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Abstract 24 

Bats host virulent zoonotic viruses without experiencing disease. A mechanistic understanding of 25 

the impact of bats’ virus hosting capacities, including uniquely constitutive immune pathways, 26 

on cellular-scale viral dynamics is needed to elucidate zoonotic emergence. We carried out virus 27 

infectivity assays on bat cell lines expressing induced and constitutive immune phenotypes, then 28 

developed a theoretical model of our in vitro system, which we fit to empirical data. Best fit 29 

models recapitulated expected immune phenotypes for representative cell lines, supporting 30 

robust antiviral defenses in bat cells that correlated with higher estimates for within-host viral 31 

propagation rates. In general, heightened immune responses limit pathogen-induced cellular 32 

morbidity to promote the establishment of rapidly-propagating persistent infections within-host. 33 

Rapidly-replicating viruses that have evolved with bat immune systems will likely cause 34 

enhanced virulence following emergence into secondary hosts with immune systems that diverge 35 

from those unique to bats.  36 

 37 
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Introduction 47 

Bats have received much attention in recent years for their role as reservoir hosts for 48 

emerging viral zoonoses, including rabies and related lyssaviruses, Hendra and Nipah 49 

henipaviruses, Ebola and Marburg filoviruses, and SARS coronavirus (Calisher et al. 2006; 50 

Wang and Anderson 2019). In most non-Chiropteran mammals, henipaviruses, filoviruses, and 51 

coronaviruses induce substantial morbidity and mortality, display short durations of infection, 52 

and elicit robust, long-term immunity in hosts surviving infection (Nicholls et al. 2003; Hooper 53 

et al. 2001; Mahanty and Bray 2004). Bats, by contrast, demonstrate no obvious disease 54 

symptoms upon infection with pathogens that are highly virulent in non-volant mammals 55 

(Schountz et al. 2017) but may, instead, support viruses as long-term persistent infections, rather 56 

than transient, immunizing pathologies (Plowright et al. 2016).  57 

Recent research advances are beginning to shed light on the molecular mechanisms by 58 

which bats avoid pathology from these otherwise virulent pathogens (Brook and Dobson 2015). 59 

Bats leverage a suite of species-specific mechanisms to limit viral load, which include host 60 

receptor sequence incompatibilities for some bat-virus combinations (Ng et al. 2015) and 61 

constitutive expression of the antiviral cytokine, IFN-a, for others (Zhou et al. 2016). Typically, 62 

the presence of viral RNA or DNA in the cytoplasm of mammalian cells will induce secretion of 63 

type I interferon proteins (IFN-a and IFN-b), which promote expression and translation of 64 

interferon-stimulated genes (ISGs) in neighboring cells and render them effectively antiviral 65 

(Stetson and Medzhitov 2006). In some bat cells, the transcriptomic blueprints for this IFN 66 

response are expressed constitutively, even in the absence of stimulation by viral RNA or DNA 67 

(Zhou et al. 2016). In non-flying mammals, constitutive IFN expression would likely elicit 68 

widespread inflammation and concomitant immunopathology upon viral infection, but bats 69 
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support unique adaptations to combat inflammation (Zhang et al. 2013; Ahn et al. 2019; Xie et 70 

al. 2018; Pavlovich et al. 2018) that may have evolved to mitigate metabolic damage induced 71 

during flight (Kacprzyk et al. 2017). The extent to which constitutive IFN-a expression signifies 72 

constitutive antiviral defense in the form of functional IFN-a protein remains unresolved. In bat 73 

cells constitutively expressing IFN-a, some protein-stimulated, downstream ISGs appear to be 74 

also constitutively expressed, but additional ISG induction is nonetheless possible following viral 75 

challenge and stimulation of IFN-b (Zhou et al. 2016; Xie et al. 2018).  Despite recent advances 76 

in molecular understanding of bat viral tolerance, the consequences of this unique bat immunity 77 

on within-host virus dynamics—and its implications for understanding zoonotic emergence—78 

have yet to be elucidated. 79 

The field of ‘virus dynamics’ was first developed to describe the mechanistic 80 

underpinnings of long-term patterns of steady-state viral load exhibited by patients in chronic 81 

phase infections with HIV, who appeared to produce and clear virus at equivalent rates (Nowak 82 

and May 2000; Ho et al. 1995). Models of simple target cell depletion, in which viral load is 83 

dictated by a bottom-up resource supply of infection-susceptible host cells, were first developed 84 

for HIV (Perelson 2002) but have since been applied to other chronic infections, including 85 

hepatitis-C virus (Neumann et al. 1998), hepatitis-B virus (Nowak et al. 1996) and 86 

cytomegalovirus (Emery et al. 1999). Recent work has adopted similar techniques to model the 87 

within-host dynamics of acute infections, such as influenza A and measles, inspiring debate over 88 

the extent to which explicit modeling of top-down immune control can improve inference 89 

beyond the basic resource limitation assumptions of the target cell model (Baccam et al. 2006; 90 

Pawelek et al. 2012; Saenz et al. 2010; Morris et al. 2018).  91 
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To investigate the impact of unique bat immune processes on in vitro viral kinetics, we 92 

first undertook a series of virus infection experiments on bat cell lines expressing divergent 93 

interferon phenotypes, then developed a theoretical model elucidating the dynamics of within-94 

host viral spread. We evaluated our theoretical model analytically independent of the data, then 95 

fit the model to data recovered from in vitro experimental trials in order to estimate rates of 96 

within-host virus transmission and cellular progression to antiviral status under diverse 97 

assumptions of absent, induced, and constitutive immunity. Finally, we confirmed our findings in 98 

spatially-explicit stochastic simulations of fitted time series from our mean field model. We 99 

hypothesized that top-down immune processes would overrule classical resource-limitation in 100 

bat cell lines described as constitutively antiviral in the literature, offering a testable prediction 101 

for models fit to empirical data. We further predicted that the most robust antiviral responses 102 

would be associated with the most rapid within-host virus propagation rates but also protect cells 103 

against virus-induced mortality to support the longest enduring infections in tissue culture. 104 

 105 

Results 106 

Virus infection experiments in antiviral bat cell cultures yield reduced cell mortality and 107 

elongated epidemics. 108 

We first explored the influence of innate immune phenotype on within-host viral 109 

propagation in a series of infection experiments in cell culture. We conducted plaque assays on 110 

six-well plate monolayers of three immortalized mammalian kidney cell lines: [1] Vero (African 111 

green monkey) cells, which are IFN-defective and thus limited in antiviral capacity (Desmyter, 112 

Melnick, and Rawls 1968); [2] RoNi/7.1 (Rousettus aegyptiacus) cells which demonstrate 113 

idiosyncratic induced interferon responses upon viral challenge (Kuzmin et al. 2017; Arnold et 114 
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al. 2018; Biesold et al. 2011; Pavlovich et al. 2018); and [3] PaKiT01 (Pteropus alecto) cells 115 

which constitutively express IFN-a (Zhou et al. 2016; Crameri et al. 2009). To intensify cell 116 

line-specific differences in constitutive immunity, we carried out infectivity assays with GFP-117 

tagged, replication-competent vesicular stomatitis Indiana viruses: rVSV-G, rVSV-EBOV, and 118 

rVSV-MARV, which have been previously described (Miller et al. 2012; Wong et al. 2010). 119 

Two of these viruses, rVSV-EBOV and rVSV-MARV, are recombinants for which cell entry is 120 

mediated by the glycoprotein of the bat-evolved filoviruses, Ebola (EBOV) and Marburg 121 

(MARV), thus allowing us to modulate the extent of structural, as well as immunological, 122 

antiviral defense at play in each infection. Previous work in this lab has demonstrated 123 

incompatibilities in the NPC1 filovirus receptor which render PaKiT01 cells refractory to 124 

infection with rVSV-MARV (Ng and Chandran 2018), making them structurally antiviral, over 125 

and above their constitutive expression of IFN-a. All three cell lines were challenged with all 126 

three viruses at two multiplicities of infection (MOI): 0.001 and 0.0001. Between 18-39 trials 127 

were run at each cell-virus-MOI combination, excepting rVSV-MARV infections on PaKiT01 128 

cells at MOI=0.001, for which only 8 trials were run (see Materials and Methods; SI Appendix, 129 

Figure S1-S3, Dataset S1). 130 

 Because plaque assays restrict viral transmission neighbor-to-neighbor in two-131 

dimensional cellular space (Howat et al. 2006), we were able to track the spread of GFP-132 

expressing virus-infected cells across tissue monolayers via inverted fluorescence microscopy. 133 

For each infection trial, we monitored and re-imaged plates for up to 200 hours of observations 134 

or until total monolayer destruction, processed resulting images, and generated a time series of 135 

the proportion of infectious-cell occupied plate space across the duration of each trial (see 136 

Materials and Methods). We used generalized additive models to infer the time course of all cell 137 
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culture replicates and construct the multi-trial dataset to which we eventually fit our mechanistic 138 

transmission model for each cell line-virus-specific combination (Figure 1; SI Appendix, Figure 139 

S2-S5).  140 

 141 

Figure 1. Fitted time series of infectious cell proportions from mean field model for rVSV-G, 142 
rVSV-EBOV, and rVSV-MARV infections (columns) on Vero, RoNi/7.1, and PaKiT01 cell 143 
lines (rows) at MOI=0.001. Results are shown for the best fit immune absent model on Vero 144 
cells, induced immunity model on RoNi/7.1 cells, and constitutive (for rVSV-VSVG and rVSV-145 
EBOV) and induced (for rVSV-MARV) immunity models on PaKiT01 cells. Raw data across all 146 
trials are shown as open circles (statistical smoothers from each trial used for fitting are available 147 
in SI Appendix, Figure S2-S3). Model output is shown as a solid crimson line (95% confidence 148 
intervals by standard error = red shading). Panel background corresponds to empirical outcome 149 
of the average stochastic cell culture trial (persistent infection = white; virus-induced epidemic 150 
extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in 151 
Table 1 and S1. Results for absent/induced/constitutive fitted models across all cell lines are 152 
shown in SI Appendix, Figure S6 (MOI=0.001) and S7 (MOI=0.0001).  153 
 154 

All three recombinant vesicular stomatitis viruses (rVSV-G, rVSV-EBOV, and rVSV-155 

MARV) infected Vero, RoNi/7.1, and PaKiT01 tissue cultures at both focal MOIs. Post-156 
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invasion, virus spread rapidly across most cell monolayers, resulting in virus-induced epidemic 157 

extinction. Epidemics were less severe in bat cell cultures, especially when infected with the 158 

recombinant filoviruses, rVSV-EBOV and rVSV-MARV. Monolayer destruction was avoided in 159 

the case of rVSV-EBOV and rVSV-MARV infections on PaKiT01 cells: in the former, persistent 160 

viral infection was maintained throughout the 200-hour duration of each experiment, while, in 161 

the latter, infection was eliminated early in the time series, preserving a large proportion of live, 162 

uninfectious cells across the duration of the experiment. We assumed this pattern to be the result 163 

of immune-mediated epidemic extinction (Figure 1). Patterns from MOI=0.001 were largely 164 

recapitulated at MOI = 0.0001, though at somewhat reduced total proportions (SI Appendix, 165 

Figure S5). 166 

 167 

A theoretical model fit to in vitro data recapitulates expected immune phenotypes for bat 168 

cells.  169 

We next developed a within-host model to fit to these data in order to elucidate the 170 

effects of induced and constitutive immunity on the dynamics of viral spread in host tissue 171 

(Figure 1). The compartmental within-host system mimicked our two-dimensional cell culture 172 

monolayer, with cells occupying five distinct infection states: susceptible (S), antiviral (A), 173 

exposed (E), infectious (I), and dead (D). We modeled exposed cells as infected but not yet 174 

infectious, capturing the ‘eclipse phase’ of viral integration into a host cell which precedes viral 175 

replication. Antiviral cells were immune to viral infection, in accordance with the “antiviral 176 

state” induced from interferon stimulation of ISGs in tissues adjacent to infection (Stetson and 177 

Medzhitov 2006). Because we aimed to translate available data into modeled processes, we did 178 

not explicitly model interferon dynamics but instead scaled the rate of cell progression from 179 
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susceptible to antiviral (r) by the proportion of exposed cells (globally) in the system. In systems 180 

permitting constitutive immunity, a second rate of cellular acquisition of antiviral status (𝜀) 181 

additionally scaled with the global proportion of susceptible cells in the model. Compared with 182 

virus, IFN particles are small and highly diffusive, justifying this global signaling assumption at 183 

the limited spatial extent of a six well plate and maintaining consistency with previous modeling 184 

approximations of IFN signaling in plaque assay (Howat et al. 2006). 185 

To best represent our empirical monolayer system, we expressed our state variables as 186 

proportions (𝑃#, 𝑃$, 𝑃%, 𝑃&, and 𝑃'), under assumptions of frequency-dependent transmission in a 187 

well-mixed population (Keeling and Rohani 2008), though note that the inclusion of 𝑃' 188 

(representing the proportion of dead space in the modeled tissue) had the functional effect of  189 

varying transmission with infectious cell density. This resulted in the following system of 190 

ordinary differential equations: 191 

 192 

()*
(+
= 𝑏𝑃'(𝑃# +	𝑃$) − 𝛽𝑃4𝑃& − 𝜇𝑃# − 𝜌𝑃%𝑃# − 	𝜀𝑃# + 𝑐𝑃$     (1) 193 

()8
(+

= 𝜌𝑃%𝑃# + 	𝜀𝑃# − 𝑐𝑃$ − 𝜇𝑃$        (2) 194 

()9
(+

= 𝛽𝑃4𝑃& − 𝜎𝑃% − 𝜇𝑃%         (3) 195 

();
(+
= 𝜎𝑃% − 𝛼𝑃& − 𝜇𝑃&         (4) 196 

()=
(+

= 𝜇(𝑃# + 𝑃% +	𝑃& +	𝑃$) + 𝛼𝑃& − 𝑏𝑃'(𝑃# +	𝑃$)     (5) 197 

 198 

We defined “induced immunity” as complete, modeling all cells as susceptible to viral 199 

invasion at disease free equilibrium, with defenses induced subsequent to viral exposure through 200 

the term r. By contrast, we allowed the extent of constitutive immunity to vary across the 201 
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parameter range of 𝜀 > 0, defining a “constitutive” system as one containing any antiviral cells at 202 

disease free equilibrium. In fitting this model to tissue culture data, we independently estimated 203 

both r and 𝜀, as well as the cell-to-cell transmission rate, b, for each cell-virus combination. 204 

Since the extent to which constitutively-expressed IFN-a is constitutively translated into 205 

functional protein is not yet known for bat hosts (Zhou et al. 2016), this approach permitted our 206 

tissue culture data to drive modeling inference: even in PaKiT01 cell lines known to 207 

constitutively express IFN-a, the true constitutive extent of the system (i.e. the quantity of 208 

antiviral cells present at disease free equilibrium) was allowed to vary through estimation of 𝜀. 209 

For the purposes of model-fitting, we fixed the value of 𝑐, the return rate of antiviral cells to 210 

susceptible status, at 0. The small spatial scale and short time course (max 200 hours) of our 211 

experiments likely prohibited any return of antiviral cells to susceptible status in our empirical 212 

system; nonetheless, we retained the term 𝑐 in analytical evaluations of our model because 213 

regression from antiviral to susceptible status is possible over long time periods in vitro and at 214 

the scale of a complete organism (Samuel and Knutson 1982; Rasmussen and Farley 1975; 215 

Radke et al. 1974). 216 

Before fitting to empirical time series, we undertook bifurcation analysis of our 217 

theoretical model and generated testable hypotheses on the basis of model outcomes. From our 218 

within-host model system (equations 1-5), we derived the following expression for 𝑅A, the 219 

pathogen basic reproduction number: 220 

𝑅A =
BC(DEF)(GHF)

D(CHF)(IHF)(GHFHJ)
         (6) 221 

Pathogens can invade a host tissue culture when 𝑅A > 1. Rapid rates of constitutive antiviral 222 

acquisition (𝜀) will drive 𝑅A < 1: tissue cultures with highly constitutive antiviral immunity will 223 

be therefore resistant to virus invasion from the outset. Since, by definition, induced immunity is 224 
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stimulated following initial virus invasion, the rate of induced antiviral acquisition (r) is not 225 

incorporated into the equation for 𝑅A; while induced immune processes can control virus after 226 

initial invasion, they cannot prevent it from occurring to begin with. In cases of fully induced or 227 

absent immunity (𝜀 = 0), the 𝑅A equation thus reduces to a form typical of the classic SEIR 228 

model: 229 

𝑅A =
BC(DEF)

D(IHF)(CHF)
          (7) 230 

At equilibrium, the theoretical, mean field model demonstrates one of three infection 231 

states: endemic equilibrium, stable limit cycles, or no infection (Figure 2). Respectively, these 232 

states approximate the persistent infection, virus-induced epidemic extinction, and immune-233 

mediated epidemic extinction phenotypes previously witnessed in tissue culture experiments 234 

(Figure 1). Theoretically, endemic equilibrium is maintained when new infections are generated 235 

at the same rate at which infections are lost, while limit cycles represent parameter space under 236 

which infectious and susceptible populations are locked in predictable oscillations. Endemic 237 

equilibriums resulting from cellular regeneration (i.e. births) have been described in vivo for HIV 238 

(Coffin 1995) and in vitro for herpesvirus plaque assays (Howat et al. 2006), but, because they so 239 

closely approach zero, true limit cycles likely only occur theoretically, instead yielding stochastic 240 

extinctions in empirical time series.  241 
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 242 

Figure 2. Two parameter bifurcations of the mean field model, showing variation in the 243 
transmission rate, b, against variation in the pathogen-induced mortality rate, a, under diverse 244 
immune assumptions. Panel (A) depicts dynamics under variably constitutive immunity, ranging 245 
from absent (left: 𝜀 = 0) to high (right: 𝜀 = .0025). In all panel (A) plots, the rate of induced 246 
immune antiviral acquisition (r) was fixed at 0.01. Panel (B) depicts dynamics under variably 247 
induced immunity, ranging from absent (left: r=0) to high (right: r=1). In all panel (B) plots, the 248 
rate of constitutive antiviral acquisition (𝜀) was fixed at 0.0001. Branch point curves are 249 
represented as solid lines and Hopf curves as dashed lines. White space indicates endemic 250 
equilibrium (persistence), gray space indicates limit cycles, and black space indicates no 251 
infection (extinction). Other parameter values for equilibrium analysis were fixed at: b = .025, µ 252 
= .001, s = 1/6, c = 0. Special points from bifurcations analyses are listed in SI Appendix, Table 253 
S2. 254 
 255 

Bifurcation analysis of our mean field model revealed that regions of no infection 256 

(pathogen extinction) were bounded at lower threshold (Branch point) values for b, below which 257 

the pathogen was unable to invade. We found no upper threshold to invasion for b under any 258 

circumstances (i.e. b high enough to drive pathogen-induced extinction), but high b values 259 

resulted in Hopf bifurcations, which delineate regions of parameter space characterized by limit 260 
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cycles. Since limit cycles so closely approach zero, high bs recovered in this range would likely 261 

produce virus-induced epidemic extinctions under experimental conditions. Under more robust 262 

representations of immunity, with higher values for either or both induced (r) and constitutive 263 

(𝜀) rates of antiviral acquisition, Hopf bifurcations occurred at increasingly higher values for b, 264 

meaning that persistent infections could establish at higher viral replication rates (Figure 2). 265 

Consistent with our derivation for 𝑅A, we found that the Branch point threshold for viral invasion 266 

was independent of changes to the induced immune parameter (r) but saturated at high values of 267 

𝜀 that characterize highly constitutive immunity (Figure 3).  268 

 269 

 270 
 271 
Figure 3. Two parameter bifurcations of the mean field model, showing variation in the 272 
transmission rate, b, against variation in: (A) the induced immunity rate of antiviral acquisition 273 
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(r) and (B) the constitutive immunity rate of antiviral acquisition (𝜀). Panels show variation in 274 
the extent of immunity, from absent (left) to high (right). Branch point curves are represented as 275 
solid lines and Hopf curves as dashed lines. White space indicates endemic equilibrium 276 
(persistence), gray space indicates limit cycling, and black space indicates no infection 277 
(extinction). Other parameter values for equilibrium analysis were fixed at: b = .025, µ = .001, s 278 
= 1/6, a = 1/6, c = 0. Special points from bifurcations analyses are listed in SI Appendix, Table 279 
S2. 280 

 281 

We next fit our theoretical model by least squares to each cell line-virus combination, 282 

under absent, induced, and constitutive assumptions of immunity. In general, best fit models 283 

recapitulated expected outcomes based on the immune phenotype of the cell line in question, as 284 

described in the general literature (Table 1; SI Appendix, Table S1). The absent immune model 285 

offered the most accurate approximation of IFN-deficient Vero cell time series, the induced 286 

immune model best recovered the RoNi/7.1 cell trials, and, in most cases, the constitutive 287 

immune model most closely recaptured infection dynamics across constitutively IFN-a-288 

expressing PaKiT01 cell lines (Figure 1; SI Appendix, Figure S4-S5, Table S1). Ironically, the 289 

induced immune model offered a slightly better fit than the constitutive to rVSV-MARV 290 

infections on the PaKiT01 cell line (the one cell line-virus combination for which we know a 291 

constitutively antiviral cell-receptor incompatibility to be at play). Because constitutive immune 292 

assumptions can prohibit pathogen invasion (𝑅A < 1), model fits to this time series under 293 

constitutive assumptions were handicapped by overestimations of 𝜀, which prohibited pathogen 294 

invasion. Only by incorporating an exceedingly rapid rate of induced antiviral acquisition could 295 

the model guarantee that initial infection would be permitted and then rapidly controlled. 296 

 297 

 298 

 299 

 300 
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Table 1. Optimized parameters from best fit deterministic model and spatial approximation 301 

Cell Line Virus 
Immune 

Assumption 
 

Antiviral 
Rate 

e 
[lci – uci] * 

r 
[lci – uci] * 

b 
[lci – uci] * 

mean 
field 
R0 

spatial 
b 
 

Vero 

rVSV-G  
Absent 0 0 [0-0] 0 [0-0] 2.44 

[1.52-3.36] 8.729 24.418 

rVSV-EBOV 
 

 
Absent 0 0 [0-0] 0 [0-0] 1.5 

[1.06-1.94] 5.416 14.996 

rVSV-MARV  
Absent 0 0 [0-0] 0 [0-0] 0.975 

[0.558-1.39] 3.454 9.752 

RoNi/7.1 

rVSV-G  
Induced 7.03x10-5 0 [0-0] 0.089 

[0-0.432] 
2.47 

[1.49-3.45] 10.907 24.705 

rVSV-EBOV 
 

 
Induced 2.87x10-5 0 [0-0] 0.0363 

[0-0.343] 
0.685 

[0.451-0.919] 3.043 6.849 

rVSV-MARV  
Induced 1.40x10-5 0 [0-0] 0.0177 

[0-0.257] 
1.23 

[0.917-1.55] 5.475 12.324 

PaKiT01 

rVSV-G  
Constitutive .00209 0.00602 

[0-0.019] 
8.26 x10-8 

[0-4.75 x10-7] 
3.45 

[1.07-5.84] 6.189 34.516 

rVSV-EBOV 
 

 
Constitutive .00499 0.0478 

[0-0.0958] 
4.46x10-8 

[0-4.37 x10-7] 
34.5 

[28.7-40.2] 18.823 344.821 

rVSV-MARV  
Induced .00687 0 [0-0] 13.1 

[0-37.9] 
3.25 

[0-41.3] 8.828 32.452 

* lci = lower and uci = upper 95% confidence interval. No confidence interval is shown for spatial b which was fixed at 10 times the estimated 302 
mean for the mean field model fits when paired with equivalent values of e and r.  303 
All other parameters were fixed at the following values: b=.025; a = 1/6; c=0; µ= 1/121 (Vero),  1/191 (RoNi/7.1), and 1/84 (PaKiT01) 304 
 305 

Robust immunity is linked to rapid within-host virus transmission rates in fitted models.  306 

In fitting our theoretical model to in vitro data, we estimated the within-host virus 307 

transmission rate (b) and the rate(s) of cellular acquisition to antiviral status (r or r + 𝜀) (Table 308 

1; SI Appendix, Table S1). Under absent immune assumptions, r and 𝜀 were fixed at 0 while b 309 

was estimated; under induced immune assumptions, 𝜀 was fixed at 0 while r and b were 310 

estimated; and under constitutive immune assumptions, all three parameters (r, 𝜀, and b) were 311 

simultaneously estimated for each cell-virus combination. Best fit parameter estimates for 312 

MOI=0.001 data are visualized in conjunction with b – r and b – 𝜀 bifurcations in Figure 4; all 313 

general patterns were recapitulated at lower values for b on MOI=0.0001 trials (SI Appendix, 314 

Figure S6).  315 
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 316 
Figure 4. Best fit parameter estimates for b and r or 𝜀 from mean-field model fits to MOI=0.001 317 
time series data, atop (A,B) b – r  and (C) b – 𝜀 bifurcation. Fits and bifurcations are grouped by 318 
immune phenotype: (A) absent; (B) induced; (C) constitutive immunity, with cell lines 319 
differentiated by shape (Vero=circles; RoNi/7.1 = triangles; PaKiT01=squares) and viral 320 
infections by color (rVSV-G = green, rVSV-EBOV = magenta, rVSV-MARV = blue). Note that 321 
y-axis values are ten-fold higher in panel (C). Branch point curves (solid lines) and Hopf curves 322 
(dashed lines) are reproduced from Figure 3. White space indicates endemic equilibrium 323 
(pathogen persistence), gray space indicates limit cycling (virus-induced epidemic extinction), 324 
and black space indicates no infection (immune-mediated pathogen extinction). In panel (A) and 325 
(B), 𝜀 is fixed at 0; in panel (C), r is fixed at 5x10-8 for bifurcation curves and estimated at 4x10-326 
8 and 8x10-8 for rVSV-EBOV and rVSV-G parameter points, respectively. Other parameter 327 
values were fixed at: b = .025, µ = 0.001, s = 1/6, a = 1/6, and c = 0 across all panels. Raw fitted 328 
values and corresponding 95% confidence intervals for b, r, and 𝜀, background parameter 329 
values, and AIC recovered from model fit, are reported in SI, Appendix Table S1. Parameter fits 330 
at MOI=0.0001 are visualized in SI Appendix, Figure S6. 331 
 332 
 333 

As anticipated, the immune absent model (a simple target cell model) offered the best fit 334 

to IFN-deficient Vero cell infections (Figure 4, Table 1; SI Appendix, Figure S4-S5, Table S1). 335 

absent
immunity
absent

immunity
absent

immunity

0

1

2

3

0
 r

tra
ns

m
is

si
on

,  
b

A.

Cell
Vero

RoNi/7.1

PaKiT01

Curve
Branch

Hopf

Virus
rVSV−G

rVSV−EBOV

rVSV−MARV

induced immunity

0

1

2

3

.00001 .001 .1 1 10
induced antiviral acquisition,  r

tra
ns

m
is

si
on

,  
b

B.

constitutive immunity

0

10

20

30

.00001 .001 .1 1 10
constitutive antiviral acquisition,  e

tra
ns

m
is

si
on

,  
b

C.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 17 

Among Vero cell trials, infections with rVSV-G produced the highest b estimates, followed by 336 

infections with rVSV-EBOV and rVSV-MARV. Best fit parameter estimates on Vero cell lines 337 

localized in the region of parameter space corresponding to theoretical limit cycles, consistent 338 

with observed virus-induced epidemic extinctions in stochastic tissue cultures. 339 

In contrast to Vero cells, the induced immunity model offered the best fit to all RoNi/7.1 340 

data, consistent with reported patterns in the literature and our own validation by qPCR (Table 1; 341 

SI Appendix, Figure S7; Biesold et al. 2011; Kuzmin et al. 2017; Arnold et al. 2018; Pavlovich 342 

et al. 2018). As in Vero cell trials, we estimated highest b values for rVSV-G infections on 343 

RoNi/7.1 cell lines but here recovered higher b estimates for rVSV-MARV than for rVSV-344 

EBOV. This reversal was balanced by a higher estimated rate of acquisition to antiviral status (r) 345 

for rVSV-EBOV versus rVSV-MARV. In general, we observed that more rapid rates of antiviral 346 

acquisition (either induced, r, constitutive, 𝜀, or both) correlated with higher transmission rates 347 

(b). When offset by r, b values estimated for RoNi/7.1 infections maintained the same amplitude 348 

as those estimated for immune-absent Vero cell lines but caused gentler epidemics and reduced 349 

cellular mortality (Figure 1). RoNi/7.1 parameter estimates localized in the region corresponding 350 

to endemic equilibrium for the deterministic, theoretical model (Figure 4), yielding less acute 351 

epidemics which nonetheless went extinct in stochastic experiments. 352 

Finally, rVSV-G and rVSV-EBOV trials on PaKiT01 cells were best fit by models 353 

assuming constitutive immunity, while rVSV-MARV infections on PaKiT01 were matched 354 

equivalently by models assuming either induced or constitutive immunity—with induced models 355 

favored over constitutive in AIC comparisons because one fewer parameter was estimated (SI 356 

Appendix, Figure S4-S5, Table S1). For all virus infections, PaKiT01 cell lines yielded b 357 

estimates a full order of magnitude higher than Vero or RoNi/7.1 cells, with each b balanced by 358 
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an immune response (either r, or r combined with 𝜀) also an order of magnitude higher than that 359 

recovered for the other cell lines (Figure 4; Table 1). As in RoNi/7.1 cells, PaKiT01 parameter 360 

fits localized in the region corresponding to endemic equilibrium for the deterministic theoretical 361 

model. Because constitutive immune processes can actually prohibit initial pathogen invasion, 362 

constitutive immune fits to rVSV-MARV infections on PaKiT01 cell lines consistently localized 363 

at or below the Branch point threshold for virus invasion (𝑅A = 1). During model fitting for 364 

optimization of 𝜀, any parameter tests of 𝜀 values producing 𝑅A < 1 resulted in no infection and, 365 

consequently, produced an exceedingly poor fit to infectious time series data. In all model fits 366 

assuming constitutive immunity, across all cell lines, parameter estimates for r and 𝜀 traded off, 367 

with one parameter optimized at values approximating zero, such that the immune response was 368 

modeled as almost entirely induced or entirely constitutive (Table 1; SI Appendix, Table S1). For 369 

RoNi/7.1 cells, even when constitutive immunity was allowed, the immune response was 370 

estimated as almost entirely induced, while for rVSV-G and rVSV-EBOV fits on PaKiT01 cells, 371 

the immune response optimized as almost entirely constitutive. For rVSV-MARV on PaKiT01 372 

cells, however, estimation of r was high under all assumptions, such that any additional antiviral 373 

contributions from 𝜀 prohibited virus from invading at all. The induced immune model thus 374 

produced a more parsimonious recapitulation of these data because virus invasion was always 375 

permitted, then rapidly controlled. 376 

 377 

Antiviral cells safeguard live cells against rapid cell mortality to elongate epidemic 378 

duration in vitro. 379 

 In order to compare the relative contributions of each cell line’s disparate immune 380 

processes to epidemic dynamics, we next used our mean field parameter estimates to calculate 381 
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the initial ‘antiviral rate’—the initial accumulation rate of antiviral cells upon virus invasion for 382 

each cell-virus-MOI combination—based on the following equation: 383 

 384 

𝐴𝑛𝑡𝑖𝑣𝑖𝑟𝑎𝑙	𝑅𝑎𝑡𝑒 = 	𝜌𝑃%𝑃# − 	𝜀𝑃#        (8) 385 

 386 

where PE was calculated from the initial infectious dose (MOI) of each infection experiment and 387 

PS was estimated at disease free equilibrium: 388 

 389 

𝑃% = 	1 − 𝑒EZ[&          (9) 390 

𝑃4 = 	
(DEF)(GHF)
D(GHFHJ)

          (10) 391 

 392 

Because 𝜌 and 𝜀 both contribute to this initial antiviral rate, induced and constitutive immune 393 

assumptions are capable of yielding equally rapid rates, depending on parameter fits. Indeed, 394 

under fully induced immune assumptions, the induced antiviral acquisition rate (r) estimated for 395 

rVSV-MARV infection on PaKiT01 cells was so high that the initial antiviral rate exceeded even 396 

that estimated under constitutive assumptions for this cell-virus combination (SI Appendix, 397 

Table S1). In reality, we know that NPC1 receptor incompatibilities make PaKiT01 cell lines 398 

constitutively refractory to rVSV-MARV infection (Ng and Chandran 2018) and that PaKiT01 399 

cells also constitutively express the antiviral cytokine, IFN-a. Model fitting results suggest that 400 

this constitutive expression of IFN-a may act more as a rapidly inducible immune response 401 

following virus invasion than as a constitutive secretion of functional IFN-a protein. 402 

Nonetheless, as hypothesized, PaKiT01 cell lines were by far the most antiviral of any in our 403 

study—with initial antiviral rates estimated several orders of magnitude higher than any others in 404 
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our study, under either induced or constitutive assumptions (Table 1; SI Appendix, Table S1). 405 

RoNi/7.1 cells displayed the second-most-pronounced signature of immunity, followed by Vero 406 

cells, for which the initial antiviral rate was essentially zero even under forced assumptions of 407 

induced or constitutive immunity (Table 1; SI Appendix, Table S1).  408 

Using fitted parameters for b and 𝜀, we additionally calculated R0, the basic reproduction 409 

number for the virus, for each cell line-virus-MOI combination (Table 1; SI Appendix, Table 410 

S1). We found that R0 was essentially unchanged across differing immune assumptions for 411 

RoNi/7.1 and Vero cells, for which the initial antiviral rate was low. In the case of PaKiT01 412 

cells, a high initial antiviral rate under either induced or constitutive immunity resulted in a 413 

correspondingly high estimation of b (and, consequently, R0) which still produced the same 414 

epidemic curve that resulted from the much lower estimates for b and R0 paired with absent 415 

immunity. These findings suggest that antiviral immune responses protect host tissues against 416 

virus-induced cell mortality to permit the establishment of more rapid within-host transmission 417 

rates.  418 

Total monolayer destruction occurred in all cell-virus combinations excepting rVSV-419 

EBOV infections on RoNi/7.1 cells and rVSV-EBOV and rVSV-MARV infections on PaKiT01 420 

cells. Monolayer destruction corresponded to susceptible cell depletion and epidemic turnover 421 

where R-effective (the product of 𝑅A and the proportion susceptible) was reduced below one 422 

(Figure 5). For rVSV-EBOV infections on RoNi/7.1, induced antiviral cells safeguarded remnant 423 

live cells, which birthed new susceptible cells late in the time series. In rVSV-EBOV and rVSV-424 

MARV infections on PaKiT01 cells, this antiviral protection halted the epidemic (Figure 5; R-425 

effective <1) before susceptibles fully declined. In the case of rVSV-EBOV on PaKiT01, the 426 

birth of new susceptibles from remnant live cells protected by antiviral status maintained late-427 
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stage transmission to facilitate long-term epidemic persistence. Importantly, under fixed 428 

parameter values for the infection incubation rate (s) and infection-induced mortality rate (a), 429 

models were unable to reproduce the longer-term infectious time series captured in data from 430 

rVSV-EBOV infections on PaKiT01 cell lines without incorporation of cell births, an 431 

assumption adopted in previous modeling representations of IFN-mediated viral dynamics in 432 

tissue culture (Howat et al. 2006). In our experiments, we observed that cellular reproduction 433 

took place as plaque assays achieved confluency.  434 

 435 

 436 

 437 

Figure 5. Fitted time series of susceptible (green shading) and antiviral (blue shading) cell 438 
proportions from the mean field model for rVSV-G, rVSV-EBOV, and rVSV-MARV infections 439 
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(columns) on Vero, RoNi/7.1, and PaKiT01 cell lines (rows) at MOI=0.001. Results are shown 440 
for the best fit immune absent model on Vero cells, induced immunity model on RoNi/7.1 cells 441 
and constitutive (rVSV-G and rVSV-EBOV) and induced (rVSV-MARV) immune models on 442 
PaKiT01 cells. Combined live, uninfectious cell populations (S + A + E) are shown in tan 443 
shading, with raw live, uninfectious cell data from Hoechst stains visualized as open circles. The 444 
right-hand y-axis corresponds to R-effective (pink solid line) across each time series; R-effective 445 
=1 is a pink dashed, horizontal line. Panel background corresponds to empirical outcome of the 446 
average stochastic cell culture trial (persistent infection = white; virus-induced epidemic 447 
extinction = gray; immune-mediated epidemic extinction = black). Parameter values are listed in 448 
SI Appendix, Table S1 and results for absent/induced/constitutive fitted models across all cell 449 
lines in Figure S8 (MOI=0.001) and S9 (MOI=0.0001).  450 

 451 

Finally, because the protective effect of antiviral cells is more clearly observable 452 

spatially, we confirmed our results by simulating fitted time series in a spatially-explicit, 453 

stochastic reconsttruction of our mean field model. In spatial simulations, rates of antiviral 454 

acquisition were fixed at fitted values for r and 𝜀 derived from mean field estimates, while 455 

transmission rates (b) were fixed at values ten times greater than those estimated under mean 456 

field conditions because spatial structure is known to intensify parameter thresholds permitting 457 

pathogen invasion (Webb, Keeling and Boots, 2007; SI Appendix, Figure S10, Video S1-S3). In 458 

immune capable time series, spatial antiviral cells acted as ‘refugia’ which protected live cells 459 

from infection as each initial epidemic wave ‘washed’ across a cell monolayer. Eventual birth of 460 

new susceptibles from these living refugia allowed for sustained epidemic transmission in cases 461 

where some infectious cells persisted at later timepoints in simulation (SI Appendix, Figure S10, 462 

Video S1-S3). 463 

 464 

Discussion 465 

Bats are reservoirs for several important emerging zoonoses but appear not to experience 466 

disease from otherwise virulent viral pathogens. Though the molecular biological literature has 467 

made great progress in elucidating the mechanisms by which bats tolerate viral infections (Zhou 468 
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et al. 2016; Ahn et al. 2019; Xie et al. 2018; Pavlovich et al. 2018; Zhang et al. 2013), the impact 469 

of unique bat immunity on virus dynamics within-host has not been well-elucidated. We used an 470 

innovative combination of in vitro experimentation and within-host modeling to explore the 471 

impact of unique bat immunity on virus dynamics. Critically, we found that bat cell lines 472 

demonstrated a signature of enhanced interferon-mediated immune response, of either 473 

constitutive or induced form, which allowed for establishment of rapid within-host, cell-to-cell 474 

virus transmission rates (b). These results were supported by both data-independent bifurcation 475 

analysis of our mean field theoretical model, as well as fitting of this model to viral infection 476 

time series established in bat cell culture. Additionally, we demonstrated that the antiviral state 477 

induced by the interferon pathway protects live cells from mortality in tissue culture, resulting in 478 

in vitro epidemics of extended duration that enhance that probability of establishing a long-term 479 

persistent infection. Our findings suggest that viruses evolved in bat reservoirs possessing 480 

enhanced IFN capabilities could achieve more rapid within-host transmission rates without 481 

causing pathology to their hosts. Such rapidly-reproducing viruses would likely generate extreme 482 

virulence upon spillover to hosts lacking similar immune capacities to bats.  483 

To achieve these results, we first developed a novel, within-host, theoretical model 484 

elucidating the effects of unique bat immunity, then undertook bifurcation analysis of the 485 

model’s equilibrium properties under immune absent, induced, and constitutive assumptions. We 486 

considered a cell line to be constitutively immune if possessing any number of antiviral cells at 487 

disease free equilibrium but allowed the extent of constitutive immunity to vary across the 488 

parameter range for 𝜀, the constitutive rate of antiviral acquisition. In deriving the equation for 489 

𝑅A, the basic reproduction number, which defines threshold conditions for virus invasion of a 490 

tissue (𝑅A > 1), we demonstrated how the invasion threshold is elevated at high values of 491 
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constitutive antiviral acquisition, 𝜀. Constitutive immune processes can thus prohibit pathogen 492 

invasion, while induced responses, by definition, can only control infections post-hoc. Once 493 

thresholds for pathogen invasion have been met, assumptions of constitutive immunity will limit 494 

the cellular mortality (virulence) incurred at high transmission rates. Regardless of mechanism 495 

(induced or constitutive), interferon-stimulated antiviral cells appear to play a key role in 496 

maintaining longer term or persistent infections by safeguarding susceptible cells from rapid 497 

infection and concomitant cell death. 498 

Fitting of our model to in vitro data supported expected immune phenotypes for different 499 

bat cell lines as described in the literature. Simple target cell models that ignore the effects of 500 

immunity best recapitulated infectious time series derived from IFN-deficient Vero cells, while 501 

models assuming induced immune processes most accurately reproduced trials derived from 502 

RoNi/7.1 (Rousettus aegyptiacus) cells, which possesses a standard virus-induced IFN-response. 503 

In most cases, models assuming constitutive immune processes best recreated virus epidemics 504 

produced on PaKiT01 (Pteropus alecto) cells, which are known to constitutively express the 505 

antiviral cytokine, IFN-a (Zhou et al. 2016). Model support for induced immune assumptions in 506 

fits to rVSV-MARV infections on PaKiT01cells suggests that the constitutive IFN-a expression 507 

characteristic of P. alecto cells may represent more of a constitutive immune priming process 508 

than a perpetual, functional, antiviral defense. Results from mean field model fitting were 509 

additionally confirmed in spatially explicit stochastic simulations of each time series. 510 

 As previously demonstrated in within-host models for HIV (Coffin 1995; Perelson et al. 511 

1996; Nowak et al. 1995; Bonhoeffer et al. 1997; Ho et al. 1995), assumptions of simple target-512 

cell depletion can often provide satisfactory approximations of viral dynamics, especially those 513 

reproduced in simple in vitro systems. Critically, our model fitting emphasizes the need for 514 
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incorporation of top-down effects of immune control in order to accurately reproduce infectious 515 

time series derived from bat cell tissue cultures, especially those resulting from the robustly 516 

antiviral PaKiT01 P. alecto cell line. These findings indicate that enhanced IFN-mediated 517 

immune pathways in bat reservoirs may promote elevated within-host virus replication rates 518 

prior to cross-species emergence. We nonetheless acknowledge the limitations imposed by in 519 

vitro experiments in tissue culture, especially involving recombinant viruses and immortalized 520 

cell lines. Future work should extend these cell culture studies to include measurements of 521 

multiple state variables (i.e. antiviral cells) to enhance epidemiological inference.  522 

The continued recurrence of Ebola epidemics across central Africa highlights the 523 

importance of understanding bats’ roles as reservoirs for virulent zoonotic disease. The past 524 

decade has born witness to emerging consensus regarding the unique pathways by which bats 525 

resist and tolerate highly virulent infections (Brook and Dobson 2015; Xie et al. 2018; Zhang et 526 

al. 2013; Ahn et al. 2019; Zhou et al. 2016; Ng et al. 2015; Pavlovich et al. 2018). Nonetheless, 527 

an understanding of the mechanisms by which bats support endemic pathogens at the population 528 

level, or promote the evolution of virulent pathogens at the individual level, remains elusive. 529 

Endemic maintenance of infection is a defining characteristic of a pathogen reservoir (Haydon et 530 

al. 2002), and bats appear to merit such a title, supporting long-term persistence of highly 531 

transmissible viral infections in isolated island populations well below expected critical 532 

community sizes (Peel et al. 2012). Researchers debate the relative influence of population-level 533 

and within-host mechanisms which might explain these trends (Plowright et al. 2016), but 534 

increasingly, field data are difficult to reconcile without acknowledgement of a role for persistent 535 

infections (Peel et al. 2018; Brook et al. 2019). We present general methods to study cross-scale 536 

viral dynamics, which suggest that within-host persistence is supported by robust antiviral 537 
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responses characteristic of bat immune processes. Viruses which evolve rapid replication rates 538 

under these robust antiviral defenses may pose the greatest hazard for cross-species pathogen 539 

emergence into spillover hosts with immune systems that differ from those unique to bats. 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

 557 
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 559 

 560 
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Materials and Methods 561 

 562 
Key Resources Table* 

Reagent 
type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

cell line 
(Vero) 

Kidney (normal, epithelial, 
adult) 

ATCC CCL-81   

cell line 
(Rousettus 
aegyptiacus) 

Kidney (normal, epithelial, 
adult) 

(Biesold et al. 
2011; Kühl et 
al. 2011) 

RoNi/7.1  

cell line 
(Pteropus 
alecto) 

Kidney (normal, epithelial, 
adult) 

(Crameri et al. 
2009) 

PaKiT01  

virus strain Replication competent, 
recombinant vesicular 
stomatitis Indiana virus 
expressing eGFP 

(Miller et al. 
2012; Wong 
et al. 2010) 

rVSV-G 
 

virus strain Replication competent, 
recombinant vesicular 
stomatitis Indiana virus 
expressing eGFP & EBOV 
GP in place of VSV G 

(Miller et al. 
2012; Wong 
et al. 2010) 

rVSV-
EBOV 

 

virus strain Replication competent, 
recombinant vesicular 
stomatitis Indiana virus 
expressing eGFP & MARV 
GP in place of VSV G 

(Miller et al. 
2012; Wong 
et al. 2010) 

rVSV-
MARV 

 

reagent Hoechst 33342 Fluorescent 
Stain 

ThermoFisher cat #: 
62249 

 

reagent L-Glutamine Solution ThermoFisher cat #: 
25030081 

 

reagent Gibco HEPES ThermoFisher cat #: 
15630080 
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reagent iTaq Universal SYBR Green 
Supermix 

BioRad cat #: 
1725120 

 

commercial 
assay or kit 

Quick RNA Mini Prep Kit Zymo cat #: 
R1054 

 

commercial 
assay or kit 

Invitrogen Superscript III 
cDNA Synthesis Kit 

ThermoFisher cat #:  
18080051 

 

software MatCont (version 2.2) (Dhooge et 
al. 2008) 

MatCont  

R R version 3.6.0 (R Core 
Team 2019) 

R  

*Note that primers for R. aegyptiacus and P. alecto  b-Actin, IFN-a, and IFN-b genes are listed in 
the SI Appendix, Table S3. 

 563 

Cell Culture Experiments. 564 

Cells. 565 

All experiments were carried out on three immortalized mammalian kidney cell lines: 566 

Vero (African green monkey), RoNi/7.1 (Rousettus aegyptiacus) (Kühl et al. 2011; Biesold et al. 567 

2011) and PaKiT01 (Pteropus alecto) (Crameri et al. 2009). The species identification of all bat 568 

cell lines were confirmed morphologically and genetically in the publications in which they were 569 

originally described (Kühl et al. 2011; Biesold et al. 2011; Crameri et al. 2009). Vero cells were 570 

obtained from ATCC. 571 

Monolayers of each cell line were grown to 90% confluency (~9 x 105 cells) in 6-well 572 

plates. Cells were maintained in a humidified 37˚C, 5% CO2 incubator and cultured in 573 

Dulbecco’s modified Eagle medium (DMEM) (Life Technologies, Grand Island, NY), 574 

supplemented with 2% fetal bovine serum (FBS) (Gemini Bio Products, West Sacramento, CA), 575 

and 1% penicillin-streptomycin (Life Technologies). Cells were tested monthly for mycoplasma 576 
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contamination while experiments were taking place; all cells assayed negative for contamination 577 

at every testing.  578 

Previous work has demonstrated that all cell lines used are capable of mounting a type I 579 

IFN response upon viral challenge, with the exception of Vero cells, which possess an IFN-b 580 

deficiency (Desmyter, Melnick, and Rawls 1968; Rhim et al. 1969; Emeny and Morgan 1979). 581 

RoNi/7.1 cells have been shown to mount idiosyncratic induced IFN defenses upon viral 582 

infection (Pavlovich et al. 2018; Kuzmin et al. 2017; Arnold et al. 2018; Kühl et al. 2011; 583 

Biesold et al. 2011), while PaKiT01 cells are known to constitutively express the antiviral 584 

cytokine, IFN-a (Zhou et al. 2016). This work is the first documentation of IFN signaling 585 

induced upon challenge with the particular recombinant VSVs outlined below. We verified 586 

known antiviral immune phenotypes via qPCR. Results were consistent with the literature, 587 

indicating a less pronounced role for interferon defense against viral infection in RoNi/7.1 versus 588 

PaKiT01 cells. 589 

 590 

Viruses.  591 

Replication-capable recombinant vesicular stomatitis Indiana viruses, expressing filovirus 592 

glycoproteins in place of wild type G (rVSV-G, rVSV-EBOV, and rVSV-MARV) have been 593 

previously described (Wong et al. 2010; Miller et al. 2012). Viruses were selected to represent a 594 

broad range of anticipated antiviral responses from host cells, based on a range of past 595 

evolutionary histories between the virus glycoprotein mediating cell entry and the host cell’s 596 

entry receptor. These interactions ranged from the total absence of evolutionary history in the 597 

case of rVSV-G infections on all cell lines to a known receptor-level cell entry incompatibility in 598 

the case of rVSV-MARV infections on PaKiT01 cell lines.  599 
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To measure infectivities of rVSVs on each of the cell lines outlined above, so as to 600 

calculate the correct viral dose for each MOI, NH4Cl (20 mM) was added to infected cell 601 

cultures at 1–2 hours post-infection to block viral spread, and individual eGFP-positive cells 602 

were manually counted at 12–14 hours post-infection. 603 

 604 

Innate Immune Phenotypes via qPCR of IFN Genes. 605 

Previously published work indicates that immortalized kidney cell lines of Rousettus 606 

aegyptiacus (RoNi/7.1) and Pteropus alecto (PaKiT01) exhibit different innate antiviral immune 607 

phenotypes through, respectively, induced (Biesold et al. 2011; Pavlovich et al. 2018; Kühl et al. 608 

2011; Arnold et al. 2018) and constitutive (Zhou et al. 2016) expression of type I interferon 609 

genes. We verified these published phenotypes on our own cell lines infected with rVSV-G, 610 

rVSV-EBOV, and rVSV-MARV via qPCR of IFN-a and IFN-b genes across a longitudinal time 611 

series of infection. 612 

Specifically, we carried out multiple time series of infection of each cell line with each of 613 

the viruses described above, under mock infection conditions and at MOIs of 0.0001 and 614 

0.001—with the exception of rVSV-MARV on PaKiT01 cell lines, for which infection was only 615 

performed at MOI=0.0001 due to limited viral stocks and the extremely low infectivity of this 616 

virus on this cell line (thus requiring high viral loads for initial infection). All experiments were 617 

run in duplicate on 6-well plates, such that a typical plate for any of the three viruses had two 618 

control (mock) wells, two MOI=0.0001 wells and two MOI=0.001 wells, excepting PaKiT01 619 

plates, which had two control and four MOI=0.0001 wells at a given time. We justify this 620 

PaKiT01 exemption through the expectation that IFN-a expression is constitutive for these cells, 621 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 31 

and by the assumption that any expression exhibited at the lower MOI should also be present at 622 

the higher MOI. 623 

For these gene expression time series, four 6-well plates for each cell line–virus 624 

combination were incubated with virus for one hour at 37˚C. Following incubation, virus was 625 

aspirated off, and cell monolayers were washed in PBS, then covered with an agar plaque assay 626 

overlay to mimic conditions under which infection trials were run. Plates were then harvested 627 

sequentially at timepoints of roughly 5, 10, 15, and 20 hours post-infection (exact timing varied 628 

as multiple trials were running simultaneously). Upon harvest of each plate, agar overlay was 629 

removed, and virus was lysed and RNA extracted from cells using the Zymo Quick RNA Mini 630 

Prep kit, according to the manufacturer’s instructions and including the step for cellular DNA 631 

digestion. Post-extraction, RNA quality was verified via nanodrop, and RNA was converted to 632 

cDNA using the Invitrogen Superscript III cDNA synthesis kit, according to the manufacturer’s 633 

instructions. cDNA was then stored at 4˚C and as a frozen stock at -20˚C to await qPCR. 634 

We undertook qPCR of cDNA to assess expression of the type I interferon genes, IFN-a 635 

and IFN-b, and the housekeeping gene, b-Actin, using primers previously reported in the 636 

literature (SI Appendix, Table S3). For qPCR, 2ul of each cDNA sample was incubated with 7ul 637 

of deionized water, 1ul of 5UM forward/reverse primer mix and 10ul of iTaq Universal SYBR 638 

Green, then cycled on a QuantStudio3 Real-Time PCR machine under the following conditions: 639 

initial denaturation at 94˚C for 2 min followed by 40 cycles of: denaturation at 95˚C (5 sec), 640 

annealing at 58˚C (15 sec), and extension at 72˚C (10 sec).   641 

We report simple d-Ct values for each run, with raw Ct of the target gene of interest 642 

(IFN-a or IFN-b) subtracted from raw Ct of the b-Actin housekeeping gene in SI Appendix, 643 

Figure S7. Calculation of fold change upon viral infection in comparison to mock using the d-d-644 
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Ct method (Livak and Schmittgen 2001) was inappropriate in this case, as we wished to 645 

demonstrate constitutive expression of IFN-a in PaKiT01 cells, whereby data from mock cells 646 

was identical to that produced from infected cells. 647 

 648 

Plaque Assays and Time Series Imaging. 649 

After being grown to ~90% confluency, cells were incubated with pelleted rVSVs 650 

expressing eGFP (rVSV-G, rVSV-EBOV, rVSV-MARV). Cell lines were challenged with both a 651 

low (0.0001) and high (0.001) multiplicity of infection (MOI) for each virus. In a cell monolayer 652 

infected at a given MOI (m), the proportion of cells (P), infected by k viral particles can be 653 

described by the Poisson distribution:  𝑃(𝑘) = 	 ]
^_`a

b!
, such that the number of initially infected 654 

cells in an experiment equals: 1 −	𝑒E`. We assumed that a ~90% confluent culture at each 655 

trial’s origin was comprised of ~9x105 cells and conducted all experiments at MOIs of 0.0001 656 

and 0.001, meaning that we began each trial by introducing virus to, respectively, ~81 or 810 657 

cells, representing the state variable ‘E’ in our theoretical model. Low MOIs were selected to 658 

best approximate the dynamics of mean field infection and limit artifacts of spatial structuring, 659 

such as premature epidemic extinction when growing plaques collide with plate walls in cell 660 

culture. 661 

Six well plates were prepared with each infection in duplicate or triplicate, such that a 662 

control well (no virus) and 2-3 wells each at MOI 0.001 and 0.0001 were incubated 663 

simultaneously on the same plate. In total, we ran between 18-39 trials at each cell-virus-MOI 664 

combination, excepting r-VSV-MARV infections on PaKiT01 cells at MOI=0.001, for which we 665 

ran only 8 trials due to the low infectivity of this virus on this cell line, which required high viral 666 

loads for initial infection. Cells were incubated with virus for one hour at 37˚C. Following 667 
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incubation, virus was aspirated off, and cell monolayers were washed in PBS, then covered with 668 

a molten viscous overlay (50% 2X MEM/L-glutamine; 5% FBS; 3% HEPES; 42% agarose), 669 

cooled for 20 minutes, and re-incubated in their original humidified 37˚C, 5% CO2 environment. 670 

After application of the overlay, plates were monitored periodically using an inverted 671 

fluorescence microscope until the first signs of GFP expression were witnessed (~6-9.5 hours 672 

post-infection, depending on the cell line and virus under investigation). From that time forward, 673 

a square subset of the center of each well (comprised of either 64- or 36-subframes and 674 

corresponding to roughly 60 and 40% of the entire well space) was imaged periodically, using a 675 

CellInsight CX5 High Content Screening (HCS) Platform with a 4X air objective 676 

(ThermoFisher, Inc., Waltham, MA). Microscope settings were held standard across all trials, 677 

with exposure time fixed at 0.0006 sec for each image. One color channel was imaged, such that 678 

images produced show GFP-expressing cells in white and non-GFP-expressing cells in black (SI 679 

Appendix, Figure S1). 680 

Wells were photographed in rotation, as frequently as possible, from the onset of GFP 681 

expression until the time that the majority of cells in the well were surmised to be dead, GFP 682 

expression could no longer be detected, or early termination was desired to permit Hoechst 683 

staining.  684 

In the case of PaKiT01 cells infected with rVSV-EBOV, where an apparently persistent 685 

infection established, the assay was terminated after 200+ hours (8+ days) of continuous 686 

observation. Upon termination of all trials, cells were fixed in formaldehyde (4% for 15 min), 687 

incubated with Hoechst stain (0.0005% for 15 min) (ThermoFisher, Inc., Waltham, MA), then 688 

imaged at 4X on the CellInsight CX5 High Content Screening (HCS) Platform. The machine was 689 

allowed to find optimal focus for each Hoechst stain image. One color channel was permitted 690 
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such that images produced showed live nuclei in white and dead cells in black. All original and 691 

processed images are freely available for download at the following FigShare repository: DOI: 692 

10.6084/m9.figshare.8312807.  693 

 694 

Hoechst Staining. 695 

Hoechst stain colors cellular DNA, and viral infection is thought to interfere with the 696 

clarity of the stain (Dembowski and DeLuca, 2015). As such, infection termination, cell fixation, 697 

and Hoechst staining enables generation of a rough time series of uninfectious live cells (i.e. 698 

susceptible + antiviral cells) to complement the images which produced time series of 699 

proportions infectious. Due to uncertainty over the exact epidemic state of Hoechst-stained cells 700 

(i.e. exposed but not yet infectious cells may still stain), we elected to fit our models only to the 701 

infectious time series derived from GFP-expressing images and used Hoechst stain images as a 702 

post hoc visual check on our fit only (Figure 5, main text, and SI Appendix, Figures S8-S9). 703 

 704 

Image Processing.  705 

All image processing and data analysis was carried out in R version 3.6 for MacIntosh (R 706 

Core Team 2019). Original images were imported into R and processed via the package 707 

EBImage (Pau et al. 2010). Composite images of each well were first split into the 36 or 64-708 

subframes from which they were composed (each subframe represents the visual region of focus 709 

for the microscope at the time of imaging). Each subframe was trimmed (to remove border 710 

effects), processed individually, and recompiled post-processing into binary form, such that 711 

light-colored regions of the original image were assigned a value of 1 (white), and dark regions 712 

were assigned a value of 0 (black). In the case of images of GFP-expressing cells, these white 713 
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regions corresponded to “infectious” cells, while in images of Hoechst-stained nuclei, they 714 

indicated live, “uninfected” cells. 715 

Microscope focus was poor for control wells and for subframes early in the time series of 716 

each trial before GFP expression became apparent, and the original versions of any such 717 

subframes were light gray and grainy. Our image processing code identified these subframes as 718 

any which possessed a mean pixel value greater than .25 (a value substantially higher than any 719 

subframes in which true GFP-expressing or Hoechst-stained cells were visible) and subsequently 720 

converted the entire frame to 0 (black). 721 

All other subframes were processed following thresholding methods that have been 722 

previously described by the authors of EBImage (Pau et al. 2010). As a first pass, all pixels 723 

excepting the top 25% lightest pixels tallied were converted to 0 (black). Next, each image frame 724 

was walked through a series of secondary thresholding steps using if-else statements in R, such 725 

that the lightness threshold for "infectious" status was elevated in frames which were lighter 726 

overall due to manual variation in imaging and focusing. Processed subframes were then 727 

reconstructed into composite binary images, which were manually checked against original 728 

images to ensure consistent and reliable results.  729 

Post-processing into binary form, the number of discrete shapes with value of 1 were 730 

tabulated within each image, using the max(bwlabel(X)) function in EBimage, to determine a 731 

cell count per image, again corresponding to a count of infectious cells for GFP-expressing 732 

images and to a count of uninfected cells for Hoechst stain images. All image processing and 733 

counting scripts, in addition to the resulting data, are freely available for download at the 734 

following FigShare repository: DOI: 10.6084/m9.figshare.8312807.  735 

 736 
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Data processing.  737 

GFP-expressing images were processed and cells counted across the duration of each 738 

infection trial, thus generating a time series of infectious cells. For a subset of plates, infection 739 

was terminated, and cells were fixed, Hoechst stained, and imaged at periodic intervals across 740 

the duration of the time series. Processing of these images thus allowed for construction of a 741 

corresponding time series of live, uninfected cells. Because of logistical constraints (i.e. many 742 

plates of simultaneously running infection trials and only one available imaging microscope), the 743 

time course of imaging across the duration of each trial was quite variable. As such, we fitted a 744 

series of statistical models to our raw image data to reconstruct reliable values of the infectious 745 

proportion of each well per hour for each distinct trial in all cell line–virus-MOI combinations 746 

(SI Appendix, Figure S2-S3).  747 

There was considerable natural variation in initial cell counts across each trial, resulting 748 

from subtle differences in the seeding density and growth duration of time until the trial was 749 

initiated (when wells were subjectively deemed to have reached “90% confluency”). Baseline 750 

cell counts were also different across our three cell lines, which varied substantially in natural 751 

size. To correct for this variation, we opted to model the proportion of infectious cell spaces per 752 

hour for each well, rather than rely on the raw count data. To this end, we collected the 753 

maximum number of live cells counted in susceptible control wells at timepoint 0 and set this 754 

count to a rough measure of 100% well occupancy for the cell line in question. Using this 755 

method, maximum cell counts were, respectively, 103712, 82308, and 92233 for Vero, RoNi/7.1, 756 

and PaKiT01 cell lines, reflecting innate variation in cell sizes. We then converted all cell counts 757 

tabulated via our image processing code across the infectious time trials into proportions by 758 

dividing the counts by the total number of possible cell spaces for the cell line in question. 759 
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Though clearly subject to some error, these methods nonetheless maintained internal consistency 760 

in our counting methods and generated reasonable time series. We originally experimented with 761 

directly tabulating the proportion of infected versus uninfected space in our binary images; 762 

however, this approach impaired our ability to generalize across more or less densely seeded 763 

trials, as well as trials on cell lines of disparate sizes. As such, we adopted the count-to-764 

proportion methods described here. 765 

To generate an infectious time series of evenly distributed time steps against which to fit 766 

our mean field mechanistic model, we next fit a series of statistical models to the proportional 767 

data produced from the image processing methods described above. For the GFP-expressing 768 

data, we used the mgcv package in R (Wood 2001) to fit generalized additive models (GAMs) in 769 

the Gaussian family, with time elapsed (in hours) post infection as a predictor variable for 770 

proportion of infectious cells (the response variable). We fit a separate GAM model to each 771 

unique cell – virus – MOI combination, incorporating a random effect of well ID (such that each 772 

trial was modeled individually), and we fixed the smoothing parameter at k=7 for all trials, as 773 

recommended by the package author (Wood 2001). The gam.predict() function was used to 774 

return an estimate of infectious proportions per hour across the duration of each time series for 775 

each cell-virus-MOI combination. 776 

The uninfected counts from the Hoechst stain data were much less numerous since each 777 

count required termination of the infection trial and fixation of cells; by definition, only one data 778 

point could be produced per trial. Due to this relative scarcity, we opted to fit a more standard 779 

linear regression model, again in the Gaussian family, to these data, rather than using the data-780 

hungry GAM methods employed above. As before, we set time elapsed post infection as the 781 

predictor for the Hoechst stain data and produced a unique estimate of the proportion of 782 
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uninfected cells per hour across the duration of the longest-observed trial. No random effects 783 

were included in this model, and the resulting time series were used to estimate natural mortality 784 

rates for each cell line, when fit to control well data depicting natural susceptible decline (SI 785 

Appendix, Figure S11).  786 

 787 

Mean Field Model. 788 

Theoretical Model Details. 789 

To derive the expression for 𝑅A, the basic pathogen reproductive number in vitro, we 790 

used Next Generation Matrix (NGM) techniques (Diekmann, Heesterbeek, and Metz 1990; 791 

Heffernan, Smith, and Wahl 2005), employing Wolfram Mathematica (version 11.2) as an 792 

analytical tool (SI Appendix, Text S1). 𝑅A describes the number of new infections generated by 793 

an existing infection in a completely susceptible host population; a pathogen will invade a 794 

population when 𝑅A > 1. We then analyzed stability properties of the system, exploring 795 

dynamics across a range of parameter spaces, using MatCont (version 2.2) (Dhooge et al. 2008) 796 

for Matlab (version R2018a) (SI Appendix, Table S2).  797 

 798 

Theoretical Model Fitting.  799 

The birth rate, b, and natural mortality rate, µ, balance to yield a population-level growth 800 

rate, such that it is impossible to estimate both b and µ simultaneously from total population size 801 

data alone. As such, we fixed b at .025 and estimated µ by fitting an infection-absent version of 802 

our mean field model to the susceptible time series derived via Hoechst staining of control wells 803 

for each of the three cell lines (SI Appendix, Figure S11). This yielded a natural mortality rate, µ,  804 

corresponding to a lifespan of approximately 121, 191, and 84 hours, respectively, for Vero, 805 
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RoNi/7.1, and PaKiT01 cell lines (SI Appendix, Figure S11). We then fixed the virus incubation 806 

rate, s, as the inverse of the shortest observed duration of time from initial infection to the 807 

observation of the first infectious cells via fluorescent microscope for all nine cell line – virus 808 

combinations (ranging 6 to 9.5 hours). We fixed a, the infection-induced mortality rate, at d
e
 , an 809 

accepted standard for general viral kinetics (Howat et al. 2006), and held c, the rate of antiviral 810 

cell regression to susceptible status, at 0	for the timespan (<200 hours) of the experimental cell 811 

line infection trials. 812 

We estimated cell line–virus-MOI-specific values for b, r, and e by fitting the 813 

deterministic output of infectious proportions in our mean field model to the full suite of 814 

statistical outputs of all trials for each infected cell culture time series (SI Appendix, Figure S4-815 

S5). Fitting was performed by minimizing the sum of squared differences between the 816 

deterministic model output and cell line–virus-MOI-specific infectious proportion of the data at 817 

each timestep. We optimized parameters for MOI = 0.001 and 0.0001 simultaneously to leverage 818 

statistical power across the two datasets, estimating a different transmission rate, b, for trials run 819 

at each infectious dose but, where applicable, estimating the same rates of r and e across the two 820 

time series. We used the differential equation solver lsoda() in the R package deSolve (Soetaert, 821 

Petzoldt, and Setzer 2010) to obtain numerical solutions for the mean field model and carried out 822 

minimization using the ‘Nelder-Mead’ algorithm of the optim() function in base R. All model 823 

fits were conducted using consistent starting guesses for the parameters, b (b= 3), and where 824 

applicable, r (r = 0.001) and e (e = 0.001). In the case of failed fits or indefinite hessians, we 825 

generated a series of random guesses around the starting conditions and continued estimation 826 

until successful fits were achieved.  827 
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All eighteen cell line–virus-MOI combinations of data were fit by an immune absent (e = 828 

r = 0) version of the theoretical model and, subsequently, an induced immunity (e = 0; r > 0) 829 

and constitutive immunity (e > 0; r > 0) version of the model. Finally, we compared fits across 830 

each cell line–virus-MOI combination via AIC. In calculating AIC, the number of fitted 831 

parameters in each model (k) varied across the immune phenotypes, with one parameter (b) 832 

estimated for absent immune assumptions, two (b and r) for induced immune assumptions, and 833 

three (b, r, and e) for constitutive immune assumptions. The sample size (n) corresponded to the 834 

number of discrete time steps across all empirical infectious trials to which the model was fitted 835 

for each cell-line virus combination. All fitting and model comparison script is freely available 836 

for download at the following FigShare repository: DOI: 685 10.6084/m9.figshare.8312807.  837 

 838 

Spatial Model Simulations. 839 

Finally, we verified all mean field fits in a spatial context, in order to more thoroughly 840 

elucidate the role of antiviral cells in each time series. We constructed our spatial model in C++ 841 

implemented in R using the packages Rcpp and RcppArmadillo (Eddelbuettel and Francois 842 

2011; Eddelbuettel and Sanderson 2017). Following Nagai and Honda (2001) and Howat et al. 843 

(2006), we modeled this system on a two-dimensional hexagonal lattice, using a ten-minute 844 

epidemic timestep for cell state transitions. At the initialization of each simulation, we randomly 845 

assigned a duration of natural lifespan, incubation period, infectivity period, and time from 846 

antiviral to susceptible status to all cells in a theoretical monolayer. Parameter durations were 847 

drawn from a normal distribution centered at the inverse of the respective fixed rates of µ, s, a, 848 

and c, as reported with our mean field model. These durations were updated iteratively with each 849 

time-step, based on each cell’s epidemic status. We fixed the parameters for antiviral acquisition 850 
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(e and r) at those values estimated in the mean field model, and to compensate for a higher virus 851 

invasion threshold under spatial conditions, we fixed the birth rate b and the cell-to-cell 852 

transmission rate, b, at ten times the values recovered from optimization of the mean field model 853 

(SI Appendix, Table S1). 854 

Transitions involving the birth rate (b), the transmission rate (b), and the induced (r)  and 855 

constitutive (e) rates of antiviral acquisition were governed probabilistically and adjusted 856 

dynamically based on each cell’s local and global environment. The birth rate, b, was thus 857 

multiplied by the proportion of susceptible cells within a six neighbor radius of a focal dead cell, 858 

while b was multiplied by the proportion of infectious cells within a thirty-six neighbor radius of 859 

a focal susceptible cell; both r and e were multiplied by the global proportion of, respectively, 860 

exposed and susceptible cells at a given time-step. We then simulated ten stochastic spatial time 861 

series for all cell-virus combinations under all three immune assumptions at a population size of 862 

10,000 cels and compared model output with data in SI Appendix, Figure S10. Spatial model 863 

code is available for public access at the following FigShare repository: DOI: 864 

10.6084/m9.figshare.8312807.  865 

 866 

867 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 42 

Acknowledgments 868 

CEB was supported by a National Science Foundation Graduate Research Fellowship at 869 

Princeton University and a Miller Institute for Basic Research Fellowship at UC Berkeley. 870 

Tissue culture experiments were funded by an NIH grant R01 AI134824 to KC. Work in LFW’s 871 

lab was funded by the Singapore National Research Foundation grants (NRF2012NRF-CRP001-872 

056 and NRF2016NRF-NSFC002-013). CD was supported by the German Research 873 

Council (DFG) grant DFG SPP1596 (DR 772/10–2), the Federal Ministry of Education and 874 

Research (BMBF) grant RAPID (#01KI1723A) and the EU Horizon 2020 grant EVAg 875 

(#653316). The authors thank the Chandran lab at Albert Einstein College of Medicine – in 876 

particular, Cecilia Harold, Megan Slough, Rohit Jangra, and Tanwee Alkutkar – for technical 877 

support during tissue culture experiments. The authors further thank Jessica Metcalf and the 878 

Graham lab at Princeton for conceptual guidance throughout the project’s development.  879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 43 

References 891 

Ahn, Matae, Danielle E. Anderson, Qian Zhang, Chee Wah Tan, Beng Lee Lim, Katarina Luko, 892 

Ming Wen, et al. 2019. “Dampened NLRP3-Mediated Inflammation in Bats and 893 

Implications for a Special Viral Reservoir Host.” Nature Microbiology 4: 789–99. 894 

https://doi.org/10.1038/s41564-019-0371-3. 895 

Arnold, Catherine E, Jonathan C Guito, Louis A Altamura, Sean P Lovett, Elyse R Nagle, 896 

Gustavo F Palacios, and Mariano Sanchez-lockhart. 2018. “Transcriptomics Reveal 897 

Antiviral Gene Induction in the Egyptian Rousette Bat Is Antagonized in Vitro by Marburg 898 

Virus Infection.” Viruses 10 (607). https://doi.org/10.3390/v10110607. 899 

Baccam, Prasith, Catherine Beauchemin, Catherine A Macken, Frederick G Hayden, and Alan S 900 

Perelson. 2006. “Kinetics of Influenza A Virus Infection in Humans.” Journal of Virology 901 

80 (15): 7590–99. https://doi.org/10.1128/JVI.01623-05. 902 

Biesold, Susanne E., Daniel Ritz, Florian Gloza-Rausch, Robert Wollny, Jan Felix Drexler, 903 

Victor M. Corman, Elisabeth K V Kalko, Samuel Oppong, Christian Drosten, and Marcel 904 

A. Müller. 2011. “Type I Interferon Reaction to Viral Infection in Interferon-Competent, 905 

Immortalized Cell Lines from the African Fruit Bat Eidolon Helvum.” PLoS ONE 6 (11). 906 

https://doi.org/10.1371/journal.pone.0028131. 907 

Bonhoeffer, S., R. M. May, G. M. Shaw, and M. A. Nowak. 1997. “Virus Dynamics and Drug 908 

Therapy.” Proceedings of the National Academy of Sciences 94 (13): 6971–76. 909 

https://doi.org/10.1073/pnas.94.13.6971. 910 

Brook, Cara E., and Andrew P. Dobson. 2015. “Bats as ‘special’ Reservoirs for Emerging 911 

Zoonotic Pathogens.” Trends in Microbiology 23 (3): 172–80. 912 

https://doi.org/10.1016/j.tim.2014.12.004. 913 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 44 

Brook, Cara E., Hafaliana Christian Ranaivoson, Christopher C. Broder, Andrew A. 914 

Cunningham, Jean-Michel Héraud, Alison J. Peel, Louise Gibson, James L.N. Wood, C. 915 

Jessica Metcalf, and Andrew P. Dobson. 2019. “Disentangling Serology to Elucidate 916 

Henipa- and Filovirus Transmission in Madagascar Fruit Bats.” Journal of Animal Ecology 917 

00: 1– 16. https://doi.org/10.1111/1365-2656.12985. 918 

Calisher, Charles H, James E Childs, Hume E Field, Kathryn V Holmes, and Tony Schountz. 919 

2006. “Bats: Important Reservoir Hosts of Emerging Viruses.” Clinical Microbiology 920 

Reviews 19 (3): 531–45. https://doi.org/10.1128/CMR.00017-06. 921 

Coffin, John M. 1995. “HIV Population Dynamics in Vivo: Implications for Genetic Variation, 922 

Pathogenesis, and Therapy.” Science (New York, N.Y.) 267 (5197): 483–89. 923 

Crameri, Gary, Shawn Todd, Samantha Grimley, Jennifer A. McEachern, Glenn A. Marsh, Craig 924 

Smith, Mary Tachedjian, et al. 2009. “Establishment, Immortalisation and Characterisation 925 

of Pteropid Bat Cell Lines.” PLoS ONE 4 (12): e8266. 926 

https://doi.org/10.1371/journal.pone.0008266. 927 

Desmyter, J, J L Melnick, and W E Rawls. 1968. “Defectiveness of Interferon Production and of 928 

Rubella Virus Interference in a Line of African Green Monkey Kidney Cells (Vero).” 929 

Journal of Virology 2 (10): 955–61. https://doi.org/J. Virol. 1968 2:1955. 930 

Dhooge, A., W. Govaerts, Yu A. Kuznetsov, H. G E Meijer, and B. Sautois. 2008. “New 931 

Features of the Software MatCont for Bifurcation Analysis of Dynamical Systems.” 932 

Mathematical and Computer Modelling of Dynamical Systems 14 (2): 147–75. 933 

https://doi.org/10.1080/13873950701742754. 934 

Diekmann, O., J.A.P. Heesterbeek, and J.A.J Metz. 1990. “On the Definition and Computation of 935 

the Basic Reproduction Ratio R0 in Models for Infectious Diseases in Heterogenous 936 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 45 

Populations.” Journal of Mathematical Biology 28: 365–82. 937 

Eddelbuettel, Dirk, and Romain Francois. 2011. “Rcpp: Seamless R and C++ Integration.” 938 

Journal of Statistical Software 40: 1–18. https://doi.org/10.1007/978-1-4614-6868-4. 939 

Eddelbuettel, Dirk, and Conrad Sanderson. 2017. “RcppArmadillo: Accelerating R with High-940 

Performance C++ Linear Algebra.” Computational Statistics and Data Analysis 71 (2014): 941 

1–16. 942 

Emeny, J. M., and M. J. Morgan. 1979. “Regulation of the Interferon System: Evidence That 943 

Vero Cells Have a Genetic Defect in Interferon Production.” Journal of General Virology 944 

43 (1): 247–52. https://doi.org/10.1099/0022-1317-43-1-247. 945 

Emery, V.C., A.V. Cope, E.F. Bowen, D. Gor, and P.D. Griffiths. 1999. “The Dynamics of 946 

Human Cytomegalovirus Replication in Vivo.” The Journal of Experimental Medicine 190 947 

(2): 177–82. https://doi.org/10.1084/jem.190.2.177. 948 

Haydon, Daniel T, Sarah Cleaveland, Louise H Taylor, and M Karen Laurenson. 2002. 949 

“Identifying Reservoirs of Infection: A Conceptual and Practical Challenge.” Emerging 950 

Infectious Diseases 8 (12): 1468–73. https://doi.org/10.3201/eid0812.010317. 951 

Heffernan, J.M., R.J. Smith, and L.M. Wahl. 2005. “Perspectives on the Basic Reproductive 952 

Ratio.” Journal of The Royal Society Interface 2 (4): 281–93. 953 

https://doi.org/10.1098/rsif.2005.0042. 954 

Ho, David D., Avidan U. Neumann, Alan S. Perelson, Wen Chen, John M. Leonard, and Martin 955 

Markowitz. 1995. “Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 956 

Infection.” Nature 373: 123–26. https://doi.org/10.1038/373123a0. 957 

Hooper, Peter, Sherif Zaki, Peter Daniels, and Deborah Middleton. 2001. “Comparative 958 

Pathology of the Diseases Caused by Hendra and Nipah Viruses.” Microbes and Infection 3 959 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 46 

(4): 315–22. https://doi.org/10.1016/S1286-4579(01)01385-5. 960 

Howat, Tom J, Cristina Barreca, Peter O’Hare, Julia R Gog, and Bryan T Grenfell. 2006. 961 

“Modelling Dynamics of the Type I Interferon Response to in Vitro Viral Infection.” 962 

Journal of the Royal Society, Interface 3 (10): 699–709. 963 

https://doi.org/10.1098/rsif.2006.0136. 964 

Kacprzyk, Joanna, Graham M. Hughes, Eva M. Palsson-McDermott, Susan R. Quinn, Sébastien 965 

J. Puechmaille, Luke A. J. O’Neill, and Emma C. Teeling. 2017. “A Potent Anti-966 

Inflammatory Response in Bat Macrophages May Be Linked to Extended Longevity and 967 

Viral Tolerance.” Acta Chiropterologica 19 (2): 219–28. 968 

https://doi.org/10.3161/15081109ACC2017.19.2.001. 969 

Keeling, Matt J., and Pejman Rohani. 2008. Modeling Infectious Diseases in Humans and 970 

Animals. Princeton, NJ: Princeton University Press. 971 

Kühl, Annika, Markus Hoffmann, Marcel A. Müller, Vincent J. Munster, Kerstin Gnirß, Miriam 972 

Kiene, Theodros Solomon Tsegaye, et al. 2011. “Comparative Analysis of Ebola Virus 973 

Glycoprotein Interactions with Human and Bat Cells.” Journal of Infectious Diseases 204: 974 

S840–S849. https://doi.org/10.1093/infdis/jir306. 975 

Kuzmin, I.V., Toni M. Schwarz, Philipp A. Ilinykh, Ingo Jordan, Thamas G. Ksiazek, Ravi 976 

Sachidanandam, Christopher F. Basler, and Alexander Bukreyev. 2017. “Innate Immune 977 

Response of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.” Journal 978 

of Virology 91 (8): e02471-16. https://doi.org/10.1128/JVI.02471-16. 979 

Livak, K J, and T D Schmittgen. 2001. “Analysis of Relative Gene Expression Data Using Real-980 

Time Quantitative PCR and the 2^(-ΔΔCT) Method.” Methods 25 (4): 402–8. 981 

https://doi.org/10.1006/meth.2001.1262. 982 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 47 

Mahanty, Siddhartha, and Mike Bray. 2004. “Pathogenesis of Filoviral Haemorrhagic Fevers.” 983 

Lancet Infectious Diseases 4 (8): 487–98. https://doi.org/10.1016/S1473-3099(04)01103-X. 984 

Miller, Emily Happy, Gregor Obernosterer, Matthijs Raaben, Andrew S Herbert, Maika S 985 

Deffieu, Anuja Krishnan, Esther Ndungo, et al. 2012. “Ebola Virus Entry Requires the 986 

Host-Programmed Recognition of an Intracellular Receptor.” The EMBO Journal 31 (8): 987 

1947–60. https://doi.org/10.1038/emboj.2012.53. 988 

Morris, Sinead E., Andrew J. Yates, Rik L. de Stwart, Rory D. de Vries, Michael J. Mina, Ashley 989 

N. Nelson, Wen-Hsuan W. Lin, Roger D. Kouyos, Diane E. Griffin, and Bryan T. Grenfell. 990 

2018. “Modeling the Measles Paradox Reveals the Importance of Cellular Immunity in 991 

Regulating Viral Clearance.” PLoS Pathogens 14 (12): e1007493. 992 

Neumann, AU, NP Lam, H Dahari, DR Gretch, TE Wiley, TJ Layden, and AS Perelson. 1998. 993 

“Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon-Alpha 994 

Therapy.” Science (New York, N.Y.) 282: 103–7. 995 

Ng, Melinda, and Kartik Chandran. 2018. “Unpublished Results.” 996 

Ng, Melinda, Esther Ndungo, Maryska Kaczmarek, Andrew S. Herbert, Tabea Binger, Rebekah 997 

James, Rohit K. Jangra, et al. 2015. “NPC1 Contributes to Species-Specific Patterns of 998 

Ebola Virus Infection in Bats.” ELife 4: e11785. https://doi.org/10.7554/eLife.11785. 999 

Nicholls, J M, L L Poon, K C Lee, W F Ng, S T Lai, C Y Leung, C M Chu, et al. 2003. “Lung 1000 

Pathogy of Fatal Severe Acute Respiratory Syndrom.” Lancet 361: 1773–78. 1001 

https://doi.org/10.1016/S0140-6736(03)13413-7. 1002 

Nowak, M. A., and R. M. May. 2000. Virus Dynamics: Mathematical Principles of Immunology 1003 

and Virology. Oxford, UK: Oxford University Press. 1004 

Nowak, Martin A., Robert M. May, Rodney E. Phillips, Sarah Rowland-Jones, David G. Lalloo, 1005 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 48 

Steven McAdam, Paul Klenerman, et al. 1995. “Antigenic Oscillations and Shifting 1006 

Immunodominance in HIV-1 Infections.” Nature 375: 606–11. 1007 

Nowak, Martin A, Sebastian Bonhoeffer, Andrew M Hill, Richard Boehme, Howard C Thomas, 1008 

and Hugh McDade. 1996. “Viral Dynamics in Hepatitis B Virus Infection.” Proceedings of 1009 

the National Academy of Sciences 93: 4398–4402. 1010 

http://www.pnas.org/content/pnas/93/9/4398.full.pdf. 1011 

Pau, Gregoire, Florian Fuchs, Oleg Sklyar, Michael Boutros, and Wolfgang Huber. 2010. 1012 

“EBImage-an R Package for Image Processing with Applications to Cellular Phenotypes.” 1013 

Bioinformatics 26 (7): 979–81. https://doi.org/10.1093/bioinformatics/btq046. 1014 

Pavlovich, Stephanie S., Sean P. Lovett, Galina Koroleva, Jonathan C. Guito, Catherine E. 1015 

Arnold, Elyse R. Nagle, Kirsten Kulcsar, et al. 2018. “The Egyptian Rousette Genome 1016 

Reveals Unexpected Features of Bat Antiviral Immunity.” Cell 173 (5): 1098–1110. 1017 

https://doi.org/10.1016/j.cell.2018.03.070. 1018 

Pawelek, Kasia A., Giao T. Huynh, Michelle Quinlivan, Ann Cullinane, Libin Rong, and Alan S. 1019 

Perelson. 2012. “Modeling Within-Host Dynamics of Influenza Virus Infection Including 1020 

Immune Responses.” PLoS Computational Biology 8 (6): e1002588. 1021 

https://doi.org/10.1371/journal.pcbi.1002588. 1022 

Peel, Alison J., Kate S. Baker, David T. S. Hayman, Christopher C. Broder, Andrew A. 1023 

Cunningham, Anthony R. Fooks, Romain Garnier, James L. N. Wood, and Olivier Restif. 1024 

2018. “Support for Viral Persistence in Bats from Age-Specific Serology and Models of 1025 

Maternal Immunity.” Scientific Reports 8 (1): 3859. https://doi.org/10.1038/s41598-018-1026 

22236-6. 1027 

Peel, Alison J, Kate S Baker, Gary Crameri, Jennifer A Barr, David TS Hayman, Edward 1028 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 49 

Wright, Christopher C Broder, et al. 2012. “Henipavirus Neutralising Antibodies in an 1029 

Isolated Island Population of African Fruit Bats.” PloS One 7 (1): e30346. 1030 

https://doi.org/10.1371/journal.pone.0030346. 1031 

Perelson, A S, A U Neumann, M Markowitz, J M Leonard, and D D Ho. 1996. “HIV-1 1032 

Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation 1033 

Time.” Science (New York, N.Y.) 271 (5255): 1582–86. 1034 

https://doi.org/10.1126/science.271.5255.1582. 1035 

Perelson, Alan S. 2002. “Modelling Viral and Immune System Dynamics.” Nature Reviews 1036 

Immunology 2 (1): 28–36. https://doi.org/10.1038/nri700. 1037 

Plowright, Raina K., Alison J. Peel, Daniel G. Streicker, Amy Gilbert, Hamish McCallum, James 1038 

Wood, Michelle L. Baker, and Olivier Restif. 2016. “Transmission or Within-Host 1039 

Dynamics Driving Pulses of Zoonotic Viruses in Reservoir-Host Populations.” PLoS 1040 

Neglected Tropical Diseases 10 (8): e0004796. 1041 

https://doi.org/10.1371/journal.pntd.0004796. 1042 

Radke, K L, C Colby, J R Kates, H M Krider, and D M Prescott. 1974. “Establishment and 1043 

Maintenance of the Interferon-Induced Antiviral State: Studies in Enucleated Cells.” 1044 

Journal of Virology 13 (3): 623–30. 1045 

http://www.ncbi.nlm.nih.gov/pubmed/4362865%0Ahttp://www.pubmedcentral.nih.gov/arti1046 

clerender.fcgi?artid=PMC355347. 1047 

Rasmussen, L., and L. B. Farley. 1975. “Inhibition of Herpesvirus Hominis Replication by 1048 

Human Interferon.” Infection and Immunity 12 (1): 104–8. 1049 

Rhim, J. S., K. Schell, B. Creasy, and W. Case. 1969. “Biological Characteristics and Viral 1050 

Susceptibility of an African Green Monkey Kidney Cell Line (Vero).” Proceedings of the 1051 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 50 

Society for Experimental Biology and Medicine 132 (2): 670-678. 1052 

Saenz, Roberto A, Michelle Quinlivan, Debra Elton, Shona MacRae, Anthony S Blunden, 1053 

Jennifer A Mumford, Janet M Daly, et al. 2010. “Dynamics of Influenza Virus Infection and 1054 

Pathology.” Journal of Virology 84 (8): 3974–83. https://doi.org/10.1128/JVI.02078-09. 1055 

Samuel, C. E., and G. S. Knutson. 1982. “Mechanism of Interferon Action.” Journal of 1056 

Biological Chemistry 257 (19): 11791–95. 1057 

Schountz, Tony, Michelle L Baker, John Butler, and Vincent Munster. 2017. “Immunological 1058 

Control of Viral Infections in Bats and the Emergence of Viruses Highly Pathogenic to 1059 

Humans.” Frontiers in Immunology 8 (September): Article 1098. 1060 

https://doi.org/10.3389/fimmu.2017.01098. 1061 

Soetaert, Karline, Thomas Petzoldt, and R Woodrow Setzer. 2010. “Package DeSolve: Solving 1062 

Initial Value Differential Equations in R.” Journal of Statistical Software 33 (9): 1–25. 1063 

https://doi.org/10.18637/jss.v033.i09. 1064 

Stetson, Daniel B., and Ruslan Medzhitov. 2006. “Type I Interferons in Host Defense.” Immunity 1065 

25 (3): 373–81. https://doi.org/10.1016/j.immuni.2006.08.007. 1066 

Team, R Core. 2019. “R: A Language and Environment for Statistical Computing.” R 1067 

Foundation for Statistical Computing. Vienna, Austria. 1068 

Wang, Lin-Fa, and Danielle E Anderson. 2019. “Viruses in Bats and Potential Spillover to 1069 

Animals and Humans.” Current Opinion in Virology 34: 79–89. 1070 

https://doi.org/10.1016/j.coviro.2018.12.007. 1071 

Webb, Steven D., Matt J. Keeling, and Mike Boots. 2007. “Host-Parasite Interactions between 1072 

the Local and the Mean-Field: How and When Does Spatial Population Structure Matter?” 1073 

Journal of Theoretical Biology 249 (1): 140–52. https://doi.org/10.1016/j.jtbi.2007.06.013. 1074 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/


 51 

Wong, Anthony C, Rohini G Sandesara, Nirupama Mulherkar, Sean P Whelan, and Kartik 1075 

Chandran. 2010. “A Forward Genetic Strategy Reveals Destabilizing Mutations in the 1076 

Ebolavirus Glycoprotein That Alter Its Protease Dependence during Cell Entry.” Journal of 1077 

Virology 84 (1): 163–75. https://doi.org/10.1128/JVI.01832-09. 1078 

Wood, Simon N. 2001. “Mgcv: GAMs and Generalized Ridge Regression for R.” R News 1/2: 1079 

20–24. 1080 

Xie, Jiazheng, Yang Li, Xurui Shen, Jiazheng Xie, Yang Li, Xurui Shen, Geraldine Goh, et al. 1081 

2018. “Dampened STING-Dependent Interferon Activation in Bats.” Cell Host and 1082 

Microbe 23: 297–301. 1083 

Zhang, Guojie, Christopher Cowled, Zhengli Shi, Zhiyong Huang, Kimberly a Bishop-Lilly, 1084 

Xiaodong Fang, James W Wynne, et al. 2013. “Comparative Analysis of Bat Genomes 1085 

Provides Insight into the Evolution of Flight and Immunity.” Science (New York, N.Y.) 339 1086 

(6118): 456–60. https://doi.org/10.1126/science.1230835. 1087 

Zhou, Peng, Mary Tachedjian, James W Wynne, Victoria Boyd, Jie Cui, Ina Smith, Christopher 1088 

Cowled, et al. 2016. “Contraction of the Type I IFN Locus and Unusual Constitutive 1089 

Expression of IFN-α in Bats.” Proceedings of the National Academy of Sciences 113 (10): 1090 

2696–2701. https://doi.org/10.1073/pnas.1518240113. 1091 

 1092 

 1093 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 31, 2019. ; https://doi.org/10.1101/696195doi: bioRxiv preprint 

https://doi.org/10.1101/696195
http://creativecommons.org/licenses/by/4.0/

