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ABSTRACT:

Knee osteoarthritis (OA) is a joint disease that affects several tissues: cartilage, synovium, meniscus and
subchondral bone. The pathophysiology of this complex disease is still not completely understood and
existing pharmaceutical strategies are limited to pain relief treatments.

Therefore, a computational method was developed considering the diverse mechanisms and the multi-
tissue nature of OA in order to suggest pharmaceutical compounds. Specifically, weighted gene co-
expression network analysis (WGCNA) was utilized to identify gene modules that were preserved across
four joint tissues. The driver genes of these modules were selected as an input for a network-based drug
discovery approach.

WGCNA identified two preserved modules that described functions related to extracellular matrix
physiology and immune system responses. Compounds that affected various anti-inflammatory
pathways and drugs targeted at coagulation pathways were suggested. 9 out of the top 10 compounds
had a proven association with OA and significantly outperformed randomized approaches not including
WGCNA. The method presented herein is a viable strategy to identify overlapping molecular
mechanisms in multi-tissue diseases such as OA and employ this information for drug discovery and

compound prioritization.

Keywords: Weighted gene co-expression network analysis, osteoarthritis, network based drug

discovery, pathway enrichment
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Introduction:

Osteoarthritis (OA) is a disease characterized by painful deterioration and destruction of articular
cartilage®. It is a whole joint disease involving, in the case of knee OA, four tissues: cartilage, synovium,
meniscus and subchondral bone?. OA is a highly heterogeneous condition that makes it difficult to
characterize it in terms of clear disease phenotypes® or completely understand the pathophysiological
processes in terms of responsible biological functions, disease-associated genes and risk loci*. Until now
there are no disease modifying drugs except for pain-relief treatments and compounds that were used to
target the prototypic players involved in inflammation and extracellular matrix (ECM) physiology have
not been able to provide significant improvements until now or are still in clinical trials®.

Systems oriented approaches in OA have been employed in many studies in the past using various
experimental platforms and computational methods®. One application was to use whole-genome
sequencing data (DNA microarray/RNA-seq) to identify overexpressed genes in diseased tissues and
pinpoint molecular mechanisms and cellular functions related to QAFError! Reference source not found.7-9  The
latter studies combined this information with other experimental platforms (mass spectrometry
proteomics and DNA methylation) or used network based approaches to find pathways regulated during
the development of OA. A limitation of differential gene expression and pathway analysis is that it relies
on multiple statistical tests and arbitrary cut-off thresholds that are affecting the results'®. Another
approach to process gene expression data is to construct networks using the co-expression of the genes
as the connectivity measure!*. The most prominent method is weighted gene co-expression network
analysis (WGCNA) that allows the construction of co-expression networks and the identification of
preserved modules between different datasets!?. Applied to OA, the study by Mueller et al.®* used
WGCNA to identify preserved gene modules comparing human and rat studies.

When it comes to drug discovery, systematic approaches using network-based technologies and ‘omics
platforms are getting increasing attention with many different methodologies developed and applied in
the recent years'®. The core idea is to unravel the molecular mechanisms of diseases and use this
information for a systematic evaluation of pharmacological compounds. As an example, the study by
Nacher et al.®® used information from 17 proteomic studies in healthy and OA chondrocytes to develop
an OA-interactome and utilized network approaches to identify drugs.

Combining these two ideas, using co-expression networks to identify biological functions in OA and
then, based on this information, suggesting possible pharmaceutical compounds affecting these
functions seems like an interesting option to explore.

Thus, the aim of this paper is twofold. At first WGCNA will be used to identify common disease
mechanisms in OA joints characterized by preserved gene modules in the relevant tissues (cartilage,
synovium, meniscus and subchondral bone). Secondly, based on this information drug candidates will

be inferred using network-based approaches.
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Materials and Methods:

Datasets

Publically available genome-wide microarray datasets for each tissue involved in knee OA were
acquired from the Gene Expression Omnibus (GEO)**. These included cartilage, synovium, meniscus
and subchondral bone. The tissue sources with the GEO accession numbers, the platform and the sample

numbers are shown in Table 1.

Tissue GEO accession number | Platform Healthy | OA
Cartilage GSE117999 Agilent 12 12
Synovium GSES55235 Affymetrix | 10 10
Meniscus GSE98918 Agilent 12 12
Subchondral bone | GSE51588 Agilent 5 20

Table 1: Tissues, GEO accession numbers, experimental platforms and sample numbers

The cartilage dataset (GSE117999) included 24 samples of 12 patients undergoing arthroscopic partial
menisectomy without any evidence of OA and 12 patients undergoing total knee arthroplasty due to
end-stage OA. The synovium dataset (GSE55235) included 20 samples from 10 healthy individuals
and 10 OA patients. The meniscus dataset (GSE98918)*¢ included 12 patients undergoing arthroscopic
partial menisectomy (healthy) and 12 patients with OA. The subchondral bone dataset (GSE51588)*"
included tissue taken from the knee lateral and medial tibial plateaus (LT and MT) of 5 non-OA and 20
OA patients. Preliminary analysis of LT vs. MT from the same group showed significant differences in
gene expression, thus mixing of tissue from both sites would have resulted in loss of biological
information. The MT plateau group showed to be more influenced by OA, thus OA and control groups

used the results taken from the MT plateau.

Data pre-processing and differential expression analysis
The R package limma3® was chosen for background correction and normalisation of the data as well as
for the differential expression analysis. RMA and quantile normalisation were used for all datasets as
these methods were able to produce MA plots® (log-intensity ratio M vs. mean log-intensity A) that
were scattered around the zero line, see Supplementary Fig.S1. Before performing differential
expression analysis, the gene expression values of normal and OA samples were hierarchically clustered
to remove outliers in the respective datasets, see Supplementary Fig. S2-S5 in the Supplementary
Methods section. P11 and P12 were removed from the healthy meniscus group, P11 was removed from
the healthy cartilage group and P18 and P19 were removed from the OA cartilage group. Once the
outliers were removed, DEGs in each dataset were identified by satisfying the following conditions
(equations 1 and 2):

log,FC = 1.5 (1)

adj.p <0.05 (2)
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with FC being the fold change between the average expression of the healthy and the OA samples and

adj.p being the FDR adjusted p-value using Benjamini-Hochberg correction.

Weighted gene co-expression network analysis

WGCNA is a methodology to identify clusters of genes calculated from a network described by the
connectivity of the pairwise correlation between the genes. Further on, it can be used to identify if a
module from one dataset is preserved in another dataset by using topological measures of the
networkError! Reference source not found. - Ryatajled information on the methodology can be found in Zhang et
al.’2, therefore just a brief description of the algorithm is presented herein. All computations were
performed using the R package WGCNA®.

Network construction and module identification

At first, a signed weighted adjacency matrix Ajwas computed according to equation 3:
Ajj = (0.5 + 0.5cor(x;, x;))P (3)

with cor(x;,x;) being the pairwise Pearson correlation matrix (NxN) with xi and x; (i, j = 1...N) being the
vectors containing the gene expression levels across the different samples of genes i and j respectively
and N being the total number of genes. The power S is used to reduce the influence of low absolute
correlation values on the network topology. Further on f is chosen to lead to an approximate (R? > 0.8)
scale-free topology of the network. As seen in Supplementary Fig.S6 a choice of =20 leads to an
approximate scale-free topology and reduces the connectivity of the nodes. Further on, the connectivity

ki of a node i is defined as in equation 4 and describes the sum of all weighted connections of a node i:
ki =Yy apy, (4)

In the next step Aj;was transformed into a topological overlap matrix (TOMj) according to equation 5:

_ ZuQuQjutagj
TOMU - min{ki,kj}—aij+1 (5)

with a;j = 1 if a direct link between node i and node j exists and O otherwise. In other words, TOM;
relates the set of common neighbours to the smallest set of neighbours of i excluding j and vice versa.

The dissimilarity matrix that was used for module identification with WGCNA is defined in equation 6:
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The procedure of equations (3)-(6) was performed for four datasets and a consensus transformation for

the dissimilarity matrices according to equation (7) was computed:
Consesus;;(AD,A®,...) = min;;(AW,A®, ..) (7)

Other operators instead of the min operator (10" quantile, median, mean etc.) can also be used,
depending on how strict the consensus criterion is formulated.

Finally clusters of genes were identified by using a hybrid method combining hierarchical clustering
and partitioning-around-medoids clustering with the consensus matrix of equation (7) as the distance

matrix*L.

Module stability

Two methods to assess the stability of the module identification through the WGCNA algorithm were
implemented. The first considered a random removal of 10% of the samples of each microarray dataset
with identical processing and module identification as for the original datasets. The second approach
used resampling with replacement for the creation of new artificial datasets. Both approaches were

performed 50 times with each time comparing the new set of modules with the original set.

Differential eigengene network analysis

For each module an eigengene (the first principal component of the gene expression data underlying this
module) was computed in order to reduce the network and allow a meta-analysis of the data*’. The
eigengenes were represented in an eigengene co-expression network Aweij for every tissue according to
equation (3) with f=1. Then a consensus matrix, equation (7) and the dissimilarity of the consensus
matrix DISCONSyei; equation (6) was calculated.

Multi-dimensional scaling* with subsequent k-means clustering** on DISCONSweij was performed to
identify clusters of module eigengenes (MEs), so called meta-modules (MMs), that were analysed
further down the pipeline. It has to be noted that every MM was again expressed with a meta-module
eigengene.

At first, it was of interest to what degree the meta-modules were preserved across the datasets. Thus a
preservation transformation for the meta-module adjacency matrices Awwij (Using equation (3) with f=1)

of all four tissues was performed according to equation (8), further referred as the preservation network:
Preservij(A(l),A(z), ) =1- [Maxij(A(l),A(z), ) — Minij(A(l),A(z), )] (8)
Two measures, the scaled connectivity C and the density D of the preservation network were computed

according to equations (9) and (10) to quantify the preservation between networks A® and A® with

dimension n x n.
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Xy af-a

C;(Preservt?) =1 = 9)
SiZjsilai -aiy
(1,2)) _ q _ ZiZj=i|% — 4
D(Preserv ) =1 D) (10)

For more detailed information on preservation statistics and differential eigengene network analysis, the

reader is referred to Langfelder et al.*.

Module-trait relationship and identification of driver genes
Until now the identified MMs represented genes that were co-expressed and preserved across all tissues
not considering the phenotype (healthy vs. OA). As a next step it was necessary to point out MMs that
have disease related genes. Further on, the connectivity of the genes inside the MMs was of interest, as
hub genes might be influential for the according meta-module.
Thus, overall gene expression datExpr was correlated to the disease (trait) by computing the gene
significance GS with equation (11):

GS = abs(cor(trait,datExpr)) (11)
Additionally gene connectivity GC was calculated as the weighted within module connectivity (edge

weighted degree).

Functional enrichment and pathway analysis

The outcome of the WGCNA analysis are modules of co-expressed genes preserved across knee joint
tissues that simultaneously have genes correlated with the disease state. These modules were connected
to biological functions and pathways through gene set enrichment analysis (GSEA) using the g:Profiler
web-service®®. g:Profiler takes as an input a listed of gene names (sorted or unsorted) and provides an
enrichment score to show if a set of genes is enriched in a biological function or pathway. Enrichment
was performed using the Gene Ontology (GO): biological processes*®*’ as well as KEGG* and
REACTOME® pathways.

Network based drug discovery

In order to suggest compounds for treatment of OA, the network-based approach suggested by Guney

et al.*® was used. This approach represents diseases with signatures (lists of proteins or protein encoding

genes) that are located in a background protein-protein interaction (PPI) network, called the interactome.

Drugs are represented by their respective protein targets (drug signatures) and network-based distances

between the disease and drug signatures are used to suggest drugs with therapeutic potential.

The disease signature was chosen from the meta-modules of the WGCNA analysis that had genes

significantly correlated with the disease state (high GS) and had a high gene connectivity GC. Therefore,

following requirements for the disease signature were met: 1: Genes were co-expressed and co-
7
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expression was preserved across tissues. 2: Genes were correlated with the disease state. 3: Genes were
the hub genes of the disease related meta-modules.

As the background network a PPI network as presented by Menche et al.®? consisting of 13460 proteins
and 141296 interactions was selected. At first, it was determined if the disease gene list is present as a
module in the background network. Two approaches were chosen that quantify the degree to which
disease proteins agglomerate in the interactome neighbourhood®2. The first measure was the module size
S quantified by the largest number of disease proteins directly connected to each other. The second one
calculated the shortest distance ds as the distance for each disease protein N to the next closest protein
associated with the disease inside the interactome. Then the average value <ds> for all disease proteins
N describing the diameter of the disease on the interactome was calculated. Detailed explanations can
be found in the Supplementary Material of Menche et al.,

Random controls were created for both measures S and <ds> from sets with the same number of proteins
as the disease signature by sampling without replacement of the background interactome with
preservation of the degree distribution. This procedure was repeated 10.000 times and z-scores and p-

values for S and <ds> were calculated according to equation (12):

_ X—t(Xrana)
Z= 0 (Xrand) (12)

with X being S or <ds> respectively.

To obtain drug signatures, Drugbank v. 5.1.3%° was parsed and all approved drugs together with their
target genes were retrieved, resulting in 1833 drugs and small-molecule compounds. Drug-disease
proximity <d.> was calculated as the average of all shortest distances of the drug targets T to any of the
disease proteins S*. Statistical significance of the drug-disease proximity for every drug was computed

according to equation (12) with 1000 sampling repetitions.

Validation of the network based method
In the end a list of top 10 drugs with lowest drug-disease proximity and highest significance was derived.
In order to validate the findings the function of each compound and their relationship to joint
diseases/OA was characterized by literature research returning a hit: compound has relationship with
OA in terms of existing studies or pathways/targets relevant for OA or a miss: no interaction between
compound and OA/joint diseases. The number of hits were compared to a bottom 10 list of drugs, this
means drugs with highest drug-disease proximity and highest statistical significance. Additionally a
random 10 list was developed by creating a disease signature through sampling without replacement
from the genes of the microarray datasets (11641 overlapping genes) with the same size and degree
distribution as S and subsequent drug-disease proximity computation as shown in equation (12). These
two lists have the following reason: The bottom 10 list shows the influence of drug-disease proximity
on the chosen compounds, whereas the random 10 list shows the influence of WGCNA in order to select
8
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an appropriate disease signature. At last the Drugbank dataset was screened for drugs with curated
association to ‘arthritis’ or ‘osteoarthritis’ in order to check how a random drug selection from such a

list would perform.

Results:

Weighted gene co-expression network analysis

Module identification
The WGCNA algorithm was run with the gene expression data of four datasets including 11461 genes
in each set without distinction between healthy and OA, n= 88. At total 1933 genes in 25 different
modules (31-285 genes per module) were identified as co-expressed and preserved across all tissues, as
seen in Figure 1. Grey colour describes non-preserved genes.

Gene dendrogram and module colors

R » B ) TR = = 1l|- "_—“ N B 3 B
3 T

0.98
1

DISTOM

0.94
1

0.92

0.90
1

0.88
1

Module colors I |

Figure 1: Hierarchical cluster dendrogram and the identification of co-expressed modules. Colours represent the preserved
modules. Grey colour are the non-preserved genes.

Module stability

Both approaches, re-sampling with replacement and 10% removal of the samples, deliver median values
of ~72% and 78% of preserved module genes when compared to the original unmodified dataset. A
boxplot of the preserved genes for each method can be found in Supplementary Fig.S7. Gene
dendrograms and module colours similar to Figure 1 for all the stability analyses are included in

Supplementary Fig.S6-S7.


https://doi.org/10.1101/695619
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/695619; this version posted July 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

~N o oA W DN B

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

under aCC-BY-NC-ND 4.0 International license.

Meta-module identification

Eigengenes for each module and each tissue were calculated and a dissimilarity consensus matrix
DISCONSweij (equation (6)) of the eigengene adjacency Aweij Was computed. The consensus matrix is
shown as a hierarchical co-clustering plot in Figure 2a. Multi-dimensional scaling (MDS) together with
k-means clustering (cluster number = 6) was applied on the DISCONSywg;; in order to identify meta-
modules. Figure 2b represents the MDS plot with the modules eigengenes and the meta-modules.

a) b) MDS and k-means for metamodule identification

Dissimilarity of Consesus Eigengene Network

.MEE .
.ME24 ME11
.F.|[7 JME1 )
o METD EE
8 .
H ° o
B ° Mhae . e
2 WETS ‘w20 ez Cweom, il 12
s e WE12

MES

7 VED MES ey
ME23

15 10 05 0o 0s 10 15

Coordinate 1

Figure 2: Meta-module identification. a) Hierarchical co-clustering and heat-map of the dissimilarity consensus matrix
DISCONSweij. Red: low dissimilarity of the MEs, Blue: High dissimilarity of the MEs. b) Multidimensional scaling with k-
means clustering. Colours correspond to the meta-modules (MMs) that will be analysed further.

Preservation of meta-modules across tissues

The MM preservation across the tissues was quantified via differential eigengene network analysis (after
computing eigengenes for every meta-module) according to equations (8)-(10). The results are presented
in Figure 3. This rather complicated figure should be interpreted as follows. In the first row A.-D.
hierarchical clustering dendrograms of the MM dissimilarity consensus matrix DISCONSwwij are shown.
In other words, they show how the meta-modules are related to each other in terms of their respective
co-expression. E.g. MMgreen is very different from MMred in the synovium dataset (Figure 3 C). The
main diagonal (E., J., O., T.) shows the adjacencies of the MM eigengenes for each tissue. In the upper
triangle (F., G., H., K., L., P.) the preservation statistics between two tissues are shown. The height of
the bars represent the scaled connectivity C (equation (9)) for each meta-module. The value D represents
the density of the preservation network (equation (10)). In both cases values close to 1 mean ideal
preservation. For all tissues a median value of D=0.72 can be observed. Pairwise comparisons show that
preservation between meniscus and cartilage is almost perfect, whereas subchondral bone vs. cartilage
exhibit the worst preservation of D=0.63. In the lower triangle (I., M., N., Q., R., S.) the adjacency
heatmaps for the pairwise preservation networks of the tissues (equation (8)) are shown with row and
columns corresponding to the respective meta-modules. Saturation of red means high preservation. Once
again, it can be seen that meniscus and cartilage have a very good preservation whereas the preservation
between subchondral bone and cartilage is rather low. In summary, the identified meta-modules are

preserved across tissues, however big differences regarding the preservation quality is observable.

10
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Figure 3: Differential eigengene network analysis across four joint tissues meniscus, subchondral bone, synovium and cartilage.
A.-D.: Hierarchical clustering dendrograms of dissimilarity of MM eigengene adjacencies. Main diagonal (E., J., O., T.): MM
adjacencies for every tissue. With 1 meaning high similarity and 0 meaning low similarity. Upper triangle (F., G., H., K, L.,
P).: Preservation statistics for all pairwise comparisons between the tissues according to equations (9) and (10). Lower triangle
(I, M, N, Q., R, S.): Adjacency heatmaps for the pairwise preservation networks of the tissues according to equation (8).

Module-trait relationship and identification of driver genes

Until now six meta-modules were identified without any relation to the phenotype or any biological
information. Thus, the genes inside the modules were correlated to the OA phenotype via equation (11)
(GS) and their intramodular connectivity (GC) was computed. This procedure was repeated for all
tissues and a consensus measure was calculated by taking the median value of GS and GC. The results
are presented in Figure 4 with the six MMs and the grey module of not-preserved genes. It can be seen,
that two MMs, the turquoise and red meta-module exhibit a correlation of 0.45 and 0.4 (p<0.001 in both
cases) between gene significance and intramodular connectivity. In other words, the hub genes inside
these modules (driver genes) are correlated with the disease and therefore the turquoise and red MMs
should be associated with biological functions playing a role in OA. This hypothesis was tested through
GSEA in the following step.

11
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Figure 4: Pearson correlation plots between gene significance (GS) and gene connectivity (GC) for the consensus (median)
across all tissues. Colors correspond to the identified MM in Figure 2b.

Gene set enrichment analysis

GSEA was performed on the turquoise and the red MM to see if the preserved modules are involved in

common biological functions. As an input a gene list of the according modules sorted by decreasing

absolute median t-values taken from the differential expression analysis of each tissue was provided.

The results presented in Table 2 show the top 10 pathways and biological processes sorted by the adjusted

p values for the red and the turquoise MM. A full list is included in Supplementary Table 1:

Red meta-module

Term id Term name p.adj

KEGG:05150 Staphylococcus aureus infection 3.53E-11
G0:0006955 Immune response 1.26E-10
KEGG:05310 Asthma 1.87E-09
KEGG:05330 Allograft rejection 8.43E-09
KEGG:04612 Antigen processing and presentation 9.78E-09
KEGG:05140 Leishmaniasis 1.09E-08
KEGG:05332 Graft-versus-host disease 1.22E-08
G0:0002504 Antigen processing and presentation of peptide or 1.89E-08

polysaccharide antigen via MHC class Il
KEGG:05322 Systemic lupus erythematosus 2.22E-08
Turquoise meta-module

G0:0030198 Extracellular matrix organization 9.26E-14
G0:0043062 Extracellular structure organization 3.70E-12
G0:0001501 Skeletal system development 1.35E-08
REAC:R-HSA-1474244 | Extracellular matrix organization 1.30E-07
G0:0060348 Bone development 3.47E-07
REAC:R-HSA-1474290 | Collagen formation 1.53E-06
REAC:R-HSA-3000170 | Syndecan interactions 1.56E-06
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REAC:R-HSA-3000178 | ECM proteoglycans 1.85E-06
REAC:R-HSA-1650814 | Collagen biosynthesis and modifying enzymes 6.28E-06

G0:0048731 System development 1.33E-05

Table 2: Results of GSEA showing the top 10 enriched gene sets for the red and the turquoise MM. Entries sorted by increasing
adjusted p values (p.adj)

It can be observed that the red MM mostly represents biological functions and pathways related to the
immune system as well as diseases affecting the immune system and causing immune responses. The
turquoise MM includes functions related to ECM organization, skeleton and bone development as well
as collagen physiology. Involvement of immune system and ECM in OA are well-known facts>°. It was

decided to focus the network based drug discovery on genes taken from the turquoise MM, as it showed

© 00 N o o1 A WDNE

the most consistent results regarding GS vs. GC correlation in all tissues (Supplementary Fig.S10).

=
o

11  Network based drug discovery

12

13 Genes in the 80% quantile of the gene significance (GS) and gene connectivity (GC) of the turquoise
14 MM were chosen. To justify the choice of the threshold for the definition of the disease signature, the
15  agglomeration measures were computed for different percentile values (0-90%) and the respective z-
16  scores for module size S and mean shortest distance <ds> were computed. The plots of threshold vs. the
17  agglomeration measures can be found in Supplementary Fig.S11 showing that the 80% threshold
18  provided the best results. This choice resulted in a disease signature of 64 genes with a z-score for the
19  module size S of 12.05 and with a z-score for the mean shortest distance <ds> of -1.75.

20  The results of the drug-disease proximity based screening are shown in Table 3 with the top 10
21 compounds identified by the algorithm. The mean shortest distances between a drug signature and the
22  disease signature are described by <d.>, the respective z-score was computed by 1000 sampling runs
23 with random drug and disease signatures of same size and same degree distribution as the original
24 signatures. As another requirement only drugs with a <d.> < 1 (lowest 5% after screening the full list
25  of 1833 drugs) were considered. The type and mechanism of action were taken from Drugbank. Further
26 on the relation to OA is shown. It can be seen that 4 out of 10 drugs (Ruxolitinib, Certolizumab,
27  Golimumab, Vedolizumab) are anti-inflammatory compounds that, although being used as a treatment
28  for other diseases than OA, have been studied as a treatment option for joint diseases (mostly rheumatoid
29  arthritis). The second finding is that the thrombolytic agent Tirofiban might be an option for treatment
30  of OA. Although there are no studies testing this agent in OA or arthritic joint diseases there exists a
31  clinical study on the linkage of arthritis to local and systemic activation of coagulation and fibrinolysis
32  pathways in a cohort of n=161 patients. The most statistically significant result Florbetapir is a
33 radiopharmaceutical agent that binds to beta amyloid plaque, a molecule playing a central role in
34  Alzheimer’s disease (AD). A linkage between AD and OA is a hypothesis that has been posed and
35  positively tested’. Finally, hyaluronidase and Turpentine are two compounds that will lead to cartilage

36  destruction by degrading hyaluronan, the major constituent in the ECM (hyaluronidase) and release of

13
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inflammatory mediators (Turpentine). Interestingly both compounds are used in disease animal models
with hyaluronidase used in OA® and Turpentine used in a model of anemia of inflammation®®. In
summary 9 out of 10 suggested compounds exhibit a hit either as having been tested for an arthritic
disease or having targets that are also relevant in OA.
Top 10
Name <d.> | z-score | Type and application Relation to OA Hit
Florbetapir 1 -10.2 Diagnostic compound for Link between AD and Yes
Alzheimer’s Disease (AD) OA exists?’.
Ruxolitinib 1 -7.1 JAK1/2 inhibitor for JAK-STAT pathway Yes
myeloproliferative neoplasms. | plays role in OA. Tested
Inhibits inflammatory for rheumatoid arthritis.
signaling.
Tirofiban 1 -5 Thrombolytic agent for Coagulation and Yes
treatment of cardiovascular fibrinolysis pathways
events. play a role in OA?,
Pegademase 1 -4.9 Treat adenosine deamenase No known relation to OA | No
bovine deficiency
Certolizumab | 1 -4.5 Inhibitor of TNF-a. Used for TNF-a is major player in | Yes
pegol rheumatoid arthritis, OAZ,
spondyloarthritis, psoriatic
arthritis.
Turpentine 1 -2.8 Activates signalling from IL- | Used in systemic Yes
R1 receptor. inflammatory models*®.
Lorlatinib 1 -2.7 ALK tyrosine kinase inhibitor | Tyrosine kinases targets | Yes
for non-small cell lung cancer. | for arthritis®.
Golimumab 1 -2.5 Inhibitor of TNF-a. Same TNF-a is major player in | Yes
applications as Certolizumab. | OA?,
Hyaluronidase | 1 -2.4 Degrades hyaluronan. Used in OA mouse Yes
models®®,
Vedolizumab |1 -2.3 Inhibitor of lymphocyte a4f7 | May ameliorate joint Yes
integrin. Treatment of disease as side effect?.
inflammatory bowel disease.

Table 3: Top 10 suggested compounds after network based drug screening. Sorted by increasing z-scores. Mean shortest
distance <dc> is distance between drug and disease signature. Z-score computed from <d.> of 1000x sampling for drug and
disease signature. Type taken from Drugbank and relation to OA as represented in literature.

In order to validate the compound suggestions the bottom 10 and the random 10 list of drugs were
computed. The bottom 10 list is shown in Table 4. It can be observed that the bottom 10 list does neither
include any drugs tested in OA nor any targets relevant for OA. Two random 10 lists were created. The
first one was sorted by lowest mean shortest distance <d.> and provided 3 out of 10 hits, however none
of them were statistically significant (lowest z-score was -1.3). The second one was sorted by the lowest
z-scores and provided 2 out of 10 hits. The lists can be found in Supplementary Table 3. Even relaxing
the requirement of low z-scores and comparing the hits (top 10 vs. random 10) with Fisher’s exact test
delivers a p-value of 0.02. The results can be found in Supplementary Table 3. Finally, the entire list of
approved drugs (1833 compounds) was screened for having compounds with Drugbank curated
application ‘arthritis’. In this scenario 42 out of 1833 compounds were selected. Fisher’s exact test

versus 9 out of 10 hits (top 10 list) delivered a p-value of 4.5e-14.
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Bottom 10
Name <d.> | z-score | Type and application Relation to OA Hit
Methimazole 3 -7.9 Hypothyroidism No relation No
Diltiazem 3 -6.1 Antihypertensive No relation No
Cefdinir 3 -6 Antibiotic No relation No
Demecarium 3 -5.2 Glaucoma treatment No relation No
Clofazimine 3 -4.7 Leprosy treatment No relation No
Tetracosactide 3 -3.7 Diagnose adrenal insufficiency | No relation No
Cisatracurium 3 -3.1 Muscle relaxant No relation No
Tioconazole 3 -2.8 Antifungal No relation No
Butenafine 3 -2.5 Antifungal No relation No
Terbinafine 3 -2.4 Antifungal No relation No

Table 4: Bottom 10 suggested compounds after network based drug screening. Sorted by increasing z-scores. Mean shortest
distance <dc> is distance between drug and disease signature. Z-score computed from <dc> of 1000x sampling for drug and
disease signature. Type taken from Drugbank and relation to OA as represented in literature.

In summary the network based drug discovery approach confirms the role of inflammation in OA and
suggests anti-inflammatory agents with various mechanisms of action. Further on, coagulation and
fibrinolytic pathways seem to play a role in OA, thus thrombolytic agents might be a treatment

opportunity to explore.
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Discussion:

OA is a multi-tissue disease, including cartilage degradation, meniscus and subchondral bone alterations
and synovium inflammation. The aim of the study was to apply WGCNA to identify preserved structures
of co-expressed genes, connect these findings to biological functions and include a network based drug
discovery approach based on the findings obtained from the WGCNA.

The results show that structural similarities in the microarray datasets in terms of co-expressed genes

describe biological functions relevant for OA. More specifically two preserved meta-modules had hub

© 00 N o oA WDN B

genes associated with OA and described functions related to immune system (red MM) and ECM

-
o

physiology (turquoise MM). It has to be noted that the preservation quality of meta-modules between
11  two tissues was very different (see Figure 3). Especially meniscus and cartilage show extreme good
12 preservation statistics (D=0.94) which may be caused by several reasons. First of all, in both datasets
13 the healthy samples were retrieved from patients undergoing arthroscopic partial menisectomy whereas
14 the OA samples were retrieved from patients undergoing total knee arthroplasty. Therefore the sample
15  retrieval itself surely poses difficulties in terms of clear separation of the tissues and one cannot exclude
16  the possibility that the cartilage dataset also includes meniscus cells. A second reason might be the use
17  of the exact same platform Agilent-072363 SurePrint G3 Human GE v3 8x60K Microarray 039494 for
18  both datasets. Normally one would not expect such a strong influence on the co-expression of the genes.
19  We tested this hypothesis by performing differential eigengene network analysis after removal of a batch
20  effect of all datasets with the limma package, however the results were not affected. Lastly, there might
21  really be a high overlap of biological functions and a strong similarity between meniscus and cartilage.
22  After meta-module preservation we were interested which modules were relevant for OA for further
23 downstream analysis (see Figure 4). In order to allow for a tissue unspecific comparison, the median
24 values of the absolute t-values after differential expression analysis of each tissue were used.

25  Clearly this approach bears the risk of ignoring important biological information that is tissue specific.
26 In particular using the GS vs. GC correlation approach for each tissue individually shows that there are
27  significant differences between the tissues, see Supplementary Results 2. Analysis of the cartilage
28  dataset reveals that there are no meta-modules that exhibit positive correlation between GS and GC.
29  Looking at the differential expression analysis and the volcano plots in Supplementary Table 2 shows
30 that very few genes (n=32) are differentially expressed in this dataset and that most of the genes have
31  low logFC (low spread of the eruption in volcano plot). Further on, differential expression analysis
32 revealed that there are no differentially expressed genes across all tissues, however 8 genes (CSN1S1,
33  APOD, FAP, COL5A2, MXRAS5, DEFA3, DEFA4, S100A8) were differentially expressed in 3 out of
34 A4tissues. More details on this analysis can be found in Supplementary Results 4.

35 In the remaining datasets (Supplementary Fig. S10 A-C) at least either the red or the turquoise MM
36  exhibited a positive correlation between GS and GC. In the synovium dataset the yellow MM seems to

37  be of interest as well. Performing GSEA with g:Profiler on the genes of the yellow MM reveals next to
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rather generic functions (gene expression, cellular and RNA metabolism) the enrichment of the HIF-1
signaling pathway. Comparing with literature reveals many studies proving the role of the hypoxia
inducible factor in OA?728,

In addition we ran GSEA for the red, turquoise and yellow MM without any information on the
differential expression (just providing an unsorted list of genes). This approach provided basically the
same results (in terms of the overall functions of the MM), however the statistical significance was lower
in the unsorted case. Finally it has to be added, that there are more sophisticated methods of performing
GSEA. Notably, using the piano® package allows the consideration of directionality during pathway
enrichment, thus identifying which pathways are distinctively up -or down-regulated and how this
information relates to the t-values of the differential expression analysis. We created a code that includes
the possibility of GSEA with the piano package that is stored in the repository as mentioned in the

Materials and Methods section.

The network based drug discovery approach suggested four compounds with anti-inflammatory
potential acting along the JAK/STAT pathway, the TNF-a pathway and the integrin pathway. This is an
interesting observation as the genes of the disease signature enriched pathways related to ECM
physiology and not to inflammatory processes. Strikingly Vedolizumab, which is a drug for
inflammatory bowel disease, ameliorated joint pain and delayed the onset of new cases of joint diseases
in a post-hoc analysis of the GEMINI 2 trial?*. Further on, it was suggested that anti-coagulants might
have an effect on osteoarthritis, which is supported by the fact the coagulation and fibrinolysis pathways
do play a role in arthritis?*. The suggestion of two compounds (Hyaluronidase and Turpentine) that
would worsen OA conditions shows up the first intrinsic limitation of the drug-disease proximity
approach. With this consideration there is no information on positive or negative interactions between
target and signature but solely a distance measure between these two groups. Alternative drug screening
approaches such as using a reversal of the disease signature (in terms of measured gene expression) such
as proposed by the L1000CDS? platform might be an interesting alternative®. A drawback of such an
approach (for our scenario) is that gene expression is very different across the joint tissues and it will be
difficult to consider all tissues in parallel. Our validation approach classified the drug suggestions as hits
or misses based on literature research and compared them with a bottom 10 list (highest distance) and
two random 10 lists (10 compounds with lowest <d.> and 10 compounds with lowest z-score after
randomly drawing from gene list of 11461 genes ). In the first case no compounds related to OA were
identified. In the second scenario the random 10 lists gave 3 out of 10 hits (without statistically
significant z-scores) and 2 out of 10 hits. At last the Drugbank database was screened for compounds
including ‘arthritis’ or ‘osteoarthritis’ as a curated description, as just random selection from the
database without any of the presented analysis steps might be an option. In this case 42 out of 1833 were
selected delivering a p-value of 4.5e-14 (Fisher’s exact test, compared to 9 out of 10 hits). As the curated

description might not be complete, we computed the number of potential arthritis drugs the Drugbank
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database has to include in order to not be outperformed by the top 10 list. As a result at least 893 out of
1833 compounds should have a relation to osteoarthritis in order to deliver a p-value>0.01. As such
scenario is highly unlikely, the following conclusions were made: The Drugbank database is not biased
towards osteoarthritis drugs. Drug-disease proximity seems like an important measure to be included in
drug screening. The analysis performed with WGCNA seems to be necessary in order to prioritize genes
of interest and define a disease signature. In the case of OA such signature is not trivially to define. The
publications of Menche et al.®? and Guney et al.*® based their work on disease signatures obtained from
various databases (299 diseases), unfortunately OA is not included in their dataset to allow for a cross-
check of our results. We tried to overcome the obstacle by choosing a cut-off threshold that produced
the lowest z-scores for S and <ds>, thus assuming that the disease signature should be as much
agglomerated as possible. Until now the screening was applied to a list of approved drugs in order to
facilitate comparison with literature. It can however be easily expanded to include investigational

compounds as the only the target genes need to be known.

Limitations

The first limitation in using WGCNA is the requirement of having the exact same list of expressed genes
for each tissue, thus it is favourable if the same experimental platform can be used. In our case, the
synovium dataset was collected with the Affymetrix platform, whereas the remaining tissues were
processed with the Agilent platform. Therefore, in the end, around 11000 genes were used as an input
for WGCNA and some information could have gotten lost due to the differences in the experimental
platforms. Secondly, although WGCNA tries to reduce the influence of arbitrary cut-off thresholds, the
parameter B (equation 3) has to be chosen based on the a priori requirement of scale-free network
topology. This assumption might not be correct, as a recent study showed that only a small fraction of
biological networks do really exhibit scale-free network properties®. As mentioned above, the GSEA
performed in the study ignored tissue specificity and directionality measures of the enriched pathways
and biological functions.

In terms of validation our approach relied on comparison with literature without in vitro testing. It has
to be mentioned that in vitro models of OA are rather diverse in terms of model structure, disease
induction and model outcome. It is therefore not easy to define whether a drug is really working in
comparison to e.g. IC50 in cancer drug testing. Further on, the drug discovery approach was based on
molecular profiles of four joint tissues and to the best our knowledge there are no in vitro models
considering the influence of all these tissues. Lastly, right now the drug discovery approach does not

consider toxicity or side effects in order to include other measures for compound prioritization.

Despite these limitations we believe that the methodology presented in this work is a viable way to guide

in silico drug discovery in OA or other multi-tissue diseases. Having a modular structure, the
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identification of target genes or the network based drug discovery part can be extended and improved

to tackle the abovementioned limitations.

Overall, WGCNA was used to identify target genes with preserved co-expression across tissues,
association with the disease and high intramodular connectivity. The output was used to suggest drugs
based on drug-disease proximity measures in a PPl network. Anti-inflammatory compounds with
different mechanisms of action such as JAK/STAT inhibitors, TNF-a inhibitors and integrin pathway
inhibitors were suggested. Finally compounds affecting the coagulation pathways might be interesting
for OA treatment.

Data availability
All computations were performed with the R Software package v.3.5.0%%. The code to reproduce the

analyses is available at https://github.com/BioSysLab/wgcna. The microarray datasets are publically

available at Gene Expression Omnibus (GEO)*.
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