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Abstract

Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of
the impact of bats’ virus hosting capacities, including uniquely constitutive immune pathways,
on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus
infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then
developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit
models recapitulated expected immune phenotypes for representative cell lines, supporting
robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral
propagation rates. In general, heightened immune responses limit pathogen-induced cellular
morbidity to promote the establishment of rapidly-propagating persistent infections within-host.
Rapidly-replicating viruses that have evolved with bat immune systems will likely cause
enhanced virulence following emergence into secondary hosts with immune systems that diverge

from those unique to bats.
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Introduction

Bats have received much attention in recent years for their role as reservoir hosts for
emerging viral zoonoses, including rabies and related lyssaviruses, Hendra and Nipah
henipaviruses, Ebola and Marburg filoviruses, and SARS coronavirus (Calisher et al. 2006;
Wang and Anderson 2019). In most non-Chiropteran mammals, henipaviruses, filoviruses, and
coronaviruses induce substantial morbidity and mortality, display short durations of infection,
and elicit robust, long-term immunity in hosts surviving infection (Nicholls et al. 2003; Hooper
et al. 2001; Mahanty and Bray 2004). Bats, by contrast, demonstrate no obvious disease
symptoms upon infection with pathogens that are highly virulent in non-volant mammals
(Schountz et al. 2017) but may, instead, support viruses as long-term persistent infections, rather
than transient, immunizing pathologies (Plowright et al. 2016).

Recent research advances are beginning to shed light on the molecular mechanisms by
which bats avoid pathology from these otherwise virulent pathogens (Brook and Dobson 2015).
Bats leverage a suite of species-specific mechanisms to limit viral load, which include host
receptor sequence incompatibilities for some bat-virus combinations (Ng et al. 2015) and
constitutive expression of the antiviral cytokine, IFN-a, for others (Zhou et al. 2016). Typically,
the presence of viral RNA or DNA in the cytoplasm of mammalian cells will induce secretion of
type I interferon proteins (IFN-a and IFN-f), which promote expression and translation of
interferon-stimulated genes (ISGs) in neighboring cells and render them effectively antiviral
(Stetson and Medzhitov 2006). In some bat cells, the transcriptomic blueprints for this IFN
response are expressed constitutively, even in the absence of stimulation by viral RNA or DNA
(Zhou et al. 2016). In non-flying mammals, constitutive IFN expression would likely elicit

widespread inflammation and concomitant immunopathology upon viral infection, but bats
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support unique adaptations to combat inflammation (Zhang et al. 2013; Ahn et al. 2019; Xie et
al. 2018; Pavlovich et al. 2018) that may have evolved to mitigate metabolic damage induced
during flight (Kacprzyk et al. 2017). The extent to which constitutive IFN-o expression signifies
constitutive antiviral defense in the form of functional IFN-a protein remains unresolved. In bat
cells constitutively expressing IFN-a., some protein-stimulated, downstream ISGs appear to be
also constitutively expressed, but additional ISG induction is nonetheless possible following viral
challenge and stimulation of IFN-f3 (Zhou et al. 2016; Xie et al. 2018). Despite recent advances
in molecular understanding of bat viral tolerance, the consequences of this unique bat immunity
on within-host virus dynamics—and its implications for understanding zoonotic emergence—
have yet to be elucidated.

The field of ‘virus dynamics’ was first developed to describe the mechanistic
underpinnings of long-term patterns of steady-state viral load exhibited by patients in chronic
phase infections with HIV, who appeared to produce and clear virus at equivalent rates (Nowak
and May 2000; Ho et al. 1995). Models of simple target cell depletion, in which viral load is
dictated by a bottom-up resource supply of infection-susceptible host cells, were first developed
for HIV (Perelson 2002) but have since been applied to other chronic infections, including
hepatitis-C virus (Neumann et al. 1998), hepatitis-B virus (Nowak et al. 1996) and
cytomegalovirus (Emery et al. 1999). Recent work has adopted similar techniques to model the
within-host dynamics of acute infections, such as influenza A and measles, inspiring debate over
the extent to which explicit modeling of top-down immune control can improve inference

beyond the basic resource limitation assumptions of the target cell model (Baccam et al. 2006;

Pawelek et al. 2012; Saenz et al. 2010; Morris et al. 2018).
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To investigate the impact of unique bat immune processes on in vitro viral kinetics, we
first undertook a series of virus infection experiments on bat cell lines expressing divergent
interferon phenotypes, then developed a theoretical model elucidating the dynamics of within-
host viral spread. We evaluated our theoretical model analytically independent of the data, then
fit the model to data recovered from in vitro experimental trials in order to estimate rates of
within-host virus transmission and cellular progression to antiviral status under diverse
assumptions of absent, induced, and constitutive immunity. Finally, we confirmed our findings in
spatially-explicit stochastic simulations of fitted time series from our mean field model. We
hypothesized that top-down immune processes would overrule classical resource-limitation in
bat cell lines described as constitutively antiviral in the literature, offering a testable prediction
for models fit to empirical data. We further predicted that the most robust antiviral responses
would be associated with the most rapid within-host virus propagation rates but also protect cells

against virus-induced mortality to support the longest enduring infections in tissue culture.

Results
Virus infection experiments in antiviral bat cell cultures yield reduced cell mortality and
elongated epidemics.

We first explored the influence of innate immune phenotype on within-host viral
propagation in a series of infection experiments in cell culture. We conducted plaque assays on
six-well plate monolayers of three immortalized mammalian kidney cell lines: [1] Vero (African
green monkey) cells, which are IFN-defective and thus limited in antiviral capacity (Desmyter,
Melnick, and Rawls 1968); [2] RoNi/7.1 (Rousettus aegyptiacus) cells which demonstrate

idiosyncratic induced interferon responses upon viral challenge (Kuzmin et al. 2017; Arnold et
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al. 2018; Biesold et al. 2011; Pavlovich et al. 2018); and [3] PaKiTO1 (Pteropus alecto) cells
which constitutively express IFN-o (Zhou et al. 2016; Crameri et al. 2009). To intensify cell
line-specific differences in constitutive immunity, we carried out infectivity assays with GFP-
tagged, replication-competent vesicular stomatitis Indiana viruses: rVSV-G, rVSV-EBOV, and
rVSV-MARYV, which have been previously described (Miller et al. 2012; Wong et al. 2010).
Two of these viruses, r'VSV-EBOV and rVSV-MARYV, are recombinants for which cell entry is
mediated by the glycoprotein of the bat-evolved filoviruses, Ebola (EBOV) and Marburg
(MARYV), thus allowing us to modulate the extent of structural, as well as immunological,
antiviral defense at play in each infection. Previous work in this lab has demonstrated
incompatibilities in the NPC1 filovirus receptor which render PaKiTO1 cells refractory to
infection with rVSV-MARYV (Ng and Chandran 2018), making them structurally antiviral, over
and above their constitutive expression of IFN-a.. All three cell lines were challenged with all
three viruses at two multiplicities of infection (MOI): 0.001 and 0.0001. Between 18-39 trials
were run at each cell-virus-MOI combination, excepting rVSV-MARYV infections on PaKiT01
cells at MOI=0.001, for which only 8 trials were run (see Materials and Methods; SI Appendix,
Figure S1-S3, Dataset S1).

Because plaque assays restrict viral transmission neighbor-to-neighbor in two-
dimensional cellular space (Howat et al. 2006), we were able to track the spread of GFP-
expressing virus-infected cells across tissue monolayers via inverted fluorescence microscopy.
For each infection trial, we monitored and re-imaged plates for up to 200 hours of observations
or until total monolayer destruction, processed resulting images, and generated a time series of
the proportion of infectious-cell occupied plate space across the duration of each trial (see

Materials and Methods). We used generalized additive models to infer the time course of all cell
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culture replicates and construct the multi-trial dataset to which we eventually fit our mechanistic
transmission model for each cell line-virus-specific combination (Figure 1; SI Appendix, Figure

32-S5).
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Figure 1. Fitted time series of infectious cell proportions from mean field model for rVSV-G,
rVSV-EBOV, and rVSV-MARY infections (columns) on Vero, RoNi/7.1, and PaKiTO1 cell
lines (rows) at MOI=0.001. Results are shown for the best fit immune absent model on Vero
cells, induced immunity model on RoNi/7.1 cells, and constitutive (for r'VSV-VSVG and rVSV-
EBOV) and induced (for r'VSV-MARYV) immunity models on PaKiTO1 cells. Raw data across all
trials are shown as open circles (statistical smoothers from each trial used for fitting are available
in SI Appendix, Figure S2-S3). Model output is shown as a solid crimson line (95% confidence
intervals by standard error = red shading). Panel background corresponds to empirical outcome
of the average stochastic cell culture trial (persistent infection = white; virus-induced epidemic
extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in
Table 1 and S1. Results for absent/induced/constitutive fitted models across all cell lines are
shown in SI Appendix, Figure S6 (MOI=0.001) and S7 (MOI=0.0001).

All three recombinant vesicular stomatitis viruses (rVSV-G, rVSV-EBOV, and rVSV-

MARYV) infected Vero, RoNi/7.1, and PaKiTO1 tissue cultures at both focal MOIs. Post-
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157  invasion, virus spread rapidly across most cell monolayers, resulting in virus-induced epidemic
158 extinction. Epidemics were less severe in bat cell cultures, especially when infected with the

159  recombinant filoviruses, rVSV-EBOV and rVSV-MARYV. Monolayer destruction was avoided in
160  the case of r'VSV-EBOV and rVSV-MARY infections on PaKiTO01 cells: in the former, persistent
161  viral infection was maintained throughout the 200-hour duration of each experiment, while, in
162  the latter, infection was eliminated early in the time series, preserving a large proportion of live,
163 uninfectious cells across the duration of the experiment. We assumed this pattern to be the result
164  of immune-mediated epidemic extinction (Figure 1). Patterns from MOI=0.001 were largely

165  recapitulated at MOI = 0.0001, though at somewhat reduced total proportions (SI Appendix,

166  Figure S5).

167

168 A theoretical model fit to in vitro data recapitulates expected immune phenotypes for bat
169  cells.

170 We next developed a within-host model to fit to these data in order to elucidate the

171  effects of induced and constitutive immunity on the dynamics of viral spread in host tissue

172 (Figure 1). The compartmental within-host system mimicked our two-dimensional cell culture
173 monolayer, with cells occupying five distinct infection states: susceptible (S), antiviral (A),

174  exposed (E), infectious (I), and dead (D). We modeled exposed cells as infected but not yet

175  infectious, capturing the ‘eclipse phase’ of viral integration into a host cell which precedes viral
176  replication. Antiviral cells were immune to viral infection, in accordance with the “antiviral

177  state” induced from interferon stimulation of ISGs in tissues adjacent to infection (Stetson and
178  Medzhitov 2006). Because we aimed to translate available data into modeled processes, we did

179  not explicitly model interferon dynamics but instead scaled the rate of cell progression from
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180  susceptible to antiviral (p) by the proportion of exposed cells (globally) in the system. In systems
181  permitting constitutive immunity, a second rate of cellular acquisition of antiviral status (&)

182  additionally scaled with the global proportion of susceptible cells in the model. Compared with
183  wvirus, IFN particles are small and highly diffusive, justifying this global signaling assumption at
184  the limited spatial extent of a six well plate and maintaining consistency with previous modeling
185  approximations of IFN signaling in plaque assay (Howat et al. 2006).

186 To best represent our empirical monolayer system, we expressed our state variables as
187  proportions (P, P4, Pg, P;, and Pp), under assumptions of frequency-dependent transmission in a
188  well-mixed population (Keeling and Rohani 2008), though note that the inclusion of P,

189  (representing the proportion of dead space in the modeled tissue) had the functional effect of
190  varying transmission with infectious cell density. This resulted in the following system of

191  ordinary differential equations:

192

193 % = bPp(P; + Py) — BPsP; — uP; — pPgP; — €P; + cP, (1)
dPy

194 Tl PpPeP; + P, — cPy — uPy (2)
dPg

195 F:ﬁPSPI_O-PE_”PE (3)
dPp

197 —==u(Ps+ P+ P+ Py) +aP; — bPy(Ps + Py) )

198

199 We defined “induced immunity” as complete, modeling all cells as susceptible to viral

200 invasion at disease free equilibrium, with defenses induced subsequent to viral exposure through

201  the term p. By contrast, we allowed the extent of constitutive immunity to vary across the
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parameter range of € > 0, defining a “constitutive” system as one containing any antiviral cells at
disease free equilibrium. In fitting this model to tissue culture data, we independently estimated
both p and ¢, as well as the cell-to-cell transmission rate, 3, for each cell-virus combination.
Since the extent to which constitutively-expressed IFN-a is constitutively translated into
functional protein is not yet known for bat hosts (Zhou et al. 2016), this approach permitted our
tissue culture data to drive modeling inference: even in PaKiTO1 cell lines known to
constitutively express IFN-a., the true constitutive extent of the system (i.e. the quantity of
antiviral cells present at disease free equilibrium) was allowed to vary through estimation of «.
For the purposes of model-fitting, we fixed the value of c, the return rate of antiviral cells to
susceptible status, at 0. The small spatial scale and short time course (max 200 hours) of our
experiments likely prohibited any return of antiviral cells to susceptible status in our empirical
system; nonetheless, we retained the term c in analytical evaluations of our model because
regression from antiviral to susceptible status is possible over long time periods in vitro and at
the scale of a complete organism (Samuel and Knutson 1982; Rasmussen and Farley 1975;
Radke et al. 1974).

Before fitting to empirical time series, we undertook bifurcation analysis of our
theoretical model and generated testable hypotheses on the basis of model outcomes. From our
within-host model system (equations 1-5), we derived the following expression for R, the

pathogen basic reproduction number:

ﬁU(b—M)(C‘HJ) (6)

0 ™ blo+w) (a+p)(c+u+e)

Pathogens can invade a host tissue culture when R, > 1. Rapid rates of constitutive antiviral
acquisition (&) will drive R, < 1: tissue cultures with highly constitutive antiviral immunity will

be therefore resistant to virus invasion from the outset. Since, by definition, induced immunity is

10
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stimulated following initial virus invasion, the rate of induced antiviral acquisition (p) is not
incorporated into the equation for R,; while induced immune processes can control virus after
initial invasion, they cannot prevent it from occurring to begin with. In cases of fully induced or
absent immunity (¢ = 0), the R, equation thus reduces to a form typical of the classic SEIR

model:

R — Ba(b—p)
O™ bla+u)(o+p)

(7)

At equilibrium, the theoretical, mean field model demonstrates one of three infection
states: endemic equilibrium, stable limit cycles, or no infection (Figure 2). Respectively, these
states approximate the persistent infection, virus-induced epidemic extinction, and immune-
mediated epidemic extinction phenotypes previously witnessed in tissue culture experiments
(Figure 1). Theoretically, endemic equilibrium is maintained when new infections are generated
at the same rate at which infections are lost, while limit cycles represent parameter space under
which infectious and susceptible populations are locked in predictable oscillations. Endemic
equilibriums resulting from cellular regeneration (i.e. births) have been described in vivo for HIV
(Coffin 1995) and in vitro for herpesvirus plaque assays (Howat et al. 2006), but, because they so

closely approach zero, true limit cycles likely only occur theoretically, instead yielding stochastic

extinctions in empirical time series.

11
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Figure 2. Two parameter bifurcations of the mean field model, showing variation in the
transmission rate, 3, against variation in the pathogen-induced mortality rate, o, under diverse
immune assumptions. Panel (A) depicts dynamics under variably constitutive immunity, ranging
from absent (left: € = 0) to high (right: ¢ =.0025). In all panel (A) plots, the rate of induced
immune antiviral acquisition (p) was fixed at 0.01. Panel (B) depicts dynamics under variably
induced immunity, ranging from absent (left: p=0) to high (right: p=1). In all panel (B) plots, the
rate of constitutive antiviral acquisition (¢) was fixed at 0.0001. Branch point curves are
represented as solid lines and Hopf curves as dashed lines. White space indicates endemic
equilibrium (persistence), gray space indicates limit cycles, and black space indicates no
infection (extinction). Other parameter values for equilibrium analysis were fixed at: b = .025, p
=.001, o =1/6, c = 0. Special points from bifurcations analyses are listed in SI Appendix, Table
S2.

Bifurcation analysis of our mean field model revealed that regions of no infection
(pathogen extinction) were bounded at lower threshold (Branch point) values for 3, below which
the pathogen was unable to invade. We found no upper threshold to invasion for  under any
circumstances (i.e. 3 high enough to drive pathogen-induced extinction), but high 3 values

resulted in Hopf bifurcations, which delineate regions of parameter space characterized by limit

12
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261  cycles. Since limit cycles so closely approach zero, high s recovered in this range would likely
262  produce virus-induced epidemic extinctions under experimental conditions. Under more robust
263  representations of immunity, with higher values for either or both induced (p) and constitutive
264  (¢)rates of antiviral acquisition, Hopf bifurcations occurred at increasingly higher values for 3,
265 meaning that persistent infections could establish at higher viral replication rates (Figure 2).

266  Consistent with our derivation for R, we found that the Branch point threshold for viral invasion
267  was independent of changes to the induced immune parameter (p) but saturated at high values of

268 ¢ that characterize highly constitutive immunity (Figure 3).

269
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272 Figure 3. Two parameter bifurcations of the mean field model, showing variation in the
273  transmission rate, 3, against variation in: (A) the induced immunity rate of antiviral acquisition
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(p) and (B) the constitutive immunity rate of antiviral acquisition (¢). Panels show variation in
the extent of immunity, from absent (left) to high (right). Branch point curves are represented as
solid lines and Hopf curves as dashed lines. White space indicates endemic equilibrium
(persistence), gray space indicates limit cycling, and black space indicates no infection
(extinction). Other parameter values for equilibrium analysis were fixed at: » =.025, n=.001, c
=1/6, a=1/6, ¢ = 0. Special points from bifurcations analyses are listed in SI Appendix, Table

S2.

We next fit our theoretical model by least squares to each cell line-virus combination,
under absent, induced, and constitutive assumptions of immunity. In general, best fit models
recapitulated expected outcomes based on the immune phenotype of the cell line in question, as
described in the general literature (Table 1; SI Appendix, Table S1). The absent immune model
offered the most accurate approximation of IFN-deficient Vero cell time series, the induced
immune model best recovered the RoNi/7.1 cell trials, and, in most cases, the constitutive
immune model most closely recaptured infection dynamics across constitutively IFN-o.-
expressing PaKiTO1 cell lines (Figure 1; SI Appendix, Figure S4-S5, Table S1). Ironically, the
induced immune model offered a slightly better fit than the constitutive to rVSV-MARV
infections on the PaKiTO1 cell line (the one cell line-virus combination for which we know a
constitutively antiviral cell-receptor incompatibility to be at play). Because constitutive immune
assumptions can prohibit pathogen invasion (R, < 1), model fits to this time series under
constitutive assumptions were handicapped by overestimations of €, which prohibited pathogen
invasion. Only by incorporating an exceedingly rapid rate of induced antiviral acquisition could

the model guarantee that initial infection would be permitted and then rapidly controlled.
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Table 1. Optimized parameters from best fit deterministic model and spatial approximation

Immune Antiviral mean Spatial
Cell Line  Virus  Assumption € P . P . field B
Rate [lci —uci] *  [lci —uci] * [lci — uci] * Ry
2.44
VSV-G 0 0 [0-0] 0 [0-0] Laag 8729 24418
VSV-EBOV 15
\Y% f - -
ero Absent 0 0[0-0] 0 [0-0] Looioa 46 14.9%
'VSV-MARV 0 0 [0-0] 0 [0-0] 0.975 3454 9752
Absent [0.558-1.39] ° :
0.089 2.47
- —5 -
VSV-G o T03x10% 0[0-0) (0-0432] (Ldoa4s) 10907 24705
.. TVSV-EBOV 0.0363 0.685
RoNi/7.1 * -5 -
ot Induced ~ 287X107 0[0-0] [0-0343]  [0451-0019] 04 684
0.0177 123
- —5 -
fVSV-MARV o 140x10°  0[0-0] 00257 [oo11ss) 4TS 12324
0.00602 826 x10° 3.45
VSV-G  constitutive  ?9%%% (020019 [0-475x107]  [1.07-5.84]  O189 34316
. IVSV-EBOV 0.0478 4.46x10° 345
PaKiTO1 *
s Constitutive 0% [0.0.0958] [0-437x107] [28.7-402] 5823 344821
13.1 325
fVSV-MARV o 00687 0[0-0] 03791 041.3] 8828  32.452

* ]ci = lower and uci = upper 95% confidence interval. No confidence interval is shown for spatial § which was fixed at 10 times the estimated
mean for the mean field model fits when paired with equivalent values of € and p.
All other parameters were fixed at the following values: b=.025; oo = 1/6; ¢=0; p= 1/121 (Vero), 1/191 (RoNi/7.1), and 1/84 (PaKiTO01)

Robust immunity is linked to rapid within-host virus transmission rates in fitted models.
In fitting our theoretical model to in vitro data, we estimated the within-host virus
transmission rate () and the rate(s) of cellular acquisition to antiviral status (p or p + &) (Table
1; SI Appendix, Table S1). Under absent immune assumptions, p and € were fixed at 0 while 3
was estimated; under induced immune assumptions, € was fixed at 0 while p and § were
estimated; and under constitutive immune assumptions, all three parameters (p, €, and ) were
simultaneously estimated for each cell-virus combination. Best fit parameter estimates for
MOI=0.001 data are visualized in conjunction with  — p and 3 — € bifurcations in Figure 4; all
general patterns were recapitulated at lower values for 3 on MOI=0.0001 trials (SI Appendix,

Figure S6).
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316 constitutive antiviral acquisition, ¢

317  Figure 4. Best fit parameter estimates for 3 and p or € from mean-field model fits to MOI=0.001
318  time series data, atop (A,B) B — p and (C) B — ¢ bifurcation. Fits and bifurcations are grouped by
319  immune phenotype: (A) absent; (B) induced; (C) constitutive immunity, with cell lines

320  differentiated by shape (Vero=circles; RoNi/7.1 = triangles; PaKiT01=squares) and viral

321  infections by color (rVSV-G = green, rVSV-EBOV = magenta, rVSV-MARYV = blue). Note that
322 y-axis values are ten-fold higher in panel (C). Branch point curves (solid lines) and Hopf curves
323  (dashed lines) are reproduced from Figure 3. White space indicates endemic equilibrium

324 (pathogen persistence), gray space indicates limit cycling (virus-induced epidemic extinction),
325  and black space indicates no infection (immune-mediated pathogen extinction). In panel (A) and
326  (B), ¢ is fixed at 0; in panel (C), p is fixed at 5x10® for bifurcation curves and estimated at 4x10-
327 8 and 8x10°® for r'VSV-EBOV and rVSV-G parameter points, respectively. Other parameter

328  wvalues were fixed at: b =.025, u=0.001, c = 1/6, o = 1/6, and ¢ = 0 across all panels. Raw fitted
329  values and corresponding 95% confidence intervals for f3, p, and ¢, background parameter

330  values, and AIC recovered from model fit, are reported in SI, Appendix Table S1. Parameter fits
331 at MOI=0.0001 are visualized in SI Appendix, Figure S6.

332

333

334 As anticipated, the immune absent model (a simple target cell model) offered the best fit

335  to IFN-deficient Vero cell infections (Figure 4, Table 1; SI Appendix, Figure S4-S5, Table S1).
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Among Vero cell trials, infections with rVSV-G produced the highest 3 estimates, followed by
infections with rVSV-EBOV and rVSV-MARUV. Best fit parameter estimates on Vero cell lines
localized in the region of parameter space corresponding to theoretical limit cycles, consistent
with observed virus-induced epidemic extinctions in stochastic tissue cultures.

In contrast to Vero cells, the induced immunity model offered the best fit to all RoNi/7.1
data, consistent with reported patterns in the literature and our own validation by qPCR (Table 1;
SI Appendix, Figure S7; Biesold et al. 2011; Kuzmin et al. 2017; Arnold et al. 2018; Pavlovich
et al. 2018). As in Vero cell trials, we estimated highest 3 values for r'VSV-G infections on
RoNi/7.1 cell lines but here recovered higher B estimates for r'VSV-MARYV than for rVSV-
EBOV. This reversal was balanced by a higher estimated rate of acquisition to antiviral status (p)
for rVSV-EBOV versus rVSV-MARV. In general, we observed that more rapid rates of antiviral
acquisition (either induced, p, constitutive, &, or both) correlated with higher transmission rates
(B). When offset by p, B values estimated for RoNi/7.1 infections maintained the same amplitude
as those estimated for immune-absent Vero cell lines but caused gentler epidemics and reduced
cellular mortality (Figure 1). RoNi/7.1 parameter estimates localized in the region corresponding
to endemic equilibrium for the deterministic, theoretical model (Figure 4), yielding less acute
epidemics which nonetheless went extinct in stochastic experiments.

Finally, rVSV-G and rVSV-EBOV trials on PaKiTO01 cells were best fit by models
assuming constitutive immunity, while rVSV-MARY infections on PaKiTO01 were matched
equivalently by models assuming either induced or constitutive immunity—with induced models
favored over constitutive in AIC comparisons because one fewer parameter was estimated (SI
Appendix, Figure S4-S5, Table S1). For all virus infections, PaKiTO01 cell lines yielded 3

estimates a full order of magnitude higher than Vero or RoNi/7.1 cells, with each 3 balanced by
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an immune response (either p, or p combined with ¢) also an order of magnitude higher than that
recovered for the other cell lines (Figure 4; Table 1). As in RoNi/7.1 cells, PaKiT01 parameter
fits localized in the region corresponding to endemic equilibrium for the deterministic theoretical
model. Because constitutive immune processes can actually prohibit initial pathogen invasion,
constitutive immune fits to r'VSV-MARYV infections on PaKiTO1 cell lines consistently localized
at or below the Branch point threshold for virus invasion (R, = 1). During model fitting for
optimization of €, any parameter tests of € values producing R, < 1 resulted in no infection and,
consequently, produced an exceedingly poor fit to infectious time series data. In all model fits
assuming constitutive immunity, across all cell lines, parameter estimates for p and ¢ traded off,
with one parameter optimized at values approximating zero, such that the immune response was
modeled as almost entirely induced or entirely constitutive (Table 1; SI Appendix, Table S1). For
RoNi/7.1 cells, even when constitutive immunity was allowed, the immune response was
estimated as almost entirely induced, while for rVSV-G and rVSV-EBOV fits on PaKiTO01 cells,
the immune response optimized as almost entirely constitutive. For rVSV-MARYV on PaKiT01
cells, however, estimation of p was high under all assumptions, such that any additional antiviral
contributions from & prohibited virus from invading at all. The induced immune model thus
produced a more parsimonious recapitulation of these data because virus invasion was always

permitted, then rapidly controlled.

Antiviral cells safeguard live cells against rapid cell mortality to elongate epidemic
duration in vitro.
In order to compare the relative contributions of each cell line’s disparate immune

processes to epidemic dynamics, we next used our mean field parameter estimates to calculate
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382  the initial ‘antiviral rate’—the initial accumulation rate of antiviral cells upon virus invasion for
383  each cell-virus-MOI combination—based on the following equation:

384

385  Antiviral Rate = pPgP; — €P; (8)
386

387  where Pg was calculated from the initial infectious dose (MOI) of each infection experiment and

388  Ps was estimated at disease free equilibrium:

389

390 Py = 1—e MO (9)
_ (-w(ctp)

391 Py= L (10)

392

393  Because p and ¢ both contribute to this initial antiviral rate, induced and constitutive immune
394  assumptions are capable of yielding equally rapid rates, depending on parameter fits. Indeed,
395  under fully induced immune assumptions, the induced antiviral acquisition rate (p) estimated for
396 rVSV-MARYV infection on PaKiTO1 cells was so high that the initial antiviral rate exceeded even
397  that estimated under constitutive assumptions for this cell-virus combination (SI Appendix,

398  Table S1). In reality, we know that NPC1 receptor incompatibilities make PaKiTO01 cell lines
399  constitutively refractory to rVSV-MARYV infection (Ng and Chandran 2018) and that PaKiTO1
400 cells also constitutively express the antiviral cytokine, IFN-o.. Model fitting results suggest that
401  this constitutive expression of [IFN-o may act more as a rapidly inducible immune response

402  following virus invasion than as a constitutive secretion of functional IFN-a protein.

403  Nonetheless, as hypothesized, PaKiTO1 cell lines were by far the most antiviral of any in our

404  study—with initial antiviral rates estimated several orders of magnitude higher than any others in
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our study, under either induced or constitutive assumptions (Table 1; SI Appendix, Table S1).
RoNi/7.1 cells displayed the second-most-pronounced signature of immunity, followed by Vero
cells, for which the initial antiviral rate was essentially zero even under forced assumptions of
induced or constitutive immunity (Table 1; SI Appendix, Table S1).

Using fitted parameters for 3 and &, we additionally calculated Ro, the basic reproduction
number for the virus, for each cell line-virus-MOI combination (Table 1; SI Appendix, Table
S1). We found that Ro was essentially unchanged across differing immune assumptions for
RoN1/7.1 and Vero cells, for which the initial antiviral rate was low. In the case of PaKiTO01
cells, a high initial antiviral rate under either induced or constitutive immunity resulted in a
correspondingly high estimation of B (and, consequently, Ro) which still produced the same
epidemic curve that resulted from the much lower estimates for 3 and Ro paired with absent
immunity. These findings suggest that antiviral immune responses protect host tissues against
virus-induced cell mortality to permit the establishment of more rapid within-host transmission
rates.

Total monolayer destruction occurred in all cell-virus combinations excepting rVSV-
EBOV infections on RoNi/7.1 cells and rVSV-EBOV and rVSV-MARY infections on PaKiTO01
cells. Monolayer destruction corresponded to susceptible cell depletion and epidemic turnover
where R-effective (the product of R, and the proportion susceptible) was reduced below one
(Figure 5). For r'VSV-EBOV infections on RoNi/7.1, induced antiviral cells safeguarded remnant
live cells, which birthed new susceptible cells late in the time series. In r'VSV-EBOV and rVSV-
MARY infections on PaKiTO1 cells, this antiviral protection halted the epidemic (Figure 5; R-
effective <1) before susceptibles fully declined. In the case of rVSV-EBOV on PaKiTO01, the

birth of new susceptibles from remnant live cells protected by antiviral status maintained late-
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428  stage transmission to facilitate long-term epidemic persistence. Importantly, under fixed

429  parameter values for the infection incubation rate () and infection-induced mortality rate (o),
430  models were unable to reproduce the longer-term infectious time series captured in data from
431  rVSV-EBOV infections on PaKiTO1 cell lines without incorporation of cell births, an

432 assumption adopted in previous modeling representations of IFN-mediated viral dynamics in
433  tissue culture (Howat et al. 2006). In our experiments, we observed that cellular reproduction

434  took place as plaque assays achieved confluency.

435
436
I:' persistent infection |:| virus—induced epidemic extinction . immune-mediated epidemic extinction
I:' proportion live cell I:' proportion susceptible I:' proportion antiviral
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438  Figure 5. Fitted time series of susceptible (green shading) and antiviral (blue shading) cell
439  proportions from the mean field model for rVSV-G, rVSV-EBOV, and rVSV-MARY infections
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440  (columns) on Vero, RoNi/7.1, and PaKiTO1 cell lines (rows) at MOI=0.001. Results are shown
441  for the best fit immune absent model on Vero cells, induced immunity model on RoNi/7.1 cells
442  and constitutive (rVSV-G and rVSV-EBOV) and induced (rVSV-MARYV) immune models on
443  PaKiTO1 cells. Combined live, uninfectious cell populations (S + A + E) are shown in tan

444  shading, with raw live, uninfectious cell data from Hoechst stains visualized as open circles. The
445  right-hand y-axis corresponds to R-effective (pink solid line) across each time series; R-effective
446 =1 is a pink dashed, horizontal line. Panel background corresponds to empirical outcome of the
447  average stochastic cell culture trial (persistent infection = white; virus-induced epidemic

448  extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in
449  SI Appendix, Table S1 and results for absent/induced/constitutive fitted models across all cell
450  lines in Figure S8 (MOI=0.001) and S9 (MOI=0.0001).

451

452 Finally, because the protective effect of antiviral cells is more clearly observable

453  spatially, we confirmed our results by simulating fitted time series in a spatially-explicit,

454  stochastic reconsttruction of our mean field model. In spatial simulations, rates of antiviral

455  acquisition were fixed at fitted values for p and € derived from mean field estimates, while

456  transmission rates () were fixed at values ten times greater than those estimated under mean
457  field conditions because spatial structure is known to intensify parameter thresholds permitting
458  pathogen invasion (Webb, Keeling and Boots, 2007; SI Appendix, Figure S10, Video S1-S3). In
459  immune capable time series, spatial antiviral cells acted as ‘refugia’ which protected live cells
460  from infection as each initial epidemic wave ‘washed’ across a cell monolayer. Eventual birth of
461  new susceptibles from these living refugia allowed for sustained epidemic transmission in cases
462  where some infectious cells persisted at later timepoints in simulation (SI Appendix, Figure S10,
463  Video S1-S3).

464

465  Discussion

466 Bats are reservoirs for several important emerging zoonoses but appear not to experience

467  disease from otherwise virulent viral pathogens. Though the molecular biological literature has

468  made great progress in elucidating the mechanisms by which bats tolerate viral infections (Zhou
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et al. 2016; Ahn et al. 2019; Xie et al. 2018; Pavlovich et al. 2018; Zhang et al. 2013), the impact
of unique bat immunity on virus dynamics within-host has not been well-elucidated. We used an
innovative combination of in vitro experimentation and within-host modeling to explore the
impact of unique bat immunity on virus dynamics. Critically, we found that bat cell lines
demonstrated a signature of enhanced interferon-mediated immune response, of either
constitutive or induced form, which allowed for establishment of rapid within-host, cell-to-cell
virus transmission rates (). These results were supported by both data-independent bifurcation
analysis of our mean field theoretical model, as well as fitting of this model to viral infection
time series established in bat cell culture. Additionally, we demonstrated that the antiviral state
induced by the interferon pathway protects live cells from mortality in tissue culture, resulting in
in vitro epidemics of extended duration that enhance that probability of establishing a long-term
persistent infection. Our findings suggest that viruses evolved in bat reservoirs possessing
enhanced IFN capabilities could achieve more rapid within-host transmission rates without
causing pathology to their hosts. Such rapidly-reproducing viruses would likely generate extreme
virulence upon spillover to hosts lacking similar immune capacities to bats.

To achieve these results, we first developed a novel, within-host, theoretical model
elucidating the effects of unique bat immunity, then undertook bifurcation analysis of the
model’s equilibrium properties under immune absent, induced, and constitutive assumptions. We
considered a cell line to be constitutively immune if possessing any number of antiviral cells at
disease free equilibrium but allowed the extent of constitutive immunity to vary across the
parameter range for &, the constitutive rate of antiviral acquisition. In deriving the equation for
R, the basic reproduction number, which defines threshold conditions for virus invasion of a

tissue (R, > 1), we demonstrated how the invasion threshold is elevated at high values of
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constitutive antiviral acquisition, €. Constitutive immune processes can thus prohibit pathogen
invasion, while induced responses, by definition, can only control infections post-hoc. Once
thresholds for pathogen invasion have been met, assumptions of constitutive immunity will limit
the cellular mortality (virulence) incurred at high transmission rates. Regardless of mechanism
(induced or constitutive), interferon-stimulated antiviral cells appear to play a key role in
maintaining longer term or persistent infections by safeguarding susceptible cells from rapid
infection and concomitant cell death.

Fitting of our model to in vitro data supported expected immune phenotypes for different
bat cell lines as described in the literature. Simple target cell models that ignore the effects of
immunity best recapitulated infectious time series derived from IFN-deficient Vero cells, while
models assuming induced immune processes most accurately reproduced trials derived from
RoNi/7.1 (Rousettus aegyptiacus) cells, which possesses a standard virus-induced IFN-response.
In most cases, models assuming constitutive immune processes best recreated virus epidemics
produced on PaKiTO1 (Pteropus alecto) cells, which are known to constitutively express the
antiviral cytokine, IFN-o (Zhou et al. 2016). Model support for induced immune assumptions in
fits to r'VSV-MARY infections on PaKiTO1cells suggests that the constitutive IFN-a expression
characteristic of P. alecto cells may represent more of a constitutive immune priming process
than a perpetual, functional, antiviral defense. Results from mean field model fitting were
additionally confirmed in spatially explicit stochastic simulations of each time series.

As previously demonstrated in within-host models for HIV (Coffin 1995; Perelson et al.
1996; Nowak et al. 1995; Bonhoeffer et al. 1997; Ho et al. 1995), assumptions of simple target-
cell depletion can often provide satisfactory approximations of viral dynamics, especially those

reproduced in simple in vitro systems. Critically, our model fitting emphasizes the need for
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incorporation of top-down effects of immune control in order to accurately reproduce infectious
time series derived from bat cell tissue cultures, especially those resulting from the robustly
antiviral PaKiTO1 P. alecto cell line. These findings indicate that enhanced IFN-mediated
immune pathways in bat reservoirs may promote elevated within-host virus replication rates
prior to cross-species emergence. We nonetheless acknowledge the limitations imposed by in
vitro experiments in tissue culture, especially involving recombinant viruses and immortalized
cell lines. Future work should extend these cell culture studies to include measurements of
multiple state variables (i.e. antiviral cells) to enhance epidemiological inference.

The continued recurrence of Ebola epidemics across central Africa highlights the
importance of understanding bats’ roles as reservoirs for virulent zoonotic disease. The past
decade has born witness to emerging consensus regarding the unique pathways by which bats
resist and tolerate highly virulent infections (Brook and Dobson 2015; Xie et al. 2018; Zhang et
al. 2013; Ahn et al. 2019; Zhou et al. 2016; Ng et al. 2015; Pavlovich et al. 2018). Nonetheless,
an understanding of the mechanisms by which bats support endemic pathogens at the population
level, or promote the evolution of virulent pathogens at the individual level, remains elusive.
Endemic maintenance of infection is a defining characteristic of a pathogen reservoir (Haydon et
al. 2002), and bats appear to merit such a title, supporting long-term persistence of highly
transmissible viral infections in isolated island populations well below expected critical
community sizes (Peel et al. 2012). Researchers debate the relative influence of population-level
and within-host mechanisms which might explain these trends (Plowright et al. 2016), but
increasingly, field data are difficult to reconcile without acknowledgement of a role for persistent
infections (Peel et al. 2018; Brook et al. 2019). We present general methods to study cross-scale

viral dynamics, which suggest that within-host persistence is supported by robust antiviral
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538  responses characteristic of bat immune processes. Viruses which evolve rapid replication rates
539  under these robust antiviral defenses may pose the greatest hazard for cross-species pathogen
540  emergence into spillover hosts with immune systems that differ from those unique to bats.
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Materials and Methods
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Key Resources Table"
Reagent Designation Source or Identifiers Additional
type reference information
(species) or
resource
cell line Kidney (normal, epithelial, ATCC CCL-81
(Vero) adult)
cell line Kidney (normal, epithelial, (Biesold et al. RoNi/7.1
(Rousettus adult) 2011; Kiihl et
aegyptiacus) al. 2011)
cell line Kidney (normal, epithelial, (Crameri et al. PaKiTO1
(Pteropus adult) 2009)
alecto)
virus strain Replication competent, (Miller et al. rVSV-G
recombinant vesicular 2012; Wong
stomatitis Indiana virus etal. 2010)
expressing eGFP
virus strain Replication competent, (Miller et al. rVSV-
recombinant vesicular 2012; Wong EBOV
stomatitis Indiana virus etal. 2010)
expressing eGFP & EBOV
GP in place of VSV G
virus strain Replication competent, (Miller et al. rVSV-
recombinant vesicular 2012; Wong MARV
stomatitis Indiana virus etal. 2010)
expressing eGFP & MARV
GP in place of VSV G
reagent Hoechst 33342 Fluorescent ThermoFisher cat #:
Stain 62249
reagent L-Glutamine Solution ThermoFisher cat #:
25030081
reagent Gibco HEPES ThermoFisher cat #:
15630080
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reagent iTaq Universal SYBR Green BioRad cat #:
Supermix 1725120
commercial Quick RNA Mini Prep Kit Zymo cat #:
assay or kit R1054
commercial Invitrogen Superscript 111 ThermoFisher cat #:
assay or kit cDNA Synthesis Kit 18080051
software MatCont (version 2.2) (Dhooge et MatCont
al. 2008)
R R version 3.6.0 (R Core R
Team 2019)
*Note that primers for R. aegyptiacus and P. alecto B-Actin, IFN-o, and IFN-f genes are listed in
the SI Appendix, Table S3.

563

564  Cell Culture Experiments.

565  Cells.

566 All experiments were carried out on three immortalized mammalian kidney cell lines:
567  Vero (African green monkey), RoNi/7.1 (Rousettus aegyptiacus) (Kiihl et al. 2011; Biesold et al.
568  2011) and PaKiTO1 (Pteropus alecto) (Crameri et al. 2009). The species identification of all bat
569  cell lines were confirmed morphologically and genetically in the publications in which they were
570  originally described (Kiihl et al. 2011; Biesold et al. 2011; Crameri et al. 2009). Vero cells were
571  obtained from ATCC.

572 Monolayers of each cell line were grown to 90% confluency (~9 x 10° cells) in 6-well
573  plates. Cells were maintained in a humidified 37°C, 5% CO; incubator and cultured in

574  Dulbecco’s modified Eagle medium (DMEM) (Life Technologies, Grand Island, NY),

575  supplemented with 2% fetal bovine serum (FBS) (Gemini Bio Products, West Sacramento, CA),

576  and 1% penicillin-streptomycin (Life Technologies). Cells were tested monthly for mycoplasma
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contamination while experiments were taking place; all cells assayed negative for contamination
at every testing.

Previous work has demonstrated that all cell lines used are capable of mounting a type I
IFN response upon viral challenge, with the exception of Vero cells, which possess an IFN-f3
deficiency (Desmyter, Melnick, and Rawls 1968; Rhim et al. 1969; Emeny and Morgan 1979).
RoNi/7.1 cells have been shown to mount idiosyncratic induced IFN defenses upon viral
infection (Pavlovich et al. 2018; Kuzmin et al. 2017; Arnold et al. 2018; Kiihl et al. 2011;
Biesold et al. 2011), while PaKiTO1 cells are known to constitutively express the antiviral
cytokine, IFN-a (Zhou et al. 2016). This work is the first documentation of IFN signaling
induced upon challenge with the particular recombinant VSVs outlined below. We verified
known antiviral immune phenotypes via qPCR. Results were consistent with the literature,
indicating a less pronounced role for interferon defense against viral infection in RoNi/7.1 versus

PaKiTO1 cells.

Viruses.

Replication-capable recombinant vesicular stomatitis Indiana viruses, expressing filovirus
glycoproteins in place of wild type G (rVSV-G, rVSV-EBOV, and rVSV-MARV) have been
previously described (Wong et al. 2010; Miller et al. 2012). Viruses were selected to represent a
broad range of anticipated antiviral responses from host cells, based on a range of past
evolutionary histories between the virus glycoprotein mediating cell entry and the host cell’s
entry receptor. These interactions ranged from the total absence of evolutionary history in the
case of r'VSV-G infections on all cell lines to a known receptor-level cell entry incompatibility in

the case of rVSV-MARY infections on PaKiTO1 cell lines.
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To measure infectivities of rVSVs on each of the cell lines outlined above, so as to
calculate the correct viral dose for each MOI, NH4Cl1 (20 mM) was added to infected cell
cultures at 1-2 hours post-infection to block viral spread, and individual eGFP-positive cells

were manually counted at 12—14 hours post-infection.

Innate Immune Phenotypes via gPCR of IFN Genes.

Previously published work indicates that immortalized kidney cell lines of Rousettus
aegyptiacus (RoNi/7.1) and Pteropus alecto (PaKiTO1) exhibit different innate antiviral immune
phenotypes through, respectively, induced (Biesold et al. 2011; Pavlovich et al. 2018; Kiihl et al.
2011; Arnold et al. 2018) and constitutive (Zhou et al. 2016) expression of type I interferon
genes. We verified these published phenotypes on our own cell lines infected with rVSV-G,
rVSV-EBOV, and rVSV-MARYV via qPCR of IFN-a and IFN-3 genes across a longitudinal time
series of infection.

Specifically, we carried out multiple time series of infection of each cell line with each of
the viruses described above, under mock infection conditions and at MOIs of 0.0001 and
0.001—with the exception of rVSV-MARYV on PaKiTO01 cell lines, for which infection was only
performed at MOI=0.0001 due to limited viral stocks and the extremely low infectivity of this
virus on this cell line (thus requiring high viral loads for initial infection). All experiments were
run in duplicate on 6-well plates, such that a typical plate for any of the three viruses had two
control (mock) wells, two MOI=0.0001 wells and two MOI=0.001 wells, excepting PaKiT01
plates, which had two control and four MOI=0.0001 wells at a given time. We justify this

PaKiTO1 exemption through the expectation that IFN-o expression is constitutive for these cells,
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and by the assumption that any expression exhibited at the lower MOI should also be present at
the higher MOL.

For these gene expression time series, four 6-well plates for each cell line—virus
combination were incubated with virus for one hour at 37°C. Following incubation, virus was
aspirated off, and cell monolayers were washed in PBS, then covered with an agar plaque assay
overlay to mimic conditions under which infection trials were run. Plates were then harvested
sequentially at timepoints of roughly 5, 10, 15, and 20 hours post-infection (exact timing varied
as multiple trials were running simultaneously). Upon harvest of each plate, agar overlay was
removed, and virus was lysed and RNA extracted from cells using the Zymo Quick RNA Mini
Prep kit, according to the manufacturer’s instructions and including the step for cellular DNA
digestion. Post-extraction, RNA quality was verified via nanodrop, and RNA was converted to
cDNA using the Invitrogen Superscript III cDNA synthesis kit, according to the manufacturer’s
instructions. cDNA was then stored at 4°C and as a frozen stock at -20°C to await qPCR.

We undertook qPCR of cDNA to assess expression of the type I interferon genes, IFN-a
and IFN-f, and the housekeeping gene, B-Actin, using primers previously reported in the
literature (SI Appendix, Table S3). For qPCR, 2ul of each cDNA sample was incubated with 7ul
of deionized water, 1ul of SUM forward/reverse primer mix and 10ul of iTaq Universal SYBR
Green, then cycled on a QuantStudio3 Real-Time PCR machine under the following conditions:
initial denaturation at 94°C for 2 min followed by 40 cycles of: denaturation at 95°C (5 sec),
annealing at 58°C (15 sec), and extension at 72°C (10 sec).

We report simple 8-Ct values for each run, with raw Ct of the target gene of interest

(IFN-a or IFN-B) subtracted from raw Ct of the B-Actin housekeeping gene in SI Appendix,

Figure S7. Calculation of fold change upon viral infection in comparison to mock using the 6-6-
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645  Ct method (Livak and Schmittgen 2001) was inappropriate in this case, as we wished to

646  demonstrate constitutive expression of IFN-a in PaKiTO1 cells, whereby data from mock cells
647  was identical to that produced from infected cells.

648

649  Plaque Assays and Time Series Imaging.

650 After being grown to ~90% confluency, cells were incubated with pelleted rVSVs

651  expressing eGFP (rVSV-G, rVSV-EBOV, rVSV-MARYV). Cell lines were challenged with both a
652  low (0.0001) and high (0.001) multiplicity of infection (MOI) for each virus. In a cell monolayer

653  infected at a given MOI (m), the proportion of cells (P), infected by k viral particles can be

e~ Mmk
k!

654  described by the Poisson distribution: P(k) = , such that the number of initially infected

655  cells in an experiment equals: 1 — e~™. We assumed that a ~90% confluent culture at each

656  trial’s origin was comprised of ~9x10° cells and conducted all experiments at MOIs of 0.0001
657 and 0.001, meaning that we began each trial by introducing virus to, respectively, ~81 or 8§10
658  cells, representing the state variable ‘E’ in our theoretical model. Low MOIs were selected to
659  best approximate the dynamics of mean field infection and limit artifacts of spatial structuring,
660  such as premature epidemic extinction when growing plaques collide with plate walls in cell

661  culture.

662 Six well plates were prepared with each infection in duplicate or triplicate, such that a
663  control well (no virus) and 2-3 wells each at MOI 0.001 and 0.0001 were incubated

664  simultaneously on the same plate. In total, we ran between 18-39 trials at each cell-virus-MOI
665  combination, excepting r-VSV-MARYV infections on PaKiT01 cells at MOI=0.001, for which we
666  ran only 8 trials due to the low infectivity of this virus on this cell line, which required high viral

667  loads for initial infection. Cells were incubated with virus for one hour at 37°C. Following
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incubation, virus was aspirated off, and cell monolayers were washed in PBS, then covered with
a molten viscous overlay (50% 2X MEM/L-glutamine; 5% FBS; 3% HEPES; 42% agarose),
cooled for 20 minutes, and re-incubated in their original humidified 37°C, 5% CO: environment.

After application of the overlay, plates were monitored periodically using an inverted
fluorescence microscope until the first signs of GFP expression were witnessed (~6-9.5 hours
post-infection, depending on the cell line and virus under investigation). From that time forward,
a square subset of the center of each well (comprised of either 64- or 36-subframes and
corresponding to roughly 60 and 40% of the entire well space) was imaged periodically, using a
Celllnsight CX5 High Content Screening (HCS) Platform with a 4X air objective
(ThermoFisher, Inc., Waltham, MA). Microscope settings were held standard across all trials,
with exposure time fixed at 0.0006 sec for each image. One color channel was imaged, such that
images produced show GFP-expressing cells in white and non-GFP-expressing cells in black (SI
Appendix, Figure S1).

Wells were photographed in rotation, as frequently as possible, from the onset of GFP
expression until the time that the majority of cells in the well were surmised to be dead, GFP
expression could no longer be detected, or early termination was desired to permit Hoechst
staining.

In the case of PaKiTO1 cells infected with rVSV-EBOV, where an apparently persistent
infection established, the assay was terminated after 200+ hours (8+ days) of continuous
observation. Upon termination of all trials, cells were fixed in formaldehyde (4% for 15 min),
incubated with Hoechst stain (0.0005% for 15 min) (ThermoFisher, Inc., Waltham, MA), then
imaged at 4X on the Celllnsight CX5 High Content Screening (HCS) Platform. The machine was

allowed to find optimal focus for each Hoechst stain image. One color channel was permitted
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such that images produced showed live nuclei in white and dead cells in black. All original and
processed images are freely available for download at the following FigShare repository: DOI:

10.6084/m9.figshare.8312807.

Hoechst Staining.

Hoechst stain colors cellular DNA, and viral infection is thought to interfere with the
clarity of the stain (Dembowski and DeLuca, 2015). As such, infection termination, cell fixation,
and Hoechst staining enables generation of a rough time series of uninfectious live cells (i.e.
susceptible + antiviral cells) to complement the images which produced time series of
proportions infectious. Due to uncertainty over the exact epidemic state of Hoechst-stained cells
(i.e. exposed but not yet infectious cells may still stain), we elected to fit our models only to the
infectious time series derived from GFP-expressing images and used Hoechst stain images as a

post hoc visual check on our fit only (Figure 5, main text, and SI Appendix, Figures S8-S9).

Image Processing.

All image processing and data analysis was carried out in R version 3.6 for MacIntosh (R
Core Team 2019). Original images were imported into R and processed via the package
EBImage (Pau et al. 2010). Composite images of each well were first split into the 36 or 64-
subframes from which they were composed (each subframe represents the visual region of focus
for the microscope at the time of imaging). Each subframe was trimmed (to remove border
effects), processed individually, and recompiled post-processing into binary form, such that
light-colored regions of the original image were assigned a value of 1 (white), and dark regions

were assigned a value of 0 (black). In the case of images of GFP-expressing cells, these white
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regions corresponded to “infectious” cells, while in images of Hoechst-stained nuclei, they
indicated live, “uninfected” cells.

Microscope focus was poor for control wells and for subframes early in the time series of
each trial before GFP expression became apparent, and the original versions of any such
subframes were light gray and grainy. Our image processing code identified these subframes as
any which possessed a mean pixel value greater than .25 (a value substantially higher than any
subframes in which true GFP-expressing or Hoechst-stained cells were visible) and subsequently
converted the entire frame to 0 (black).

All other subframes were processed following thresholding methods that have been
previously described by the authors of EBImage (Pau et al. 2010). As a first pass, all pixels
excepting the top 25% lightest pixels tallied were converted to 0 (black). Next, each image frame
was walked through a series of secondary thresholding steps using if-else statements in R, such
that the lightness threshold for "infectious" status was elevated in frames which were lighter
overall due to manual variation in imaging and focusing. Processed subframes were then
reconstructed into composite binary images, which were manually checked against original
images to ensure consistent and reliable results.

Post-processing into binary form, the number of discrete shapes with value of 1 were
tabulated within each image, using the max(bwlabel(X)) function in EBimage, to determine a
cell count per image, again corresponding to a count of infectious cells for GFP-expressing
images and to a count of uninfected cells for Hoechst stain images. All image processing and
counting scripts, in addition to the resulting data, are freely available for download at the

following FigShare repository: DOI: 10.6084/m9.figshare.8312807.
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Data processing.

GFP-expressing images were processed and cells counted across the duration of each
infection trial, thus generating a time series of infectious cells. For a subset of plates, infection
was terminated, and cells were fixed, Hoechst stained, and imaged at periodic intervals across
the duration of the time series. Processing of these images thus allowed for construction of a
corresponding time series of live, uninfected cells. Because of logistical constraints (i.e. many
plates of simultaneously running infection trials and only one available imaging microscope), the
time course of imaging across the duration of each trial was quite variable. As such, we fitted a
series of statistical models to our raw image data to reconstruct reliable values of the infectious
proportion of each well per hour for each distinct trial in all cell line—virus-MOI combinations
(SI Appendix, Figure S2-S3).

There was considerable natural variation in initial cell counts across each trial, resulting
from subtle differences in the seeding density and growth duration of time until the trial was
initiated (when wells were subjectively deemed to have reached “90% confluency”). Baseline
cell counts were also different across our three cell lines, which varied substantially in natural
size. To correct for this variation, we opted to model the proportion of infectious cell spaces per
hour for each well, rather than rely on the raw count data. To this end, we collected the
maximum number of live cells counted in susceptible control wells at timepoint 0 and set this
count to a rough measure of 100% well occupancy for the cell line in question. Using this
method, maximum cell counts were, respectively, 103712, 82308, and 92233 for Vero, RoNi/7.1,
and PaKiTO1 cell lines, reflecting innate variation in cell sizes. We then converted all cell counts
tabulated via our image processing code across the infectious time trials into proportions by

dividing the counts by the total number of possible cell spaces for the cell line in question.
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Though clearly subject to some error, these methods nonetheless maintained internal consistency
in our counting methods and generated reasonable time series. We originally experimented with
directly tabulating the proportion of infected versus uninfected space in our binary images;
however, this approach impaired our ability to generalize across more or less densely seeded
trials, as well as trials on cell lines of disparate sizes. As such, we adopted the count-to-
proportion methods described here.

To generate an infectious time series of evenly distributed time steps against which to fit
our mean field mechanistic model, we next fit a series of statistical models to the proportional
data produced from the image processing methods described above. For the GFP-expressing
data, we used the mgcv package in R (Wood 2001) to fit generalized additive models (GAMs) in
the Gaussian family, with time elapsed (in hours) post infection as a predictor variable for
proportion of infectious cells (the response variable). We fit a separate GAM model to each
unique cell — virus — MOI combination, incorporating a random effect of well ID (such that each
trial was modeled individually), and we fixed the smoothing parameter at k=7 for all trials, as
recommended by the package author (Wood 2001). The gam.predict() function was used to
return an estimate of infectious proportions per hour across the duration of each time series for
each cell-virus-MOI combination.

The uninfected counts from the Hoechst stain data were much less numerous since each
count required termination of the infection trial and fixation of cells; by definition, only one data
point could be produced per trial. Due to this relative scarcity, we opted to fit a more standard
linear regression model, again in the Gaussian family, to these data, rather than using the data-
hungry GAM methods employed above. As before, we set time elapsed post infection as the

predictor for the Hoechst stain data and produced a unique estimate of the proportion of
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783  uninfected cells per hour across the duration of the longest-observed trial. No random effects
784  were included in this model, and the resulting time series were used to estimate natural mortality
785  rates for each cell line, when fit to control well data depicting natural susceptible decline (SI
786  Appendix, Figure S11).

787

788  Mean Field Model.

789  Theoretical Model Details.

790 To derive the expression for R, the basic pathogen reproductive number in vitro, we

791  used Next Generation Matrix (NGM) techniques (Diekmann, Heesterbeek, and Metz 1990;

792  Heffernan, Smith, and Wahl 2005), employing Wolfram Mathematica (version 11.2) as an

793  analytical tool (SI Appendix, Text S1). R, describes the number of new infections generated by
794  an existing infection in a completely susceptible host population; a pathogen will invade a

795  population when Ry > 1. We then analyzed stability properties of the system, exploring

796  dynamics across a range of parameter spaces, using MatCont (version 2.2) (Dhooge et al. 2008)
797  for Matlab (version R2018a) (SI Appendix, Table S2).

798

799  Theoretical Model Fitting.

800 The birth rate, b, and natural mortality rate, p, balance to yield a population-level growth
801 rate, such that it is impossible to estimate both » and p simultaneously from total population size
802  data alone. As such, we fixed b at .025 and estimated p by fitting an infection-absent version of
803  our mean field model to the susceptible time series derived via Hoechst staining of control wells
804  for each of the three cell lines (SI Appendix, Figure S11). This yielded a natural mortality rate, p,

805  corresponding to a lifespan of approximately 121, 191, and 84 hours, respectively, for Vero,
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806  RoNi/7.1, and PaKiTO1 cell lines (SI Appendix, Figure S11). We then fixed the virus incubation
807 rate, o, as the inverse of the shortest observed duration of time from initial infection to the

808  observation of the first infectious cells via fluorescent microscope for all nine cell line — virus

809  combinations (ranging 6 to 9.5 hours). We fixed a, the infection-induced mortality rate, at % , an

810  accepted standard for general viral kinetics (Howat et al. 2006), and held ¢, the rate of antiviral
811  cell regression to susceptible status, at O for the timespan (<200 hours) of the experimental cell
812  line infection trials.

813 We estimated cell line—virus-MOI-specific values for 3, p, and € by fitting the

814  deterministic output of infectious proportions in our mean field model to the full suite of

815  statistical outputs of all trials for each infected cell culture time series (SI Appendix, Figure S4-
816  S5). Fitting was performed by minimizing the sum of squared differences between the

817  deterministic model output and cell line—virus-MOI-specific infectious proportion of the data at
818  each timestep. We optimized parameters for MOI = 0.001 and 0.0001 simultaneously to leverage
819  statistical power across the two datasets, estimating a different transmission rate, 3, for trials run
820  ateach infectious dose but, where applicable, estimating the same rates of p and € across the two
821  time series. We used the differential equation solver Isoda() in the R package deSolve (Soetaert,
822  Petzoldt, and Setzer 2010) to obtain numerical solutions for the mean field model and carried out
823  minimization using the ‘Nelder-Mead’ algorithm of the optim() function in base R. All model
824  fits were conducted using consistent starting guesses for the parameters, 8 (f= 3), and where

825  applicable, p (p =0.001) and € (¢ = 0.001). In the case of failed fits or indefinite hessians, we
826  generated a series of random guesses around the starting conditions and continued estimation

827  until successful fits were achieved.
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828 All eighteen cell line—virus-MOI combinations of data were fit by an immune absent (¢ =
829  p=0) version of the theoretical model and, subsequently, an induced immunity (¢ = 0; p > 0)
830  and constitutive immunity (¢ > 0; p > 0) version of the model. Finally, we compared fits across
831  each cell line—virus-MOI combination via AIC. In calculating AIC, the number of fitted

832  parameters in each model (k) varied across the immune phenotypes, with one parameter (3)

833  estimated for absent immune assumptions, two (3 and p) for induced immune assumptions, and
834  three (B, p, and ¢€) for constitutive immune assumptions. The sample size (n) corresponded to the
835  number of discrete time steps across all empirical infectious trials to which the model was fitted
836  for each cell-line virus combination. All fitting and model comparison script is freely available
837  for download at the following FigShare repository: DOI: 685 10.6084/m9.figshare.8312807.

838

839  Spatial Model Simulations.

840 Finally, we verified all mean field fits in a spatial context, in order to more thoroughly
841  elucidate the role of antiviral cells in each time series. We constructed our spatial model in C++
842  implemented in R using the packages Rcpp and ReppArmadillo (Eddelbuettel and Francois

843  2011; Eddelbuettel and Sanderson 2017). Following Nagai and Honda (2001) and Howat et al.
844  (2006), we modeled this system on a two-dimensional hexagonal lattice, using a ten-minute

845  epidemic timestep for cell state transitions. At the initialization of each simulation, we randomly
846  assigned a duration of natural lifespan, incubation period, infectivity period, and time from

847  antiviral to susceptible status to all cells in a theoretical monolayer. Parameter durations were
848  drawn from a normal distribution centered at the inverse of the respective fixed rates of u, G, a,
849  and c, as reported with our mean field model. These durations were updated iteratively with each

850  time-step, based on each cell’s epidemic status. We fixed the parameters for antiviral acquisition

40


https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/696195; this version posted December 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

851 (e and p) at those values estimated in the mean field model, and to compensate for a higher virus
852  invasion threshold under spatial conditions, we fixed the birth rate b and the cell-to-cell

853  transmission rate, 3, at ten times the values recovered from optimization of the mean field model
854  (SI Appendix, Table S1).

855 Transitions involving the birth rate (b), the transmission rate (), and the induced (p) and
856  constitutive (¢) rates of antiviral acquisition were governed probabilistically and adjusted

857  dynamically based on each cell’s local and global environment. The birth rate, b, was thus

858  multiplied by the proportion of susceptible cells within a six neighbor radius of a focal dead cell,
859  while B was multiplied by the proportion of infectious cells within a thirty-six neighbor radius of
860  a focal susceptible cell; both p and € were multiplied by the global proportion of, respectively,
861  exposed and susceptible cells at a given time-step. We then simulated ten stochastic spatial time
862  series for all cell-virus combinations under all three immune assumptions at a population size of
863 10,000 cels and compared model output with data in SI Appendix, Figure S10. Spatial model
864  code is available for public access at the following FigShare repository: DOI:

865  10.6084/m9.figshare.8312807.

866

867
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