

Ultraconserved non-coding DNA within insect phyla

Thomas Brody^{1*} Amar Yavatkar², Alexander Kuzin¹ and Ward F. Odenwald^{1*}

¹Neural Cell-Fate Determinants Section,

²Division of Intramural Research, Information Technology Program,
NINDS, NIH, Bethesda, Maryland, USA

Running title: Ultraconserved sequences in insect enhancers

¹Corresponding authors:

Tel: 301-496-1657

FAX: 301-496-1339

E-mail: brodyt@ninds.nih.gov, odenwaldw@ninds.nih.gov

Abstract

Presence of ultra-conserved sequence elements in vertebrate enhancers suggest that transcription factor regulatory interactions are shared across phylogenetically diverse species. To date evidence for similarly conserved elements among evolutionarily distant insects such as flies, mosquitos, ants and bees, has been elusive. This study has taken advantage of the availability of the assembled genomic sequence of these insects to explore the presence of ultraconserved sequence elements in these phylogenetic groups. To investigate the integrity of fly regulatory sequences across ~100 million years of evolutionary divergence from the fruitfly *Drosophila melanogaster*, we compared *Drosophila* non-coding sequences to those of *Ceratitis capitata*, the Mediterranean fruit fly and *Musca domestica*, the domestic housefly. Using various alignment techniques, Blastn, Clustal, Blat, EvoPrinter and Needle, we show that many of the conserved sequence blocks (CSBs) that constitute *Drosophila* *cis*-regulatory DNA, recognized by EvoPrinter alignment protocols, are also conserved in *Ceratitis* and *Musca*. We term the sequence elements shared among these species ultraconserved CSBs (uCSBs). The position of the uCSBs with respect to flanking genes is also conserved. The results suggest that CSBs represent the point of interaction of multiple trans-regulators whose functions and interactions are conserved across divergent genera. Blastn alignments also detect putative *cis*-regulatory sequences shared among evolutionarily distant mosquitos *Anopheles gambiae* and *Culex pipiens* and *Aedes aegypti*. We have also identified conserved sequences shared among bee species. Side by side comparison of bee and ant EvoPrints identify uCSBs shared between the two taxa, as well as more poorly conserved CSBs in either one or the other taxon but not in both. Analysis of uCSBs in dipterans, mosquitos and bees will lead to a greater understanding of their evolutionary origin and the function of their conserved sequences.

Introduction

Phylogenetic footprinting of *Drosophila* genomic DNA has revealed that *cis*-regulatory enhancers can be distinguished from other essential gene regions based on their characteristic pattern of conserved sequences (Kuzin et al. 2009; Kuzin et al. 2012) (Odenwald et al. 2005; Pennacchio et al. 2006; Brody et al. 2007; Loots and Ovcharenko, 2007; Hardison, 2000, Bergman et al. 2002). These studies have shown that most enhancers are made up of clusters of conserved sequences that often are comprised of 5 to 30 or more conserved sequence blocks (CSBs). On average, *Drosophila* enhancers span ~1 kb and are flanked by non-conserved DNA of variable length.

Cross-species alignments have also identified conserved non-coding sequence elements associated with vertebrate developmental genes (Thomas et al. 2003; Bejerano et al. 2004), and sequences that are conserved among ancient and modern vertebrates (e. g., the sea lamprey and mammals). These elements conserved between disparate phyla are considered to be ‘ultraconserved elements’ (McEwen, et al. 2009; Irvine, et al. 2002). Many of these sequences act as *cis*-regulators of transcription (Pennacchio et al. 2006; Visel et al. 2009; McEwen et al. 2009; Visel et al. 2013; Dickel, 2018). Evidence from truncation studies indicates that, in the case of a mammalian Sonic Hedgehog enhancer, the ultraconserved element is not simply a clustering of transcription factor (TF) binding sites but has a structural component that is key to its activity (Lettice et al. 2014), suggesting that such highly conserved sequence blocks fit an enhanceosome model in which multiple adjacent and overlapping transcription factor docking sites act cooperatively to regulate gene expression (Panne, 2008). Previous studies have identified ultra-conserved elements in dipterans [*Drosophila* species and sepsids and mosquitos (Glazov et al. 2005; Hare et al. 2009, Sieglaff et al. 2009, Suryamohan et al. 2016)]. Comparison of consensus transcription factor binding sites, in the spider *Cupiennius salei* and the beetle *Tribolium castaneum*, have been shown to be functional in transgenic *Drosophila* (Ayyar et al. 2010).

Adjacent CSBs within *Drosophila* enhancers exhibit evolutionary conserved spacing. For example, characterization of 19 consecutive *Drosophila* enhancers spanning ~30 Kb between the *vvl* and *Prat2* genes revealed, in many instances, an evolutionarily constrained substructure between sets of enhancer CSBs (Kundu et al. 2013). Linked associations of adjacent CSBs could also be due to fixed spatial requirements for

interactions of different transcriptional regulators (see for example Gao, et al. 2008, Panne, 2008).

In this study, we describe sequence conservation between the medfly *Ceratitis capitata*, the house fly *Musca domestica* genomic sequences and *Drosophila* genomic sequences. The house fly and Medfly have each diverged from *Drosophila* for ~100 and ~120 My respectively (Beverley and Wilson, 1984). Our analysis reveals that, in many cases, CSBs that are highly conserved in *Drosophila* are also conserved in *Ceratitis* and *Musca*. Similar to ultraconserved sequences in vertebrates, we consider these cross-phyla conserved sequences to be uCSBs. Additionally, the linear order of these uCSBs with respect to flanking structural genes is also maintained. However, subset of the uCSBs exhibits inverted orientation relative to the *Drosophila* sequence, suggesting that while enhancer location is conserved, their orientation relative to flanking genes is not.

For detection of conserved sequences in mosquitos, we have adapted EvoPrinter algorithms, to include 22 species of *Anopheles* plus *Culex pipiens* and *Aedes aegypti*. Use of *Anopheles* species allows for the resolution of CSB clusters that resemble those of *Drosophila*. Comparison of *Anopheles* with *Culex* and *Aedes*, separated by ~150 million years of evolutionary divergence (Krzywinski et al. 2006), reveals uCSBs shared among these taxa. Although mosquitoes are considered to be Dipterans, uCSBs were conserved between mosquito species but not with flies.

In addition, we have developed EvoPrinter tools for sequence analysis of seven bee and thirteen ant species. Both ants and bees belong to the Hymenoptera order and have been separated by ~170 million years (Peters et al. 2017). Within the bees, *Megachile* and *Dufourea* are sufficiently removed from *Apis* and *Bombus* (~100 My; Peters et al. 2017, Elsik et al. 2016) that only portions of CSBs are shared between species; these can be considered to be ultraconserved sequences. uCSBs are found that are shared between ant and bee species, and these are positionally conserved with respect to their associated structural genes. Finally, we discovered ant specific and bee specific CSB clusters that are not shared between the two taxa but are interspersed between shared uCSBs.

Methods

Sequence curation and alignment: *Drosophila melanogaster* (*Dm*), *Apis mellifera* (*Am*) and *Anopheles gambiae* (*Ag*), the fly, bee and mosquito genomic sequences, were curated

from the UCSC genome browser. BLASTn (Altschul et al. 1990) was used to identify non-coding sequences within other species not represented in the UCSC genome browser. Where possible, BLAT (Kent, 2002) and BLASTn were used in comparing the order and orientation of ultra-conserved sequences in reference species with dipteran, bee and mosquito test species. BLAT was not available for the *Culex* comparison to *Aedes*, but we found that the ‘align two sequences’ algorithm of BLAST, using the ‘Somewhat similar sequences (BLASTn)’ setting, was comparable to BLAT in sensitivity to sequence homology and was useful in this comparison. Similarly, the pairwise sequence alignment program Needle, which uses the Needleman-Wunsch algorithm (Needleman et al. 1970), aligned shorter regions of near identity that could not be seen by other methods.

Mosquito EvoPrinter: An EvoPrint provides a single uninterrupted view, with near base-pair resolution of conserved sequences as they appear in a species of interest. A prior paper describes protocols for genome indexing, enhanced BLAT alignments and scoring of EvoPrint alignments. Readouts are comparable to those already described (Yavatkar et al. 2008).

To compare 24 *Anopheles*, *Aedes* and *Culex* genomes, sequences were obtained from VectorBase (<https://www.vectorbase.org/genomes>). The mosquito EvoPrinter consists of 20 species, including 7 species of the *Gambiae* subgroup and related species *A. christyi* and *A. epiroticus*, 5 species of the *Neocellia* and *Myzomyia* series (including *A. stephensi*, *A. maculatus*, *A. calcifacies*, *A. funestus* and *A. minimus*), 2 species of the *Neomyzomyia* series (*Anopheles darius* and *Anopheles farauti*), 2 species of subgenus *Anopheles* (*A. sinensis* and *A. atroparvus*), *Nyssoryhynchus* and other American species, (*A. albimanus* and *A. darlingi*), and two species of the subfamily Culicinae (*Aedes aegypti* and *Culex quinquefasciatus*). Mosquito genomes are documented by Holt et al. 2002; Nene, et al. 2007; Reddy, et al. 2012, and Neafsey et al. 2014.

Hymenoptera EvoPrinter: We have also formatted seven bee species, including 6 members of the family Apidae and one member of each of the Megachilidae and Halictidae families (Table 1). In addition, we have formatted 13 ant (Formicidae) species, a diverse family of social insects, for EvoPrinter analysis (Table 1). Among these are eight representative of the subfamily Myrmicinae, three representatives of the Formicinae, two of the Ponerinae, and one Dolichoderinae. For consistency, we selected a member of the Myrmicinae as input/reference sequence, and species selection was dependent on the

integrity and completeness of the sequence. The ant and bee EvoPrinter consist of the following species, grouped according to their phylogenetic relationships:

Table 1: Ant and Bee species formatted for EvoPrint analysis

Bee species (superfamily Apoidea)	Ant species (superfamily Formicoidea)
Apidae – social bees	Myrmicinae –
<i>Apis mellifera</i> - Western honey bee	<i>Atta cephalotes</i> – Leafcutter ant
<i>Apis dorsata</i> - Giant honey bee	<i>Acromyrmex echinatior</i> – Panama leaf-cutting ant
<i>Apis florea</i> - Dwarf honey bee	<i>Wasmannia auropunctata</i> - Little fire ant
<i>Bombus terrestrialis</i> - Buff-tailed bumblebee	<i>Pogonomyrmex barbatus</i> - Red harvester ant
<i>Bombus impatiens</i> - Common eastern bumblebee	<i>Monomorium pharaonis</i> - Pharaoh ant
<i>Habropoda laboriosa</i> - Southeastern blueberry bee	<i>Solenopsis invicta</i> – Red fire ant
Megachilidae	<i>Vollenhovia emeryi</i> – Japanese ant
<i>Megachile rotundata</i> - alfalfa leafcutter bee – solitary	<i>Cardiocondyla obscurior</i> – a tramp ant
	Formicinae
	<i>Lasius niger</i> - Black garden ant
	<i>Ooceraea biroi</i> - Army ant – colonial raider ant
	<i>Camponotus floridanus</i> - Florida carpenter ants
	Ponerinae
	<i>Harpegnathos saltator</i> - Jerdon's jumping ant
	Dolichoderinae
	<i>Linepithema humile</i> - Argentine Ant

Results and Discussion

Comparative analysis of dipteran non-coding DNA

Our previous study of 19 consecutive *in vivo* tested *Drosophila* enhancers contained within a 28.9 kb intragenic region located between the *vvl* and *Prat2* genes, revealed that each CSB cluster functioned independently as spatial/temporal *cis*-regulatory enhancer (Kundu et al. 2013). The enhancers possessed a diversity of regulatory functions, including dynamic activation of expression in defined patterns within subsets of cells in discrete regions of the embryo, larvae and/or adult.

Submission of the 29 Kb enhancer field to the RefSeq Genome Database of *Ceratitis capitata* via BLASTn revealed 17 uCSBs; all 17 regions were colinear and located between the *Ceratitis* orthologs of *Drosophila vvl* and *Prat2* genes. In each case the matches between *Ceratitis* and *Drosophila* corresponded to a complete or a portion of a

CSB identified as being highly conserved among *Drosophila* species (Kundu et al. 2013). Submission of the same *Drosophila* region to *Musca domestica* RefSeq Genome Database revealed 13 uCSBs that are colinearly arrayed within the *Musca* genome. Since the structural gene and these conserved uCSBs are currently on different contigs, the absolute orientation of the *Musca* sequences with respect to the *Musca vvl* structural gene could not be determined. Nine of these *Ceratitis* and *Musca* CSBs were present in both species and corresponded to CSBs contained in several of the enhancers identified in our previous study of the *Drosophila* enhancer field (Kundu et al., 2013). The conservation within one of these embryonic neuroblast enhancers, *vvl*-41, is depicted in Fig. 1. Panel A of Fig. 1 is an EvoPrint of *vvl*-41 annotated to show shared CSBs with *Ceratitis* and *Musca*. Green CSBs are shared 3 ways between the three species, red letters represent bases that are shared between *Dm* and *Ceratitis* and blue letters represent bases that are shared exclusively between *Dm* and *Musca*. Fig. 1B shows two and three-way alignments in *vvl*-41 between the conserved CSBs in the three species. In many cases the uCSBs contained known DNA motifs for TFs. Each of the CSB elements in *vvl*-41 that are shared between *Dm* and *Ceratitis* are in the same orientation with respect to the *vvl* structural gene. However, in *Musca*, the orientation of elements with respect to the structural gene is unknown since the structural gene and the CSBs are on different contigs. Supplemental fig. 1 presents three-way alignments of each of the other eight uCSBs within the *vvl* enhancer field that are shared between *Dm*, *Ceratitis* and *Musca*. The uCSB of *vvl*-49 in *Ceratitis* is in reverse orientation with respect to the *vvl* structural gene. Many of the uCSBs in *Musca* are in a different orientation on the contig than in *Dm*, indicating microinversions. We conclude that, except for microinversions, the order and orientation of highly conserved non-coding sequences in *Drosophila*, *Ceratitis* and *Musca* with respect to flanking genes is the same.

Many of the non-coding regions in dipteran genomes contain uCSBs, especially in and around developmental determinants, and many of these are likely to be *cis*-regulatory elements such as those found in the *vvl* enhancer field. Another example is the prevalence of uCSBs found in the non-coding sequences associated the *Dm hth* gene locus. A previous study identified an ultraconserved regions in *hth* shared between *Drosophila* and *Anopheles* (Glazov et al. 2005). We have identified additional *hth* uCSBs shared among *Dm*, *Ceratitis* and *Musca*. We identified a total of 16 CSBs shared between the three species, 8 CSBs shared between *Dm* and *Ceratitis* but not *Musca*, and 7 CSBs shared between *Dm* and *Musca*, but not *Ceratitis* (fig. 2 and data not shown). Both *Ceratitis* and *Musca* contain uCSBs that were in reversed orientation with respect to the *Drosophila*

orthologous regions.

EvoPrint analysis of *Drosophila hth* sequences immediately upstream and including the first exon, revealed a conserved sequence cluster (Fig.2) associated with the transcriptional start site. Fig.2A illustrates correspondence of the *Dm* conserved region in *Ceratitis* and *Musca*. Two of the longer CSBs were conserved in both *Ceratitis* and *Musca*, one shorter CSB was conserved only in *Musca*, and a second shorter CSB was conserved only in *Ceratitis*. Two and three-way alignments as revealed by BLASTn in a comparison of *Dm*, *Ceratitis* and *Musca* are shown in Fig.2B. Each of the uCSBs is in the same orientation with respect to the *hth* structural gene.

Discovery of non-coding conserved sequence elements in mosquitoes

EvoPrinting combinations of species using *A. gambiae* as a reference species and multiple species from the Neocellia and Myzomyia series and the Neomyzomyia provides a sufficient distance from *A. gambiae* to resolve CSBs. The CSB clusters resolved within the *Anopheles* species (data not shown) are similar to those detected using *Dm* as a reference sequence (Brody et al, 2008). Phylogenetic analysis has revealed the *Anopheles* species have diverged from ~48 My to ~30 My (Kamali et al, 2014) while *Aedes* and *Culex* diversified from the *Anopheles* lineage in the Jurassic era (~145–200 Mya; Krzywinski et al, 2006) or even earlier.

We sought to identify uCSBs in mosquitos by comparing *Anopheles* species with *Aedes* and *Culex*. We used non-coding sequences associated with the mosquito homolog of the morphogen *wingless* (reviewed by Nusse and Varmus, 1992) to discover associated conserved non-coding sequences. Fig. 3 illustrates a CSB cluster slightly more than 27,000 bp upstream of the *A. gambiae* *wingless* coding exons. CSB orientation in *A. gambiae* was reversed with respect to the ORF when compared to the orientations of both *Culex* and *Aedes* CSBs. We identified uCSBs, conserved in *Culex* and *Aedes*, coincide with CSBs revealed by EvoPrint analysis of *Anopheles* non-coding sequences.

Supplemental fig. 2 illustrates a EvoPrinter scorecard for the non-coding *wingless*-associated CSB cluster described in Fig. 3. Scores for the first four species, all members of the *gambiae* complex, are similar to that of *A. gambiae* against itself, with subsequent scores reflecting increased divergence from *A. gambiae*. *Culex* and *Aedes* are distinguished from the other species by their belonging to a distinctive branch of the mosquito evolutionary tree, the Culicinae subfamily and their low scores against the *A.*

gambiae input sequence. The mosquito EvoPrinter consists of 20 species, including 7 species of the *Gambiae* subgroup and related species *A. christyi* and *A. epiroticus*, 5 species of the *Neocellia* and *Myzomyia* series (including *A. stephensi*, *A. maculatus*, *A. calcifacies*, *A. funestus* and *A. minimus*), 2 species of the *Neomyzomyia* series (Anopheles *darius* and Anopheles *farauti*), 2 species of subgenus Anopheles (*A. sinensis* and *A. atroparvus*), *Nyssoryhynchus* and other American species, (*A. albimanus* and *A. darlingi*), and two species of the subfamily *Culicinae* (*Aedes aegypti* and *Culex quinquefasciatus*). Mosquito genomes are described by Holt et al., 2002; Nene et al., 2007; Reddy et al., 2012, and Neafsey et al., 2014.

Conserved sequence elements in bees and ants

Bees and ants are members of the Hymenoptera Order, representing the Apoidea (bee) and Vespoidea (ant) super-families. Current estimates suggest that the two families have evolved separately for over 100 million years (Elsik et al. 2015: Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine). To identify conserved sequences shared by bees and ants or unique to each family, we developed EvoPrinter alignment tools for seven bee and 13 ant species (Table 1). Three approaches were employed to identify/confirm conserved elements (both in coding and non-coding sequences) and their positioning within bee and ant orthologous DNAs. First, EvoPrinter analysis of bee and ant genes identified conserved sequences in either bees or ants and ultra-conserved sequence elements shared by both families (figs. 4,5). Second, BLASTn alignments of the orthologous DNAs identified/confirmed CSBs that were either bee or ant specific or shared by both (data not shown). Third, side-by-side comparisons of ant and bee EvoPrints and BLASTn comparisons revealed similar positioning of orthologous CSBs relative to conserved exons (figs. 6, S2 and data not shown).

To identify conserved sequences within bee species we initially generated EvoPrints of the honey bee (*Apis mellifera*) genes using other *Apis* and *Bombus* species. Using EvoPrints of the *Dscam2* locus resolved clusters of conserved sequences (fig. 4). *Dscam2* is implicated in axon guidance in *Drosophila* (Millard et al. 2007) and in regulation of social immunity behavior in honeybees (reviewed by Cremer et al. 2007; Harpur et al. 2019). The EvoPrint scorecard (fig. 4A) reveals a high score (close relationship) with the homologous region in the other two *Apis* species. The more distant *Bombus* species score lower by greater than 50%, and *Habropoda* represents a step down from the more closely related *Bombus* species. *Megachile* shows a significantly lower score reflecting its more

distant relationship to *Apis mellifera*. The relaxed EvoPrint readout reveals two CSB clusters (fig. 4b). Only one sequence cluster, the lower 3' cluster, is conserved in all six test species examined, while the 5' cluster is absent present in all species except *Megachile*. BLAST searches confirmed that the 3' cluster was absent from *Megachile*, a more distant species *Dufourea novaeangliae*, and all ant species in the RefSeq genome database (data not shown). BLASTn alignments also revealed conservation of the 3' cluster in the bee species *Dufourea novaeangliae*, the wasp species *Polistes canadensis* and two ant species, *Vollenhavia emeryi* and *Dinoponera quadriceps*.

EvoPrinter analysis of bee and ant genes that are orthologs of the *Drosophila* neural development genes *goosecoid* (*gsc*) and *castor* (*cas*) revealed conserved non-coding DNA that is unique to either bees or ants or conserved in both (fig. 5). The *Drosophila* Gsc homeodomain transcription factor is required for proper axon wiring during embryonic CNS development and has recently been linked to social immunity behavior in honeybees (reviewed by Cremer et al. 2007; Harpur et al. 2019). The *Drosophila* Cas Zn-finger transcription factor has been shown to be essential for neuroblast temporal identity decisions during neural lineage development (Baumgardt et al. 2014; reviewed by Brody and Odenwald 2007). EvoPrints of the Hymenoptera orthologs identify non-coding conserved sequence clusters that contained core uCSBs shared by both ant and bee superfamilies, and these uCSBs are frequently flanked by family-specific conserved clusters (figs. 4, 5, 6 and data not shown). For example, analysis of the non-coding sequence upstream of the *Wasmannia auropunctata* (ant) *cas* first exon identifies both a conserved sequence cluster that contains ant and bee uCSBs and an ant specific conserved cluster that has no counterpart found in bees (fig. 5B and data not shown). It is likely that the ant specific cluster was deleted in bees, since BLASTn searches of *Wasmannia* against the European paper wasp *Polistes dominula* reveals conservation of a core sequence corresponding to this cluster (data not shown).

The combined evolutionary divergence in the *gsc* and *cas* EvoPrints, accomplished by the using multiple test species, reveals that many of the amino acid codon specificity positions are conserved while wobble positions in their ORFs are not. The lack of wobble conservation indicates that the combined divergence of the test species used to generate the prints afford near base pair resolution of essential DNA.

Cross-group/side-by-side bee and ant comparison of their conserved DNA was performed using bee specific and ant specific EvoPrints and by BLASTn alignments (figs. 6, S2 and

data not shown). Fig. 6 highlights the conservation observed among bee and ant exons and flanking sequence of the *glass bottom boat* (*gbb*, *60A*) locus of *Apis mellifera* EvoPrinted with four bee test species (panel A) and the *Wasmannia auropunctata* *gbb* locus EvoPrinted with three ant species (panel B). Coding sequences are underlined red, non-coding homologous regions are underlined blue, and novel CSBs present in either ants or bees but not both are indicated by the vertical lines to the side of each EvoPrint. Similarly, EvoPrinting a single exon and flanking regions of the *Apis mellifera* *homothorax* locus with four bee species and generating an ant specific EvoPrint of the orthologous ant sequence of the *Ooceraea biroi* *homothorax* locus with ten other ant species, reveals CSBs that are conserved in both *Apis* and *Ooceraea*, as well as sequences that are restricted to one of the two Hymenopteran families (supplemental fig. 2).

Summary

Our cross-species comparisons document shared ultraconserved sequences within three separate groups of insects, e.g., flies, mosquitos and Hymenoptera. In each case, CSB clusters were shown to consist of a core of highly conserved CSBs flanked by less well conserved regions. Our previous work in *Drosophila* has shown that most CSB clusters function autonomously as enhancers that control flanking gene expression patterns. This pattern of conservation has been documented for mammalian enhancers and suggests a common structure for cis-regulatory sequences across evolution. In many cases, the uCSBs were flanked by CSBs that were not shared across phyla. We suggest that core uCSBs perform essential cis-regulatory function(s), while flanking conserved sequences, shared only by more closely related species, serve to provide the species specificity to enhancer function. Often these enhancers control a sub-pattern of gene expression. (Perry et al., 2010, Kuzin et al., 2012, Ross et al., 2015)

In the three species groups examined in this study, flies, mosquitos, and ants and bees each have similar clusters of conserved sequences. For example, the alignment of *Apis mellifera* sequences with other *Apis* and *Bombus* species, or of *Anopheles gambiae* with other *Anopheles* species resolved clusters of conserved sequences resembling in many aspects BLAT alignment of *Drosophila* Sophophora subgroup (including *D. melanogaster*, *D. yakuba* and *D. persimilis*) with the *Drosophila* subgroup (including *D. virilis*, *D. grimshawi* and *D. mojavensis*). These alignments revealed regions that can be considered to be, in analogy to *Drosophila*, CSB clusters flanked by regions of non-conservation (termed inter-clustal regions) (Kuzin et al. 2009; Ross et al, 2015). Adding

more distantly related species, *Ceratitis* and *Musca* for flies, *Aedes* and *Culex* for mosquitos, and *Megachile* and ants for Hymenoptera revealed ultraconserved CSBs, nested within the CSB clusters. Therefore, the general pattern of conservation is the same for all three taxa examined.

In most cases both nBLAST and the EvoPrinter algorithm, based on the eBLAT algorithm had similar sensitivities and gave comparable results, but we recommend that the two techniques should be used in conjunction with one another. The advantage of EvoPrinter is the presentation of an interspecies comparison as a single alignment, while the advantage of nBLAST is that it provides a sensitive detection of sequence homology in a one-on-one alignment. EMBOSSED Needle alignment gives an even more sensitive detection of shorter sequences and is of use once BLAT or EvoPrinter has been used to discover shared CSBs and/or CSB clusters.

Consecutive CSB clusters in distantly related species are often co-linear, in that the order of is maintained with respect to flanking genes. We have documented exceptions to this in both flies and mosquitos in which mini-inversions (rearrangements) occur. The fact that the orientation of CSB clusters with respect to the ORF suggests that such inversions can be tolerated, and that the orientation is irrelevant to their putative enhancer function. However, the co-linear ordering of non-coding CSB clusters suggests that the order of CSB clusters may be important for gene regulation.

The pattern of conservation of CSB clusters in the Hymenoptera suggests that new CSB clusters have their origin not by recombination with other cis-regulatory DNA but random mutational changes. The same is true for mosquitos, in which shared sequences between *Culex* and *Aedes* are often not found in *Anopheles*. We sought to identify ultraconserved CSBs shared among bees and mosquitos that were related to those shared by *Drosophila*, *Ceratitis* and *Musca*, but failed to find such sequences using conventional alignment protocols. This work provides a basis for future studies to understand unique commonalities and functional differences between taxonomic groups.

Acknowledgments

We would like to acknowledge the editorial expertise and assistance of Judy Brody, Mihaela Serpe, Rosario Vicedomini, and Saumitra Choudhury.

References

Altschul SF, Gish W, Miller, W, Myers, EW. Lipman, DJ. 1990. Basic local alignment search tool. *J Mol Biol.* 215:403-410.

Ayyar S, Negre B, Simpson P, Stollewerk A. 2010. An arthropod *cis*-regulatory element functioning in sensory organ precursor development dates back to the Cambrian. *BMC Biol.* 8:127.

Bejerano G, Siepel AC, Kent WJ, Haussler D. 2005. Computational screening of conserved genomic DNA in search of functional noncoding elements. *Nat Methods* 2: 535-545.

Bergman CM, Pfeiffer BD, Rincon-Limas DE, Hoskins, RA, Gnirke, A, Mungall, CJ. Wang AM, Kronmiller B, Pacleb J, Park S, et al. 2002. Assessing the impact of comparative genomic sequence data on the functional annotation of the *Drosophila* genome. *Genome Bio.* 3: RESEARCH0086.

Baumgardt M, Karlsson D, Salmani BY, Bivik C, MacDonald RB, Gunnar E, Thor S. 2014. Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. *Dev Cell* 30(2):192-208.

Beverley, SM and Wilson, AC. 1984. Molecular evolution in *Drosophila* and the higher Diptera II. A time scale for fly evolution. *J Mol Evol.* 21:1-13.

Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. 2007. *cis*-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers. *Genome Biol.* 8:R75.

Cremer S, Armitage SA, Schmid-Hempel P. 2007. Social immunity. *Curr Biol.* 17:R693-702.

Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi, I, Mannion BJ, Khin YS, Fukuda-Yuzawa Y, Plajzer-Frick I, Pickle CS. et al. 2018. Ultraconserved enhancers are required for normal development. *Cell* 172:491-499.

Elsik CG, Tayal A, Diesh CM, Unni DR, Emery ML, Nguyen HN and Hagen DE. 2016. Hymenoptera Genome Database: integrating genome annotations in HymenopteraMine. *Nucleic Acids Res.* 44:D793-800.

Gao S, Takemura SY, Ting CY, Huang S, Lu Z, Luan H, Rister J, Thum AS, Yang M, Hong ST. et al. 2008. The neural substrate of spectral preference in *Drosophila*. *Neuron*, 60:328-342.

Glazov EA, Pheasant M, McGraw EA, Bejerano G, Mattick JS. 2005. Ultraconserved elements in insect genomes: a highly conserved intronic sequence implicated in the control of *homothorax* mRNA splicing. *Genome Res.* 15:800-8.

Hardison RC. 2000. Conserved noncoding sequences are reliable guides to regulatory elements. *Trends Genet.* 16:369-372.

Hare, EE, Peterson, BK, Iyer, VN, Meier R, Eisen MB. 2008. Sepsid *even-skipped* enhancers are functionally conserved in *Drosophila* despite lack of sequence conservation. *PLoS Genet.* 4: e1000106.

Harpur BA, Guarna MM, Huxter E, Higo H, Moon KM, Hoover SE, Ibrahim A, Melathopoulos AP, Desai S, Currie RW, et al. 2019. Integrative Genomics Reveals the Genetics and Evolution of the Honey Bee's Social Immune System. *Genome Biol Evol* pii:evz018.

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R. et al. 2002. The genome sequence of the malaria mosquito *Anopheles gambiae*. *Science* 298:129-49.

Irvine Q, Carr JL, Bailey, WJ, Kawasaki K, Shimizu N, Amemiya, CT, Ruddle FH. 2002. Genomic analysis of Hox clusters in the sea lamprey *Petromyzon marinus*. *J Exp Zool.* 294:47-62.

Kent WJ. 2002. BLAT--the BLAST-like alignment tool. *Genome Res.* 12(4): 656-64.

Kamali M, Marek PE, Peery A, Antonio-Nkondjio C, Ndo C, Tu Z, Simard F, Sharakhov IV. 2014. Multigene phylogenetics reveals temporal diversification of major African malaria vectors. *PLoS One* 9:e93580.

Krzywinski J, Grushko OG, Besansky NJ. 2006. Analysis of the complete mitochondrial DNA from *Anopheles funestus*: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. *Mol Phylogenet Evol.* 39:417-423.

Kundu M, Kuzin A, Lin TY, Lee CH, Brody T, Odenwald WF. 2013. Cis-regulatory complexity within a large non-coding region in the *Drosophila* genome. *PLoS One*, 8:e60137.

Kuzin A, Kundu M, Ekatomatis A, Brody T, Odenwald WF. 2009. Conserved sequence block clustering and flanking inter-cluster flexibility delineate enhancers that regulate *nerfin-1* expression during *Drosophila* CNS development. *Gene Expr Patterns* 9:65-72.

Kuzin A, Kundu M, Ross J, Koizumi K, Brody T Odenwald WF. 2012. The cis-regulatory dynamics of the *Drosophila* CNS determinant *castor* are controlled by multiple sub-pattern enhancers. *Gene Expr Patterns* 12:261-272.

Lettice LA, Williamson I, Devenney PS, Kilanowski F, Dorin J, Hill RE. 2014. Development of five digits is controlled by a bipartite long-range cis-regulator. *Development* 141:1715-1725

Liu F, Posakony JW. 2012. Role of architecture in the function and specificity of two Notch-regulated transcriptional enhancer modules. *PLoS Genet.* 8:e1002796.

Loots G, Ovcharenko I. 2007. ECRbase: database of evolutionary conserved regions, promoters, and transcription factor binding sites in vertebrate genomes. *Bioinformatics* 23:122-124.

McEwen, GK, Goode, DK, Parker HJ, Woolfe A, Callaway H, Elgar G. 2009. Early evolution of conserved regulatory sequences associated with development in vertebrates. *PLoS Genet.* 5:e1000762.

Millard SS, Flanagan JJ, Pappu KS, Wu W, Zipursky SL. 2007. Dscam2 mediates axonal tiling in the *Drosophila* visual system. *Nature* 447:720-4.

Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G. et al. 2015. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 *Anopheles* mosquitoes. *Science* 347: 1258522.

Needleman SB, Wunsch, CD. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *J Mol Biol.* 48: 443-453.

Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Meger K, Grabherr M, Ren Q. et al. 2007. Genome sequence of *Aedes aegypti*, a major arbovirus vector. *Science* 316: 1718-1723.

Nusse R, Varmus HE. 1992. Wnt genes. *Cell* 69:1073-87.

Odenwald WF, Rasband W, Kuzin A, Brody T. 2005. EVOPIINTER, a multigenomic comparative tool for rapid identification of functionally important DNA. *Proc Natl Acad Sci U S A.* 102:14700-14705.

Panne D. 2008. The enhanceosome. *Curr Opin Struct Bio.* 18:236-242.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD et al. 2006. In vivo enhancer analysis of human conserved non-coding sequences. *Nature* 444:499-502.

Perry MW, Boettiger AN, Bothma JP, Levine M. (2010). Shadow enhancers foster robustness of *Drosophila* gastrulation. *Curr Biol.* 20:1562–1567.

Peters, RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, Kozlov A, Podsiadlowski L, Petersen M, Lanfear R, et al. 2017. Evolutionary History of the Hymenoptera. *Curr Biol.* 27:1013-1018.

Reddy, BP, Labbe P, Corbel V. 2012. Culex genome is not just another genome for comparative genomics. *Parasit Vectors* 5:63.

Ross J, Kuzin A, Brody T, Odenwald WF. 2015. cis-regulatory analysis of the *Drosophila* *pdm* locus reveals a diversity of neural enhancers. *BMC Genomics* 16:700.

Ross J, Kuzin A, Brody T, Odenwald WF. 2018. Mutational analysis of a *Drosophila* neuroblast enhancer governing nubbin expression during CNS development. *Genesis* 56:e23237.

Sieglaff DH, Dunn WA, Xie XS, Meger K, Marinotti O, James AA. 2009. Comparative dgenomics allows the discovery of cis-regulatory elements in mosquitoes. *Proc Natl Acad Sci U S A.* 106:3053-3058.

Suryamohan K, Hanson C, Andrews E, Sinha S, Scheel MD, Halfon MS. 2016. Redeployment of a conserved gene regulatory network during *Aedes aegypti* development. *Dev Biol.* 416:402-13.

Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ, McDowell JC, et al. 2003. Comparative analyses of multi-species sequences from targeted genomic regions. *Nature* 424:788-793.

Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, Holt A, Plajzer-Frick I, Afzal V, Rubin EM, Pennacchio LA. 2008. Ultraconservation identifies a small subset of extremely constrained developmental enhancers. *Nat Genet.* 40:158-160.

Visel A, Rubin EM, Pennacchio LA 2009. Genomic views of distant-acting enhancers. *Nature* 461:199-205.

Visel A, Taher L, Gergis H, May D, Golonzhka O, Hoch RV McKinsey GL, Pattabiraman K, Silberberg SN, Blow MJ. et al. 2013. A high-resolution enhancer atlas of the developing telencephalon. *Cell* 152:895-908.

Yavatkar AS, Lin Y, Ross J, Fann Y, Brody T, Odenwald WF. 2008. Rapid detection and curation of conserved DNA via enhanced-BLAT and EvoPrinterHD analysis. *BMC Genomics* 9:106.

Figure 1

A

gttttatggaaatttcgatggttatataattattagctttttgttatcttaaattttgcaca
 gctctaagatgttgcacatttcattgaattttataataacttttactcataaatttagttatg
 aaaatatactgtttctaaatcacaaaaacggta **GCAATCTGAGCCTGTTATT** tgcccttgcacatttgc
 t **TTTATCTT** **GCCA** **GC** **GA** **AC** cggaaattat **ATTTATT** **TT** **ATT** **TATT** **GGCTACCTGTC** tgaat**TGT** cc
 ggcattttccatcg **TGTCTGTTGCAACTGTTGATT** **TATT** **CATGCCGTTATGCAAAT** gAGTTCAAaA
GGATAAGGCCAAACAGCAGCAG tgccagttgcacatccgactaccaggcc **AACATTGGACATAAAA**
ATTATTCT **gAATGAAATT** **CGT** **TG** **CCGAAATT** **CGTATCGATG** tctggctgaaagtccatcgatcc
 tttgctggctgcagtt **CAAATGCAAATGGCATGCC** gca **CAAAA** aaaatc **AAGACCGGTAGCCGAc** **AAAAA**
Aat **TG** **TGTGATATCGAATTAAATTAAAAA** ggagtgcgactgagagccggctaaaggaaatttcattcgat
 tcgatacatacgataccattcgattcggtgcgagaacagagt **CTGGCGCCAAATGTAATGAGGCA** gCa
 gttcg **GAAATTAG** act **TG** **ggcg** **AG** **AT** gttggcca **GCACCTTGTG** **GGCC** ttg **TTCAATTGGCGCTGAT**
TTGGCGG t **CGTGT** tggcctttcagcgttttcttaacttttggtaagctg **AGTGCATGCGTG**
TTGT **G** **TGT** tttcagccttcgtgg **GGCACG** **TGCAACAAAGTTAAGCCG** **ATTGATG** atatt
 gtcaatggaggcagtagcgaatgcatacgatccgaaaccgatccccctg **ACAACCCACACTTCC** **TGT** gga
 ggcacaaaaaccacaaaaaa **AAA** **ACGTGTC** **gCAGGCGGC** **gTC** tagagctcgaaattcccccaactcctg
 cccgcactgccccttctactaccactcggtttctggccaaaaactagcaa **CGATCGATCACATGCTGC**
GAGCTCGGGTAATCCGCA **CTTC** **CACGCC** **TTAGTCG** **CATTTC** atttcatttcattg **CGCGCCCC** **TTTTGT**
CC **agacccaaatacaggacac** **AGACAGGCAGTT** **TATTGATTGAT** **TGCAAAATAAAATCGCAAAT** aT
Ga **Gacactcgacacacactcacat** **atgaggat** **GT** **gTGT** **TTACT** **TTTT** **tGtt** **TTTT** ttttttttatatt
 tccccatggcatacatatactggcagaaccatgtgggtgggtctgtgtgggtctgggttcgg
 t **GGTGGTGGTT** **tca** **Tgcccag** **ATTGGACATATGTCG** **tTGACGTG** **actGCTACTGT** aagcgagaacat**T** **tg**
 g **GCTAAAGTAGCC** **gGGCGTTA** **CTTT** **Cat** **TTTT** **ttagccat** **ctttcaaaTctct** **TTTTTC** **tTcttt** **TT** gg
 caagac **TAATTATTGTCA** **gCGCATATG** **tCAgATAT** atcggggatgtcgaaggtcgatatacttggatg
 gaatgggtggtaagggttcatgttgcataacttcttataactaataatcggttggatcttaacta
 gtcatttagctgaaaagtcaactataatagtaaactttcttattatattatataactttaaagtt

B

Cerat	472349	GCGACGTGCAACAAAGTTAATTAAAGCCACATTGATG	472313
Droso	6822399	GC GA C TGCAACAAAGTTAATTAAAGCCACATTGATG	6822435
Musca	172352	AAAGGC GTGCAACAAAGTTAATTAAAGGCTCATTTGATG	172312
Cerat	472242	ACAACCCACACTTCC	472228
Droso	6822491	ACAACCCACACTTCC	6822505
Cerat	471978	ATCGATCACATGCTGCAATGTTGTAATCCG CAGCAACACGCC TTATTCTCATTT	471923
Droso	6822638	ATCGATCACATGCTGCAACACGCC TTATTCTCATTTG CAGCAACACGCC TTATTCTCATTT	6822693
Cerat	471502	TATTTTATGATTGATTGCA ----- AATAAAAATTGC AAAAAT	471467
Droso	6822759	TATTTTATGATTGATTGCA ----- AATAAAAATCGC AAA T	
Musca	171801	TATTTTATGAGGATAGGATTAGGATA AAAAAATAGCGAA AT	171758

Figure 2

A

tattttagggccgcggagggatttttcaacgagggatccgcgcatccccccgaaaaacaaaagaaaa
cacgcaaattccgtcgaaaaacacaacagaatataattgcattatataattacaatataattgttcatc
tc**TAG**taacg**TAGTATGTAGAAGCAGCTGTGATAAATAGTGC**G**CATAT**TATACGAAaaaaa**GCAAAA**gAGT
ATACGACAa**ACAA**ataaaaaattaaa**A**gcAAccac**AA**ctactactata**AAA**ataaccaaggaaaaaggcaagg
aaactcgcaaaacgagagagagaaaaaggaaaaacgc**CATGGATTATGAC****AACAACAA**atgcaacc
cagtaacaaatgtatgttcag**CAAC**tactacaatacacgagtataccaagaacatca**ACAAC**aa**CAAC**tg**C**
AACGGCAAC**AA****ACAA****AA****TTGTATACGATT****TTTATAAACCAACAA****AT****gt****TATGTAA****AT****A****Tt****Tt****AA**
CA**AA****ACACACA**aga**AAAAAA****ac****A****tt****AAA****cc****AGATCTCCGCT****ct****agaaa****acaaac****AA****ca****AACGCGCG**
TAACaaaaacg**ACAAC****AA****CAAC****AA****ACAACAA****AG****T****A****CA****AA****A****acgt****taat****A****ATA****ATA****c****ATAAA****TCT****AAC****AA**
TGTGCTGTGTTAAAA**AAAA****gAA****agca****AAA****tc****AAGA****ag****caa****agcgtt****caaaa****agc****aaaggcttccaa**
catgaaaaaaagtgc
aaaaacatataaaaaatccaagaaaaataacatccaaaaactgaagaactggaaaagcc
aagagtaatctaaggactccacacgggacgtacagtagagcttccctaaaaccgaagcagttcagcgg
cggagcgggacgtcggtcagtgtgtgcgc**CCC****cat****ttgttgc****tttcc****AC****tgt****AA****AAAGTGGCACA****AA****ATCGG**
GTTAGACGTGCTCC**CAGAGCATTA****ATGGCTCAGCC****cAGGGTAAGTA****at****ccacccaa****agttc****actttctaa**
atataatagaatccatataagaatggccccgagagtgttgcattccataaaacaagttccgacggctaaaaaa

B

Cerat 387653 GTTGAAGAAGCTGTGAT-ATTTGTGAGCATAT 387626

Drosophila 10613790 **GTAGAACAGCTGTGATAAATAGTGC**G**CATAT** 10613756

Drosophila 10613564 **CATGGATTATGAC** 10613577

Musca 35636 CATGGATTATGAC 35649

Cerat 386904 **TCAAA****ACACATATA**CAAGCATTGTATACGATTTT----AAAGCAAC**AA****AT**--TAT-TAAATTATT 386865

Drosophila 10613458 **CAACGGCAAC****AA****ACAA****AA****TTGTATACGATT****TTTATAAACCAACAA****At****gt****TATGTAA****AT****A****Tt** 10613522

Musca 35742 **CAAC****ACAA****ACCA**-CAACAAATTGTATACGATTTTCTAAAACAAAATATAATTAA--AATT 35805

Cerat 386251 AAAAGTGGCACA-GGTGGGCTGGACATCGCTCCCAGAGCATTAAATGGCTCAACCTAGGGTAAGTACAT 386184

Drosophila 10613042 AAAAGTGGCACA-**AATCGGGTTAGACGTGCTCC****CAGAGCATTA****ATGGCTCAGCC****cAGGGTAAGTA****at** 10612975

Musca 383950 AAAAGTGGCACAATCGGGTTGGACACC**GCTCCTAGAGCATTA****ATGGCTCAACCTAGGGTAAGTATTG** 384012

Figure 3

A

B

Culex	610788	AATGTGTTATGTAATGTGTTATGATTCAATTACCCAGAAAAATTCAAATATTGAT	610746
Anopheles	42001058	AGAACTGCTGCTAATGTGTTATGACTCAATTACTGTGAAATTAAATATTGAT	42001004
Aedes	406893776	AGAAGACCTGTTAATGTGTTATGATTCAATTACCCAGAAAAATTCAAATATTGAA	406893721
Culex	610664	GAAAACACTTAAGAAATTAAATATGT--ACGTTCTATCG--CTGACTTTCATCTCCATAAAAT	
Anopheles	42000806	GAAAACACTTTAGAAATTAAATATGA--GCATTCTATCGGGCTGACTTTATCTCCATAAAAT	
Aedes	406893622	GAAAACACTTAAGAAATTAAATATGACTGTGTTCTATCG--CTGACTTTATCTTCATAAAAT	
Culex	(cont'd)	AACGCTTTT-ATTAACTTATGCATCGTCGTCCC	610591
Anopheles	(cont'd)	AACGATTTT-ATGAACTGAC-----GCGCCT	42000731
Aedes	(cont'd)	AACGATTTTATTAACTTACATGCAGTGGCCT	406893546
Culex	605426	GTCGGACAGACAGGAAGCGTGGGATAATTAGGTTAGGCCACCAAG	605381
Anopheles	42000289	GCGGaaaaACCGGA-tGC-tgtataTAATTAGGTTAGCGC-CACCGGag	42000245
Culex	605259	TGTCCCATAAGTTAGCGA-TTTAT	605234
Anopheles	2000157	TGTCCCTATAAGTTAACATTAT	2000134

Figure 4

A

<i>Apis_Mellifera (Bee)</i> (Ref Sequence)			<i>Apis_dorsata (Bee)</i>			<i>Apis_Florea (Bee)</i>			<i>Bombus_Terrestrialis (Bee)</i>		
Composite eBLAT			Composite eBLAT			Composite eBLAT			Composite eBLAT		
Score	Start	End	Score	Start	End	Score	Start	End	Score	Start	End
2808	1	2808	2388	76	2788	2299	61	2808	917	261	2497
322	717	1780	284	700	1654	253	1143	1826	127	881	1800
227	438	1652	245	1223	1796	195	968	1853	122	1305	1985
Selected for EvoPrinting			<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None	<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None	<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None

<i>Bombus_Impatiens (Bee)</i>	<i>Habropoda_Laboriosa (Bee)</i>	<i>Megachile_Rotundata (Bee)</i>						
Composite eBLAT								
Score	Start	End	Score	Start	End	Score	Start	End
860	261	2462	762	287	2453	307	2070	2450
196	481	1806	259	681	1810	119	1589	1798
159	677	1811	142	1140	1947	127	1705	1894
<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None	<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None	<input checked="" type="radio"/> 1 st	<input type="radio"/> All Alignments	<input type="radio"/> None

B

Figure 5

A

B

Figure 6

Apis_Mellifera (Bee) gbb Genomic Relaxed EvoPrint

Wasemannia_Auropunctata (Ant) gbb Genomic Relaxed EvoPrint

Supplemental Figure 1

vvi-36

Cerat 455483	CTAAAACATTTGATGTTAATTGATTTAACAACTTTGAACTTGTGATCTTCAACAAATTAA	455534
Dros 6816217	CTGGGAGCCCGAGGGTCAATTGATTGAAACAACTTTGAACTTGTGATCTTGTACAAATTAA	6816279
Musca 216640	CTGGGAGCCG--AGGTCAATTAGTGAACAACTTTGAACTTGTGATCTTGTACAAATTAA	216700

vvi-37

Cerat 459528	GGTTCTGGAAGTCTCGTGTAGCACACG-CGCGTAAATT	459570
Dros 6817479	GTTCCTGGAAGTCTCGTGTAGCAC---CGCGTAAATT	6817518
Musca 207477	AGTTCTGGAAGTCTCGTGTAGCACACGTCGCGTAAATT	207519

Cerat 459788	TGGCGGCTCGCCCTTTGTCGCACATTTC-ATTGCAACGCACTCACACAAAACGGTACCGCTCGCGGCTA	459859
Dros 6817584	GCGGCGGCATC-CACCTTGAGCCGCGTCCGCCATTGCAACGCACTGCACACAAAACGGTACCGCTAGCGGGTA	6817655
Musca 207708	GCGGCGGCATTCACTTGTCGCACATTTC-ATTGCAATGCATTGACACAAAACGGTACCGCTGATTTTT	207779

vvi-38

Cerat 462472	TTGATCGTGTGAAACGGGAGCGCCCTTTAACAGCGATAACAGCGAAATCATGACTTGC	462534
Dros 6818852	TTGATCGTGTGAAACGGGAGCGCCCTTTAACAGCGATAACAGCGAAATCATGACTTGC	6818913
Musca 202227	TCGATCGTGTGATCGGTGAGCGCCCTTT-----TAACAGCAAATCATGACTCAA	202175

Cerat 462706	AAATAATGAAAAATTATTCAATAAAATTATTCTG	462741
Dros 6819085	AAATAATGAAAAATTATTCAATAAAATTATTCTG	6819120
Musca 201657	AAATAATGAAAAATTATTCAATAAAATTATTCTG	201626

vvi-49

Cerat 512064	GCATTAACCGGAAGCCTAGCCAAATGTGAAACGTGAT	512028
Dros 6834923	GCATTAACCGGAAGCCTGCGCCAAACGTGATCAACGG	6834961
Musca 105415	GTACGAACCGGAAGCCTCGCCAAACGTGATCTACGG	105385

vvi-51

Cerat 517380	CTTTGTGGTCAATAACCATAAAAAGCTCATTAATTATGCGCGATATCGC	517429
Dros 6837429	TTTTGCGGTCAATAACCATAAAAAGCTCATTAATTAT--GCGCATATCGC	6837478
Musca 95350	TTTTGCGGTCAATAACCATAAAAAGCTCATTAATTAT--GCGCGTATCTA	95397

vvi-53

Cerat 521195	TGATTGACCGGATCATGATTTACACCTT--TGGGTGCGTA	521232
Dros 6839061	TGATTGACATGATCATGATTTACACCTTCTGGGTGCGTA	6839100
Musca 89266	TGATTGACATGATCGTGATTTACACCATCCCTCTGTTGTT	89291

Supplemental Figure 2

<i>Anopheles gambiae</i>	<i>Anopheles gambiae-SI</i>	<i>Anopheles melas</i>	<i>Anopheles merus</i>
Composite eBLAT	Composite eBLAT	Composite eBLAT	Composite eBLAT
Score Start End	Score Start End	Score Start End	Score Start End
1420 1 1420	1405 1 1420	1374 1 1420	1357 1 1420
87 15 992	84 916 1172	73 322 517	76 332 1065
77 332 1061	80 376 1118	50 332 484	87 341 965
Selected for <i>EvoPrinting</i>	1st All Alignments	1st All Alignments	1st All Alignments
<i>Anopheles christyi</i>	<i>Anopheles epiroticus</i>	<i>Anopheles culicifacies</i>	<i>Anopheles funestus</i>
Composite eBLAT	Composite eBLAT	Composite eBLAT	Composite eBLAT
Score Start End	Score Start End	Score Start End	Score Start End
940 50 1390	733 107 1266	535 137 1382	534 137 1384
75 50 168	123 234 1414	105 476 953	131 285 974
92 286 507	84 329 716	86 332 429	99 33 356
1st All Alignments	1st All Alignments	1st All Alignments	1st All Alignments
<i>Anopheles dirus</i>	<i>Anopheles farauti</i>	<i>Culex pipiens</i>	<i>Aedes aegypti</i>
Composite eBLAT	Composite eBLAT	Composite eBLAT	Composite eBLAT
Score Start End	Score Start End	Score Start End	Score Start End
447 145 1265	413 145 1172	204 44 1172	181 245 824
86 522 1028	85 7 531	109 31 578	172 245 824
101 2 903	84 5 300	85 44 922	71 761 1055
1st All Alignments	1st All Alignments	1st All Alignments	1st All Alignments

Supplemental Figure 3

Apis Mellifera (Bee) hth Genomic Relaxed EvoPrint

Cerapachys_Biroi(Ant) *hth* Genomic Relaxed EvoPrint

Figure Legends

Figure 1. Ultra-conserved sequences shared among a *Drosophila ventral veins lacking* enhancer and orthologous DNA within the *Ceratitis capitata* and *Musca domestica* genomes.

A) An *EvoPrint* of the *D. melanogaster* *vvl-41* neuroblast enhancer showing 1,775 bp, located 26.6 kb 3' of the *vvl* transcribed sequence. Capital letters represent bases in the *D. melanogaster* reference sequence that are conserved in *D. simulans*, *D. sechellia*, *D. yakuba*, *D. erecta*, *D. ananassae*, *D. persimilis*, *D. grimshawi*, *D. mojavensis* and *D. virilis* orthologous DNAs. Lower case grey bases that are not conserved in one or more of these species. Conserved sequence blocks (CSBs) shared with *Ceratitis* and *Musca*, as detected using BLASTn, DNA Block Aligner and the *EvoPrinter* CSB aligner are shown in Green text while red bases are shared between *D. melanogaster* and *Ceratitis* but not with *Musca*. **B)** Two and three-way alignments between of the ultra-conserved CSBs using BLASTn alignments. Green and red font annotations in the *Drosophila* CSBs are as describe above. Yellow highlighted bases in *Ceratitis* and *Musca* are not shared in *Drosophila*. Flanking BLASTn designator numbers indicate genomic sequence positions.

Figure 2. Ultra-conserved *Drosophila*, *Ceratitis capitata* and *Musca domestica* sequences within the *homothorax* locus.

A) A 1,065bp *EvoPrint* of the *D. melanogaster* *homothorax* locus that includes 5' non-transcribed sequence, its 5' UTR, the first five codons of its encoded protein and 102bp of the first intron. Capital letters represent bases in the *D. melanogaster* reference sequence that are conserved in *D. simulans*, *D. sechellia*, *D. yakuba*, *D. erecta*, *D. ananassae*, *D. persimilis*, *D. grimshawi*, *D. mojavensis* and *D. virilis* orthologous DNAs. Lower case grey letters represent bases that are not conserved in one or more than one of the test species. *Drosophila* CSBs that are shared with *Ceratitis* and *Musca*, as detected in figure 1, are shown in green. Red bases are shared only between *Drosophila* and *Ceratitis* and blue text represent bases shared exclusively between *Drosophila* and *Musca*. The translation start codon is marked by an underlined ATG. **B)** BLASTn two and three-way alignments of the ultra-conserved CSBs. Font color annotations are as in panel A. Yellow

highlighted bases in *Ceratitis* and *Musca* are not shared in *Drosophila*. Flanking BLASTn designator numbers indicate genome base positions.

Figure 3. *EvoPrint* analysis of the intragenic region adjacent to the *Anopheles Wnt-4* and *wingless* genes identifies ultra-conserved sequences shared with the evolutionary distant *Culex pipiens* and *Aedes aegypti* genomes.

A) *Anopheles gambiae* genomic *EvoPrint* that spans 1,420 bp, located 10.2 kb upstream of the *Wnt-4* gene and 27.5 kb upstream of the *wingless* gene which is transcribed in the opposite orientation of *Wnt-4* transcription. Capital letters (all font colors) represent bases conserved in all or all but one of the following *Anopheles* test species: *A. gambiae-S1*, *A. merus*, *A. melas*, *A. epiroticus*, *A. christyi*, *A. funestus*, *A. culicifacies*, *A. dirus* or *A. farauti*. Lower case grey letters represent bases that are not conserved in two or more of the *Anopheles* species included in the relaxed *EvoPrint*. Green uppercase bases indicate sequences are conserved in the *Anopheles* species, *Culex pipiens* and *Aedes aegypti*, blue font indicates *Anopheles* sequences that are shared only between *Culex pipiens* but not with *Aedes aegypti* and red font sequences are present only in *Anopheles* and *Culex*. **B)** To confirm the shared ultra-conserved CSBs, two and three-way BLASTn alignments of the shared sequences are shown. Color coding is as in panel A and yellow highlighted bases in the three-way alignments indicate identity between *Culex* and *Aedes* that is not present in *Anopheles*. Flanking BLASTn designator numbers indicate genome base positions.

Figure 4. Conserved sequence clusters within the honeybee *dscam2* gene second intron.

EvoPrinter analysis reveals *Apis mellifera* non-coding sequence elements that are conserved in other bee species or only in a subset of species. **A)** Alignment data generated from one-on-one comparisons of a 2.8 kb sequence from the honeybee 16 kb *dscam2* second intron. For each species, the top three independent eBLAT alignment scores are listed. Scores indicate the total number of bases within the reference sequence, the *Apis mellifera dscam2* intron, that align with the test species genome. The test species; *Apis dorsata*, *Apis florea*, *Bombus terrestrialis*, *Bombus impatiens*, *Habropoda laboriosa* and *Megachile rotundata* are listed (L -> R) based on their highest alignment score in descending order. Website links to individual eBLAT alignments and superimposed composite eBLATs are indicated in either red or blue font colors. As indicated in the alignment scorecard by the blue selection buttons, the top (highest scoring alignment) for each test species has been selected for *EvoPrinting*.

B) A color-coded relaxed *EvoPrint* of the 2.8 kb honeybee *dscam2* second intron generated from the alignment data shown in panel A. Black uppercase letters indicate bases conserved in all test species. Font colors represent sequences conserved in all species except for *Apis dorsata*, *Apis florea*, *Bombus terrestralis*, *Bombus impatiens*, *Habropoda laboriosa* or *Megachile rotundata*. Gray lowercase nucleotides are not conserved in at least two of the test species.

Figure 5. Combined Ant and Bee *EvoPrints* identify ultra-conserved *Hymenoptera* DNA

A) An *Apis mellifera* *goosecoid* (*gsc*) *EvoPrint* generated with four evolutionary divergent bee genomes and then overlaid with a print that includes the four bee genomes plus four divergent ant species. The *Apis* honeybee *gsc* DNA (1,701 bp) includes 5' non-coding, the first exon and intron sequences. All uppercase bases (both black and red font) are conserved in bees and sequences that are conserved in both bees and ants are denoted with red-font uppercase bases. Lowercase gray-colored bases are not conserved in one or more of the bee test genomes. Bee test genomes: *Bombus terrestralis*, *Bombus impatiens*, *Habropoda laboriosa* and *Megachile rotundata*. Ant test genomes: *Linepithema humile*, *Monomorium pharaonis*, *Wasmannia auropunctata* and *Atta cephalotes*. **B)** *EvoPrints* of the ant *Wasmannia auropunctata* *castor* (*cas*) gene locus. The 3,078 bp *Wasmannia* genomic DNA includes *cas* 5' non-coding, the first exon and flanking intron genomic sequences. The initial *Evoprint* was generated with four evolutionary divergent ants and then super-imposed with a print that included these four ants plus four bee genomes. All uppercase bases (both black and red font) are conserved in the ants *Cerapachys biroi*, *Linepithema humile*, *Atta cephalotes* and *Vollenhovia emeryi*. Sequences that are conserved in both ants and bees (*Apis florea*, *Bombus impatiens*, *Habropoda laboriosa* and *Megachile rotundata*) are shown as red colored uppercase bases. Lowercase gray-colored bases are not conserved in one or more of the ant test species. The translation initiation codon is underlined. The left flanking vertical brown bar indicates an ant-specific conserved DNA cluster that is not found in bees. Note, in the exon ORF most, but not all, of the conserved codons do not have conserved wobble positions indicating that the cumulative evolutionary divergence of the test species used to generate the *EvoPrint* afford near base pair resolution of essential DNA.

Figure 6. Side-by-Side comparison of conserved sequences within in the bee and ant *glass bottom boat* loci identify clusters of conserved and species-specific sequences.

A) Relaxed *EvoPrint* of *Apis mellifera* genomic DNA that includes the *glass bottom boat* (*gbb*) second and third exons (red underlined sequences) plus flanking intronic sequences (6.6 kb). Black uppercase bases are conserved in all test bee species and colored uppercase bases are conserved in all but one of the color-coded test species: *Bombus terrestris*, *Habropoda laboriosa*, *Megachile rotundata* and *Bombus impatiens*. First and second exons sequences underlined red. Blue underlined sequences are homologous to underlined sequences in panel B. Vertical red bars flanking the *EvoPrint* indicate conserved bee-specific sequences that are not found in ants. **B)** Relaxed *EvoPrint* of *Wasmannia auropunctata* DNA that spans the second and third exons of the *gbb* gene including their flanking intronic sequences (5.1 kb). As in panel A, black uppercase bases are conserved in all test ant species and colored uppercase bases are conserved in all but one of the color-coded species: *Cardiocondyla obscurior*, *Cerapachys biroi* and *Linepithema humile*. Red and blue underlined sequences are respectively homologous coding and non-coding sequences in panel A and the green vertical bar flanking the *EvoPrint* indicates ant-specific conserved sequences that are not found in bees.

Supplemental Figure 1. Ultra-conserved DNA in *Drosophila vvl* enhancers identified in *Ceratitis capitata* and *Musca domestica* orthologous DNAs.

Three-way *Ceratitis-Drosophila-Musca* BLASTn alignments of CSBs within six different *in vivo* tested *Drosophila vvl* enhancers. *Drosophila* sequences that are shared with *Ceratitis* and *Musca* are shown in green. Red bases are shared only between *Drosophila* and *Ceratitis* and blue text represent bases shared exclusively between *Drosophila* and *Musca*. Yellow highlighted *Ceratitis* and *Musca* bases are not shared in *Drosophila*. Flanking BLASTn designator numbers indicate genomic base positions.

Supplemental Figure 2. Conservation within the mosquito *wingless* gene second intron.

EvoPrinter analysis reveals *Anopheles gambiae* non-coding sequence elements located between the mosquito homologs of *Drosophila wg* and *wnt4* that are conserved in other mosquito species. Alignment data generated from one-on-one comparisons of a 1420 base sequence from the *A. gambiae* genome. For each species, the top three independent eBLAT

alignment scores are listed. Scores indicate the total number of bases within the reference sequence that align with the test species genome. In this analysis, 11 of the 19 mosquito test species present in the database are illustrated. The test species are listed (L -> R) based on their highest alignment score in descending order. Website links to individual eBLAT alignments and superimposed composite eBLATs are indicated in either red or blue font colors. As indicated in the alignment scorecard by the blue selection buttons, the top (highest scoring alignment) for each test species has been selected for *EvoPrinting*.

Supplemental Figure 3. Side-by-side comparison of conserved sequences within ant and bee *homothorax* loci identifies shared exon/intron architecture and species-specific conserved sequences.

EvoPrints of bee and ant genomic DNA that includes *homothorax* (*hth*) encoding an exon isologous to the 2nd exon of *Drosophila hth* plus flanking intronic sequences. Blue and red underlined regions are coding and non-coding sequences, respectively, and align with homologous regions in the two panels. Black uppercase bases are conserved in all test species and colored uppercase bases are conserved in all but one of four bee test species in panel A and all but one of three ant test species in panel B. **A)** Relaxed *EvoPrint* of *Apis mellifera* genomic sequences (6.3kb; Group5:7,111,526-7,117,900). Vertical red bars flanking the *EvoPrint* indicate conserved bee-specific sequences that are not found in ants. Colored uppercase bases are conserved in all but one of the color-coded test species: *Apis florea*, *Habropoda laboriosa*, *Bombus terrestris* and *Bombus impatiens*. **B)** Relaxed *EvoPrint* of *Cerapachys biroi* genomic DNA (5.1kb; 6532628-6527517, *Ooceraea biroi* isolate clonal line C1 chromosome 14, Obir_v5.4). The green vertical bar flanking the *EvoPrint* indicates ant-specific conserved sequence that is absent in bees. Black uppercase bases are conserved in all test ant species and colored uppercase bases are conserved in all but one of the color-coded test species: *Monomorium pharaonis*, *Atta cephalotes*, *Vollenhovia emeryi*, *Acromyrmex echinatior*, *Lasius niger*, *Pogonomyrmex barbatus*, *Wasmannia auropunctata*, *Cardiocondyla obscurior* or *Linepithema humile*.