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Abstract 23 
 24 
What is the neural basis of the human capacity for music? Neuroimaging has suggested some 25 
segregation between responses to music and other sounds, like speech. But it remains unclear 26 
whether finer-grained neural organization exists within the domain of music. Here, using intracranial 27 
recordings from the surface of the human brain, we demonstrate a selective response to music with 28 
vocals, distinct from responses to speech and to music more generally. Song selectivity was evident 29 
using both data-driven component modeling and single-electrode analyses, and could not be 30 
explained by standard acoustic features. These results suggest that music is represented by multiple 31 
neural populations selective for different aspects of music, at least one of which is specialized for 32 
the analysis of song.  33 
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Music is a quintessentially human capacity that is present in some form in nearly every society 34 
(Savage et al., 2015; Lomax, 2017; Mehr et al., 2018), and that differs substantially from its closest 35 
analogues in non-human animals (Patel, 2019). Researchers have long debated whether the human 36 
brain has neural mechanisms dedicated to music, and if so, what computations those mechanisms 37 
perform (Patel, 2012; Peretz et al., 2015). These questions have important implications for 38 
understanding the organization of auditory cortex (Leaver and Rauschecker, 2010; Norman-39 
Haignere et al., 2015), the neural basis of sensory deficits such as amusia (Peterson and 40 
Pennington, 2015; Norman-Haignere et al., 2016; Peretz, 2016), the consequences of auditory 41 
expertise (Herholz and Zatorre, 2012), and the computational underpinnings of auditory behavior 42 
(Casey, 2017; Kell et al., 2018). 43 
  44 
Neuroimaging studies have suggested that representations of music diverge from those of other 45 
sound categories in non-primary human auditory cortex: some non-primary voxels show partial 46 
selectivity for music compared with other categories (Leaver and Rauschecker, 2010; Fedorenko et 47 
al., 2012; Angulo-Perkins et al., 2014), and a recent study from our lab, which modeled voxels as 48 
weighted sums of multiple response profiles, inferred a component of the fMRI response with clear 49 
selectivity for music (Norman-Haignere et al., 2015). However, there are few reports of finer-grained 50 
organization within the domain of music (Casey, 2017), potentially due to the coarse resolution of 51 
fMRI. As a consequence, we know little about the neural code for music. 52 
 53 
Here, we tested for finer-grained selectivity for music using intracranial recordings from the human 54 
brain (electrocorticography or ECoG) (Fig 1A). We measured ECoG responses to a diverse set of 55 
165 natural sounds, and submitted these responses to a novel decomposition method that is well-56 
suited to the statistical structure of ECoG to reveal dominant response components of auditory 57 
cortex. This data-driven method revealed multiple music- and speech-selective response 58 
components. Our key finding is that one of these components responded nearly exclusively to music 59 
with vocals, suggesting the existence of neural populations that are selective for singing. We then 60 
used model-based sound synthesis (Norman-Haignere and McDermott, 2018) to show that these 61 
components could not be explained by generic acoustic representations often used to model cortical 62 
responses. Finally, we demonstrate direct evidence for music, speech, and song selectivity in 63 
individual electrodes without component modeling or statistical assumptions.  64 
 65 
Results 66 
 67 
Electrode decomposition. We recorded ECoG responses from thirteen patients undergoing 68 
surgery for intractable epilepsy. We identified a set of 271 electrodes across all subjects with reliable 69 
broadband gamma (70-140 Hz) power responses to the sound set (split-half correlation > 0.2) (Fig 70 
1B plots the split-half correlation for all electrodes). We focused on broadband gamma, because it 71 
is thought to reflect aggregate spiking in a local region (Steinschneider et al., 2008; Whittingstall and 72 
Logothetis, 2009; Ray and Maunsell, 2011). Sound-responsive electrodes were nearly always 73 
located near the superior temporal gyrus (STG). Based on prior work, we expected speech selectivity 74 
to be prominent in the STG (Fig 1C) (Mesgarani et al., 2014; Norman-Haignere et al., 2015; Overath 75 
et al., 2015). By contrast, music selectivity is strongest in the lateral sulcus (Fig 1C) (Leaver and 76 
Rauschecker, 2010; Angulo-Perkins et al., 2014; Norman-Haignere et al., 2015), whose activity 77 
cannot be detected with surface electrodes. Thus, we expected music-selective electrodes, if 78 
present at all, to be relatively rare. 79 
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 80 
Figure 1. Overview of experiment and electrode decomposition analysis. A, The sound set was composed 81 
of 165 commonly heard sounds, each 2-seconds in duration (Norman-Haignere et al., 2015). B, Electrode map 82 
showing the reliability of broadband gamma responses (70-140 Hz) to natural sounds (split-half Pearson 83 
correlation). For each patient, we plot electrodes from the hemisphere in which most or all electrodes were 84 
implanted. C, Group maps of speech and music selectivity from a prior fMRI study (Norman-Haignere et al., 85 
2015) with the locations of all sound-responsive electrodes overlaid. Maps show the average weight of the 86 
speech and music selective components from Norman-Haignere et al., transformed to a measure of significance. 87 
Electrodes were projected onto the cortical surface in Freesurfer and aligned to a common template brain. D, 88 
Schematic of electrode decomposition. The data was represented as a matrix, where each row contains the full 89 
response timecourse of each electrode across all 165 sounds tested (the data matrix included responses from 90 
271 sound-responsive electrodes, defined as having a test-retest correlation greater than 0.2). For each sound, 91 
we measured responses from a three-second window time-locked to the onset of each sound. The data matrix 92 
was approximated as the product of two component matrices: a electrode weight matrix expressing the 93 
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contribution of each component to each electrode, and a response matrix containing the response timecourse 94 
of each component to the sound set. E, Cross-validation was used to compare models (Fig S2C) and determine 95 
the number of components. The data matrix was divided into cells, with one cell containing the response 96 
timecourse of a single electrode to a single sound. The model was trained on a randomly chosen subset of 80% 97 
of cells, and responses were then predicted for the remaining 20% of cells. This plot shows the squared test 98 
correlation between the measured and predicted response (averaged across all electrodes) as a function of the 99 
number of components. The correlation has been noise-corrected using the test-retest reliability of the electrode 100 
responses so that it provides a measure of explainable variance. Error bars plot the median and central 68% of 101 
the sampling distribution (equivalent to 1 standard error for a Gaussian), computed via bootstrapping across 102 
subjects. F, The average weight of each component in each subject, normalized so that the weights across 103 
subjects sum to 1. Large values indicate that a component primarily explained responses from a single subject. 104 
We focused our analyses on components that were not subject-specific, operationalized as having a maximum 105 
value across subjects below 0.5 (components 14, 16, 18, 19, and 20 had maximum values greater than 0.5). G, 106 
The component decomposition algorithm was run 1000 times with different random initializations. This figure 107 
plots the median correlation of the inferred response timecourses between the best solution (lowest cost) and 108 
the next 99 best solutions. We focused on components with median correlation >0.9. 109 

 110 
We sought to identify a small number of response timecourses across the sound set (components) 111 
that when weighted together could explain much of the response variance across all 271 electrodes. 112 
Each component timecourse could potentially reflect the response of a different neuronal 113 
subpopulation in auditory cortex, with the weights providing an estimate for the contribution of each 114 
subpopulation to each electrode. To identify components, we represented the response of all 271 115 
electrodes in a matrix, in which each row represented the response timecourse of a single electrode 116 
across all 165 sounds (Fig 1D). We then tried to approximate this matrix as the product of a 117 
component response timecourse matrix and a component electrode weight matrix.  118 
 119 
In general, the problem of matrix factorization – finding a set of response components whose 120 
weighted sum best explains the data – is ill-posed and needs to be constrained by additional 121 
statistical criteria. We identified three statistical properties of auditory broadband gamma activity that 122 
are relevant to component modeling (Fig S1): (1) broadband gamma responses to sounds are nearly 123 
always larger than those to silence (smaller relative responses to sound accounted for <1% of the 124 
response power); (2) responses are sparse across both time/stimuli and space/electrodes; (3) 125 
responses are temporally smooth, and the extent of this smoothness varies across electrodes. We 126 
designed a model that captured all of these statistical properties by convolving a set of sparse/non-127 
negative components with a learned smoothing kernel (Fig S2; see Methods for details). We focus 128 
on the results of this model because it yielded better prediction accuracy in held-out data than 129 
competing models (Fig S2C). But we note that our key results were evident using a model that only 130 
imposed non-negativity on the responses and weights (Fig S3), and were also evident in individual 131 
electrodes without using any component modeling (see Single-electrode analyses below).  132 
 133 
Using a simple cross-validation procedure, in which we trained and tested on separate 134 
sounds/electrodes, we found that we could estimate ~15-20 components before overfitting (Fig 1E). 135 
We show results from a model with 20 components, though all of the speech, music, and song-136 
selective components were evident in a 15-component model (Fig S4). Collectively, the 20 137 
components inferred by the model accounted for approximately 78% of the explainable response 138 
variation (i.e. the variation that was reliable across repeated presentations). Of these 20 139 
components, fourteen explained responses across multiple subjects (rather than primarily weighting 140 
on just a single subject; Fig 1F) and were stable across random initializations of the algorithm (Fig 141 
1G). We focused on these fourteen components since they are more likely to reflect consistent 142 
features of auditory cortical responses. 143 
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 144 
Figure 2. Components responses and electrode weights for five components that responded selectively 145 
to speech, music, and or song (Fig S5 plots all reliable components). A, The response timecourse of each 146 
component to all 165 sounds is plotted as a raster. The time-averaged response to each sound is plotted to the 147 
right of the raster. The sounds have been grouped and colored based on membership in one of 12 sound 148 
categories (determined primarily based on subject ratings; see Sound Category Assignments in Methods). Below 149 
each raster, we plot the average response to each category with greater than 5 exemplars. Error bars plot the 150 
median and central 68% of the sampling distribution (equivalent to 1 standard error for a Gaussian), computed 151 
via bootstrapping across sounds. B, Anatomical maps of the electrode weights for each component. To produce 152 
this map, each electrode was projected onto the cortical surface, as computed by Freesurfer, and their brain 153 
was aligned to a common anatomical template (FsAverage brain).  154 

 155 
Component Responses and Weights. For each component, we plot the response timecourse to 156 
each of the 165 sounds as a stack of raster plots (Fig 2A shows five components that responded 157 
selectively to speech, music or song; Fig S5 shows all fourteen components). The sounds have 158 
been grouped based on their membership in one of 12 categories (see Sound Category Assignments 159 
in Methods). Below each raster, we plot the average response timecourse for each category, and to 160 
the right, the time-averaged response to each sound, colored based on category membership. For 161 
each component, a map is plotted showing the anatomical distribution of electrode weights (Fig 2B; 162 
electrode anatomy played no role in the component analysis). Components were numbered based 163 
on the overall magnitude of their responses and weights.  164 
 165 
Five components responded nearly exclusively to speech or music (Fig 2). Three of these 166 
components responded selectively to speech (components 1, 9, & 15; average[English speech, 167 
foreign speech] > average[all non-speech categories]: p < 0.001 via bootstrapping, Bonferroni-168 
corrected for multiple components, see Methods for details). Music with vocals produced an 169 
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intermediate response, presumably due to the presence of speech structure (e.g. phonemes, words). 170 
The response to English and foreign speech was similar in these components, suggesting a 171 
response to speech acoustics rather than linguistic meaning, consistent with prior studies of speech 172 
selectivity in the STG (Mesgarani et al., 2014; Norman-Haignere et al., 2015; Overath et al., 2015) 173 
(all of the subjects were native English speakers; the response to foreign speech was higher in 174 
Components 3 & 15, plausibly because the foreign speech was spoken at faster rate and thus had 175 
more speech content). Speech selectivity in Components 3 & 15 developed within a few hundred 176 
milliseconds, while Component 9 showed a slower response. The speech-selective components 177 
clustered in the middle STG, as expected (Scott et al., 2000; Mesgarani et al., 2014; Overath et al., 178 
2015). The weights for Components 3 & 15 were stronger on average in the left hemisphere, but this 179 
effect did not reach significance (p > 0.07, uncorrected for multiple components), consistent with 180 
prior fMRI studies showing bilateral speech selectivity (Norman-Haignere et al., 2015; Overath et al., 181 
2015) (Fig S6 plots the mean difference in electrodes weights between right and left hemisphere for 182 
all components). 183 
 184 
Two components exhibited selectivity for music (Component 10 & 12). Component 10 responded 185 
strongly to both instrumental and vocal music (average[Instrumental music, vocal music] > 186 
average[all non-music categories]: p < 0.001 via bootstrapping, Bonferroni-corrected), and produced 187 
an intermediate response to speech, suggesting that music and speech were not perfectly 188 
disentangled by our component analysis (perhaps due to limited coverage of the lateral sulcus where 189 
music selectivity is prominent; Fig 1C). All other non-music and non-speech sounds produced weak 190 
responses in these components. Moreover, the response of Component 10 was considerably slower 191 
than many of the other components, with music selectivity taking nearly a second to build up, 192 
suggesting selectivity for longer-term temporal structure. 193 
 194 
Component 12 responded nearly exclusively to music with vocals: every single vocal music stimulus 195 
produced a high response and all other sounds, including both speech and instrumental music, 196 
produced a weak response. As a consequence, the response to vocal music was significantly higher 197 
than the summed response to speech and instrumental music, suggesting nonlinear selectivity for 198 
song (vocal music > max[English speech, foreign speech] + instrumental music: p < 0.001 via 199 
bootstrapping, Bonferroni-corrected). This finding of nonlinear selectivity for vocal music is 200 
strengthened by the fact that our decomposition method explicitly models each electrode as a 201 
weighted sum of multiple components, and thus if song selectivity simply reflected a sum of speech 202 
and music selectivity, the model should not have needed a separate component selective for just 203 
vocal music. 204 
 205 
Unlike most other components, Components 10 (music selective) and 12 (song selective) showed 206 
high weights for electrodes in anterior auditory cortex, similar to what would be expected based on 207 
prior work (Leaver and Rauschecker, 2010; Angulo-Perkins et al., 2014; Norman-Haignere et al., 208 
2015). There were also electrodes in middle/posterior STG with substantial weight for these 209 
components, which has also been observed with fMRI (Norman-Haignere et al., 2015), though less 210 
prominently than the anterior region of music selectivity.  211 
 212 
Many components did not exhibit clear selectivity for categories (Fig S5). Some components showed 213 
strong responses at the onset (Components 1, 2, 4, 6, 7, 8) or offset (Component 17) of sound, 214 
although the strength of this onset response varied across stimuli for several components. Most of 215 
these onset/offset selective components had weights that were clustered in the middle or posterior 216 
STG, but rarely in the anterior STG, consistent with a recent study (Hamilton et al., 2018). Several 217 
components were weakly selective for music or speech (Component 7, 8, 13), producing higher 218 
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average responses to these categories, but also strong responses for sounds other than speech or 219 
music.  220 
 221 
Selectivity for spectrotemporal modulation statistics. Can speech, music and song selectivity 222 
be explained by generic acoustic representations, such as spectrotemporal modulations that appear 223 
to drive much of the functional organization of human primary auditory cortex (Schönwiesner and 224 
Zatorre, 2009; Barton et al., 2012; Santoro et al., 2014)? This question is relevant since speech and 225 
music are known to have distinctive modulation rates (Singh and Theunissen, 2003; Ding et al., 226 
2017). We recently introduced an algorithm for synthesizing sounds that are matched to natural 227 
sounds in their spectrotemporal modulation statistics, despite being acoustically distinct (Fig 3A) 228 
(Norman-Haignere and McDermott, 2018). We found previously that primary auditory regions 229 
produced very similar responses to natural and modulation-matched synthetic sounds, but that non-230 
primary regions produced weak responses to the synthetic sounds, presumably because they lack 231 
higher-order structure necessary to drive neurons in non-primary regions.  232 
 233 
We measured responses to 36 natural and 36 corresponding modulation-matched synthetic sounds 234 
in a subset of ten patients. We used different natural sounds from the 165 sounds tested in the main 235 
experiment because we needed longer stimuli for the synthesis procedure (4 seconds vs. 2 seconds; 236 
see Methods for details). Of these 36 sounds, there were 8 speech stimuli and 10 music stimuli, two 237 
of which contained vocals (these stimuli were designed prior to the discovery of a song-selective 238 
component and so were not explicitly designed to examine song selectivity). Using the electrode 239 
weights from the 165 natural sounds experiment, we inferred the response of the same 20 240 
components to the new sound set, thus providing an independent validation of their selectivity. We 241 
plot the response timecourse of each component to natural and modulation-matched sounds 242 
separately for speech, vocal music, instrumental music, and all other non-speech and non-music 243 
sounds (Fig 3B & S7), as well as the time-averaged response for each pair of natural and 244 
modulation-matched sounds (Fig 3C,D).  245 
 246 
For all category-selective components, we observed a clear difference between the natural and 247 
modulation-matched synthetic sounds. The speech-selective components (3, 9, & 15) replicated 248 
their selectivity for natural speech with the new stimulus set (with an intermediate response to vocal 249 
music) and produced weak responses to the modulation-matched speech (p < 0.01 via a sign test 250 
across sounds comparing natural and modulation-matched speech). The music-selective 251 
component (10) replicated its selectivity for natural music and responded weakly to modulation-252 
matched music (p < 0.01 via a sign test comparing natural and modulation-matched music). Critically, 253 
the song-selective component (12) responded nearly exclusively to the natural vocal music, 254 
producing weak responses to natural speech, natural instrumental music, and the modulation-255 
matched vocal music (p < 0.01 via a sign test comparing natural and modulation-matched vocal 256 
music; because there were only 2 vocal music sounds, the response to those two stimuli was 257 
subdivided into 500 ms segments to increase the number of samples). In contrast, most non-258 
category selective components responded similarly to natural and modulation-matched sounds (Fig 259 
3D; Comp 7 showed modest selectivity for natural instrumental music, consistent with its response 260 
intermediate selectivity for instrumental music in the 165 natural sounds; see Fig S5). This finding 261 
demonstrates that speech, music, and song selectivity cannot be accounted for by spectrotemporal 262 
modulation statistics that appear to robustly drive responses throughout much of the rest of auditory 263 
cortex. 264 
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 265 
Figure 3. Component responses to natural and modulation-matched synthetic sounds. A, Cochleagrams 266 
of example natural and corresponding synthetic sounds with matched spectrotemporal modulation statistics 267 
(Norman-Haignere and McDermott, 2018). Cochleagrams plot energy as a function of time and frequency, similar 268 
to a spectrogram, but measured from filters designed to mimic cochlear frequency tuning. Each sound was 4 269 
seconds in duration (cochleagrams show just the first two seconds of each sound). B, The response of the 270 
speech, music, and song-selective components, identified in the 165-natural sound experiment, to the natural 271 
and modulation-matched sounds of the control experiment. We plot the response timecourse (first 2-seconds) of 272 
each component to each natural (lighter colors) and modulation-matched synthetic sound (darker colors). The 273 
sounds are grouped into four categories: instrumental music (blue), music with vocals (red), speech (green, both 274 
English and foreign), and all other sounds (black/gray). C, The time-averaged component response to each pair 275 
of natural and modulation-matched sounds (connected circles indicate pairs), along with the mean component 276 
response across the natural (lighter bars) and modulation-matched (darker bars) sounds from each category. D, 277 
Same as panel C, but showing all other reliable components, most of which showed a similar response magnitude 278 
for natural and modulation-matched sounds. 279 

 280 
Single-electrode analyses. We next sought to test whether we could observe evidence for speech, 281 
music, and song selectivity in individual electrodes without the need for statistical assumptions or 282 
modeling. Using a subset of data, we identified electrodes selective for speech, music or song, and 283 
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then measured their response in independent data. The electrode selection stage involved three 284 
steps (all performed on the same data and distinct from that used to measure the response). First, 285 
we measured the average response across time and stimuli to all sound categories with more than 286 
five exemplars. Second, we identified a pool of electrodes with a highly selective (selectivity > 0.6) 287 
and significant (p < 0.001 via bootstrapping) response to either speech, music or song. Selectivity 288 
was measured by contrasting the maximum response across all speech and music categories 289 
(English speech, foreign, speech, vocal music, instrumental music) with the maximum response 290 
across all other non-music and non-speech categories. Third, from this pool of music- or speech-291 
selective electrodes, we formed three groups: those that responded significantly more (p < 0.01 via 292 
bootstrapping) to speech than all else (max[English speech, foreign speech] > max[non-speech 293 
categories except vocal music]), music than all else (instrumental music > max[non-music 294 
categories]), or that exhibited super-additive selectivity for vocal music (vocal music > max[English 295 
speech, foreign speech] + instrumental music).  296 
 297 
We plot the response of the top electrodes most significantly responsive to each contrast (Fig 4A) 298 
as well as the average response across all electrodes identified using this procedure (Fig 4B). We 299 
measured responses to the same natural sounds used to identify the electrodes (in independent 300 
data), as well as the natural and synthetic sounds from our control experiment (Fig 4C). As expected, 301 
given the coverage of ECoG grids relative to speech and music-selectivity (Fig 1C), we observed 302 
many more speech-selective electrodes than music or song-selective electrodes (169 speech-303 
selective electrodes across all 13 subjects, 12 music-selective electrodes across 4 subjects, and 7 304 
song-selective electrodes across 3 subjects). But each of the music and song-selective electrodes 305 
identified replicated their selectivity for music or speech in independent data (p < 0.05 for every 306 
electrode; p < 0.001 for responses averaged across all music and song-selective electrodes; via 307 
bootstrapping the same contrast used to select electrodes but in independent data); and modulation-308 
matched synthetic sounds produced a much weaker responses than natural sounds from the 309 
preferred category (p < 0.01 via a sign test between responses to natural and model-matched sounds 310 
applied to the average response of speech, music, and song-selective electrodes). Some of the 311 
music-selective electrodes were strikingly selective. For example, S1-E147 (from a patient with 312 
small, high-density electrodes with 1 mm exposed diameters) responded in a near binary fashion, 313 
producing a high response for nearly all of the music sounds and a near-zero response for all other 314 
sounds.  315 
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 316 
Figure 4. The response of individual electrodes selective for speech, music or song. We selected speech 317 
(top), music (middle), and song-selective (bottom) electrodes, and then measured their response in independent 318 
data. A, The top six electrodes that showed the most significant response preference for each category in the 319 
subset of data used to select electrodes. For speech-selective electrodes, the top 6 electrodes came from 2 320 
subjects (2 from S1 and 4 from S2), and so we instead plot the top electrode from 6 different subjects to show 321 
greater diversity. Conventions as in Fig 2A. B, The average response of all electrodes identified as speech, 322 
music, or song-selective to the 165 natural sounds (same conventions as panel A). C, The average response of 323 
speech, music, and song-selective electrodes to natural and modulation-matched sounds from the control 324 
experiment (conventions as in Fig 3C).  325 
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The fact that we observed clear selectivity for vocal music in individual electrodes confirms that our 326 
component analysis did not infer a form of selectivity not present in the data. At the same time, the 327 
song-selective electrodes identified in this analysis were less selective than the component inferred 328 
by our decomposition analysis (p < 0.001 via bootstrapping the super-additive song selectivity 329 
metric), which suggests that our component analysis disentangled overlapping selectivity for music, 330 
speech and song within individual electrodes. Moreover, the song-selective component explained 331 
responses in a much wider range of electrodes than the 7 electrodes identified in our single-electrode 332 
analysis; indeed, the top 7 electrodes with the greatest weight for the song-selective component 333 
(Component 12) accounted for less than 20% of the total electrode weights. Thus, by de-mixing 334 
selectivity within individual electrodes, our component analysis isolated selectivity for song more 335 
cleanly and enabled us to better characterize the spatial distribution of song selectivity across the 336 
cortex.  337 
 338 
Discussion 339 
 340 
Using intracranial recordings from the human brain, our study reveals two distinct forms of music 341 
selectivity: one selective for a wide range of music, and one selective for music with vocals, 342 
suggesting selectivity for song. Both types of selectivity emerged from data-driven component 343 
modeling and were also evident in analyses of individual electrodes. Neither form of selectivity could 344 
be explained by a generic acoustic model based on spectrotemporal modulation. Our results suggest 345 
that music is represented by multiple distinct neural populations, selective for different aspects of 346 
music, at least one of which responds specifically to musical song.  347 
 348 
Song selectivity. Although vocal music has frequently been used to explore the neural basis of 349 
music and speech perception (Merrill et al., 2012; Tierney et al., 2013), our findings provide the first 350 
evidence for a neural population specifically involved in the perception of song. Because our 351 
component method explicitly models electrodes as weighted sums of multiple response patterns, the 352 
method would not have inferred a component selective for vocal music if each electrode reflected a 353 
weighted sum of speech and music selectivity. Thus, the fact that our component analysis inferred 354 
a component that responded nearly exclusively to vocal music provides evidence for a super-additive 355 
response to singing, a hypothesis that we directly confirmed by analyzing the response of song-356 
selective electrodes. 357 
 358 
Why might the human brain have neural populations selectively responsive to song? Vocals are 359 
pervasive in music, and typically carry the main melodic line. Thus, the brain may develop neural 360 
mechanisms specialized for representing song, simply because it is one of the first and/or most 361 
prominent components of the music that people hear. Alternatively, neural specializations for song 362 
may be partly innate, reflecting the biological importance of singing (Mehr and Krasnow, 2017). 363 
 364 
Why has song selectivity not been clearly observed before, including in our prior fMRI study using 365 
the same sound set (Norman-Haignere et al., 2015)? One possibility is that ECoG signals have 366 
greater spatial and temporal precision because they directly sample electrophysiological activity 367 
rather than using changes in blood flow to track neural activity. Consistent with this hypothesis, in 368 
our prior fMRI study, we were only able to infer six reliable response patterns across all of auditory 369 
cortex before overfitting to noise in the data. Here, we were able to infer a much larger number of 370 
components despite having access to only a fraction of auditory cortex (since surface electrodes do 371 
not provide coverage of the lateral sulcus). Most of the inferred components had distinct responses 372 
to the sound set even when averaging responses across time, suggesting that the increase in 373 
dimensionality is not solely due to improved temporal resolution.  374 
 375 
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It will be important in future work to identify the features of singing that drive song selectivity. For 376 
example, one could explore sensitivity to the types of pitch variation that characterize singing 377 
(Tierney et al., 2013), or test for an interaction between speech-like vocal tract information and 378 
musical pitch variation (Merrill et al., 2012).  379 
 380 
Music selectivity. Researchers have long debated the extent to which music perception relies on 381 
specialized vs. general-purpose neural mechanisms (Patel, 2012; Peretz et al., 2015). Our study 382 
provides the first direct electrophysiological evidence that the human brain has neural populations 383 
that are highly selective for music.  384 
 385 
Our results also help validate the voxel decomposition method used in our prior work (Norman-386 
Haignere et al., 2015). Using voxel decomposition, we inferred a component that was substantially 387 
more selective for music than were individual voxels, which we hypothesized was due to the overlap 388 
of distinct neural populations within a voxel. Our findings support this hypothesis by showing clear 389 
music selectivity using a more direct measure of neural activity. Moreover, many of the electrodes 390 
that showed the strongest selectivity for music (e.g. S1-E147, S1-E215) were sampled by a high-391 
density grid with particularly small electrodes (1 mm exposed diameter), suggesting that high spatial 392 
resolution is useful for detecting clear music selectivity. Thus, our study both demonstrates the 393 
existence of music-selective neural populations, and helps explain why this type of selectivity has 394 
not been clearly observed with fMRI in standard voxel-wise analyses.  395 
 396 
Speech and voice selectivity. Many prior studies have reported selectivity for speech (Mesgarani 397 
et al., 2014; Norman-Haignere et al., 2015; Overath et al., 2015) and non-speech vocalizations (e.g. 398 
crying, laughing) (Belin et al., 2000) in the superior temporal gyrus. Distinguishing responses to 399 
speech and voice has been difficult, because speech-selective responses typically show at least 400 
some response to non-speech vocalizations and vice-versa. Here, we found multiple components 401 
(3, 15) and electrodes (e.g. S2-E54, S2-E222) that produced essentially no response to non-speech 402 
vocalizations, demonstrating that pure speech selectivity exists in the human brain. Thus, as with 403 
the music selectivity, the fact that fMRI voxels reflect a mixture of speech and voice selectivity may 404 
in part reflect the blurring together of nearby neural populations.  405 
 406 
Onset/offset selectivity. Many of the components we observed responded substantially more 407 
strongly at the onset or offset of sound, consistent with a recent study showing the onset selectivity 408 
is a prominent feature of human STG responses (Hamilton et al., 2018). Our study highlights the 409 
diversity of these responses across a wide variety of natural sounds: some components responded 410 
at the onset (Component 2) or offset (Component 17) of any sound, some were strongest for speech 411 
or vocalization stimuli (Components 1 & 4), and some were strongest for non-speech sounds 412 
(Component 6). Why so much of the STG is onset-selective is unclear. Some of these responses 413 
might reflect a generic/low-level adaptation mechanism in response to a sudden increment or 414 
decrement in sound energy. Others might reflect adaptation to higher-level stimulus statistics (Kvale 415 
and Schreiner, 2004), perhaps in the service of creating a more noise-robust (Mesgarani et al., 2014) 416 
or efficient (Barlow, 1961; Fairhall et al., 2001) representation of sound by suppressing responses 417 
to features that are predictable (Heilbron and Chait, 2017).  418 
 419 
Component modeling: strengths, limitations and relationship to prior methods. Component 420 
modeling provides a way to: (1) infer prominent response patterns; (2) suggest novel hypotheses 421 
that might not be obvious a-priori; and (3) disentangle spatially overlapping responses. Our results 422 
illustrate each of these benefits. We were able to infer a set of 20 response components that 423 
explained much of the response variation across hundreds of electrodes. We found evidence for a 424 
novel form of music selectivity (song selectivity) that we did not hypothesize a priori. And the 425 
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selectivity that we observed in the song selective component was often clearer than that evident in 426 
individual electrodes, some of which appeared to reflect a mixture of music, speech and song 427 
selectivity.  428 
 429 
The key challenge of component modeling is that matrix approximation is inherently ill-posed, and 430 
hence, the solution depends on statistical assumptions. Most component methods rely on just one 431 
of the following three assumptions: (1) non-negativity (Lee and Seung, 1999); (2) sparsity across 432 
time or space (Olshausen and Field, 1997; Hyvarinen, 1999); or (3) temporal smoothness (Wiskott 433 
and Sejnowski, 2002; Byron et al., 2009). We showed that all of these properties are evident in 434 
auditory ECoG responses. We developed a simple model to embody these assumptions and showed 435 
that the model better predicted ECoG responses compared with baseline models. We also showed 436 
that all of our category-selective components were evident using a model that imposed only non-437 
negativity on the responses, suggesting that our key results were robust to the particular statistical 438 
assumptions imposed. Nonetheless, the assumptions of a component model are never perfect; and 439 
thus, it is useful to validate the results of a model with more direct analyses. Here, we found that 440 
speech, music and song selectivity were evident in individual electrodes, which demonstrates that 441 
our key findings were not dependent on statistical assumptions. 442 
 443 
Our prior fMRI voxel decomposition method used statistical constraints on the high-dimensional 444 
voxel weights to infer components (Norman-Haignere et al., 2015). By contrast, ECoG grids have 445 
many fewer electrodes than voxels, but each electrode has a richly structured timecourse. We thus 446 
chose to constrain the solution with statistics of the high-dimensional response timecourses. Our 447 
method is also distinct from a number of other component models that have been applied to high-448 
dimensional neural data. Unlike many sparse convolutional models (Bouchard et al., 2017), each 449 
component of our model was defined by a single timecourse and a single pattern of electrode weights 450 
rather than by a time-varying spatial pattern, and thus can be more easily interpreted as the response 451 
of an underlying neuronal population. Unlike clustering methods (or convex NMF (Hamilton et al., 452 
2018)), our method can disentangle responses that overlap within individual electrodes. And unlike 453 
most tensor decomposition methods (Williams et al., 2018), our method does not require the shape 454 
of a component’s response timecourse to be identical across different stimuli, which is critical for 455 
modeling responses to sensory features that are not necessarily aligned to stimulus onset. 456 
 457 
Conclusions and future directions 458 
By revealing a neural population selective for song, our study begins to unravel the neural code for 459 
music in the human brain, raising many questions for future research: What features of music 460 
underlie selective responses to music and song? Do these responses reflect note-level structure 461 
(e.g. pitch and timbre) (Casey et al., 2012) or the way notes are patterned to create music (e.g. 462 
melodies, harmonies and rhythms) (Schindler et al., 2013)? How can we describe the tuning of music 463 
and song-selective neural populations in computational terms, given that standard acoustic features 464 
appear insufficient (Kell et al., 2018)? And how is music and song selectivity constructed over the 465 
development of each individual, or over the history of our species (Wallin et al., 2001)? The findings 466 
and methods presented here provide a path towards answering these longstanding questions.  467 
  468 
Methods 469 
 470 
Participants. Thirteen epilepsy patients participated in our study (mean age: 37 years, age standard 471 
deviation: 14 years; 8 right-handed; 8 female). These subjects underwent temporary implantation of 472 
subdural electrode arrays at Albany Medical College to localize the epileptogenic zones and to 473 
delineate these zones from eloquent cortical areas before brain resection. All of the subjects gave 474 
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informed written consent to participate in the study, which was approved by the Institutional Review 475 
Board of Albany Medical College. 476 
  477 
Electrode grids. Most subjects had electrodes implanted in a single hemisphere, and STG coverage 478 
was much better in one of the two hemispheres in all subjects (8 right hemisphere patients and 5 left 479 
hemisphere patients; Fig 1B shows the coverage of the primary hemisphere for all subjects). In most 480 
subjects, electrodes had a 2.3 mm exposed diameter with a 6 mm center-to-center spacing for 481 
temporal lobe grids (10 mm spacing for grids in frontal, parietal and occipital lobe, but electrodes 482 
from these grids typically did not show reliable sound-driven responses; electrodes were embedded 483 
in silicone; PMT Corp., Chanhassen, MN). Two subjects were implanted with a higher-density grid 484 
(1 mm exposed diameter, 3 mm center-to-center spacing).  485 
 486 
Natural sounds. The sound set was the same as in our prior study (Norman-Haignere et al., 2015). 487 
To generate the stimulus set, we began with a set of 280 everyday sounds for which we could find 488 
a recognizable, 2-second recording. Using an online experiment (via Amazon’s Mechanical Turk), 489 
we excluded sounds that were difficult to recognize (below 80% accuracy on a ten-way multiple 490 
choice task; 55–60 participants for each sound), yielding 238 sounds. We then selected a subset of 491 
160 sounds that were rated as most frequently heard in everyday life (in a second Mechanical Turk 492 
study; 38–40 ratings per sound). Five additional ‘‘foreign speech’’ sounds were included (‘‘German,’’ 493 
‘‘French,’’ ‘‘Italian,’’ ‘‘Russian,’’ ‘‘Hindi’’) to distinguish responses to acoustic speech structure from 494 
responses to linguistic structure (the 160-sound set included only two foreign speech stimuli: 495 
“Spanish” and “Chinese”). In total, there were 10 English speech stimuli, 7 foreign speech stimuli, 496 
21 instrumental music stimuli, and 11 vocal music stimuli (see Sound category assignments). 497 
Sounds were RMS-normalized and presented at a comfortable volume using sound isolating over-498 
the-ear headphones (Panasonic RP-HTX7, 10 dB isolation). The sound set is freely available:  499 
 500 
http://mcdermottlab.mit.edu/svnh/Natural-Sound/Stimuli.html 501 
  502 
Subjects completed between three and seven runs of the experiment (S11: 3 runs, S6, S12: 4 runs, 503 
S13: 5 runs, S1: 7 runs; all other subjects: 6 runs). In each run, each natural sound was presented 504 
at least once. Between 14 and 17 of the sounds were repeated exactly back-to-back, and subjects 505 
were asked to press a button when they detected this repetition. This second instance of the sound 506 
was excluded from the analysis, because the presence of a target could otherwise bias responses 507 
in favor of the repeated stimuli. Each run used a different random ordering of stimuli. There was a 508 
1.4-2 second gap (randomly chosen) between consecutive stimuli. 509 
 510 
Modulation-matched synthetic sounds. In ten of the subjects, we also measured responses to a 511 
distinct set of 36 natural sounds and 36 corresponding synthetic sounds that were individually 512 
matched to each natural sound in their spectrotemporal modulations statistics using the approach 513 
described in Norman-Haignere & McDermott (2018). The synthesis algorithm starts with an 514 
unstructured noise stimulus, and iteratively modifies the noise stimulus to match the modulation 515 
statistics of a natural sound. Modulations are measured using a standard model of auditory cortical 516 
responses in which a cochleagram is passed through a set of linear filters tuned to modulations at a 517 
particular audio frequency, temporal rate, and spectral scale (i.e. how coarse vs fine the modulations 518 
are in frequency) (Chi et al., 2005). The spectrotemporal filters were created by crossing 9 temporal 519 
rates (0.5, 1, 2, 4, 8, 16, 32, 128 Hz) with 7 spectral scales (0.125, 0.25, 0.5, 1, 2, 4, 8 cycles per 520 
octave), and replicating each filter at each audio frequency. The synthesis procedure alters the noise 521 
stimulus to match the histogram of response magnitudes across time for each filter in the model, 522 
which has the effect of matching all time-averaged statistics (such as mean and variance) of the filter 523 
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responses. The stimuli and synthesis procedures were very similar to those used in Norman-524 
Haignere & McDermott with a few minor exceptions that are noted next.	525 
  526 
All stimuli were 4 seconds long. We used shorter stimuli than the 10-second stimuli used in Norman-527 
Haignere & McDermott (2018) due to limitations in the recording time. Because the stimuli were 528 
shorter, we did not include the very low-rate filters (0.125 and 0.25 Hz), which were necessary for 529 
longer stimuli to prevent energy from clumping unnaturally at particular moments in the synthetic 530 
recording. We also did not include “DC filters” as in Norman-Haignere & McDermott, but instead 531 
simply matched the mean value of the cochleagram across time and frequency at each iteration of 532 
the algorithm. Norman-Haignere & McDermott describe two versions of the algorithm: one in which 533 
the histogram-matching procedure was applied to the raw filter outputs and one where the matching 534 
procedure was applied to the envelopes of the filter responses. We found that the resulting stimuli 535 
were very similar, both perceptually and in terms of the cortical response. The stimuli tested here 536 
were created by applying the histogram matching procedure to the envelopes.  537 
 538 
The stimuli were presented in a random order with a 1.4-1.8 second gap between stimuli (for the first 539 
subject tested, a 2-2.2 second gap was used). The natural sounds were repeated to make it possible 540 
to assess the reliability of stimulus-driven responses. For all analyses, we simply averaged 541 
responses across the two repetitions. The sound set was presented across 4 runs. In one subject 542 
(S1), the entire experiment was repeated (we averaged responses across the two repeats).  543 
 544 
Sound category assignments. In an online experiment, Mechanical Turk participants chose the 545 
category that best described each of the 165 sounds tested, and we assigned each sound to its most 546 
frequently chosen category (30–33 participants per sound) (Norman-Haignere et al., 2015). 547 
Category assignments were highly reliable (split-half kappa = 0.93). We chose to re-assign three 548 
sounds (“cymbal crash”, “horror film sound effects”, and “drum roll”) from the “instrumental music” 549 
category to a new “sound effects” category. There were two motivations for this re-assignment: (1) 550 
these three sounds were the only sounds assigned to the music category that produced weak fMRI 551 
responses in the music-selective component we inferred in our prior study, presumably because 552 
they lack canonical types of musical structure (i.e. clear notes, melody, rhythm, harmony, key, etc.); 553 
and (2) excluding these sounds makes our song selectivity contrast (vocal music – (instrumental 554 
music + speech)) more conservative as it is not biased upwards by the presence of instrumental 555 
music sounds that lack rich musical structure.  556 
 557 
Preprocessing. Preprocessing was implemented in MATLAB. The scripts used to implement the 558 
preprocessing steps are available here (we reference specific scripts within these directories in 559 
describing our analyses): 560 
 561 
https://github.com/snormanhaignere/ecog-analysis-code 562 
https://github.com/snormanhaignere/general-analysis-code 563 
 564 
The responses from all electrodes were common-average referenced to the grand mean across all 565 
electrodes (separately for each subject). We excluded noisy electrodes from the common-average 566 
reference by detecting anomalies in the 60 Hz power (see channel_selection_from_60Hz_noise.m; 567 
a IIR resonance filter with a 3dB down bandwidth of 0.6 Hz was used to measure the RMS power). 568 
Specifically, we excluded electrodes whose 60 Hz power exceeded 5 standard deviations of the 569 
median across electrodes. Because the standard deviation is itself sensitive to outliers, we estimated 570 
the standard deviation using the central 20% of samples, which are unlikely to be influenced by 571 
outliers (by dividing the range of the central 20% of samples by that which would be expected from 572 
a Gaussian of unit variance; see zscore_using_central_samples.m). After common-average 573 
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referencing, we used a notch filter to remove 60 Hz noise and its harmonics (60, 120, 180, and 240 574 
Hz; see notch_filt.m; an IIR notch filter with a 3dB down bandwidth of 1 Hz was used to remove 575 
individual frequency components; the filter was applied forward and backward using filtfilt.m).  576 
 577 
We computed broadband gamma power by measuring the envelope of the preprocessed signal 578 
filtered between 70 and 140 Hz (see bandpass_envelopes.m; bandpass filtering was implemented 579 
using a 6th order Butterworth filter with 3dB down cutoffs of 70 and 140 Hz; the filter was applied 580 
forward and backward using filtfilt.m). The envelope was measured as the absolute value of the 581 
analytic signal after bandpassing. For the single-electrode analyses (Fig 4), we downsampled the 582 
envelopes to 100 Hz (from the 1200 Hz recording rate), and smoothed the timecourses with a 50 ms 583 
FWHM kernel to reduce noise and make it easier to distinguish the timecourses for different 584 
categories in the plots. For component analyses, we downsampled the envelopes to 25 Hz, because 585 
this enabled us to fit the data in the limited memory available on the GPU used to perform the 586 
optimization (no smoothing was applied since the model inferred an appropriate smoothing kernel 587 
for each component). 588 
  589 
Occasionally, we observed visually obvious artifacts in the broadband gamma power for a small 590 
number of timepoints. These artifacts were typically localized to a small fraction of electrodes; thus, 591 
we detected artifacts separately for each electrode. For each electrode, we computed the 90th 592 
percentile of its response magnitudes across all timepoints, which is by definition near the upper-593 
end of that electrode’s response distribution, but which should also be unaffected by outliers 594 
assuming the number of outliers accounts for less than 10% of time points (which we generally found 595 
to be the case). We classified a timepoint as an outlier if it exceeded 5 times the 90th percentile value 596 
for each electrode. We found this value to be relatively conservative in that only a small number of 597 
timepoints were excluded (<1% for all sound-responsive electrodes), and the vast majority of the 598 
excluded timepoints were artifactual based on visual inspection of the broadband gamma 599 
timecourses. Because there were only a small number of outlier timepoints, we replaced the outliers 600 
values with interpolated values from nearby non-outlier timepoints. We also manually excluded some 601 
or all of the runs from 11 electrodes where there were a large number of artifacts. 602 
 603 
For each 2-second stimulus, we measured the response of each electrode during a three-second 604 
window locked to sound onset (for the 4-second natural and modulation-matched stimuli we used a 605 
5-second window). We detected the onset of sound in each stimulus by computing the waveform 606 
power in 10 ms bins (with a 2 ms hop), and selecting the first bin in which the audio power exceeded 607 
50 dB of the maximum power across all windows and stimuli. Following standard practice, the audio 608 
and ECoG data were synced by sending a copy of the audio signal to the same system used to 609 
record ECoG signals. This setup allowed us to measure the time delay between when the system 610 
initiated a trial and the onset of sound (which we measured using pure tones).  611 
 612 
Responses were converted to units of percent signal change relative to silence by subtracting and 613 
then dividing the response of each electrode by the average response during the 300 ms before 614 
each stimulus. 615 
 616 
Session effects. For five of the thirteen subjects, runs were collected across two sessions with a 617 
gap in between (typically a day; the 7th run of S1 was collected in a third session). For the vast 618 
majority of electrodes, we found that their response properties were stable across sessions. 619 
Occasionally, we observed electrodes that substantially changed their selectivity, potentially due to 620 
small changes in the positioning of the electrodes over the cortex. To identify such changes, from 621 
each run of data, we measured the time-averaged response of each electrode to each of the 165 622 
sounds tested. We then detected electrodes for which the test-retest correlation from runs of the 623 
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same session was significantly greater than the test-retest correlation from runs of different sessions 624 
(p < 10-5; we used time-averaged response profiles rather than the raw timecourses, because we 625 
found them to be more reliable, and thus a better target for detecting selectivity changes across 626 
sessions; for S1 we grouped the runs from the 2nd and 3rd session together since there was only a 627 
single run in the 3rd session). Significance was evaluated via a permutation test (Nichols and Holmes, 628 
2002) in which we permuted the correspondence between stimuli across runs (10,000). We used 629 
this approach to build up a null distribution for our test statistic (the difference between the correlation 630 
within and across sessions), fit this null distribution with a Gaussian (so that we could estimate small 631 
p-values that would have been impossible to estimate via counting), and used the null to calculate a 632 
two-sided p-value (by measuring the tail probability that exceeded the test statistic and multiplying 633 
by 2). Seven electrodes passed our conservative significance threshold. For these electrodes, we 634 
simply treated the data from different sessions as coming from different electrodes, since they likely 635 
sampled distinct neural populations. 636 
  637 
Electrode selection. We selected electrodes with a reliable response to the sound set. Specifically, 638 
we measured the test-retest correlation of each electrode’s broadband gamma response timecourse 639 
across all sounds, measured in two splits of data (odd and even runs). We kept all electrodes with a 640 
test-retest correlation greater than 0.2 (electrodes with a test-retest correlation less than 0.2 were 641 
quite noisy upon inspection). Results were similar using a more liberal threshold of 0.1.  642 
  643 
Electrode localization. We localized electrodes in order to be able to visualize the electrode weights 644 
for each component. Electrode locations played no role in the identification of components or 645 
category-selective electrodes. 646 
 647 
Following standard practice, we identified electrodes as bright spots on a post-operative computer 648 
tomography (CT) image. The CT was the aligned to a high-resolution, pre-operative magnetic 649 
resonance image (MRI) using a rigid-body transformation. We then projected each electrode onto 650 
the cortical surface, computed by Freesurfer from the MRI scan. This projection is error-prone 651 
because far-away points on the cortical surface can be spatially nearby due to cortical folding. As a 652 
consequence, it was not uncommon for electrodes very near STG, where sound-driven responses 653 
are common, to be projected to a spatially nearby point on middle temporal or supramarginal/inferior 654 
frontal gyrus, where sound-driven responses are much less common (Fig S8). To minimize gross 655 
errors, we preferentially localized sound-driven electrodes to regions where sound-driven responses 656 
are likely to occur. Specifically, using a recently collected fMRI dataset, where responses were 657 
measured to the same 165 sounds in a large cohort of 20 subjects with whole-brain coverage (our 658 
prior published study only had partial brain coverage (Norman-Haignere et al., 2015)), we calculated 659 
the fraction of subjects that showed a significant response to sound at each point in the brain (p < 660 
10-5, measured using a permutation test (Norman-Haignere et al., 2016)). We treated this map as a 661 
prior and multiplied it by a likelihood map, computed separately for each electrode based on the 662 
distance of that electrode to each point on the cortical surface (using a Gaussian error distribution; 663 
10 mm FWHM). We then assigned each electrode to the point on the cortical surface where the 664 
product of the prior and likelihood was greatest (which can be thought of as the maximum posterior 665 
probability solution). We smoothed the prior probability map so that it would only effect the 666 
localization of electrodes at a coarse level, and not bias the location of electrodes locally, and we set 667 
the minimum prior probability to be 0.05 to ensure every point had non-zero prior probability. We plot 668 
the prior map and the effect it has on localization in Fig S8. 669 
 670 
Responses statistics relevant to component modeling. Our component model approximated the 671 
response of each electrodes as the weighted sum of a set of canonical response timecourses 672 
(“components”). The component timecourses are shared across all electrodes, but the weights are 673 
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unique. We modeled each electrode as the weighted sum of multiple components because each 674 
electrode reflects the pooled activity of many neurons. When the electrode response timecourses 675 
are compiled into a matrix, our analysis corresponds to matrix factorization: approximating the data 676 
matrix as a product of a component response matrix and a component weight matrix.  677 
 678 
Matrix factorization is inherently ill-posed (that is, there are many equally good approximations). 679 
Thus, we constrained our factorization by additional statistical criteria. Most component methods rely 680 
on one of three statistical assumptions: (1) non-negativity (Lee and Seung, 1999); (2) a non-681 
Gaussian distribution of response magnitudes across time or space (Olshausen and Field, 1997; 682 
Hyvarinen, 1999); or (3) temporal smoothness of the component responses (Wiskott and Sejnowski, 683 
2002; Byron et al., 2009). We investigated each of these statistical properties in broadband gamma 684 
responses to sound (Fig S1).  685 
 686 
To evaluate non-negativity, we measured the percent of the total RMS power accounted for by 687 
positive vs. negative responses during the presentation of sound (measured relative to 300 ms of 688 
silence preceding the onset of each sound): 689 
 690 
 

		 	

1 

 691 
where 𝑝 and 𝑛 are shorthand for positive and negative values. We applied the above equation to the 692 
response of individual electrodes (summing over all timepoints for all sounds; Fig S1A,B), as well 693 
as to the pooled response of all sound-responsive electrodes (summing over all timepoints, sounds, 694 
and electrodes; Fig S1D). To minimize the effect of measurement noise, which will create negative 695 
values even if none are present (since measurement noise will not depend on the stimulus and thus 696 
noise fluctuations will be symmetric around the silent baseline), we measured the response of all 697 
electrodes in two splits of data (average across odd and even runs). We then: (1) sorted the response 698 
magnitudes of all timepoints by their magnitude in the first split; (2) measured their response in the 699 
second split; and (3) applied a median filter to the sorted response magnitudes from the second 700 
splits, thus suppressing unreliable response variation (filter size = 100 when applied to individual 701 
electrodes, filter size = 10,000 when pooling responses across all electrodes) (Fig S1B&D show the 702 
results of applying this procedure to individual electrodes and the pooled response of all electrodes). 703 
When equation 1 was applied to the de-noised response distributions (i.e. median filtered responses 704 
from the second split), we found that positive responses accounted for 99.97% of the RMS power 705 
across all sound-responsive electrodes. Note that sound-responsive electrodes were selected based 706 
on the reliability of their responses, not based on a greater response to sounds compared with 707 
silence, and thus our analysis is not biased by our selection criterion. 708 
 709 
To investigate whether and how the distribution of responses might differ from a Gaussian, we 710 
measured the skewness (normalized 3rd moment) and sparsity (excess kurtosis relative to a 711 
Gaussian) of the responses: 712 
 713 
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We applied the above equations to the response distribution of each electrode across all timepoints 715 
and sounds (i.e. concatenating the timecourses from all sounds into a single vector), denoised using 716 
the procedure described in the preceding paragraph. Fig S1F plots a histogram of these skewness 717 
and sparsity values across all electrodes. We found that all electrodes were skewed and sparse 718 
relative to a Gaussian, and relative to what would be expected given just noise in the data (p < 0.001 719 
via sign test; see Statistics for details). This observation implies that the response distribution of each 720 
electrode across time/stimuli has a heavy rightward tail, with a relatively small fraction of timepoints 721 
yielding large responses for any given electrode.  722 
 723 
We also tested the skewness and sparsity of responses across electrodes by applying equations 2 724 
and 3 to the distribution of responses across electrodes. Specifically, we measured the averaged 725 
response of each electrode to each sound, and then for each sound, we applied equations 2 and 3 726 
to the distribution of responses across the 271 sound-responsive electrodes. Fig S1G plots the 727 
histogram of these skewness and sparsity measures for all 165 sounds. We did not apply our de-728 
noising procedure since we only had 271 electrodes which made the sorting/median-filtering 729 
procedure infeasible (in contrast, for each electrode we had 12,375 timepoints across all sounds); 730 
instead we time-averaged the response of each electrode to each sound to reduce noise. We again 731 
found that this distribution was significantly skewed and sparse relative to a Gaussian and relative 732 
to what would be expected given just noise in the data (p < 0.001 via sign test). 733 
 734 
Finally, to investigate the temporal smoothness of auditory ECoG responses, we measured the 735 
normalized autocorrelation of each electrode’s response (Fig S1C,E). To prevent noise from 736 
influencing the result, we correlated responses measured in independent runs (odd and even runs). 737 
This analysis revealed substantial long-term dependencies over more than a second, and the 738 
strength of these dependencies varied substantially across electrodes. This substantial variation 739 
across electrodes demonstrates that these long-term dependencies are not a by-product of 740 
measuring broadband gamma power (in simulations, we have found that our measurement 741 
procedure can resolve power fluctuations up to ~30 Hz, assuming a 70-140 Hz carrier). 742 
 743 
Together, the results from our analysis reveal three key properties of auditory ECoG: (1) nearly all 744 
responses are positive/excitatory relative to sound onset; (2) responses are skewed/sparse across 745 
time/stimuli and electrodes; and (3) responses are temporally smooth and the extent of this 746 
smoothness varies across electrodes. We sought to design a simple component model that captures 747 
these three essential properties. We refer to this model as the “Sparse and Smooth Component” 748 
(SSC) model. 749 
 750 
Component model.  Each electrode is represented by its response timecourse across all sounds 751 
(𝒆$(𝑡)) (Fig S2A). We approximate this response timecourse as the weighted sum of K component 752 
response timecourses (𝒓)(𝑡)): 753 
 754 
 

	

s4 

 755 
The component timecourses are shared across all electrodes, but the weights are separate for each 756 
electrode, allowing the model to approximate different response patterns. We constrain all of the 757 
component responses and weights to be positive, since we found that nearly all of the sound-driven 758 
responses were positive. To encourage the components to be both sparse and smooth, we model 759 
the response timecourse of each component as the convolution of a set of sparse activations (𝒂)(𝑡)) 760 
with a smoothing kernel (𝒉)(𝑡)):  761 
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 762 
 	 5 

 763 
The activations effectively determine when responses occur and the smoothing kernel determines 764 
their smoothness. The activations, smoothing kernel, and electrode weights are all learned from the 765 
data. The learning algorithm proceeds by minimizing the cost function below, which has two parts: 766 
(1) a reconstruction penalty that encourages the model to be close to the data; and (2) an L1 penalty 767 
that encourages the component activations and weights to be sparse. 768 
 769 
 

	 	

6 

 770 
We allowed the smoothing kernel to vary across components to capture the fact that different 771 
electrodes have variable levels of smoothness. We forced the kernel to be smooth by constraining 772 
it to be unimodal (see Constraining the Smoothing Kernel below). The learned smoothing kernels for 773 
each component are shown in Fig S9. The kernels vary substantially in their extent/duration, thus 774 
capturing varying levels of smoothness across components. The model has two hyper-parameters: 775 
the number of components (𝐾) and the strength of the sparsity penalty (𝜆), which we chose using 776 
cross-validation (see next section).  777 
 778 
We implemented and optimized the model in TensorFlow, which provides efficient, general-purpose 779 
routines for optimizing models composed of common mathematical operations. We used the built-in 780 
ADAM optimizer to minimize the loss. We ran the optimizer for 10,000 iterations, decreasing the step 781 
size after each 2,000 iterations (in logarithmically spaced intervals; from 0.01 to 0.0001). Positivity 782 
of the activations and electrode weights was enforced by representing each element as the absolute 783 
value of a real-valued latent variable.  784 
 785 
As with any sparse component model, our cost function is not convex, and the optimization algorithm 786 
could potentially arrive at local optima, leading to unstable results across different random 787 
initializations of the algorithm. To address this issue, we ran the analysis many times (1,000 times), 788 
using different random initializations (activations and electrode weights were initialized with random 789 
samples from a truncated normal distribution; see Fig S10 for the structure and initialization of the 790 
smoothing kernels). Components that are stable should be consistently present for all solutions with 791 
low cost, which we quantified by correlating the component response profiles for the solution with 792 
the lowest cost with those for the 99 next-best solutions (using the “Hungarian algorithm” to 793 
determine the correspondence between components from different solutions (Kuhn, 1955)). As a 794 
measure of stability, we computed the median correlation value for each component across the 99 795 
next-best solutions (Fig 1G). The responses and weights shown are from the model with the lowest 796 
cost.  797 
 798 
We ordered components based on their total contribution to explaining the data matrix, measured 799 
by summing the response timecourse and electrode weights for each component, and then 800 
multiplying them together: 801 
 802 
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Cross-validation analyses. We used cross-validated prediction accuracy to determine the number 804 
of components and the sparsity parameter (Fig 1E & S2B), as well as to compare the SSC model 805 
with several baseline models (Fig S2C). For the purposes of cross-validation, we separated the 806 
timecourses for different sounds into cells, thus creating an electrode x sound matrix (Fig 1E). We 807 
then trained the model on a random subset of 80% of cells and measured the model’s prediction 808 
accuracy (squared Pearson correlation) in the left-out 20% of cells. We trained models starting from 809 
10 different random initializations, and selected the model with the lowest error in the training data. 810 
We repeated our analyses using 5 different random splits of train and test data, averaging the test 811 
correlations across splits. For each split, we ensured an even and broad sampling of train and test 812 
stimuli using the following procedure: (1) we created a random ordering of stimuli and electrodes (2) 813 
we assigned the first 20% of sounds to be test sounds for the first electrode, the next 20% of sounds 814 
to be test sounds for electrodes 2, and so on. After using up all 165 sounds (every 8-9 electrodes), 815 
we refreshed the pool of available test sounds using a new random ordering of stimuli. 816 
 817 
To prevent correlated noise across electrodes from influencing the results, we used non-overlapping 818 
sets of runs (odd and even runs) to compute the training and test data (i.e. training on odd runs and 819 
testing on even runs, and vice-versa; again averaging test correlations across the two splits). For a 820 
given set of hyper-parameters, we then averaged the test correlations across all electrodes to arrive 821 
at a summary measure of that model’s performance (Fig 1E & S2B). We noise-corrected this 822 
measure by dividing it by the average test-retest correlation of the electrode responses (using the 823 
unsquared Pearson correlation), which gives an upper bound on the model’s prediction accuracy 824 
(Norman-Haignere et al., 2015; Schoppe et al., 2016). 825 
  826 
We considered several baseline models that did not use the convolutional decomposition of the SSC 827 
model (specifically, we constrained the smoothing kernel to be a delta function such that the 828 
component activations, 𝒂)(𝑡), equaled the component responses, 𝒓)(𝑡)). We tested four baseline 829 
models: (1) we removed the sparseness and smoothness constraints entirely but maintained the 830 
non-negativity constraint (i.e. non-negative matrix factorization / NMF); (2) we imposed sparsity but 831 
not smoothness via an L1 penalty the component responses and weights (3) we imposed 832 
smoothness but not sparsity via an L2 smoothness penalty on the derivative of the component 833 
responses (the first-order difference of adjacent time-points); and (4) we applied both the L1 sparsity 834 
and L2 smoothness constraint.  To prevent the number of hyper-parameters from biasing the results, 835 
for each electrode, we selected the hyper-parameters that led to the best performance across 836 
electrodes from other subjects (Fig S2C). We used grid-search over the following range of hyper-837 
parameters: 𝐾  (number of components) = [5,10,15,20,25,30] , 𝜆  (sparsity) =838 
[0, 0.033,0.1, 0.33,1, 3.3], 𝜔 (smoothness) = [0, 0.033,0.1, 0.33] (we verified that the best-performing 839 
models were not on the boundary of these values, except in cases where the best-performing model 840 
had a parameter value of 0). We found that all of the baseline models performed worse than the 841 
SSC model (p < 0.001 via bootstrapping across subjects, see Statistics; including the model with 842 
both an L1 sparsity and L2 smoothness penalty, which had more hyper-parameters). This result 843 
shows that our convolutional decomposition is an effective way of capturing both the smoothness 844 
and sparsity of auditory broadband gamma responses, and is more effective than simply imposing 845 
sparsity and smoothing penalties directly on the component responses. 846 
 847 
Constraining the smoothing kernel. We investigated three potential methods for forcing the 848 
smoothing kernel to be smooth: (1) using a parametric kernel (e.g. Gamma distribution); (2) placing 849 
a smoothness penalty on the derivative of the kernel; and (3) constraining the kernel to be unimodal. 850 
We found that the optimizer had difficulty minimizing the loss when using parametric kernels (likely 851 
because the low-dimensional parameters of the kernel interacted in complex ways with the other 852 
high-dimensional parameters). We found that penalizing the derivative and constraining the kernel 853 
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to be unimodal were both effective (yielding similar cross-validated prediction accuracy), but 854 
penalizing the derivative introduces a third hyper-parameter that must be chosen with cross-855 
validation, so we chose the unimodal constraint.  856 
 857 
We constrained the kernel to be unimodal by placing two constraints on its derivative: (1) the first N 858 
points of the derivative must be positive and the remaining points must be negative (which forces 859 
the kernel to go up and then down, but not oscillate); and (2) the sum of the derivative must equal 0 860 
(ensuring that the kernel starts and ends at zero). The set of operations used to implement these 861 
constraints in TensorFlow is described in Fig S10. Many of the learned smoothing kernels were 862 
asymmetric, with a rapid rise and a slower falloff (Fig S9). There is nothing in the constraints that 863 
encourages asymmetry, and so this property must reflect an asymmetry in the cortical responses 864 
themselves.   865 
 866 
Specificity of components for individual subjects. The sparse and clinically-driven coverage of 867 
ECoG grids virtually guarantees that some response types will only be present in a subset of 868 
subjects. Thus, one might expect to find components that are subject-specific. To evaluate this 869 
possibility, we measured the average weight of each component in each subject, and then 870 
normalized these mean weights to sum to one across subjects (Fig 1F). Most components had 871 
substantial weights for multiple subjects, but for five of the 20 components, one subject accounted 872 
for more than half of the normalized subject weights (Components 14, 16, 18, 19, 20). We thus chose 873 
to focus on the components that were more general.  874 
 875 
For the 15-component model (Fig S4), three components had normalized subject weights greater 876 
than 0.5 (one other component was omitted because it was not stable across random re-877 
initializations of the algorithm). For component model constrained only by non-negativity (Fig S3), 878 
two components had normalized subject weights greater than 0.5, and three other components 879 
weighted strongly on a single electrode (with one electrode accounting for more than 25% of the 880 
total weights across all electrodes), and were thus excluded from the plots shown. 881 
 882 
Component responses to modulation-matched sounds. The components were inferred using 883 
responses to just the 165 natural sounds from the main experiment. But since a subset of ten 884 
subjects were tested in both experiments, we could estimate the response of these same 885 
components to the natural and synthetic sounds from our control experiment. Specifically, we fixed 886 
the component electrode weights to the values inferred from the responses in our main experiment, 887 
and learned a new set of component response timecourses that best approximated the measured 888 
responses in the modulation-matching experiment. Since the electrode weights are known, this 889 
analysis is no longer ill-posed, and we thus removed all of the additional sparsity and smoothness 890 
constraints and simply estimated a set of non-negative response profiles that minimized the squared 891 
reconstruction error (we left the non-negativity constraint because we found that nearly all of the 892 
measured responses were non-negative). 893 
 894 
Single electrode analyses. To identify electrodes selective for music, speech and song, we defined 895 
a number of contrasts based on the average response to different categories (the contrasts are 896 
described in the Results). We then divided each contrast by the maximum response across all 897 
categories to compute a measure of selectivity, or we bootstrapped the contrast to determine if it 898 
was significantly greater than zero (see Statistics below). In all cases, we used independent data to 899 
identify electrodes and measure their response. Specifically, we used two runs (first and last) to 900 
select electrodes and the remaining runs to evaluate their response. 901 
 902 
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Statistics. The significance of all category contrasts was evaluated using bootstrapping (Efron, 903 
1982). Specifically, we sampled sounds from each category with replacement (100,000 times), 904 
averaged responses across the sampled sounds for each category, and then recomputed the 905 
contrast of interest (all of the contrasts tested are specified in the Results). We then counted the 906 
fraction of samples that fell below zero and multiplied by 2 to compute a two-sided p-value. For p-907 
values smaller than 0.001, counting becomes unreliable, and so we instead fit the distribution of 908 
bootstrapped samples with a Gaussian and measured the tail probability that fell below zero (and 909 
multiplied by 2 to compute a two-sided p-value). For the component analyses, we corrected for 910 
multiple comparisons by multiplying these p-values by the number of components (corresponding to 911 
Bonferroni correction).  912 
 913 
We compared the song-selective component (Component 12) with the average response of all song-914 
selective electrodes by counting the fraction of bootstrapped samples where the component showed 915 
greater super-additive selectivity for vocal music (vocal music > max(English speech, foreign 916 
speech) + instrumental music). We found that across all 100,000 bootstrapped samples, the 917 
component always showed greater selectivity.  918 
 919 
We also used bootstrapping to compute error bars for the category timecourses (Fig 2A, Figs S3-920 
5). In these figures we plot the central 68% of the sampling distribution (equivalent to one standard 921 
error for a Gaussian distributed variable). We only plot categories for which there were more than 5 922 
exemplars.  923 
 924 
To test for laterality effects, we computed the mean difference in the component electrode weights 925 
between the right and left hemispheres (Fig S6). We then bootstrapped this difference score by 926 
sampling subjects with replacement, and recomputing the mean difference using only electrodes 927 
from the sampled subjects. We repeated this procedure 100,000 times, and computed a p-value by 928 
counting the fraction of samples falling below or above zero (whichever was smaller) and multiplying 929 
by 2. We again Bonferroni-corrected by simply multiplying the p-value by the number of components. 930 
Only one component (Component 17, which was offset-selective) was significant after correction (p 931 
= 0.032 after correction). 932 
 933 
We also used bootstrapping across subjects to place error bars on model prediction scores. 934 
Specifically, we (1) sampled subjects with replacement (10,000 times); (2) averaged the test 935 
correlation values (squared Pearson correlation) across the electrodes from the sampled subjects; 936 
and (3) divided by the average test-retest correlation (unsquared Pearson correlation) of the sampled 937 
electrodes to noise-correct our measure. We tested whether the SSC model outperformed our 938 
baseline models by counting the fraction of bootstrapped samples where the average test predictions 939 
were lower than each baseline model and multiplying by 2 to arrive at a two-sided p-value. When 940 
plotting the test predictions for different models (Fig S2C), we used “within-subject” error bars (Loftus 941 
and Masson, 1994), computed by subtracting off the mean of each bootstrapped sample across all 942 
models before measuring the central 68% of the sampling distribution. We multiplied the central 68% 943 
interval by the correction factor shown below to account for a downward bias in the standard error 944 
induced by mean-subtraction (Loftus and Masson, 1994): 945 

 946 
 

9 𝑁
𝑁 − 1	

8 

 947 
We used a sign test to evaluate whether the response to natural sounds was consistently greater 948 
than responses to corresponding modulation-matched sounds. A sign test is natural choice, because 949 
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the natural and modulation matched sounds are organized as pairs (Fig 3A). For components 950 
selective for speech / music (song selective components described in the next paragraph), we 951 
compared the time-averaged response to natural speech / music with the corresponding modulation-952 
matched controls (there were eight speech stimuli, eight instrumental music stimuli and two vocal 953 
music stimuli). We performed the same analysis on the average response of speech and music-954 
selective electrodes (Fig 4C). For both components and electrodes, the response to natural sounds 955 
of the preferred category was always greater than the response to modulation-matched sound, and 956 
thus significant with a sign test (p < 0.01). 957 
 958 
Although there were only two vocal music stimuli in the modulation-matching experiment, the stimuli 959 
were relatively long (4 seconds). We thus subdivided the response to each stimulus into seven 500 960 
ms segments (discarding the first 500 ms to account for the build-up in the response), and measured 961 
the average response to each segment. For both the song-selective component and the average 962 
response of song-selective electrodes, we found that for all fourteen 500-ms segments (7 segments 963 
across 2 stimuli), the response to natural vocal music was higher than the response to the 964 
modulation-matched controls, and thus is significant with a sign test (p < 0.001). 965 
 966 
To determine whether the electrode responses were significantly more skewed and sparse than 967 
would be expected given noise (i.e. to evaluate the significance of the skewness/sparsity measures 968 
described in Response statistics relevant to component modeling), we computed skewness/sparsity 969 
using two data quantities: (1) the residual error after subtracting the response to even and odd runs; 970 
and (2) the summed response across even and odd runs. The properties of the noise should be the 971 
same for these two quantities, but the second quantity will also contain the reliable stimulus-driven 972 
component of the response. Thus, if the second quantity is more skewed/sparse than the first 973 
quantity, then the stimulus-driven response must be more skewed/sparse than the noise. To assess 974 
skewness/sparsity across time/stimuli, we measured the skewness and sparsity (equations 2 and 3) 975 
separately for each electrode using the residual error and summed response (pooling responses 976 
across all timepoints and stimuli). In every subject, we found that the average skewness/sparsity of 977 
the summed responses was greater than the skewness/sparsity of the residual error, and thus 978 
significant with a sign test (p < 0.001). We used the same approach to evaluate the 979 
skewness/sparsity of responses across electrodes, measured separately for each sound. Using a 980 
sign test across sounds, we found both the skewness and sparsity of the summed response to be 981 
significantly greater than that for the residual error (p < 0.001). 982 
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Supplemental Figures 1110 

 1111 
Figure S1. Response statistics relevant to component modeling. A-C, Response statistics from three example 1112 
electrodes with distinct selectivities, but a shared set of statistical properties (positivity, sparsity/skew, and temporal 1113 
smoothness). A, Broadband gamma power response of each electrode to all 165 sounds as a raster. Responses are 1114 
measured relative to the response during silence (300 milliseconds preceding sound onset). Positive values (red) 1115 
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indicate an enhanced response to sound, and negative responses indicate a suppressed response (blue). The color 1116 
scales shows values from 0 to the 99th percentile of the response magnitude distribution for each electrode. B, 1117 
Distribution of response magnitudes, measured in a cross-validated fashion to reduce effects of noise: using data from 1118 
the odd runs, we sorted all of the bins of the raster on the left based on their magnitude (pooling across all timepoints 1119 
and stimuli). The response of each bin was then measured using the even runs, and then smoothed using a median 1120 
filter to suppress noise. Positive responses accounted for >99% of the RMS response power in all three electrodes. All 1121 
three electrodes show a skewed and sparse distribution of response magnitudes (quantified in panel F, below) because 1122 
negative responses were practically non-existent (yielding an asymmetric, rightward-skewed distribution) and strong 1123 
positive responses were present for only a small fraction of bins (yielding a sparse distribution). C, The normalized 1124 
autocorrelation (normalized by the correlation at zero lag) of each electrode’s response measured in a cross-validated 1125 
fashion by correlating the response in odd and even runs at different lags. D-G, Summary statistics across all sound-1126 
responsive electrodes. D, Distribution of response magnitude pooled across all electrodes, sounds and timepoints 1127 
(measured in a cross-validated fashion, as described above). Positive responses accounted for >99% of the RMS power. 1128 
E, Normalized autocorrelation of all sound-responsive electrodes. The extent of temporal dependencies varied 1129 
substantially across electrodes. F, We measured the skew (3rd moment) and sparsity (excess kurtosis) of each 1130 
electrode’s response using its distribution of response magnitudes across all timepoints/stimuli (i.e. using the 1131 
distributions shown in panel B). This figure plots a histogram of the skew and sparsity values across all electrodes. We 1132 
subtracted the measured kurtosis from that which would be expected from a Gaussian (which has a kurtosis of 3). All 1133 
electrodes were skewed and sparse relative to a Gaussian. G, For each sound, we measured the skew and sparsity of 1134 
responses across electrodes, after averaging the response of each electrode to each sound. This figure plots a histogram 1135 
of the skew and sparsity values across all sounds.   1136 
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 1137 
Figure S2. Component model and its evaluation via cross-validation. A, Schematic of the “sparse and smooth” 1138 
component model, which was motivated by the statistical properties shown in Fig S1. Each electrode was represented 1139 
by its response timecourse (broadband gamma) across all sounds (measured relative to silence). This timecourse was 1140 
modeled as the weighted sum of multiple component timecourses to capture the fact that each electrode is influenced 1141 
by many neurons and thus might reflect multiple underlying neuronal populations. The component response timecourses 1142 
were the same across electrodes, but the weights varied to account for different response patterns. Both the component 1143 
responses and weights were constrained to be positive. To encourage the component response patterns to be sparse 1144 
and skewed, we modeled each component as the convolution of a set of sparse activations with a smoothing kernel. 1145 
The activations, weights and smoothing kernel were all learned by minimizing a cost function with two terms: (1) a 1146 
reconstruction penalty encouraging the components to closely approximate the data; and (2) a sparsity penalty 1147 
encouraging the activations and weights to be sparse. The smoothing kernel was learned separately for each component 1148 
to account for variable levels of smoothness in the responses across electrodes. B, Average squared correlation between 1149 
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the measured and model-predicted response in test data as a function of the number of components and sparsity penalty 1150 
(the correlation has been noise-corrected; Fig 1E shows results for the best sparsity parameter (𝜆 = 0.33)). C, 1151 
Comparison of the prediction accuracy (average correlation in test data) of the SSC model with several baseline models 1152 
that did not rely on the convolutional decomposition used by the SSC model: (1) non-negative matrix factorization (NMF) 1153 
where the components and weights were constrained only to be positive; (2) NMF with a sparsity penalty applied directly 1154 
to the responses and weights; (3) NMF with a L2 smoothness penalty applied to the derivative (first-order difference) of 1155 
the component responses; and (4) NMF with both an L1 sparsity and L2 smoothness penalty. Data from independent 1156 
subjects was used to select the hyper-parameters for each model and evaluate prediction accuracy. Error bars show the 1157 
median and central 68 percent of the sampling distribution measured via bootstrapping across subjects.  1158 
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 1159 
Figure S3. Components from non-negative matrix factorization (NMF) model. Component responses and weights 1160 
from a model that only imposed non-negativity on the responses/weights. Conventions the same as Fig 2&S5 which 1161 
show components from the SSC model (which had the best prediction accuracy). As with the SSC model, we focus on 1162 
components that were consistent across subjects and reliable across random re-initializations of the algorithm. All of the 1163 
speech, music and song-selective components inferred from the SSC model have clear analogues to those inferred by 1164 
NMF.   1165 
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 1166 
Figure S4. Results from 15-component model. Component responses and weights from a model with only 15 1167 
components. Conventions the same as Fig 2&S5, which show results from a 20-component model. We focus on 1168 
components that were consistent across subjects and reliable across random re-initializations of the algorithm. All of the 1169 
speech, music and song-selective components inferred from the 20-component model were evident in the 15-component 1170 
model.  1171 
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 1172 
Figure S5. All reliable components from 20-component SSC model. This figure is the same as Fig 2, but shows 1173 
component responses and weights from all of the reliable components rather than just the speech, music and song-1174 
selective components. Conventions the same as Fig 2.   1175 
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 1176 
Figure S6. Laterality of component electrode weights. For each reliable component, we plot the average difference 1177 
in the electrode weights between the right and left hemisphere. Bootstrapping across subjects was used to estimate the 1178 
sampling distribution for each component. Boxes show the central 50% of the sampling distribution and whiskers show 1179 
the central 95%.  1180 
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 1181 
Figure S7. Response timecourse of all components to natural and modulation-matched synthetic sounds. Same 1182 
as Fig 3B but showing responses from all components rather than just those selective for speech, music and song.  1183 
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 1184 
 1185 
Figure S8. Constraining the anatomical localization of electrodes. A, Map showing the probability of observing a 1186 
significant response to sound at each point in the brain. The map was computed using fMRI responses to the same 1187 
sound set in a large cohort of 20 subjects. B, Electrode localization based purely on anatomical criteria. Small errors in 1188 
localization likely explain why some electrodes have been localized to the middle temporal gyrus and 1189 
supramarginal/inferior frontal gyrus, which abut the superior temporal gyrus where responses to sound are common. C, 1190 
To minimize gross localization errors, we treated the probability map of sound-driven responses shown in panel A as a 1191 
prior and used to it constrain the localization (see Electrode localization in the Methods). Our approach did not 1192 
substantially affect the localization of electrodes at a fine scale, but encouraged electrodes to be mapped to the superior 1193 
temporal gyrus rather than the middle temporal or supramarginal/inferior frontal gyrus.  1194 
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 1195 
 1196 
Figure S9. Learned smoothing kernels. This figure plots the learned smoothing kernels as a raster, with each row 1197 
corresponding to a different kernel. The kernels have been sorted by the first principal component of the matrix. The 1198 
kernels vary widely in their extent/duration. Many of the kernels are were also asymmetric with a fast/instantaneous rise 1199 
and a slower falloff.  1200 
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 1201 
Figure S10. Constraining the smoothing kernel to be unimodal. This plot describes the set of operations 1202 
(implemented in TensorFlow) that was used to constrain the smoothing kernel to be unimodal. Conceptually, the goal of 1203 
these operations is to force the derivative to be exclusively positive for the first N time-points and then exclusively 1204 
negative for the rest of the signal, thus preventing oscillations. We also must force the sum of the derivative to equal 1205 
zero so that the kernel starts and ends at zero. Two positive vectors (themselves computed as the absolute value of 1206 
real-valued vectors) were multiplied by a positively or negatively rectified logistic function with the same cross-over point. 1207 
As a consequence, the first vector has positive values at the start of the signal, followed by zeros, and the second vector 1208 
has negative values at the end of the signal, preceded by zeros. The two vectors were then normalized so that they sum 1209 
to 1/-1. Finally, the two vectors were added and cumulatively summed, yielding a unimodal signal. The shape of the 1210 
kernel is determined by the values of the two input vectors (𝑥= and 𝑥>) as well as the parameters of the logistic function 1211 
(𝜇 and 𝑘), all of which were learned. The input vectors were initialized with a vector of ones. 𝜇 was initialized to the value 1212 
of the middle timepoint, and 𝑘 was initialized to the value of 1 (and prevented from taking a value less than 0.001). 1213 
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