

1

2 **Burkholderia cepacia complex bacteremia outbreaks among non-cystic fibrosis patients**
3 **in the pediatric unit of the university hospital**

4 **Abstract**

5

6 **1.Dr.Sinan Tüfekci,**

7 **Namık Kemal University, Faculty of Medicine, Department of Pediatrics,**
8 **e-mail:stufekci@nku.edu.tr**

9

10 **2. Dr.Birol Şafak,**

11 **Namık Kemal University Faculty of Medicine, Department of Microbiology,**
12 **e-mail:bsafak@nku.edu.tr**

13

14 **3. Dr.Özgür Kızılca,**

15 **Namık Kemal University, Faculty of Medicine, Department of Pediatrics,**
16 **E-mail:okizilca@nku.edu.tr**

17

18 **4.Dr.Ayşin Nalbantoğlu, Namık Kemal University, Faculty of Medicine, Department of**
19 **Pediatrics,**

20 **Email:analbantoglu@nku.edu.tr**

21

22 **5.Dr.Burçin Nalbantoğlu, Namık Kemal University, Faculty of Medicine, Department**
23 **of Pediatrics,**

24 **E-mail:banalbantoglu@nku.edu.tr**

25

26 **6.Dr.Nedim Samancı, Namık Kemal University, Faculty of Medicine, Department of**
27 **Pediatrics,**

28 **Email:nsamanci@nku.edu.tr**

29

30 **7.Dr.Nuri Kiraz, Namık Kemal University Faculty of Medicine, Department of**
31 **Microbiology, Department of Microbiology,**

32 **nkiraz@nku.edu.tr**

33

34

1 Abstract

2 Introduction: *Burkholderia cepacia* complex (Bcc) leads to severe nosocomial infections particularly in
3 the patients who have intravascular catheters and cystic fibrosis. The present study aims at
4 investigation of Bcc outbreaks in non-cystic fibrosis patients.

5 Material and Methods: A total of 6 patients who were hospitalized at General Pediatrics Department
6 were included in the study. Blood cultures which yielded positive signals were incubated at 5% blood
7 sheep agar, chocolate agar and Eosin Methylene Blue agar. All fields which could be the source of the
8 infection at the clinic were examined. Isolates confirmation with Pulsed-Field Gel Electrophoresis
9 (PFGE) tests were performed.

10 Results: The first patient aged 14.5 years was hospitalized due to left renal agenesis, urinary tract
11 infection and renal failure. Bcc growing was detected in blood culture which was obtained due to
12 high fever at the 3rd day of hospitalization. New patient hospitalizations were stopped due to Bcc
13 growing in blood cultures which was obtained due to high fever in the remaining five patients. No
14 growing was detected in samples obtained from the clinic and the patient rooms. PFGE patterns
15 were similar in all clinical isolates of Bcc indicating that the outbreak had originated from the same
16 origin.

17 Conclusions: Bcc infection should always be kept in mind in nosocomial outbreaks due to multi-drug
18 resistance and the need for hospitalization at intensive care unit. Control measures should be taken
19 for prevention of nosocomial infections and required investigations should be done for detection of
20 the source of the infection.

1 **Burkholderia cepacia complex bacteremia outbreaks among non-cystic fibrosis**
2 **patients in the pediatric unit of the university hospital**

3

4 **Introduction**

5 *Burkholderia cepacia* complex are aerobic, oxidase positive, motile, non-fermentative, spore-
6 free gram negative bacilli which may lead to opportunistic infections. They are commonly
7 found in soil and humid environment. *Burkholderia cepacia* complex includes at least 21
8 species which are phenotypically similar but genotypically different. Its identification is difficult
9 with routine biochemical tests. Identification may be incorrect despite the presence of
10 commercial kits. Therefore confirmation and molecular tests should be performed in
11 reference laboratories (1). *Burkholderia cepacia* complex has recently emerged as
12 pathogens which lead to necrotizing pneumonia and bacteraemia particularly in patients with
13 cystic fibrosis and chronic granulomatous disease and which is intrinsically resistant to most
14 antibiotics (2,3). However its pathogenicity is not limited with cystic fibrosis patients, it may
15 lead to colonization and infection in respiratory tract, blood stream and urinary tract in
16 immune compromised patients. Bcc infection was reported in intensive care units, dialysis
17 patients, transplant patients, newborn-pediatric population and in patients with intra-venous
18 catheters. Bcc is intrinsically resistant to aminoglycosides and polymyxine, resistant to beta-
19 lactam antibiotics and carbapenems. Being highly contagious in hospital environment
20 increases the importance of early diagnosis and treatment.

21 The present study aims at investigation of the bacteraemia outbreak in 6 patients who were
22 hospitalized at Pediatrics Department of Tekirdağ Namık Kemal University Medical School
23 and who were detected to have *Burkholderia cepacia* complex growing in blood culture.

24 **Material and Methods**

25 Six patients who were hospitalized at General Pediatrics Clinic of Tekirdağ Namık Kemal
26 University Medical School between 18 February 2019 and 03 March 2019 and who had Bcc
27 growing in blood culture were retrospectively analyzed. Ethics committee approval was
28 obtained prior to the study (number of decision:2019.83.06.04).

29 **Epidemiologic Research:**Research was rapidly initiated after discussed together with
30 Infection Control Committee as Bcc-related blood stream infection was detected in 6 patients
31 at the same clinic. Records of the first patient were analyzed. Staff of the clinic was informed
32 about blood culture obtaining techniques. Compliance to infection control measures was
33 checked. Cultures were obtained from the potential infection sources, intra-venous
34 intervention sets, antiseptics, nebulizer solutions, drugs and syringes, distilled water.

35 Humidified sterile swabs were used. Blood was directly cultivated in 5% sheep blood agar,
36 EMB (Eosin Methylene Blue) agar and chocolate agar and incubated at $36 \pm 1^{\circ}\text{C}$ for 48
37 hours. Fluid samples were additionally inoculated in automatized blood culture vial and left
38 for 5 days for incubation.

39 **Microbiologic Analysis:** The BACTEC 9120 (Beckon Dickinson , USA) device was used for
40 bacteria isolation. Blood culture samples which yielded positive signal were cultivated in 5%
41 sheep blood agar and EMB (Eosin Methylene Blue) agar and incubated at $36 \pm 1^{\circ}\text{C}$ for 24-48
42 hours. Vitec 2 system (Bio Merieux, Marcy Etoile, France) and conventional methods were
43 used for identification and antibiotic susceptibility test.

44 Confirmation of isolates and PFGE tests were performed at Republic of Turkey Ministry of
45 Health, General Directorate of Public Health Presidency of Microbiology Reference
46 Laboratories and Biological Products Department. DNA extractions were done from the
47 colonies in the medium. Afterwards DNA cut was done with Fast Digest Spel (Thermo
48 Scientific, USA). Fingerprint was taken by using PFGE in order to investigate the clonal
49 identity of the clinical isolates.

50

51 **Results**

52 Of the six patients who were detected to have Bcc growing in blood culture, four were girls
53 and two were boys. Age range was 8 months and 14.5 years. The patients did not have the
54 history of congenital anomaly, growth and developmental retardation, chronic diarrhea,
55 immune deficiency or cystic fibrosis. Weight and height were normal according to the age.
56 The first patient was hospitalized due to left renal agenesis, urinary tract infection and renal
57 failure. Bcc growing was detected in blood culture obtained due to high fever at the 3rd day of
58 hospitalization. New patient hospitalizations were stopped due to Bcc growing in blood
59 cultures which was obtained due to high fever in the remaining five patients. The third and
60 fourth patients required mechanic ventilation at the Intensive Care Unit as they developed
61 respiratory failure.

62 The bacteriae which grew in blood cultures of the patients were identified as *Burkholderia*
63 *cepacia* complex. All strains were susceptible to trimethoprim-sulphamethoxazole and resistant
64 to ceftazidime (MIC:16 mg/L), intermediately susceptible to meropenem (MIC: 4 mg/L).

65 PFGE patterns were similar in all clinical isolates indicating that the outbreak was originated
66 from a single source (Figure 1). Growing was not detected in the samples obtained from the
67 clinic and patient rooms, so the source could not be detected. The patients who had Bcc

68 growing in blood cultures were discharged with recovery 7-21 days after trimethoprim-
69 sulphamethoxazole treatment. No growing was detected in control blood cultures.

70

71 **Discussion**

72 *B. cepacia* has recently been added to the non-fermentative gram negative bacteriae like
73 *Pseudomonas aeruginosa*, *Acinetobacter baumannii* (4). Bcc which is found in water
74 resources, soil, plants and nature may be detected in water resources of the hospitals, taps
75 and sinks, various intra-venous and irrigation solutions like saline solution, nebulizer drugs,
76 respiratory devices which uses tap water or distilled water, catheters, dialysis fluids and
77 machines, blood gas measurement devices, termometers, ventilator heat sensors, containers
78 which are used for enteral feeding, disinfectants and antiseptics including povidon iodine,
79 intra-venous caffeine citrate, ultrasound gel, moisturizer, clorhexidine and benzalkonium
80 chloride (5,6,7,8,9,10). The source of the outbreak was reported to be detected in 22 out of
81 30 Bcc outbreaks in non-cystic fibrosis patients (1,11,12) however the source could not be
82 detected in the remaining eight outbreaks. The source could not be detected in the outbreak
83 seen in Pediatrics Clinic of our hospital despite the detailed investigations done similarly with
84 the literature.

85 The presence of a central venous catheter, hemodialysis-requiring renal failure, multiple
86 bronchoscopies and recent surgeries were reported as the risk factors for Bcc bacteremia in
87 case-control studies. It was reported that the need for and duration of mechanic ventilator
88 and the need for tracheostomy increased in Bcc cases compared to control group (13). Our
89 patients did not have the history of central venous catheterization, invasive interventions,
90 hemodialysis, surgery or bronchoscopy. Treatment took 3 weeks in the third patient who
91 required mechanic ventilator.

92 Bcc may spread from one person to another directly through infected excretions and drops;
93 indirectly through contaminated devices and equipment. Isolation of the infected patient from
94 the others is of great importance. As the result of the outbreak at out hospital, sterilization
95 conditions were checked, measures for isolation, hand hygiene was taken, disposable gloves
96 and masks were used , duration of visits was decided to be shorter, health professionals'
97 education and environmental factors were decided to be improved.

98 Bcc rarely leads to an infection in healthy individuals and has a low mortality and morbidity
99 despite having a high intrinsical resistance to many antimicrobial and antiseptic agents
100 (14,15). Bcc may lead to life-threatening opportunistic infections like urinary tract infection,
101 septic arthritis, peritonitis, bacteriemia, sepsis, osteomyelitis, meningitis, pulmonary abscess,

102 pneumonia in risky patients, particularly intensive care unit patients who had an underlying
103 disease, chronic granulomatous disease, oncologic diseases, cystic fibrosis or who are
104 immune-compromised, who are constantly applied catheter/medical devices. It may also lead
105 to secondary uro-genital infections due to the uro-genital interventions (6,16). Ratio of
106 intensive care unit hospitalization was reported as 61.9% by Dizbay and 52.9% by
107 Srinivasan. This ratio was 33% in our patients. Mortality rate was reported as 41-83% in Bcc-
108 related infections (3,4).

109 While vast majority of Bcc outbreaks was originated from intensive care units, our patients
110 were hospitalized at Pediatrics Clinic. The 10-months old female patient who was discharged
111 after completion of cystic fibrosis and recurrent pneumonia treatment 10 days ago was
112 suspected to be the main source however bacterial growing could not be detected.

113 **Conclusion**

114 Bcc which includes nosocomial opportunistic microorganisms leads to outbreaks at intensive
115 care units due to the natural resistance to many antibiotics. It is associated with mortality and
116 morbidity particularly at newborn, pediatrics and adult intensive care units. Removing the
117 main source, isolation, hand hygiene, the use of disposable gloves and masks, making short
118 visits, education of the staff, environmental cleaning and disinfection are very important for
119 prevention of the spread of the outbreak. In our study, outbreak could be terminated in a
120 short time through infection control measures which were taken rapidly just after the Bcc
121 bacteriemia which was seen in Pediatrics Clinic and of which the source could not be
122 detected. Bcc infection should be kept in mind in the patients who are hospitalized at
123 pediatrics clinics and intensive care units and who are resistant to treatment; and the
124 required measures should be taken.

125 **Conflict of interest**

126 All authors report no conflicts of interest relevant to this article.

127

128 **Funding**

129 This research did not receive any specific grant from funding agencies in the public,
130 commercial, or not-for-profit sectors.

131

132 **References**

- 133 1. Abdallah M, Abdallah HA, Memish ZA. *Burkholderia cepacia* complex outbreak
134 samongnon-cystic fibrosis patients in the intensive care units: A review of adult and
135 pediatric literature. In fez Med. 2018 Dec 1;26(4):299-307.

136 2. Mali S, Dash L, Gautam V, Shastri J, Kumar S. An outbreak of *Burkholderia cepacia*
137 complex in the paediatric unit of a tertiary care hospital. Indian J Med Microbiol. 2017
138 Apr-Jun;35(2):216-220. DOI: 10.4103/ijmm.IJMM_16_258.

139 3. Dizbay M, Tunccan OG, Sezer BE, Aktas F, Arman D.
140 Nosocomial *Burkholderiacepacia* infections in a Turkish university hospital: a five-year
141 surveillance. J Infect Dev Ctries. 2009 May 1;3(4):273-277.

142 4. S. Srinivasan, Lt Col, N.C Arora, M. Gen, VS Mand Col Kavita Sahai. Report on the
143 newly emerging nasocomial *Burkholderia cepacia* in a tertiary hospital. Medical
144 Journal, Armed Forces India, 2016 December;72(supp 1):50-
145 53. DOI: [10.1016/j.mjafi.2016.03.003](https://doi.org/10.1016/j.mjafi.2016.03.003)

146 5. Mahenthiralingam E, Baldwin A, Dowson CG. *Burkholderia cepacia* complex bacteria:
147 opportunistic pathogens with important natural biology. J Appl Microbiol 2008; 104(6):
148 1539-51. DOI: [10.1111/j.1365-2672.2007.03706.x](https://doi.org/10.1111/j.1365-2672.2007.03706.x)

149 6. Leitao JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, Moreira LM. Pathogenicity,
150 virulence factors, and strategies to fight against *Burkholderia cepacia* complex
151 pathogens and related species. Appl Microbiol Biotechnol 2010; 87(1): 31-40.
152 DOI: [10.1007/s00253-010-2528-0](https://doi.org/10.1007/s00253-010-2528-0)

153 7. Antony B, Cherian EV, Boloor R, Shenoy KV. A sporadic outbreak of *Burkholderia*
154 *cepacia* complex bacteremia in pediatric intensive care unit of a tertiary care hospital
155 in coastal Karnataka, South India. Indian Journal of Pathologists and Microbiologists.
156 2016; 59(2) : 197-99. DOI: [10.4103/0377-4929.182010](https://doi.org/10.4103/0377-4929.182010)

157 8. Ko S, An HS, Bang JH, Park SW. An outbreak of *Burkholderia cepacia* complex
158 pseudobacteremia associated with intrinsically contaminated commercial 0.5%
159 chlorhexidine solution. Am J Infect Control 2015; 43:266-8.
160 DOI: [10.1016/j.ajic.2014.11.010](https://doi.org/10.1016/j.ajic.2014.11.010)

161 9. Song JE, Kwak YG, Um TH, Cho CR, Kim S, Park IS, et al. Outbreak of *Burkholderia*
162 *cepacia* pseudobacteremia caused by intrinsically contaminated commercial 0.5%
163 chlorhexidine solution in neonatal intensive care units. Journal of Hospital Infection,
164 2018; 98:295-298. DOI: [10.1016/j.jhin.2017.09.012](https://doi.org/10.1016/j.jhin.2017.09.012)

165 10. Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS, Lee JC. Hospital outbreak of
166 *Burkholderia stabilis* bacteraemia related to contaminated chlorhexidine in
167 haematological malignancy patients with indwelling catheters. J Hosp Infect, 70
168 (2008), pp. 241-245. DOI: [10.1016/j.jhin.2008.07.019](https://doi.org/10.1016/j.jhin.2008.07.019).

169 11. Hamill R.J., Houston E.D., Georghiou P.R., et al. An outbreak of *Burkholderia*
170 (formerly *Pseudomonas*) *cepacia* respiratory tract colonization and infection
171 associated with nebulized albuterol therapy. Ann. Intern. Med. 122, 10, 762-766,
172 1995.

173 **12.** Righi E., Girardis M., Marchegiano P., et al. Characteristics and outcome predictors of
174 patients involved in an outbreak of *Burkholderia cepacia* complex. *J. Hosp. Infect.* 85,
175 1, 73-75, 2013. DOI: <https://doi.org/10.1016/j.jhin.2013.06.013>.

176

177 **13.** Bressler A.M., Kaye K.S., LiPuma J.J., et al. Risk factors for *Burkholderia cepacia*
178 complex bacteremia among intensive care unit patients without cystic fibrosis: a case-
179 control study. *Infect. Control Hosp. Epidemiol.* 28, 8, 951-958, 2007.
180 DOI:10.1086/519177

181 **14.** M. Martin, B. Christiansen, G. Caspari, M. Hogardt, A.J. von Thomsen, E. Ott, et al.
182 Hospital-wide outbreak of *Burkholderia contaminans* caused by prefabricated moist
183 wash cloths. *J Hosp Infect*, 77 (2011), pp. 267-270. DOI:10.1016/j.jhin.2010.10.004.

184 **15.** B. Srivastava, A. Sriram, S. Shetty, R. Doshi, R. Varior. An unusual source of
185 *Burkholderia cepacia* outbreak in a neonatal intensive care unit. *Jornal of Hospital*
186 Infection, 2016(94);358-360. DOI:10.1016/j.jhin.2016.07.008.

187 **16.** LiPuma JJ, Currie BJ, Lum GD, Vandamme PAR. *Burkholderia, Stenotrophomonas*,
188 *Ralstonia*, *Cupriavidus*, *Pandoraea*, *Brevundimonas*, *Comamonas*, *Delftia*, and
189 *Acidovorax*. pp: 749-69. In: Murray PR, Baron EJ, Jorgensen JH, Landry ML, Pfaller
190 MA (eds), *Manual of Clinical Microbiology*. 2007, 9th ed. ASM Press, Washington,
191 DC.

192

193

194

195

196

197

Cases	Gender	Age (year)	First Diagnosis	Blood culture positive date of <i>B. Cepacia</i>	Ventilator care	Duration of hospital stay
1	female	14, 6/12	Left renal agenesis, Urinary infection,	18.02.2019 (+) 20.02.2019 (+) 22.02.2019 (+) 24.02.2019 (+) 27.02.2019 (-)	No	12
2	male	14, 3/12	Vasculitis	20.02.2019 (+) 27.02.2019 (-)	No	7
3	male	1, 8/12	Pneumonia	22.02.2019 (+) 02.03.2019 (+) 08.03.2019 (-)	Yes	21
4	female	0, 8/12	Pneumonia and urosepsis	23.02.2019 (+) 28.02.2019 (-)	Yes	10
5	female	4, 8/12	Pneumonia	24.02.2019 (+) 28.02.2019 (-)	No	7
6	female	3, 6/12	Acute bronchiolitis	25.02.2019 (+) 28.02.2019 (+) 03.03.2019 (-)	No	14

Table 1: Clinic features of the cases

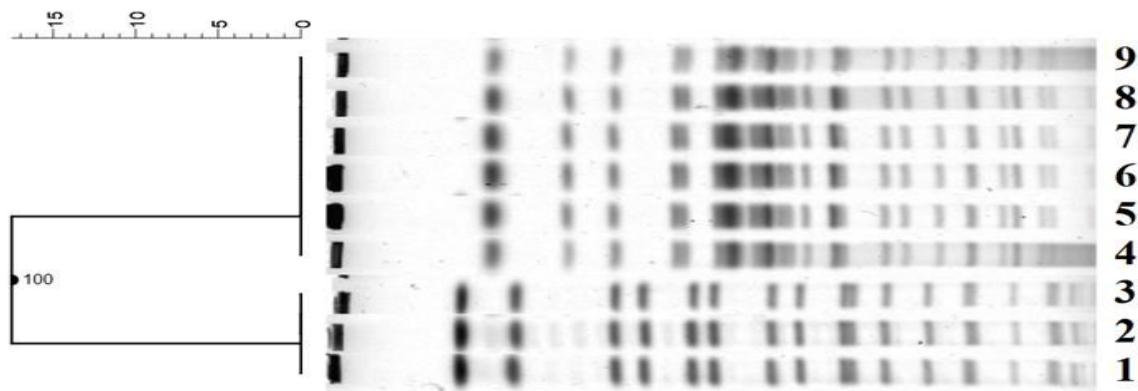


Figure 1. Pulsed-field gel electrophoresis patterns for 6 clinical isolates. Lane 1-3, molecular weight standards;
Lane 4-9, clinical isolates.