionary rescue.
Here we show ann = 2 dimensional phenotypic land-
scape. Continuous-time (Malthusian) growth rate (1) declines
quadratically from the centre, becoming negative outside the
thick black line. The grey zone indicates where growth rates
are “sufficiently critical” (see text for details). Blue circles show
wildtype phenotypes, red circles show intermediate first-step
mutations, and yellow circles show the phenotypes of rescue
genotypes.

AL (mg) ~ UF(0]mg)1/2A1(0) 2m*
= 2Uf(0[mg)A1(0).

)

We can then approximate Aq(m) with A (m) (Equation 19) and
take m — 0 (Equation 20), giving a closed form approximation
for the rate of 2-step rescue through critical single mutants in
Fisher’s geometric model,

AL (mg) ~ 4U2F(0[mo) /Mmar A/ 7. (10)
This well approximates numerical integration of Aé()) (mg) (Equa-

tion 8; see Figure 5 and File S1) . In general, it will perform better
when the critical zone, and thus U+/m;.¢ A, becomes smaller.

To get a better understanding of how the rate of 2-step crit-
ical rescue depends on the underlying parameters of Fisher’s
geometric model, we approximate f(m|mg), assuming that the
distance from the wildtype to the optimal phenotype is large
relative to the distribution of mutations (i.e., pmax = Mpax/A
is large), and convert this to a distribution over ¢ = 2(1 —
V1 —m/my,yx), a convenient rescaling (for details see File S1
and Anciaux et al. 2018). Evaluating this at m = 0 gives

2
A5 (mo) & UP(1 = 0/2) %

where g = 2(1 — /1 — my/Mpax) < 0and & = pmaxtpé/él.

Closed-form approximations for non-critical 2-step rescue We
can also approximate Aq(m) in Aé_) (mg) and Agﬂ (mg) with
A1(m) (Equation 19), leaving us with just one integral over

(11)
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the growth rates of the first-step mutations. We then replace
f(m|my) with its approximate distribution over ¢ as above.

In the case of subcritical rescue we can then make two con-
trasting approximations (see File S1 for details). First, when
the ¢ (and thus m) that contribute most are close enough to
zero (meaning maladaptation is not too large relative to muta-
tional variance) and we ignore mutations that are less fit than the
wildtype, we find the rate of subcritical 2-step rescue is roughly

(1—yo/2)'" efulog(llfo/ll’i)

a5 o) ~ uP oy
where ¢* = 2(1 — /T + % /tmay) < 0 and m* = 1/A1(0)/2

(Equation 20). Second, when the mutational variance, A, is very

small relative to maladaptation, implying that mutants far from

m = 0 substantially contribute, we find the rate of subcritical
(1—yo/2)' "

2-step rescue to be nearly
1 1/2
- . 1
1= yo/4 <e (a/2)37r) o

These two approximations do well compared with numerical in-

Ay (mo) ~ 12

tegration of A;f) (mg) (Equation 8; see Figure 5 and File S1). As
expected, we find that Equation 13 does better under fast wild-
type decline while Equation 12 does better when the wildtype is
declining more slowly.

For supercritical 2-step rescue, only first-step mutants with
growth rates near m* will contribute (larger m will rescue them-
selves and are also less likely to arise by mutation), and so we
can capture the entire distribution with a small m approximation
(following the same approach that led to Equation 12). As shown
in File S1, this approximation works well for sufficiently small
first-step mutant growth rates, < \/2/pmax, beyond which the
rate of 2-step rescue through such first-step mutants falls off very
quickly due to a lack of mutational input. Thus, considering
only supercritical single mutants with scaled growth rate less

than \/2/pmax, our approximation is

(1—gpo/2)' " = log (Pmax/97)

1-— IPO /4 7T !
with 9% = 2(1 — V1 —m*/myay) and Prmax = /2/Omax-
This approximation tends to provide a slight overestimate of
Agﬂ (mp) (Equation 8; see Figure 5 and File S1).

A (mg) ~ U2 (14)

Comparing 2-step regimes These rough but simple closed-form
approximations (Equations 11-14) show that, while the contri-
bution of critical mutants to 2-step rescue scales with U2, the
contribution of non-critical single mutants scales at a rate less
than U? (Figure 5B) due to a decrease in ¢* (decreasing the
range of subcritical mutants) and an increase in 1’} (decreasing
the range of supercritical mutants) with U. This difference in
scaling with U is stronger when the wildtype is not very mal-
adapted relative to the mutational variance, i.e., when Equation
12 is the better approximation for subcritical rescue. The approx-
imations also show that when initial maladaptation is small, the
ratio of supercritical to subcritical contributions (Equation 12
divided by 14) primarily depends on the range of growth rates
included in each regime, while with larger initial maladaptation
this ratio (Equation 13 divided by 14) begins to depend more
strongly on initial maladaptation and mutational variance («).
The effect of maladaptation and mutation rate on the relative
contributions of each regime is shown in Figure 5.
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Figure 5 The relative contribution of sufficiently subcritical,
critical, and supercritical single mutants to 2-step rescue. The
curves are drawn using Equations 10-14 (Equation 12 is used
for mg < 0.2 while Equation 13 is used for my > 0.2). The dots
are numerical evaluations of Equation 8. Parameters: n = 4,
A = 0.005, 0 = 0.5, (A) U = 1073, (B) mg = —0.1.

The distribution of growth rates among rescue genotypes

We next explore the distribution of growth rates among rescue
genotypes, i.e., the distribution of growth rates that we expect
to observe among the survivors across many replicates.

We begin with 1-step rescue. The rate of 1-step rescue by
genotypes with growth rate m is simply U f (m|mg) pest (m). Di-
viding this by the rate of 1-step rescue through any m (Equation
5) gives the distribution of growth rates among the survivors

Uf(m|mo)pest(m)

Aq(mg) ’ 15

81(m) =
where the mutation rate, U, cancels out. This distribution is
shown in blue in Figure 6. The distribution has a mode at small
but positive m as a result of two conflicting processes: smaller
growth rates are more likely to arise from a declining wildtype
but larger growth rates are more likely to establish given they
arise. As the rate of wildtype decline increases, the former pro-
cess exerts more influence, causing the mode to move towards
zero and reducing the variance.

We can also give a simple, nearly closed-form approximation
here using the same approach taken to reach Equation 19. On the
1 scale, the distribution of effects among 1-step rescue mutations
is

666
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exp() /@
exp(#)/7aErfc(v/a) — 1o

implying the ¢ are distributed like a normal truncated below
¢ = 0 and weighted by . This often provides a very good
approximation (see dashed blue curves in Figure 6).

In 2-step rescue, the rate of rescue by double mutants with
growth rate my is given by Equation 6 with Aj(m) replaced
by Uf(my|m)pest(my). Normalizing gives the distribution of
growth rates among the double mutant genotypes that rescue
the population

gl(IP) = [ gfpmnx(lpflpﬂ)z/‘lq}, (16)

N A(my)
gam2) Jo'm A(ma)dmsy

Ama) = [ flonlmo) [1~ pess(m)] i

p(m, Uf (ma|m)pest (mz) )dm.

This distribution, g (m), is shown in red in Figure 6. Because the
first-step mutants contributing to 2-step rescue tend to be nearer
the optimum than the wildtype, this allows them to produce
double mutant rescue genotypes with higher growth rates than
in 1-step rescue (as seen by comparing the mode between blue
and red curves in Figure 6). The fact that these first-step mutants
are closer to the optimum also allows for a greater variance in the
growth rates of rescue genotypes than in 1-step rescue. Thus the
2-step distribution maintains a more similar mode and variance
across wildtype decline rates than the 1-step distribution. Note
that because g (m;,) depends on U the buffering effect of first-
step mutants depends on the mutation rate (see The distribution
of growth rates among rescue intermediates below for more
discussion).

The distribution of growth rates among rescue intermediates

Finally, our analyses above readily allow us to explore the distri-
bution of first-step mutant growth rates that contribute to 2-step
rescue. Analogously to Equation 15, we drop the integral in
Ay (mp) (Equation 6) and normalize, giving

Uf (m|mg) [1 — pest(m)] p(m, Ay (m))
Aa(mo) ’

where the first U cancels but the U within Aj(m) does not. This
distribution is shown in black in Figure 7. At slow wildtype
decline rates the overwhelming majority of 2-step rescue events
arise from first-step mutants with growth rates near 0. As in-
dicated by Equation 8, the contribution of first-step mutants
with growth rate m declines as ~ 1/|m| as m departs from zero,
due to shorter persistence times given eventual extinction. As
wildtype growth rate declines, the relative importance of muta-
tional input, f(m|mg), grows, causing the distribution to flatten
and first-step mutants with substantially negative growth rates
begin to contribute (compare panels in Figure 7; see also Figure
5A). Decreasing the mutation rate disproportionately increases
the contribution of first-step mutants with growth rates near
zero (while simultaneously shrinking the range of growth rates
that are sufficiently critical; Figure 5B) making the distribution
of first-step mutant growth rates contributing to 2-step rescue
more sharply peaked around m = 0 (Figure S2). Correspond-
ingly, with a higher mutation rate a greater proportion of the
contributing single mutants have substantially negative growth
rates.

h(m) = (18)

Genetic basis of evolutionary rescue 9
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Figure 6 The distribution of growth rates among rescue geno-
types under 1-step (blue; Equation 15 solid and 16 dashed)
and 2-step (red; Equation 17) rescue for three different levels of
initial maladaptation. For comparison, the distribution of ran-
dom mutations (dashed; Equation 1) and the distribution of
beneficial mutations that establish in a population of constant
size (solid grey; Equation 1 times Equation 4 and normalized)
are shown. Intervals (horizontal lines) indicate the size of the
most common fitness effect (s = my — m) in a population of con-
stant size (grey) and in 1-step rescue (blue). The histograms
show the distribution of growth rates among rescue genotypes
observed across (A) 10%, (B) 10%, and (C) 10° simulated repli-
cates. Other parameters: Ny = 104, U =2x1073,n = 4,

A = 0.005, myay = 0.5.
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Figure 7 The distribution of growth rates among first-step
mutations that lead to 2-step rescue (black; Equation 18) for
three different levels of initial maladaptation. Shading repre-
sents our sufficiently subcritical approximation (blue; replac-
ing p(m, Aq(m)) with Aq(m)/|m| in the numerator of Equa-
tion 18), our sufficiently critical approximation (red; using
Uf(0|mg)+/2A1(0) as the numerator in Equation 18), and our
sufficiently supercritical approximation (yellow; replacing
p(m, Aq(m)) with Aq(m)/|m| in the numerator of Equation
18). The histograms show the distribution of growth rates
among first-step mutations in rescue genotypes with 2 mu-
tations observed across (A, B) 10° or (C) 10° simulated repli-
cates. We hypothesize that the overabundance of supercriticals
(especially in panel A) is likely due to us sampling only the
most common rescue genotype in each replicate, which is not
necessarily the first genotype that rescues. See Figure 6 for
additional details.
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Discussion

Here we have explored the probability and genetic basis of evo-
lutionary rescue by multiple mutations on a simple fitness land-
scape. We find that rescue by multiple mutations can be the
most likely path to persistence under high mutation rates or
when the population is initially very maladapted. Under these
scenarios, intermediate genotypes that are declining less quickly
provide a ‘springboard’ from which rescue genotypes emerge. In
2-step rescue these springboard single mutants come from one
of three regimes: those that have growth rates near enough to
zero (“sufficiently critical") that rescue is most likely when a mu-
tation persists for an unusually long period of time and grows to
an unusually large subpopulation size, and those with growth
rates that are either negative or positive enough (“sufficiently
subcritical" or “sufficiently supercritical”, respectively) to restrict
persistence times and subpopulation sizes, conditioned upon
the loss of the first mutation in the absence of a second, rescuing
mutation. The relative contribution of each regime shifts with
initial maladaptation and mutation rate; rare mutations that can
occasionally reach unusually large subpopulation sizes play a
larger role when the population is not severely maladapted (e.g.,
Figure 7A) or mutation rate is high (e.g., Figure S2C). In contrast,
when populations are initially very maladapted (e.g., Figure 7C),
most first-step mutations are themselves also very maladapted
and thus restricted in the subpopulation sizes they are expected
to reach before being lost. All three regimes help to maintain the
variance in the distribution of fitness effects among rescue geno-
types as initial maladaptation increases; meanwhile, in 1-step
rescue the variance declines due to ever more extreme sampling
of the tail of the mutational distribution (compare blue and red
curves in Figure 6).

Our prediction, that rescue by more de novo mutations can be
more likely than rescue by fewer, is novel. In previous models
(e.g., Antia ef al. 2003; Iwasa et al. 2004a; Alexander and Day
2010) the general conclusion has been that, since the probability
of rescue scales with U¥ (where U is the mutation rate and k
is the minimum number of mutations required for rescue), the
probability of rescue declines with the number of mutations.
This assumes, however, that the probability of a mutation occur-
ring, U, is the limiting factor. Here we have shown that when
the probability of a beneficial mutation arising declines with its
selective advantage, the probability of sampling once from the
extreme tail of the DFE can be lower than sampling multiple mu-
tations closer to the bulk of the DFE, so that rescue via multiple
mutations can become the dominant path. Rescue by multiple
mutations may also be more likely with standing genetic vari-
ation, as small-effect intermediate mutations may segregate at
higher frequencies than large-effect rescue mutations before the
environmental change (and also decline less quickly than the
wildtype following environmental change); this is especially
true with recombination, where rescue genotypes can arise from
segregating intermediate mutations without mutation (Uecker
and Hermisson 2016).

How often rescue arises as a result of multiple mutations is
an open question. It is clear that more than one mutation can
contribute to adaptation to near-lethal stress, but experiments
are often designed to avoid extinction (reviewed in Cowen et al.
2002) and therefore greatly expand the scope for multiple mu-
tations to arise on a single genotype. A few exceptions provide
some insight. For example, populations of Saccharomyces cervisae
that survived high concentrations of copper acquired multiple
mutations (Gerstein et al. 2015) — in fact the authors argue for

the ‘springboard effect’ discussed above, where first-step muta-
tions prolong persistence and thereby allow further mutations to
arise. In Pseudomonas flourescens, fluctuation tests with nalidixic
acid showed that nearly a third of the most resistant surviving
strains were double mutants (Bataillon et al. 2011), which were
able to tolerate 10x higher drug concentrations than single mu-
tants, suggesting 2-step rescue might dominate at high drug
concentrations. While suggestive, it is unclear if our prediction —
that rescue takes more mutational steps with greater initial mal-
adaptation — holds true generally. Verification will require more
experiments that allow extinction and uncover the genetic basis
of adaptation at different severities of environmental change
(e.g., drug concentration).

In describing the genetic basis of adaptation in populations
of constant size, Orr (1998) showed that the mean phenotypic
displacement towards the optimum scales roughly linearly with
initial displacement. Converting phenotype to fitness, this im-
plies that the mean fitness effect of fixed mutations (s = m — my)
increases exponentially as initial Malthusian fitness (1117) declines
(i-e., s ~ exp(—my)), which is a roughly linear increase when ini-
tial fitness is small (|mg| << 1). Here we see that, under 1-step
rescue, the mean fitness effect also increases roughly linearly as
the initial growth rate declines (see horizontal blue lines in Fig-
ure 6). However, the rate of this linear increase in fitness effect
is much larger under rescue than in a population of constant
size (compare blue and grey horizontal lines in Figure 6), where
declines in wildtype fitness not only allow larger mutations to be
beneficial but also require larger mutations for persistence. Thus
the race between extinction and adaptation during evolutionary
rescue is expected to produce a genetic basis of adaptation with
fewer mutations of larger effect.

While under 1-step rescue the fitness effect of the first muta-
tion increases roughly linearly as wildtype fitness declines, most
rescue events will be 2-step for wildtype fitnesses below some
value (e.g., at my ~ —0.25 in Figure 3; this threshold value of
my increases with mutation rate, Figure S1). At this junction
the effect size of the first mutation will no longer increase as
quickly (and potentially even decrease), as it switches from a
rescue mutant to an intermediate mutant whose expected fitness
begins to decline substantially with the fitness of the wildtype
(Figure 7). Thus as rescue switches from dominantly k-step to
dominantly (k + 1)-step the genetic basis of adaptation becomes
more diffuse, with each mutation having a smaller individual
fitness effect as the contributing fitness effects spread over more
loci. In the limit of large k (due to large initial maladaptation or
high mutation rates), the genetic basis of adaptation should at
some point converge to many loci with small effect, as would
also be expected in a population of constant size. Indeed, at
very high mutation rates the rate of adaptation (the change in
mean fitness) is the same under rescue as it is in populations
of constant size (Anciaux et al. 2019), implying that the genetic
basis of adaptation no longer depends on demography. It is
therefore at intermediate levels of initial maladaptation and low
mutation rates, where rescue primarily occurs from a few large
effect mutations, that the race between adaptation and persis-
tence is predicted to have the largest effect on the genetic basis
of adaptation.

Fluctuation tests (Luria and Delbriick 1943) provide a means
to generate random mutations and then isolate potential rescue
genotypes (typically assumed to be 1-step only), whose growth
rates can be measured under the selective conditions. These
experiments are designed such that there is substantial standing
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genetic variation at the time of exposure to the selective con-
ditions, which should increase the contributions of mutations
with small growth rates (Orr and Betancourt 2001), although
these could be outcompeted by mutations with higher growth
rates and/or be under-sampled. Regardless, consistent with
our theory (Figure 6), the resulting growth rate distributions in
both bacteria and yeast often find modes that are substantially
greater than zero (as opposed to, say, an exponential distribution;
Kassen and Bataillon 2006; MacLean and Buckling 2009; Gerstein
et al. 2012; Lindsey et al. 2013; Gerstein ef al. 2015). A number of
these conform even more closely to our expected shape (Kassen
and Bataillon 2006; Gerstein et al. 2015) while the others appear
to be substantially more clumped around the mode, perhaps
due to a very restricted number of possible rescue mutations in
any one circumstance, the size of the experiment, or the way in
which growth rates are measured. Finally, Gerstein et al. (2015)
not only provide the distribution of growth rates among rescue
genotypes, but also the growth rates of individual mutations
that compose multi-step rescue genotypes. In four lines where
multiple mutations were detected and a segregation analysis
performed, one mutation in each line was inferred to have a
minor effect and the other mutation was an amplification of the
copper metallothionein CUP with a major fitness effect. These
results are consistent with the minor effect mutations being sub-
critical mutations that provided a springboard for the larger
CUP mutations.

Pinpointing the mutations responsible for adaptation is ham-
pered by genetic hitchhiking, as beneficial alleles elevate the fre-
quency of linked neutral and mildly deleterious alleles (Barton
2000). The problem is particularly severe under strong selection
and low recombination, and therefore reaches an extreme in
the case of evolutionary rescue in asexuals, especially if many
neutral and deleterious mutations are segregating at the time
of environmental change. To circumvent this, mutations that
have risen to high frequency in multiple replicates are often in-
troduced in a wildtype background, in isolation and sometimes
also in combination with a small number of other common high-
frequency mutations, and grown under the selective conditions
(e.g., Jochumsen ef al. 2016; Ono et al. 2017). As we have demon-
strated above (e.g., Figure 7C), however, under multi-step rescue
there may be no one mutation that individually confers growth
in the selective conditions. Thus, a mutation that was essential
for rescue may go undetected or be mistaken as a hitchhiker if
the appropriate multiple-mutation genotypes are not tested. Un-
fortunately reverse engineering all combinations of mutations
quickly becomes unwieldy as the number of mutations grows,
and thus this approach will not be practical under severe initial
maladaptation and high mutation rates, where we predict rescue
to occur by many mutations. Interestingly, our simulations show
that the population dynamics themselves may help differentiate
how many mutations contribute to rescue (e.g., V- vs. U-shaped
log-trajectories; Figures 1 and 2), and fitting models of k-step
rescue could produce estimates for the growth rates of the k
genotypes.

Environmental change often selects for mutator alleles, which
elevate the rate at which beneficial alleles arise and subsequently
increase in frequency with them (Tenaillon et al. 2001). When
beneficial alleles are required for persistence, as in evolution-
ary rescue, mutator alleles can reach very high frequencies or
rapidly fix (e.g., Mao et al. 1997). Consistent with this, mutator
alleles are often associated with antibiotic resistance in clinical
isolates (see examples in Bell 2017). Further, the more benefi-
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960

cial mutations available the larger the advantage of a mutator
allele; for a mutator that increases the mutation rate m-fold, its
relative contribution to the production of n beneficial mutations
scales as m" (Tenaillon et al. 1999). Thus, conditions that cause
multi-step rescue to be more likely than 1-step rescue should
also impose stronger selection for mutator alleles. There are a
number of examples where lineages with higher mutation rates
acquired multiple mutations and persisted at higher doses of an-
tibiotics (Couce ef al. 2015; San Millan et al. 2017). The number of
mutations required for persistence is, however, often unknown,
making it difficult to compare situations where rescue requires
different numbers of mutations. Experiments with a combina-
tion of drugs may provide a glimpse; for instance, Escherichia
coli populations only evolved resistance to a combination of two
drugs (presumably through the well-known mutations specific
to each drug) when mutators were present, despite the fact that
mutators were not required for resistance to either drug in isola-
tion (Gifford et al. 2019). In cases where we have less information
on the genetic basis of resistance, our model suggests that muta-
tors will be more advantageous when initial maladaptation is
severe (e.g., higher drug concentrations or a larger number of
drugs), as rescue will then be dominated by genetic paths with
more mutational steps.

Here we have investigated the genetic basis of evolution-
ary rescue in an asexual population that is initially genetically
uniform. Extending this work to allow for recombination and
standing genetic variation at the time of environmental change
— as expected for many natural populations — would be valu-
able. The effect of standing genetic variation on the probability
of 1-step rescue is relatively straight-forward to incorporate,
depending only on the expected number of rescue mutations
initially present and their mean establishment probability (Mar-
tin et al. 2013). In the case of the fluctuation tests discussed
above, where mutations accumulated in the short interval be-
fore the onset of selection are assumed to be relatively neutral,
the effect of standing genetic variance on 1-step rescue might
be incorporated by a simple rescaling of Ny, to account for the
additional mutants present in the standing variation. When
considering longer periods of time in populations that are not
rapidly expanding, mutation-selection balance may be reached
before the onset of selection. In this case the probability of 1-
step rescue from standing genetic variance in Fisher’s geometric
model was given by Anciaux et al. (2018), whose equations 3
and 5 immediately give the distribution of fitness effects among
those that rescue. Allowing these standing genetic variants to
be springboards to multi-step rescue will help clarify the role of
standing genetic variation on the genetic basis of rescue more
generally. Recombination can help combine such springboard
mutations into rescue genotypes but will also break these com-
binations apart, as demonstrated in a 2-locus 2-allele model of
rescue (Uecker and Hermisson 2016). How recombination af-
fects the genetic basis of evolutionary rescue when more loci can
potentially contribute remains to be seen. Also left unexplored
is the effect of density-dependent fitness; for example, competi-
tion may reduce mutant growth rates and thereby increase the
size of mutations that are required for rescue, especially when
the wildtype declines slowly. Combining density-dependence
and standing genetic variance is known to create complex dy-
namics in a 1-locus 2-allele model of rescue (Uecker et al. 2014),
and adding more potential genotypes is sure to add yet more
complexity.

Many of our simple closed-form results rely upon knowing
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the distribution of mutant growth rates (Equation 1), which 10z
arises from the assumption that mutant phenotypes are nor- 1z
mally distributed about their ancestor and Malthusian fitness 102
is a quadratic, on some scaled phenotypic axes. It is clear that 102
deviations from these assumptions will, at least quantitatively, 1027
affect our results. For instance, mutant phenotype distributions 102s
with truncated or fat tails are likely to lead to smaller or larger 102
mutational steps, respectively, with downstream effects on the 1030
probability of rescue, the number of contributing mutations, and 1s1
the resulting DFEs. As a preliminary investigation of this pre- 10z
diction, we have performed simulations with mutant phenotype 103
distributions having the same expectation and covariances as 1034
assumed above under normality, but with truncated (platykur- 1oss
tic) or fat (leptokurtic) tails (Figure S3A). While our qualitative

results above hold, the probability of rescue declines slower with

wildtype maladaptation when the mutational distribution has o
fatter tails (compare dotted and solid black in Figure S3C). Fatter 1037
tails also reduce the number of mutations contributing to rescue 10ss
(e.g., 1-step rescue dominates for all wildtype decline rates in 1039
Figure S3C). Finally, fatter tails cause the distributions of rescue 1040
genotype growth rates following 1- and 2-step rescue to have 104
more variance and become more similar to one another (Figure 104
54B) and also tend to increase the contribution of supercritical 1043
single mutants in 2-step rescue (Figure S5). All told, the genetic 104
basis of rescue is expected to consist of fewer mutations of larger 10s
effect, with less consistent effect sizes across replicate popula- 104
tions, as the tails of the mutant phenotype distribution become 1047
fatter. 1048

. . 1049
In the numerical examples above we have not varied the

number of scaled phenotypic axes, #, i.e., the dimensionality of
the phenotypic landscape (although the analytical results apply
for arbitrary n). Because increasing the number of dimensions
changes the distribution of fitness effects, and in particular de- 1052
creases the proportion of mutations that are beneficial (Fisher
1930), this may have cascading influences on our results. As o5t
shown in Anciaux et al. (2018), the probability of 1-step rescue

by de novo mutation declines with dimensionality, and is only 056
weakly dependent on dimensionality when initial maladapta-
tion is small (such that Aq(my) ~ —myUg(a), Equation 19).
Here we show that the distribution of fitness effects among 1-
step rescue mutants is nearly independent of dimensionality for
any degree of initial maladaptation (Equation 16 and the blue
curves in Figure S6B). Further, as seen by comparing Equations
11-14 to Equation 19, the probability of 2-step rescue depends
on dimensionality much like 1-step rescue does, suggesting that
while increasing dimensionality may decrease the probability s
of rescue it may have little effect on the number of steps rescue
tends to take. This is demonstrated more generally in Figure e
S6A, where an order of magnitude increase in the number of
dimensions decreases the probability of rescue by roughly an
order of magnitude but has little effect on the relative rates of 1-,
2-, 3-, and 4-step rescue. Finally, Figure S6B-C shows that dimen-
sionality has very little effect on the distribution of fitness effects
among 2-step rescue genotypes (Equation 17) and among first
step mutants leading to 2-step rescue (Equation 18). To conclude,
while the probability of rescue declines with the complexity of
the organism and its environment, the genetic basis of rescue is w076
expected to be relatively invariant across complexity, as with the
genetic basis of adaptation in populations of constant size (Orr s
1998, see also gray curves in Figure S6B,C).
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In the numerical examples above we have also focused on a 1080
particular value of mutational variance, A. Clearly, since rescue 1os1

relies on mutations of large effect, decreasing A should decrease
the probability of rescue, much like decreasing the mutation rate,
U, does (Figure S1). While our analysis (Equations 19 and 11-14)
and numerical results (see File S1) show that this is true, we find
that A and U have very different effects on the genetic basis of
rescue (File S1). In particular, given a similar effect on the total
probability of rescue, decreasing U generally restricts rescue to
fewer mutational steps while decreasing A forces rescue to occur
by more mutations. Further, the distribution of fitness effects
of mutations contributing to rescue is nearly independent of
U but a decrease in A strongly reduces the mode of the DFE.
This demonstrates that populations with similar probabilities of
rescue can vary greatly in the way they achieve it genetically.
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Appendix

Approximating the probability of 1-step rescue

The probability of 1-step rescue in this model has been derived
by Anciaux ef al. (2018). As replicated in File S1 and given by
their equation 7, when pyax = Myax /A is large a simple, nearly
closed-form approximation is

(1—gpo/2)1-m/2
Wg(“),

where g = 2(1 — /T —mg/Mmax), g(a) = exp(—a)/+/ma —
erfc(y/a), and & = pmaxl/% /4, with erfc(.) the complimentary
error function. When the wildtype declines slowly g and thus
o is small and A1 (mp) ~ Ug(«). In the limit my — 0, Equation
19 becomes

Aq(0) = nggqof\l(mo) = 2U~/Mpyax A/ 7T,

Aq(mg) =~ Aq(mg) = —moU (19)

(20)
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Mutant lineage dynamics

Here we follow the lead of Weissman ef al. (2010) and Uecker
and Hermisson (2016) in approximating our discrete-time pro-
cess with a continuous-time branching process (see chapter 6 in
Allen 2010). Consider a birth-death process, where individuals
give birth at rate b and die at rate d. One can then obtain the
probability generating function for the number of individuals at
a given time, n(t), given the initial number, 1(0). We are primar-
ily interested in new mutant lineages, 7(0) = 1. The generating
function then allows us to calculate the probability that a lineage
persists at least until time  and the distribution of n(t) given it
does so (see below).

To convert between birth and death rates and our compound
Malthusian parameter we follow Uecker and Hermisson (2016)
in equally distributing the growth rate m between birth and
death,b = (1+m)/2and d = (1 —m)/2,such thatm =b—d
and the continuous-time process exhibits the same amount of
drift as the discrete time process (and matches discrete-time
simulations well; Uecker et al. 2014). We can now report the
necessary results in terms of m (assuming |m| < 1).

Denoting the extinction time as T, the probability a mutant
with growth rate m persists until time ¢ is approximately (see
File S1 for derivation)

2/t
—2m exp(mt)

t << [1/m|

(21)
t>>-1/m>0

P(T>t)=~ {
As pointed out in Weissman et al. (2010) (whose equation A2
differs from Equation 21 by a factor of 2 because they have
b+d = 2), the distribution of persistence times has a long
tail (like 1/t) until being cut off (declining exponentially) at
t=-1/m.
Given a lineage persists until ¢, the distribution of n(t) is
roughly (see File S1 for derivation)

2(1/6)(1+2/)"
—2m(1+m)"1

E<<|1/m|
t>>—-1/m>0

(22)
As pointed out in Weissman et al. (2010) (whose equation A3
only differs from Equation 22 by constants), the distribution of
n(t) is approximately geometric for small or large ¢, implying
n(t) is very unlikely to be greater than the minimum of ¢ and
—1/m.

P(n(t) =nin(t) >0) = {
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