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ABSTRACT: 1 

 2 

Knee osteoarthritis (OA) is a joint disease that affects several tissues: cartilage, synovium, meniscus and 3 

subchondral bone. The pathophysiology of this complex disease is still not completely understood and 4 

existing pharmaceutical strategies are limited to pain relief treatments. 5 

Therefore, a computational method was developed considering the diverse mechanisms and the multi-6 

tissue nature of OA in order to suggest pharmaceutical compounds. Specifically, weighted gene co-7 

expression network analysis (WGCNA) was utilized to identify gene modules that were preserved across 8 

four joint tissues. The driver genes of these modules were selected as an input for a network-based drug 9 

discovery approach.  10 

WGCNA identified two preserved modules that described functions related to extracellular matrix 11 

physiology and immune system responses. Compounds that affected various anti-inflammatory 12 

pathways and drugs targeted at coagulation pathways were suggested. 9 out of the top 10 compounds 13 

had a proven association with OA and significantly outperformed randomized approaches not including 14 

WGCNA. The method presented herein is a viable strategy to identify overlapping molecular 15 

mechanisms in multi-tissue diseases such as OA and employ this information for drug discovery and 16 

compound prioritization. 17 

  18 
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Introduction: 1 

 2 

Osteoarthritis (OA) is a disease characterized by painful deterioration and destruction of articular 3 

cartilage1. It is a whole joint disease involving, in the case of knee OA, four tissues: cartilage, synovium, 4 

meniscus and subchondral bone2. OA is a highly heterogeneous condition that makes it difficult to 5 

characterize it in terms of clear disease phenotypes3 or completely understand the pathophysiological 6 

processes in terms of responsible biological functions, disease-associated genes and risk loci4. Until now 7 

there are no disease modifying drugs except for pain-relief treatments and compounds that were used to 8 

target the prototypic players involved in inflammation and extracellular matrix (ECM) physiology have 9 

not been able to provide significant improvements until now or are still in clinical trials5. 10 

Systems oriented approaches in OA have been employed in many studies in the past using various 11 

experimental platforms and computational methods6. One application was to use whole-genome 12 

sequencing data (DNA microarray/RNA-seq) to identify overexpressed genes in diseased tissues and 13 

pinpoint molecular mechanisms and cellular functions related to OAError! Reference source not found.7–9. The 14 

latter studies combined this information with other experimental platforms (mass spectrometry 15 

proteomics and DNA methylation) or used network based approaches to find pathways regulated during 16 

the development of OA. A limitation of differential gene expression and pathway analysis is that it relies 17 

on multiple statistical tests and arbitrary cut-off thresholds that are affecting the results10. Another 18 

approach to process gene expression data is to construct networks using the co-expression of the genes 19 

as the connectivity measure11. The most prominent method is weighted gene co-expression network 20 

analysis (WGCNA) that allows the construction of co-expression networks and the identification of 21 

preserved modules between different datasets12. Applied to OA, the study by Mueller et al.13 used 22 

WGCNA to identify preserved gene modules comparing human and rat studies. 23 

When it comes to drug discovery, systematic approaches using network-based technologies and ‘omics 24 

platforms are getting increasing attention with many different methodologies developed and applied in 25 

the recent years14. The core idea is to unravel the molecular mechanisms of diseases and use this 26 

information for a systematic evaluation of pharmacological compounds. As an example, the study by 27 

Nacher et al.15 used information from 17 proteomic studies in healthy and OA chondrocytes to develop 28 

an OA-interactome and utilized network approaches to identify drugs.   29 

Combining these two ideas, using co-expression networks to identify biological functions in OA and 30 

then, based on this information, suggesting possible pharmaceutical compounds affecting these 31 

functions seems like an interesting option to explore.  32 

Thus, the aim of this paper is twofold. At first WGCNA will be used to identify common disease 33 

mechanisms in OA joints characterized by preserved gene modules in the relevant tissues (cartilage, 34 

synovium, meniscus and subchondral bone). Secondly, based on this information drug candidates will 35 

be inferred using network-based approaches. 36 

 37 
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Materials and Methods: 1 

 2 

Datasets 3 

Publically available genome-wide microarray datasets for each tissue involved in knee OA were 4 

acquired from the Gene Expression Omnibus (GEO)34. These included cartilage, synovium, meniscus 5 

and subchondral bone. The tissue sources with the GEO accession numbers, the platform and the sample 6 

numbers are shown in Table 1. 7 

 8 

Tissue GEO accession number Platform Healthy OA 

Cartilage GSE117999 Agilent 12 12 

Synovium GSE55235 Affymetrix 10 10 

Meniscus GSE98918 Agilent 12 12 

Subchondral bone GSE51588 Agilent 5 20 
Table 1: Tissues, GEO accession numbers, experimental platforms and sample numbers 9 

 10 

The cartilage dataset (GSE117999) included 24 samples of 12 patients undergoing arthroscopic partial 11 

menisectomy without any evidence of OA and 12 patients undergoing total knee arthroplasty due to 12 

end-stage OA. The synovium dataset (GSE55235)35 included 20 samples from 10 healthy individuals 13 

and 10 OA patients. The meniscus dataset (GSE98918)36 included 12 patients undergoing arthroscopic 14 

partial menisectomy (healthy) and 12 patients with OA. The subchondral bone dataset (GSE51588)37 15 

included tissue taken from the knee lateral and medial tibial plateaus (LT and MT) of 5 non-OA and 20 16 

OA patients. Preliminary analysis of LT vs. MT from the same group showed significant differences in 17 

gene expression, thus mixing of tissue from both sites would have resulted in loss of biological 18 

information. The MT plateau group showed to be more influenced by OA, thus OA and control groups 19 

used the results taken from the MT plateau. 20 

 21 

Data pre-processing and differential expression analysis 22 

The R package limma38  was chosen for background correction and normalisation of the data as well as 23 

for the differential expression analysis. RMA and quantile normalisation were used for all datasets as 24 

these methods were able to produce MA plots39 (log-intensity ratio M vs. mean log-intensity A) that 25 

were scattered around the zero line, see Supplementary Fig.S1. Before performing differential 26 

expression analysis, the gene expression values of normal and OA samples were hierarchically clustered 27 

to remove outliers in the respective datasets, see Supplementary Fig. S2-S5 in the Supplementary 28 

Methods section. P11 and P12 were removed from the healthy meniscus group, P11 was removed from 29 

the healthy cartilage group and P18 and P19 were removed from the OA cartilage group. Once the 30 

outliers were removed, DEGs in each dataset were identified by satisfying the following conditions 31 

(equations 1 and 2): 32 

𝑙𝑜𝑔2𝐹𝐶 ≥ 1.5 (1) 33 

𝑎𝑑𝑗. 𝑝 ≤ 0.05 (2) 34 
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with FC being the fold change between the average expression of the healthy and the OA samples and 1 

adj.p being the FDR adjusted p-value using Benjamini-Hochberg correction. 2 

 3 

Weighted gene co-expression network analysis 4 

WGCNA is a methodology to identify clusters of genes calculated from a network described by the 5 

connectivity of the pairwise correlation between the genes. Further on, it can be used to identify if a 6 

module from one dataset is preserved in another dataset by using topological measures of the 7 

networkError! Reference source not found.. Detailed information on the methodology can be found in Zhang et 8 

al.12, therefore just a brief description of the algorithm is presented herein. All computations were 9 

performed using the R package WGCNA40. 10 

 11 

Network construction and module identification 12 

At first, a signed weighted adjacency matrix Aij was computed according to equation 3: 13 

 14 

𝐴𝑖𝑗 = (0.5 + 0.5𝑐𝑜𝑟(𝑥𝑖, 𝑥𝑗))𝛽 (3) 15 

 16 

with cor(xi,xj) being the pairwise Pearson correlation matrix (NxN) with xi and xj (i, j = 1…N) being the 17 

vectors containing the gene expression levels across the different samples of genes i and j respectively 18 

and N being the total number of genes. The power β is used to reduce the influence of low absolute 19 

correlation values on the network topology. Further on β is chosen to lead to an approximate (R2 ≥ 0.8) 20 

scale-free topology of the network. As seen in Supplementary Fig.S6 a choice of β=20 leads to an 21 

approximate scale-free topology and reduces the connectivity of the nodes. Further on, the connectivity 22 

ki of a node i is defined as in equation 4 and describes the sum of all weighted connections of a node i: 23 

𝑘𝑖 = ∑ 𝑎𝑖𝑢𝑢  (4) 24 

 25 

In the next step Aij was transformed into a topological overlap matrix (TOMij) according to equation 5: 26 

 27 

𝑇𝑂𝑀𝑖𝑗 =
∑ 𝑎𝑖𝑢𝑎𝑗𝑢+𝑎𝑖𝑗𝑢

min{𝑘𝑖,𝑘𝑗}−𝑎𝑖𝑗+1 
 (5) 28 

 29 

with aij = 1 if a direct link between node i and node j exists and 0 otherwise. In other words, TOMij 30 

relates the set of common neighbours to the smallest set of neighbours of i excluding j and vice versa. 31 

The dissimilarity matrix that was used for module identification with WGCNA is defined in equation 6: 32 

 33 

𝐷𝐼𝑆(𝑇𝑂𝑀𝑖𝑗) = 1 − 𝑇𝑂𝑀𝑖𝑗 (6) 34 

 35 
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The procedure of equations (3)-(6) was performed for four datasets and a consensus transformation for 1 

the dissimilarity matrices according to equation (7) was computed: 2 

 3 

𝐶𝑜𝑛𝑠𝑒𝑠𝑢𝑠𝑖𝑗(𝐴(1), 𝐴(2), . . . ) = 𝑚𝑖𝑛𝑖𝑗 (𝐴(1), 𝐴(2), … ) (7) 4 

 5 

Other operators instead of the min operator (10th quantile, median, mean etc.) can also be used, 6 

depending on how strict the consensus criterion is formulated. 7 

Finally clusters of genes were identified by using a hybrid method combining hierarchical clustering 8 

and partitioning-around-medoids clustering with the consensus matrix of equation (7) as the distance 9 

matrix41. 10 

 11 

Module stability 12 

Two methods to assess the stability of the module identification through the WGCNA algorithm were 13 

implemented. The first considered a random removal of 10% of the samples of each microarray dataset 14 

with identical processing and module identification as for the original datasets. The second approach 15 

used resampling with replacement for the creation of new artificial datasets. Both approaches were 16 

performed 50 times with each time comparing the new set of modules with the original set. 17 

 18 

Differential eigengene network analysis 19 

For each module an eigengene (the first principal component of the gene expression data underlying this 20 

module) was computed in order to reduce the network and allow a meta-analysis of the data42. The 21 

eigengenes were represented in an eigengene co-expression network AMEij for every tissue according to 22 

equation (3) with β=1. Then a consensus matrix, equation (7) and the dissimilarity of the consensus 23 

matrix DISCONSMEij equation (6) was calculated. 24 

Multi-dimensional scaling43 with subsequent k-means clustering44 on DISCONSMEij was performed to 25 

identify clusters of module eigengenes (MEs), so called meta-modules (MMs), that were analysed 26 

further down the pipeline. It has to be noted that every MM was again expressed with a meta-module 27 

eigengene. 28 

At first, it was of interest to what degree the meta-modules were preserved across the datasets. Thus a 29 

preservation transformation for the meta-module adjacency matrices AMMij (using equation (3) with β=1) 30 

of all four tissues was performed according to equation (8), further referred as the preservation network: 31 

 32 

𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑖𝑗(𝐴(1), 𝐴(2), … ) = 1 − [𝑀𝑎𝑥𝑖𝑗(𝐴(1), 𝐴(2), … ) − 𝑀𝑖𝑛𝑖𝑗(𝐴(1), 𝐴(2), … )]  (8) 33 

 34 

Two measures, the scaled connectivity C and the density D of the preservation network were computed 35 

according to equations (9) and (10) to quantify the preservation between networks A(1) and A(2) with 36 

dimension n x n.  37 
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 1 

𝐶𝑖(𝑃𝑟𝑒𝑠𝑒𝑟𝑣(1,2)) = 1 −
∑ |𝑎𝑖𝑗

(1)
−𝑎𝑖𝑗

(2)
|𝑗≠𝑖

𝑛−1
  (9) 2 

𝐷(𝑃𝑟𝑒𝑠𝑒𝑟𝑣(1,2)) = 1 −
∑ ∑ |𝑎𝑖𝑗

(1)
−𝑎𝑖𝑗

(2)
|𝑗≠𝑖𝑖

𝑛(𝑛−1)
  (10) 3 

 4 

For more detailed information on preservation statistics and differential eigengene network analysis, the 5 

reader is referred to Langfelder et al.42. 6 

 7 

Module-trait relationship and identification of driver genes 8 

Until now the identified MMs represented genes that were co-expressed and preserved across all tissues 9 

not considering the phenotype (healthy vs. OA). As a next step it was necessary to point out MMs that 10 

have disease related genes. Further on, the connectivity of the genes inside the MMs was of interest, as 11 

hub genes might be influential for the according meta-module. 12 

Thus, overall gene expression datExpr was correlated to the disease (trait) by computing the gene 13 

significance GS with equation (11): 14 

𝐺𝑆 = 𝑎𝑏𝑠(𝑐𝑜𝑟(𝑡𝑟𝑎𝑖𝑡, 𝑑𝑎𝑡𝐸𝑥𝑝𝑟)) (11) 15 

Additionally gene connectivity GC was calculated as the weighted within module connectivity (edge 16 

weighted degree). 17 

 18 

Functional enrichment and pathway analysis 19 

The outcome of the WGCNA analysis are modules of co-expressed genes preserved across knee joint 20 

tissues that simultaneously have genes correlated with the disease state. These modules were connected 21 

to biological functions and pathways through gene set enrichment analysis (GSEA) using the g:Profiler 22 

web-service45. g:Profiler takes as an input a listed of gene names (sorted or unsorted) and provides an 23 

enrichment score to show if a set of genes is enriched in a biological function or pathway. Enrichment 24 

was performed using the Gene Ontology (GO): biological processes46,47 as well as KEGG48 and 25 

REACTOME49 pathways. 26 

 27 

Network based drug discovery 28 

In order to suggest compounds for treatment of OA, the network-based approach suggested by Guney 29 

et al.33 was used. This approach represents diseases with signatures (lists of proteins or protein encoding 30 

genes) that are located in a background protein-protein interaction (PPI) network, called the interactome. 31 

Drugs are represented by their respective protein targets (drug signatures) and network-based distances 32 

between the disease and drug signatures are used to suggest drugs with therapeutic potential.  33 

The disease signature was chosen from the meta-modules of the WGCNA analysis that had genes 34 

significantly correlated with the disease state (high GS) and had a high gene connectivity GC. Therefore, 35 

following requirements for the disease signature were met: 1: Genes were co-expressed and co-36 
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expression was preserved across tissues. 2: Genes were correlated with the disease state. 3: Genes were 1 

the hub genes of the disease related meta-modules.  2 

As the background network a PPI network as presented by Menche et al.32 consisting of 13460 proteins 3 

and 141296 interactions was selected. At first, it was determined if the disease gene list is present as a 4 

module in the background network. Two approaches were chosen that quantify the degree to which 5 

disease proteins agglomerate in the interactome neighbourhood32. The first measure was the module size 6 

S quantified by the largest number of disease proteins directly connected to each other. The second one 7 

calculated the shortest distance ds as the distance for each disease protein N to the next closest protein 8 

associated with the disease inside the interactome. Then the average value <ds> for all disease proteins 9 

N describing the diameter of the disease on the interactome was calculated. Detailed explanations can 10 

be found in the Supplementary Material of Menche et al.32. 11 

Random controls were created for both measures S and <ds> from sets with the same number of proteins 12 

as the disease signature by sampling without replacement of the background interactome with 13 

preservation of the degree distribution.  This procedure was repeated 10.000 times and z-scores and p-14 

values for S and <ds> were calculated according to equation (12): 15 

 16 

𝑧 =
𝑋−𝜇(𝑋𝑟𝑎𝑛𝑑)

𝜎(𝑋𝑟𝑎𝑛𝑑)
   (12) 17 

 18 

with X being S or <ds> respectively. 19 

To obtain drug signatures, Drugbank v. 5.1.350 was parsed and all approved drugs together with their 20 

target genes were retrieved, resulting in 1833 drugs and small-molecule compounds. Drug-disease 21 

proximity <dc> was calculated as the average of all shortest distances of the drug targets T to any of the 22 

disease proteins S33. Statistical significance of the drug-disease proximity for every drug was computed 23 

according to equation (12) with 1000 sampling repetitions. 24 

 25 

Validation of the network based method 26 

In the end a list of top 10 drugs with lowest drug-disease proximity and highest significance was derived. 27 

In order to validate the findings the function of each compound and their relationship to joint 28 

diseases/OA was characterized by literature research returning a hit: compound has relationship with 29 

OA in terms of existing studies or pathways/targets relevant for OA or a miss: no interaction between 30 

compound and OA/joint diseases. The number of hits were compared to a bottom 10 list of drugs, this 31 

means drugs with highest drug-disease proximity and highest statistical significance. Additionally a 32 

random 10 list was developed by creating a disease signature through sampling without replacement 33 

from the genes of the microarray datasets (11641 overlapping genes) with the same size and degree 34 

distribution as S and subsequent drug-disease proximity computation as shown in equation (12). These 35 

two lists have the following reason: The bottom 10 list shows the influence of drug-disease proximity 36 

on the chosen compounds, whereas the random 10 list shows the influence of WGCNA in order to select 37 
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an appropriate disease signature. At last the Drugbank dataset was screened for drugs with curated 1 

association to ‘arthritis’ or ‘osteoarthritis’ in order to check how a random drug selection from such a 2 

list would perform. 3 

 4 

Results: 5 

 6 

Weighted gene co-expression network analysis 7 

 8 

Module identification 9 

The WGCNA algorithm was run with the gene expression data of four datasets including 11461 genes 10 

in each set without distinction between healthy and OA, n= 88. At total 1933 genes in 25 different 11 

modules (31-285 genes per module) were identified as co-expressed and preserved across all tissues, as 12 

seen in Figure 1. Grey colour describes non-preserved genes. 13 

 14 

Figure 1: Hierarchical cluster dendrogram and the identification of co-expressed modules. Colours represent the preserved 15 
modules. Grey colour are the non-preserved genes. 16 

 17 

Module stability 18 

Both approaches, re-sampling with replacement and 10% removal of the samples, deliver median values 19 

of ~72% and 78% of preserved module genes when compared to the original unmodified dataset. A 20 

boxplot of the preserved genes for each method can be found in Supplementary Fig.S7. Gene 21 

dendrograms and module colours similar to Figure 1 for all the stability analyses are included in 22 

Supplementary Fig.S6-S7. 23 

 24 

 25 
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Meta-module identification 1 

 2 

Eigengenes for each module and each tissue were calculated and a dissimilarity consensus matrix 3 

DISCONSMEij (equation (6)) of the eigengene adjacency AMEij was computed. The consensus matrix is 4 

shown as a hierarchical co-clustering plot in Figure 2a. Multi-dimensional scaling (MDS) together with 5 

k-means clustering (cluster number = 6) was applied on the DISCONSMEij in order to identify meta-6 

modules. Figure 2b represents the MDS plot with the modules eigengenes and the meta-modules. 7 

 8 

Figure 2: Meta-module identification. a) Hierarchical co-clustering and heat-map of the dissimilarity consensus matrix 9 
DISCONSMEij. Red: low dissimilarity of the MEs, Blue: High dissimilarity of the MEs. b) Multidimensional scaling with k-10 

means clustering. Colours correspond to the meta-modules (MMs) that will be analysed further. 11 

Preservation of meta-modules across tissues 12 

The MM preservation across the tissues was quantified via differential eigengene network analysis (after 13 

computing eigengenes for every meta-module) according to equations (8)-(10). The results are presented 14 

in Figure 3. This rather complicated figure should be interpreted as follows. In the first row A.-D. 15 

hierarchical clustering dendrograms of the MM dissimilarity consensus matrix DISCONSMMij are shown. 16 

In other words, they show how the meta-modules are related to each other in terms of their respective 17 

co-expression. E.g. MMgreen is very different from MMred in the synovium dataset (Figure 3 C). The 18 

main diagonal (E., J., O., T.) shows the adjacencies of the MM eigengenes for each tissue. In the upper 19 

triangle (F., G., H., K., L., P.) the preservation statistics between two tissues are shown. The height of 20 

the bars represent the scaled connectivity C (equation (9)) for each meta-module. The value D represents 21 

the density of the preservation network (equation (10)). In both cases values close to 1 mean ideal 22 

preservation. For all tissues a median value of D=0.72 can be observed. Pairwise comparisons show that 23 

preservation between meniscus and cartilage is almost perfect, whereas subchondral bone vs. cartilage 24 

exhibit the worst preservation of D=0.63. In the lower triangle (I., M., N., Q., R., S.) the adjacency 25 

heatmaps for the pairwise preservation networks of the tissues (equation (8)) are shown with row and 26 

columns corresponding to the respective meta-modules. Saturation of red means high preservation. Once 27 

again, it can be seen that meniscus and cartilage have a very good preservation whereas the preservation 28 

between subchondral bone and cartilage is rather low. In summary, the identified meta-modules are 29 

preserved across tissues, however big differences regarding the preservation quality is observable. 30 
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 1 

Figure 3: Differential eigengene network analysis across four joint tissues meniscus, subchondral bone, synovium and cartilage. 2 
A.-D.: Hierarchical clustering dendrograms of dissimilarity of MM eigengene adjacencies. Main diagonal (E., J., O., T.): MM 3 
adjacencies for every tissue. With 1 meaning high similarity and 0 meaning low similarity. Upper triangle (F., G., H., K., L., 4 
P).: Preservation statistics for all pairwise comparisons between the tissues according to equations (9) and (10). Lower triangle 5 
(I., M., N., Q., R., S.): Adjacency heatmaps for the pairwise preservation networks of the tissues according to equation (8).  6 

 7 

Module-trait relationship and identification of driver genes 8 

Until now six meta-modules were identified without any relation to the phenotype or any biological 9 

information. Thus, the genes inside the modules were correlated to the OA phenotype via equation (11) 10 

(GS) and their intramodular connectivity (GC) was computed. This procedure was repeated for all 11 

tissues and a consensus measure was calculated by taking the median value of GS and GC. The results 12 

are presented in Figure 4 with the six MMs and the grey module of not-preserved genes. It can be seen, 13 

that two MMs, the turquoise and red meta-module exhibit a correlation of 0.45 and 0.4 (p<0.001 in both 14 

cases) between gene significance and intramodular connectivity. In other words, the hub genes inside 15 

these modules (driver genes) are correlated with the disease and therefore the turquoise and red MMs 16 

should be associated with biological functions playing a role in OA. This hypothesis was tested through 17 

GSEA in the following step. 18 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/695619doi: bioRxiv preprint 

https://doi.org/10.1101/695619
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

 1 

Figure 4: Pearson correlation plots between gene significance (GS) and gene connectivity (GC) for the consensus (median) 2 
across all tissues. Colors correspond to the identified MM in Figure 2b. 3 

 4 

Gene set enrichment analysis 5 

GSEA was performed on the turquoise and the red MM to see if the preserved modules are involved in 6 

common biological functions. As an input a gene list of the according modules sorted by decreasing 7 

absolute median t-values taken from the differential expression analysis of each tissue was provided. 8 

The results presented in Table 2 show the top 10 pathways and biological processes sorted by the adjusted 9 

p values for the red and the turquoise MM. A full list is included in Supplementary Table 1: 10 

Red meta-module 

Term id Term name p.adj 

KEGG:05150 Staphylococcus aureus infection 3.53E-11 

GO:0006955 Immune response 1.26E-10 

KEGG:05310 Asthma 1.87E-09 

KEGG:05330 Allograft rejection 8.43E-09 

KEGG:04612 Antigen processing and presentation 9.78E-09 

KEGG:05140 Leishmaniasis 1.09E-08 

KEGG:05332 Graft-versus-host disease 1.22E-08 

GO:0002504 Antigen processing and presentation of peptide or 

polysaccharide antigen via MHC class II 

1.89E-08 

KEGG:05322 Systemic lupus erythematosus 2.22E-08 

Turquoise meta-module 

GO:0030198 Extracellular matrix organization 9.26E-14 

GO:0043062 Extracellular structure organization 3.70E-12 

GO:0001501 Skeletal system development 1.35E-08 

REAC:R-HSA-1474244 Extracellular matrix organization 1.30E-07 

GO:0060348 Bone development 3.47E-07 

REAC:R-HSA-1474290 Collagen formation 1.53E-06 

REAC:R-HSA-3000170 Syndecan interactions 1.56E-06 
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REAC:R-HSA-3000178 ECM proteoglycans 1.85E-06 

REAC:R-HSA-1650814 Collagen biosynthesis and modifying enzymes 6.28E-06 

GO:0048731 System development 1.33E-05 
Table 2: Results of GSEA showing the top 10 enriched gene sets for the red and the turquoise MM. Entries sorted by increasing 1 
adjusted p values (p.adj) 2 
 3 

It can be observed that the red MM mostly represents biological functions and pathways related to the 4 

immune system as well as diseases affecting the immune system and causing immune responses. The 5 

turquoise MM includes functions related to ECM organization, skeleton and bone development as well 6 

as collagen physiology. Involvement of immune system and ECM in OA are well-known facts2,16. It was 7 

decided to focus the network based drug discovery on genes taken from the turquoise MM, as it showed 8 

the most consistent results regarding GS vs. GC correlation in all tissues (Supplementary Fig.S10). 9 

 10 

Network based drug discovery 11 

 12 

Genes in the 80% quantile of the gene significance (GS) and gene connectivity (GC) of the turquoise 13 

MM were chosen. To justify the choice of the threshold for the definition of the disease signature, the 14 

agglomeration measures were computed for different percentile values (0-90%) and the respective z-15 

scores for module size S and mean shortest distance <ds> were computed. The plots of threshold vs. the 16 

agglomeration measures can be found in Supplementary Fig.S11 showing that the 80% threshold 17 

provided the best results. This choice resulted in a disease signature of 64 genes with a z-score for the 18 

module size S of 12.05 and with a z-score for the mean shortest distance <ds> of -1.75.  19 

The results of the drug-disease proximity based screening are shown in Table 3 with the top 10 20 

compounds identified by the algorithm. The mean shortest distances between a drug signature and the 21 

disease signature are described by <dc>, the respective z-score was computed by 1000 sampling runs 22 

with random drug and disease signatures of same size and same degree distribution as the original 23 

signatures. As another requirement only drugs with a <dc> ≤ 1 (lowest 5% after screening the full list 24 

of 1833 drugs) were considered. The type and mechanism of action were taken from Drugbank. Further 25 

on the relation to OA is shown. It can be seen that 4 out of 10 drugs (Ruxolitinib, Certolizumab, 26 

Golimumab, Vedolizumab) are anti-inflammatory compounds that, although being used as a treatment 27 

for other diseases than OA, have been studied as a treatment option for joint diseases (mostly rheumatoid 28 

arthritis). The second finding is that the thrombolytic agent Tirofiban might be an option for treatment 29 

of OA. Although there are no studies testing this agent in OA or arthritic joint diseases there exists a 30 

clinical study on the linkage of arthritis to local and systemic activation of coagulation and fibrinolysis 31 

pathways in a cohort of n=161 patients. The most statistically significant result Florbetapir is a 32 

radiopharmaceutical agent that binds to beta amyloid plaque, a molecule playing a central role in 33 

Alzheimer’s disease (AD). A linkage between AD and OA is a hypothesis that has been posed and 34 

positively tested17. Finally, hyaluronidase and Turpentine are two compounds that will lead to cartilage 35 

destruction by degrading hyaluronan, the major constituent in the ECM (hyaluronidase) and release of 36 
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inflammatory mediators (Turpentine).  Interestingly both compounds are used in disease animal models 1 

with hyaluronidase used in OA18 and Turpentine used in a model of anemia of inflammation19. In 2 

summary 9 out of 10 suggested compounds exhibit a hit either as having been tested for an arthritic 3 

disease or having targets that are also relevant in OA. 4 

 5 

Top 10 

Name <dc> z-score Type and application Relation to OA Hit 

Florbetapir 1 -10.2 Diagnostic compound for 

Alzheimer’s Disease (AD) 

Link between AD and 

OA exists17. 

Yes 

Ruxolitinib 1 -7.1 JAK1/2 inhibitor for 

myeloproliferative neoplasms. 

Inhibits inflammatory 

signaling. 

JAK-STAT pathway 

plays role in OA. Tested 

for rheumatoid arthritis20.  

Yes 

Tirofiban 1 -5 Thrombolytic agent for 

treatment of cardiovascular 

events. 

Coagulation and 

fibrinolysis pathways 

play a role in OA21.  

Yes 

Pegademase 

bovine 

1 -4.9 Treat adenosine deamenase 

deficiency 

No known relation to OA No 

Certolizumab 

pegol 

1 -4.5 Inhibitor of TNF-a. Used for 

rheumatoid arthritis, 

spondyloarthritis, psoriatic 

arthritis. 

TNF-a is major player in 

OA22.  

Yes 

Turpentine 1 -2.8 Activates signalling from IL-

R1 receptor. 

Used in systemic 

inflammatory models19. 

Yes 

Lorlatinib 1 -2.7 ALK tyrosine kinase inhibitor 

for non-small cell lung cancer. 

Tyrosine kinases targets 

for arthritis23. 

Yes 

Golimumab 1 -2.5 Inhibitor of TNF-a. Same 

applications as Certolizumab. 

TNF-a is major player in 

OA22. 

Yes 

Hyaluronidase 1 -2.4 Degrades hyaluronan. Used in OA mouse 

models18. 

Yes 

Vedolizumab 1 -2.3 Inhibitor of lymphocyte α4β7 

integrin. Treatment of 

inflammatory bowel disease. 

May ameliorate joint 

disease as side effect24. 

Yes 

Table 3: Top 10 suggested compounds after network based drug screening. Sorted by increasing z-scores. Mean shortest 6 
distance <dc> is distance between drug and disease signature. Z-score computed from <dc> of 1000x sampling for drug and 7 
disease signature. Type taken from Drugbank and relation to OA as represented in literature. 8 

In order to validate the compound suggestions the bottom 10 and the random 10 list of drugs were 9 

computed. The bottom 10 list is shown in Table 4. It can be observed that the bottom 10 list does neither 10 

include any drugs tested in OA nor any targets relevant for OA. Two random 10 lists were created. The 11 

first one was sorted by lowest mean shortest distance <dc> and provided 3 out of 10 hits, however none 12 

of them were statistically significant (lowest z-score was -1.3). The second one was sorted by the lowest 13 

z-scores and provided 2 out of 10 hits. The lists can be found in Supplementary Table 3. Even relaxing 14 

the requirement of low z-scores and comparing the hits (top 10 vs. random 10) with Fisher’s exact test 15 

delivers a p-value of 0.02. The results can be found in Supplementary Table 3. Finally, the entire list of 16 

approved drugs (1833 compounds) was screened for having compounds with Drugbank curated 17 

application ‘arthritis’. In this scenario 42 out of 1833 compounds were selected. Fisher’s exact test 18 

versus 9 out of 10 hits (top 10 list) delivered a p-value of 4.5e-14. 19 
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Bottom 10 

Name <dc> z-score Type and application Relation to OA Hit 

Methimazole 3 -7.9 Hypothyroidism No relation  No 

Diltiazem 3 -6.1 Antihypertensive No relation  No 

Cefdinir 3 -6 Antibiotic No relation  No 

Demecarium 3 -5.2 Glaucoma treatment No relation  No 

Clofazimine 3 -4.7 Leprosy treatment No relation  No 

Tetracosactide 3 -3.7 Diagnose adrenal insufficiency No relation  No 

Cisatracurium 3 -3.1 Muscle relaxant No relation  No 

Tioconazole 3 -2.8 Antifungal No relation  No 

Butenafine 3 -2.5 Antifungal No relation  No 

Terbinafine 3 -2.4 Antifungal No relation  No 
Table 4: Bottom 10 suggested compounds after network based drug screening. Sorted by increasing z-scores. Mean shortest 1 
distance <dc> is distance between drug and disease signature. Z-score computed from <dc> of 1000x sampling for drug and 2 
disease signature. Type taken from Drugbank and relation to OA as represented in literature. 3 

In summary the network based drug discovery approach confirms the role of inflammation in OA and 4 

suggests anti-inflammatory agents with various mechanisms of action. Further on, coagulation and 5 

fibrinolytic pathways seem to play a role in OA, thus thrombolytic agents might be a treatment 6 

opportunity to explore.  7 

  8 
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Discussion: 1 

 2 

OA is a multi-tissue disease, including cartilage degradation, meniscus and subchondral bone alterations 3 

and synovium inflammation. The aim of the study was to apply WGCNA to identify preserved structures 4 

of co-expressed genes, connect these findings to biological functions and include a network based drug 5 

discovery approach based on the findings obtained from the WGCNA. 6 

The results show that structural similarities in the microarray datasets in terms of co-expressed genes 7 

describe biological functions relevant for OA. More specifically two preserved meta-modules had hub 8 

genes associated with OA and described functions related to immune system (red MM) and ECM 9 

physiology (turquoise MM). It has to be noted that the preservation quality of meta-modules between 10 

two tissues was very different (see Figure 3). Especially meniscus and cartilage show extreme good 11 

preservation statistics (D=0.94) which may be caused by several reasons. First of all, in both datasets 12 

the healthy samples were retrieved from patients undergoing arthroscopic partial menisectomy whereas 13 

the OA samples were retrieved from patients undergoing total knee arthroplasty. Therefore the sample 14 

retrieval itself surely poses difficulties in terms of clear separation of the tissues and one cannot exclude 15 

the possibility that the cartilage dataset also includes meniscus cells. A second reason might be the use 16 

of the exact same platform Agilent-072363 SurePrint G3 Human GE v3 8x60K Microarray 039494 for 17 

both datasets. Normally one would not expect such a strong influence on the co-expression of the genes. 18 

We tested this hypothesis by performing differential eigengene network analysis after removal of a batch 19 

effect of all datasets with the limma package, however the results were not affected. Lastly, there might 20 

really be a high overlap of biological functions and a strong similarity between meniscus and cartilage.  21 

After meta-module preservation we were interested which modules were relevant for OA for further 22 

downstream analysis (see Figure 4). In order to allow for a tissue unspecific comparison, the median 23 

values of the absolute t-values after differential expression analysis of each tissue were used.  24 

Clearly this approach bears the risk of ignoring important biological information that is tissue specific. 25 

In particular using the GS vs. GC correlation approach for each tissue individually shows that there are 26 

significant differences between the tissues, see Supplementary Results 2. Analysis of the cartilage 27 

dataset reveals that there are no meta-modules that exhibit positive correlation between GS and GC. 28 

Looking at the differential expression analysis and the volcano plots in Supplementary Table 2 shows 29 

that very few genes (n=32) are differentially expressed in this dataset and that most of the genes have 30 

low logFC (low spread of the eruption in volcano plot). Further on, differential expression analysis 31 

revealed that there are no differentially expressed genes across all tissues, however 8 genes (CSN1S1, 32 

APOD, FAP, COL5A2, MXRA5, DEFA3, DEFA4, S100A8) were differentially expressed in 3 out of 33 

4 tissues. More details on this analysis can be found in Supplementary Results 4. 34 

In the remaining datasets (Supplementary Fig. S10 A-C) at least either the red or the turquoise MM 35 

exhibited a positive correlation between GS and GC. In the synovium dataset the yellow MM seems to 36 

be of interest as well. Performing GSEA with g:Profiler on the genes of the yellow MM reveals next to 37 
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rather generic functions (gene expression, cellular and RNA metabolism) the enrichment of the HIF-1 1 

signaling pathway. Comparing with literature reveals many studies proving the role of the hypoxia 2 

inducible factor in OA27,28. 3 

In addition we ran GSEA for the red, turquoise and yellow MM without any information on the 4 

differential expression (just providing an unsorted list of genes). This approach provided basically the 5 

same results (in terms of the overall functions of the MM), however the statistical significance was lower 6 

in the unsorted case. Finally it has to be added, that there are more sophisticated methods of performing 7 

GSEA. Notably, using the piano29 package allows the consideration of directionality during pathway 8 

enrichment, thus identifying which pathways are distinctively up -or down-regulated and how this 9 

information relates to the t-values of the differential expression analysis. We created a code that includes 10 

the possibility of GSEA with the piano package that is stored in the repository as mentioned in the 11 

Materials and Methods section.  12 

 13 

The network based drug discovery approach suggested four compounds with anti-inflammatory 14 

potential acting along the JAK/STAT pathway, the TNF-a pathway and the integrin pathway. This is an 15 

interesting observation as the genes of the disease signature enriched pathways related to ECM 16 

physiology and not to inflammatory processes. Strikingly Vedolizumab, which is a drug for 17 

inflammatory bowel disease, ameliorated joint pain and delayed the onset of new cases of joint diseases 18 

in a post-hoc analysis of the GEMINI 2 trial24. Further on, it was suggested that anti-coagulants might 19 

have an effect on osteoarthritis, which is supported by the fact the coagulation and fibrinolysis pathways 20 

do play a role in arthritis21. The suggestion of two compounds (Hyaluronidase and Turpentine) that 21 

would worsen OA conditions shows up the first intrinsic limitation of the drug-disease proximity 22 

approach. With this consideration there is no information on positive or negative interactions between 23 

target and signature but solely a distance measure between these two groups. Alternative drug screening 24 

approaches such as using a reversal of the disease signature (in terms of measured gene expression) such 25 

as proposed by the L1000CDS2 platform might be an interesting alternative30. A drawback of such an 26 

approach (for our scenario) is that gene expression is very different across the joint tissues and it will be 27 

difficult to consider all tissues in parallel. Our validation approach classified the drug suggestions as hits 28 

or misses based on literature research and compared them with a bottom 10 list (highest distance) and 29 

two random 10 lists (10 compounds with lowest <dc> and 10 compounds with lowest z-score after  30 

randomly drawing from gene list of 11461 genes ). In the first case no compounds related to OA were 31 

identified. In the second scenario the random 10 lists gave 3 out of 10 hits (without statistically 32 

significant z-scores) and 2 out of 10 hits. At last the Drugbank database was screened for compounds 33 

including ‘arthritis’ or ‘osteoarthritis’ as a curated description, as just random selection from the 34 

database without any of the presented analysis steps might be an option. In this case 42 out of 1833 were 35 

selected delivering a p-value of 4.5e-14 (Fisher’s exact test, compared to 9 out of 10 hits). As the curated 36 

description might not be complete, we computed the number of potential arthritis drugs the Drugbank 37 
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database has to include in order to not be outperformed by the top 10 list. As a result at least 893 out of 1 

1833 compounds should have a relation to osteoarthritis in order to deliver a p-value>0.01. As such 2 

scenario is highly unlikely, the following conclusions were made: The Drugbank database is not biased 3 

towards osteoarthritis drugs. Drug-disease proximity seems like an important measure to be included in 4 

drug screening. The analysis performed with WGCNA seems to be necessary in order to prioritize genes 5 

of interest and define a disease signature. In the case of OA such signature is not trivially to define. The 6 

publications of Menche et al.32 and Guney et al.33 based their work on disease signatures obtained from 7 

various databases (299 diseases), unfortunately OA is not included in their dataset to allow for a cross-8 

check of our results. We tried to overcome the obstacle by choosing a cut-off threshold that produced 9 

the lowest z-scores for S and <ds>, thus assuming that the disease signature should be as much 10 

agglomerated as possible. Until now the screening was applied to a list of approved drugs in order to 11 

facilitate comparison with literature. It can however be easily expanded to include investigational 12 

compounds as the only the target genes need to be known.  13 

 14 

Limitations 15 

The first limitation in using WGCNA is the requirement of having the exact same list of expressed genes 16 

for each tissue, thus it is favourable if the same experimental platform can be used. In our case, the 17 

synovium dataset was collected with the Affymetrix platform, whereas the remaining tissues were 18 

processed with the Agilent platform. Therefore, in the end, around 11000 genes were used as an input 19 

for WGCNA and some information could have gotten lost due to the differences in the experimental 20 

platforms. Secondly, although WGCNA tries to reduce the influence of arbitrary cut-off thresholds, the 21 

parameter β (equation 3) has to be chosen based on the a priori requirement of scale-free network 22 

topology. This assumption might not be correct, as a recent study showed that only a small fraction of 23 

biological networks do really exhibit scale-free network properties31. As mentioned above, the GSEA 24 

performed in the study ignored tissue specificity and directionality measures of the enriched pathways 25 

and biological functions.  26 

In terms of validation our approach relied on comparison with literature without in vitro testing. It has 27 

to be mentioned that in vitro models of OA are rather diverse in terms of model structure, disease 28 

induction and model outcome. It is therefore not easy to define whether a drug is really working in 29 

comparison to e.g. IC50 in cancer drug testing. Further on, the drug discovery approach was based on 30 

molecular profiles of four joint tissues and to the best our knowledge there are no in vitro models 31 

considering the influence of all these tissues. Lastly, right now the drug discovery approach does not 32 

consider toxicity or side effects in order to include other measures for compound prioritization. 33 

 34 

Despite these limitations we believe that the methodology presented in this work is a viable way to guide 35 

in silico drug discovery in OA or other multi-tissue diseases. Having a modular structure, the 36 
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identification of target genes or the network based drug discovery part can be extended and improved 1 

to tackle the abovementioned limitations. 2 

 3 

Overall, WGCNA was used to identify target genes with preserved co-expression across tissues, 4 

association with the disease and high intramodular connectivity. The output was used to suggest drugs 5 

based on drug-disease proximity measures in a PPI network. Anti-inflammatory compounds with 6 

different mechanisms of action such as JAK/STAT inhibitors, TNF-a inhibitors and integrin pathway 7 

inhibitors were suggested. Finally compounds affecting the coagulation pathways might be interesting 8 

for OA treatment.  9 

 10 

Data availability 11 

All computations were performed with the R Software package v.3.5.051. The code to reproduce the 12 

analyses is available at https://github.com/BioSysLab/wgcna. The microarray datasets are publically 13 

available at Gene Expression Omnibus (GEO)34. 14 
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