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ABSTRACT

The spatial distribution of large-scale functional networks on the anatomic cortex differs
between individuals, and is particularly variable in networks responsible for executive function.
However, it remains unknown how this functional topography evolves in development and
supports cognition. Capitalizing upon advances in machine learning and a large sample of youth
(n=693, ages 8-23y) imaged with 27 minutes of high-quality fMRI data, we delineate how
functional topography evolves during youth. We found that the functional topography of
association networks is refined with age, allowing accurate prediction of an unseen individual’s
brain maturity. Furthermore, the cortical representation of executive networks predicts individual
differences in executive function. Finally, variability of functional topography is associated with
fundamental properties of brain organization including evolutionary expansion, cortical
myelination, and cerebral blood flow. Our results emphasize the importance of considering both
the plasticity and diversity of functional neuroanatomy during development, and suggest advances
in personalized therapeutics.
Keywords:  Adolescence, Development, Functional MRI, Individualized Parcellation,

Topographic Variability
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INTRODUCTION

During childhood, adolescence, and young adulthood, the human brain must develop to
support increasingly complex cognitive and behavioral capabilities. One broad domain of
cognition that undergoes particularly protracted development is executive function, which
encompasses diverse cognitive processes including working memory, performance monitoring,
and task switching (Best and Miller, 2010; Gur et al., 2012). Individual differences in executive
function have been linked to meaningful functional outcomes such as academic achievement
(Arffa, 2007; Best et al., 2011), and deficits of executive function are associated with violence,
initiation of drug use, and risk taking behaviors (Reynolds et al., 2019). Executive dysfunction is
also associated with most major neuropsychiatric diseases (Shanmugan et al., 2016), including
attention deficit hyperactivity disorder and psychosis (Barkley, 1997; Wolf et al., 2015).

Executive processes rely upon a spatially distributed set of brain regions that span frontal,
parietal, and temporal cortex (Alvarez and Emory, 2006; Niendam et al., 2012; Rottschy et al.,
2012). These regions have low cortical myelin content (Glasser and Van Essen, 2011), receive a
disproportionate amount of cerebral blood flow (Satterthwaite et al., 2014b; Taki et al., 2011), and
have greater areal expansion compared to other cortical regions in humans (Reardon et al., 2018)
and analogous regions in non-human primates (Hill et al., 2010). Non-invasive studies using
functional MRI (fMRI) in humans have shown that these distributed regions activate together
during cognitively demanding executive tasks and also show coherent signal fluctuations at rest
(Cole and Schneider, 2007; Marek and Dosenbach, 2018; Satterthwaite et al., 2013b), allowing
them to be understood as large-scale functional networks. Typically, these networks have been
compared across individuals by alignment with brain structure, which assumes that there is a stable

correspondence between functional and structural anatomy across individuals (Laumann et al.,
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2015). However, recent evidence from multiple independent efforts has demonstrated that there is
marked inter-individual variability in the spatial topography of functional brain networks even
after accurate alignment of brain structure (Bijsterbosch et al., 2018; Braga and Buckner, 2017;
Glasser et al., 2016; Gordon et al., 2017a; Gordon et al., 2017b; Gordon et al., 2017c; Kong et al.,
2018; Laumann et al., 2015; Li et al., 2019; Wang et al., 2015).

Studies of highly-sampled individuals for whom numerous sessions of scanning data were
acquired have established that an individual’s functional topography is highly reproducible across
scanning sessions (Gordon et al., 2017¢; Laumann et al., 2015). Furthermore, several studies have
reported that topographic variability across individuals is maximal in brain networks responsible
for executive functioning (Gordon et al., 2017b; Gordon et al., 2017¢c; Kong et al., 2018; Li et al.,
2019; Wang et al., 2015). This finding aligns with work showing that these same association
networks also show the greatest inter-individual variation in their connectivity profiles (Gratton et
al., 2018; Kong et al., 2018; Li et al., 2019; Mueller et al., 2013), and can be used for accurate
identification of individuals (Finn et al., 2015; Miranda-Dominguez et al., 2014). Understanding
subject-specific functional topography also allows prediction of an individual’s spatial pattern of
activation across diverse tasks (Gordon et al., 2017c; Laumann et al., 2015; Li et al., 2019; Tavor
et al.,, 2016; Wang et al., 2015). Failure to account for such individual variation in functional
topography may lead differences in spatial distribution to be aliased into measurement of inter-
regional functional connectivity, potentially biasing both inference and interpretation (Bijsterbosch
etal., 2018; Li et al., 2019).

Despite such rapidly accruing evidence for the importance of individual differences in
functional neuroanatomy, to our knowledge no studies have characterized variation of functional

topography in youth. To address this gap, here we tested three inter-related hypotheses. First, we
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hypothesized that functional topography would be systematically refined during development,
with developmental changes being concentrated in association cortex. Second, we predicted that
variation in the functional topography of executive networks would predict individual differences
of executive functioning. Third and finally, we anticipated that these developmental changes and
associations with executive functioning would be constrained by fundamental properties of brain
organization, including evolutionary expansion and cortical myelination. To test these hypotheses,
we capitalized upon recent advances in machine learning and a large sample of youth who

participated in the Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al. (2014a)).

RESULTS

We studied 693 youths aged 8-23 years who completed imaging as part of the PNC
(Supplementary Figure 1) with over 27 minutes of high-quality fMRI data (see Supplementary
Methods). To delineate person-specific functional networks, we used a spatially-regularized form
of non-negative matrix factorization (NMF; Lee and Seung (1999)) that has previously been shown
to accurately identify functional networks in individuals (Li et al., 2017). This approach involved
three steps (Figure 1). In the first step, a group atlas was created by running NMF on the
concatenated timeseries of a sub-sample of 100 subjects. In the second step, to ensure
reproducibility, the group atlas was re-created on a total of 50 sub-samples (n = 100 participants
each), and a consensus set of networks was derived using spectral clustering. In the third step,
individualized networks were identified for each participant by iteratively applying NMF to each
participant’s data, with the consensus networks used as a prior to ensure correspondence across

participants.
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Figure 1. Schematic of spatially regularized non-negative matrix factorization (NMF) for
individualized network parcellation. Each subject had three fMRI runs; we concatenated these for
each subject, resulting in a 27.4 minutes timeseries with 555 time points for each subject. In the
first step, we randomly selected 100 subjects and concatenated their time series into a matrix with
55,500 time points (rows) and 18,715 vertices (columns). Non-negative matrix factorization was
used to decompose this matrix into a timeseries matrix and loading matrix. The loading matrix had
17 rows and 18,715 columns, which encoded the membership of each vertex at each network. This
procedure was repeated 50 times, with each run including a different subset of 100 subjects. In the
second step, a normalized cut-based spectral clustering method was applied to cluster the 50
loading matrices into one consensus loading matrix, which served as the group atlas and ensured
correspondence across individuals. In the third step, NMF was used to calculate individualized
networks for each participant, with the group atlas used as a prior.
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To facilitate comparison to other methods (Kong et al., 2018), we identified 17 functional
networks in each participant (Figure 2). In contrast to methods that discretely assign each vertex
to a single network, NMF yields a probabilistic (soft) parcellation. This probabilistic parcellation
can be converted into discrete (hard) network definitions for both display and comparison with
other methods by labeling each vertex according to its highest loading. Visual inspection suggested
that these discretized networks showed a high correspondence with a widely-used 17-networks
solution (Yeo et al., 2011). To quantitatively compare these atlases, as well as subsequent analyses
of individual parcellations and other cortical properties (see below), we used a spatial permutation
test that relies on random surface-based rotations (or "spins") to test the significance of spatial
correlation between brain maps (Alexander-Bloch et al., 2018; Gordon et al., 2016). This
conservative statistical procedure preserves the spatial covariance structure of the data and
provides a more appropriate null distribution than randomly shuffling surface locations (see
Supplementary Methods). Using this approach, we found significant alignment (Pgin < 0.001)

between our group atlas and the canonical 17 networks (Yeo et al, 2011).
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Figure 2. Group atlas of 17 networks. Our NMF-based method for network parcellation relies on
a group atlas as a prior for identifying networks in individuals. In this atlas, there are 17 loadings
for each vertex, which quantify the extent it belongs to each network. The networks in the group
atlas include medial and lateral visual networks (numbers 2 and 5); hand, foot and face motor
networks (numbers 3, 8, and 10); dorsal attention networks (number 12 and 15), ventral attention
networks (numbers 6 and 13); a limbic network (number 7); fronto-parietal control networks
(numbers 9, 11, 16, and 17), and default mode networks (numbers 1, 4, and 14). For display,
vertices can be assigned to the network with the highest loading, yielding a discrete network
parcellation (center).
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Individualized networks improves functional homogeneity compared to group averaged networks

Next, this group atlas was tailored to each individual’s data using NMF, providing subject-
specific networks. As in previous work (Gordon et al., 2016; Kong et al., 2018), we evaluated the
quality of these individualized networks by calculating the homogeneity of the functional
timeseries within each network. The mean within-network homogeneity for individualized
networks using NMF was significantly higher than in randomly rotated networks (Pspin < 0.001).
Furthermore, homogeneity within NMF-based individualized networks was higher than that in
either the NMF-based group atlas or the standard 17-network group atlas (Supplementary Figure
2). As an additional validation step, we compared our NMF-based method with a recently-
introduced method which uses a multi-session hierarchical Bayesian model (MS-HBM; Kong et
al. (2018)) to identify individualized networks. The mean homogeneity of MS-HBM in our sample
was numerically lower than our NMF based method, and nearly identical to a prior application of
MS-HBM to adults (0.31 vs. approximately 0.32; Kong et al. (2018)). Furthermore, we found that
the individual parcellations provided by NMF and MS-HBM were significantly aligned (Ppin <
0.001). These initial results suggest that single-subject parcellations provide an improved fit to
each participant’s data compared to standard atlases that do not consider variation in functional

neuroanatomy.

Across-subject variability of network topography is maximal association cortex

Visual examination of many individual subjects revealed that while the gross spatial
distribution of networks was consistent across participants, distinct person-specific topographic
features could be readily observed (Figure 3). Consistent with prior reports (Gordon et al., 2017b;
Gordon et al., 2017¢; Kong et al., 2018; Li et al., 2019; Mueller et al., 2013; Wang et al., 2015),

heterogeneity in the spatial distribution of networks was particularly apparent in association
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networks such as the fronto-parietal control, ventral attention, and default mode networks. In
contrast, participant-level representations of somatomotor and visual networks appeared to be

much more consistent across individuals.
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Figure 3. Individual subjects display distinct functional network topography. While the gross
spatial distribution of networks was consistent across participants, distinct person-specific
topographic features could be readily observed. Heterogeneity in the spatial distribution of
networks was particularly apparent in higher-order networks including fronto-parietal, ventral
attention, and default mode networks. In contrast, subject level representations of somatomotor
and visual networks appeared to be much more consistent across individuals.

In order to evaluate this observation in the entire sample, we quantified the across-subject
variance in network loadings using a non-parametric statistic (the median absolute deviation). As
expected from prior reports in adults (Gordon et al., 2017b; Gordon et al., 2017¢; Kong et al.,
2018; Li et al., 2019; Mueller et al., 2013; Wang et al., 2015), we observed the highest across-

subject variability in frontal, parietal, and temporal cortex (Figure 4A). When variability was
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ranked by network, we found that fronto-parietal networks had the highest topographic variability
across subjects, whereas sensory and motor networks had the lowest (Figure 4B). Results were
highly similar when the variability of discrete networks derived using NMF or MS-HBM were
examined (Supplementary Figure 3). Having confirmed that functional topography is most
variable in higher-order networks, we next evaluated whether this variation was related to brain

maturation during youth.
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Figure 4. Variability of functional network topography is highest in executive networks. (A) A
non-parametric measure of variability (median absolute deviation) revealed that functional
topography was most variable across individuals in fronto-parietal cortex and least variable in
visual and motor cortex. (B) Summarizing variability by network revealed that across-subject
variability was highest in networks critical for executive functioning including fronto-parietal
control networks and the ventral attention network. FP: fronto-parietal; VA: ventral attention; DA:
dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual.
Functional topography is refined with age and encodes brain maturity

As an initial step, we examined whether the total cortical representation of each network
was associated with age. Specifically, for each network, we summed the loadings of all vertices to

summarize the total cortical representation of each probabilistic network. Notably, as networks

were derived in template space, this measure controls for individual differences in total surface

11
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area, which varies across development (Tamnes et al., 2017). As brain development is known to
be a nonlinear process (Blakemore, 2012; Grayson and Fair, 2017; Tamnes et al., 2017), we used
general additive models (GAMs; Wood (2004)) to capture both linear and nonlinear associations
with age. Within each GAM, age was modeled using a penalized spline, while covarying for sex
and in-scanner motion. After correcting for multiple comparisons with the Bonferroni method,
these analyses revealed that the cortical representation of the limbic network (network 7, Z=5.42,
Pgont = 1.03 x 107, partial » = 0.20, Confidence Interval (CI) =[0.13, 0.27]) significantly increased
with age, while that of the visual network (network 5, Z = -3.95, Pgont = 1.31 x 1073, partial r = -
0.15, Confidence Interval (CI) = [-0.22, -0.08]) significantly decreased with age (Figure SA).

It should be noted that a coarse summary measure such as the total network representation
does not capture complex patterns of topographic reconfiguration. However, mass-univariate
models of each network across individual verticies are limited by necessary corrections for
multiple comparisons, and cannot model multivariate relationships within high-dimensional data
(see Supplementary Figure 4). Accordingly, we used a multivariate approach to understand the
degree to which the overall pattern of functional topography encoded developmental information.
Specifically, we used ridge regression with nested two-fold cross validation (2F-CV,
Supplementary Figure 5) to predict the age of an unseen individual based on the functional
topography of all networks. Using training and testing sets that were matched on age, we calculated
both the mean absolute error (MAE) and the partial correlation between the predicted age (“brain
age”) and chronologic age in the test set, while controlling for sex and motion. Model significance
was evaluated using permutation testing, where the correspondence between training subjects’
network topography and their age was shuffled at random. This multivariate analysis revealed that

the complex pattern of network topography could accurately predict an unseen individual’s age
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with a high degree of accuracy (Figure 5B): the partial correlation between the predicted age and
chronological age was 0.73 (Pperm < 0.001), while MAE was 1.84 years (Pperm < 0.001). We
repeated this procedure while reversing the training and testing sets, and found very similar results
(partial » = 0.70, Pperm < 0.001; MAE = 1.89 years, Pperm < 0.001).

To understand the developmental effects underlying these results, we evaluated model
feature weights. In the multivariate model, each vertex received a feature weight for each network.
Summing the absolute weights within each network, we found that high-order association
networks contributed the most to the multivariate model (Figure SC). However, we also found
that there was a complex pattern of both positive and negative relationships with age
(Supplementary Figure 6), cohering with the initial finding that the total network representation
did not change with age in most networks. Examining the spatial distribution of these feature
weights, we observed that vertices with the highest weights often tended to be at the edge of the
network. For example, refinement of network boundaries with age was particularly prominent in
several fronto-parietal networks (e.g., network 17; Figure 5D). In order to quantify this
observation, we examined the relationship between mean network loading and the absolute weight
of features in the multivariate model predicting age. Consistent with a process of edge refinement
and spatial differentiation between networks, we found that higher feature weights were present at
edge vertices with low loadings in multiple networks, including fronto-parietal networks (Figure
SE and Supplementary Figure 7).

As a final step, we sought to understand whether variability of functional topography
constrained patterns of network maturation. To concisely summarize the spatial contribution of
locations in the multivariate model, we summed the absolute weights of each vertex across

networks, and related this to our non-parametric measure of network variability (see Figure 4A).
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We found that multivariate patterns of brain maturation were driven by vertices with high across-
participant variability, and were present primarily in frontal, parietal, and temporal cortex (Figure

5F; 7= 0.53, Pypin< 0.001).
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Figure 5. Functional topography evolves with age in youth and predicts unseen individuals’ brain
maturity. (A) The total cortical representation of the limbic network increased with age, while the
representation of the lateral visual network declined with age (Pgonf < 0.05; dashed lines indicate
networks with non-significant age effects). (B) Beyond this coarse summary measure, the complex
pattern of developmental reconfiguration of functional topography could be used to predict age in
unseen data using a multivariate ridge regression model with 2-fold cross-validation and nested
parameter tuning. Data points represent predicted age of subjects in a model trained on independent
data; inset histogram represents the null distribution of prediction accuracy from a permutation
test. (C) Examining the sum of the absolute model weight of all vertices within each network
revealed that high-order networks in association cortex contributed the most to predicting age.
Both positive and negative associations with age were present within each network. (D) Model
feature weights driving prediction were highest at network edges; the 25% vertices of network 17
that had the highest absolute contribution weight are displayed. (E) Absolute feature weight was
negatively correlated with network loadings across vertices for network 17; inset displays spatial
association compared to null distribution from spin test. (F) Functional network maturation is
constrained by network variability. Vertices that contributed the most to the multivariate age
prediction model were those that varied most across subjects. FP: fronto-parietal; VA: ventral
attention; DA: dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual.
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We conducted several supplementary analyses to confirm that our results were robust to
methodological choices. In order to ensure that our matched split of the data was representative,
we repeated this procedure with 100 random splits of the data, which returned highly consistent
results and feature weights (mean partial » = 0.69, Pperm < 0.001; mean MAE = 1.93 years, Pperm <
0.001; Supplementary Figure 8). For comparison, we repeated this procedure using both the
discrete network parcellation derived from NMF and also that from MS-HBM. While still highly
significant (Pperm < 0.001), not considering network probability mildly degraded predictive
accuracy (see Supplementary Figure 8). Taken together, these results demonstrate that functional
network topography encodes brain maturity, is driven by refinement of higher-order association

networks, and is constrained by the individual variability of these systems.

Control network topography predicts individual differences in executive function

Having found that functional topography accurately encoded brain maturation, we next
evaluated the implications of topographic variability for cognition. Specifically, we investigated
whether variation in functional network topography predicted individual differences in executive
function. Executive function was summarized using a previously-published factor analysis of the
Penn Computerized Neurocognitive Battery (Moore et al., 2015). While controlling for age, sex,
and motion, general additive models revealed that the improved executive performance was
associated with a greater total cortical representation of bilateral fronto-parietal control networks
and the cingulo-opercular ventral attention network (Figure 6A; left fronto-parietal: network 11,
Z =5.88, Pgont = 1.09 x 1077, partial » = 0.22, CI = [0.15, 0.29]; right fronto-parietal: network 17,

Z =15.23, Pgont = 3.90 x 10, partial » = 0.19, CI =[0.12, 0.26]; ventral attention: network 6, Z =

4.41, Ppons = 2.06 x 10, partial » = 0.17, CI = [0.09, 0.24]). In contrast, greater representation of
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the right temporal default mode network (network 4, Z = -3.43, Ponr = 0.01, partial » = -0.13, CI
=[-0.20, -0.06]) and the limbic network (network 7, Z = -3.35, Pgont = 0.01, partial » =-0.13, CI =
[-0.20, -0.05]) were associated with reduced executive performance. High resolution analyses of
vertices provided convergent results (Supplementary Figure 9).

As for our analyses of development, we also evaluated the degree to which an individual’s
multivariate pattern of network topography could be used to predict executive performance using
a model trained on independent data. We found that an individualized functional topography
accurately predicted executive functioning in matched split-half samples while controlling for age,
sex and motion (Figure 6B; split 1: partial » = 0.50, MAE = 0.57, Pperm < 0.001; split 2: partial »
=0.45, MAE = 0.59, Pperm < 0.001). Critically, topographic features within the ventral attention
and fronto-parietal networks were the most predictive of individual differences in executive
functioning (Figure 6C & Supplementary Figure 10). Multivariate feature weights aligned with
analyses of the total network representation, with a preponderance of positive relationships with
executive performance being found within executive networks. As for patterns of brain maturation,
we found that the topographic features that predicted executive functioning were those that varied

most across individuals (Fig. 7C; r = 0.60, P, < 0.001).
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Figure 6. Functional topography of control networks predicts individual differences in executive
function. (A) Executive performance was positively correlated with the total cortical
representation of two fronto-parietal networks and one ventral attention network (Pgonf< 0.05;
dashed lines indicates networks with non-significant age effects). (B) The complex pattern of
functional network topography predicted executive function in unseen data using a multivariate
ridge regression model with 2-fold cross-validation and nested parameter tuning (data points
represent predicted age of subjects by a model trained on independent data; inset histogram
represents the distribution of prediction accuracy from a permutation test). (C) The most important
topographic features in this model were found in association cortex critical for executive
functioning, and were maximal in the fronto-parietal control network and the ventral attention
network. (D) The vertices that contributed the most in this multivariate model were those that
varied most across participants. EF: executive function; FP: fronto-parietal; VA: ventral attention;
DA: dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual.

To again ensure our initial matched split of the data was representative, we repeated the
analysis with 100 random splits, which yielded highly consistent results (mean partial » = 0.47,
mean MAE = 0.58; Supplementary Figure 11). Furthermore, we repeated this procedure using a
discrete network parcellation from either NMF or MS-HBM, which returned similar results
(Supplementary Figure 11). Finally, we tested the specificity of associations with executive
function. We found that the ability of functional topography to predict either memory (split 1:

partial » = 0.23, Pperm = 0.002, MAE = 0.70, Pperm < 0.001; split 2: partial » = 0.23, Pperm = 0.008,
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MAE = 0.69, Pperm < 0.001) and social cognition (split 1: partial » = 0.11, Pperm = 0.07, MAE =
0.63, Pperm < 0.001; split 2: partial » = 0.09, Pperm = 0.16, MAE = 0.62, Pperm < 0.001) was
substantially lower than the executive function. These results emphasize that patterns of functional
topography within high-order control networks that are most variable across individuals predict

individual differences in executive function.

Variability of functional topography is constrained by fundamental properties of brain

organization

Having demonstrated that variability in functional topography predicts both brain
maturation and individual differences in executive function, we next sought to understand if
topographic variability is constrained by evolutionary properties of brain structure. One prominent
theory of cortical organization suggests that large-scale association networks arose in evolution by
becoming untethered from rigid developmental programming present in lower-order
somatosensory systems (Buckner and Krienen, 2013). This theory is supported by the distribution
of cortical myelin: association cortex that has undergone dramatic evolutionary expansion also has
greatly reduced myelination compared to somatosensory cortex. Notably, such lightly-myelinated
association cortex has higher metabolic demands and receives a disproportionate proportion of
cerebral blood flow. Having demonstrated that functional topography is the highest in association
cortex, and that this variation predicts both age and executive function, we sought to directly relate
topographic variability to these fundamental properties of brain organization. Specifically, we
hypothesized that higher variability in functional topography would be associated with greater

evolutionary expansion, reduced myelin content, and higher cerebral blood flow.

Using our statistically conservative spatial permutation testing procedure, we found that
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the cortical regions that exhibit the most topographic variability are also those that have expanded
the most in evolution (Figure 8A; r = 0.47, P, = 0.014). In contrast, variability in cortical
topography was inversely related to cortical myelin content (Figure 8B; » = -0.33, Py, = 0.004).
Finally, higher network variability was significantly associated with cerebral blood flow (Figure
8C, r = 0.31, Pgin= 0.001). Thus, lightly-myelinated cortex that has expanded dramatically in
evolution and receives a disproportion degree of cerebral blood flow also exhibits the greatest

variability in functional neuroanatomy during youth.

. . r=-0.33 0.00 . r=0.31
-2 -1 0 1 2 3 10 1.2 14 16 1.8 40 60
Evolutionary Expansion Myelin Content Mean CBF

Figure 7. Variability in functional topography aligns with fundamental properties of brain
organization. Higher variability in network topography was associated with greater evolutionary
expansion (A), lower myelin content (B), and higher cerebral blood flow (C). Inset histograms
represent spatial association compared to a null distribution obtained from spatial permutation
testing.

DISCUSSION

In this study we leveraged advances in machine learning and a large sample of youth to
delineate how the functional topography of the cortex develops during youth and supports
executive function. Building upon findings from studies of adults, we confirmed that networks

necessary for executive function also show the most topographic variability in childhood and
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adolescence. Critically, we demonstrate that these same networks are refined during development
and predict individual differences in executive performance. Finally, we provide evidence that
topographic variability is strongly linked to fundamental properties of brain organization. Taken
together, these results offer a new account of both developmental plasticity and diversity, and
highlight potential for progress in personalized diagnostics and therapeutics.

This work builds on a series of studies that have documented inter-individual variability in
the spatial layout of canonical functional networks (Braga and Buckner, 2017; Glasser et al., 2016;
Gordon et al., 2017a; Gordon et al., 2017c; Kong et al., 2018; Laumann et al., 2015; Liet al., 2017;
Lietal., 2019; Wang et al., 2015; Wang et al., 2018). Though previous efforts have used a variety
of analysis techniques to define functional networks in individuals, they have yielded convergent
results. Prior work in adults has emphasized that variability in functional topography is
heterogeneously distributed across the cortex, with higher-order functional networks responsible
for control processes displaying the greatest variance across individuals (Braga and Buckner, 2017;
Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2018; Li et al., 2019; Wang et al., 2015).
Building upon these results from adults, we found that these same higher-order networks are also
the most variable in youth. Moreover, we demonstrated that this variability in functional
topography constrains patterns of brain maturation and is associated with individual differences in
executive capability during youth.

Our results demonstrate that individual variation in functional network topography is linked
to both brain development and executive functioning. Specifically, we found that at any given age
a greater cortical representation of control networks is associated with improved executive
performance. In contrast, while the relative proportion of cortex allocated to association networks

does not appear to undergo large shifts in youth, machine learning techniques were able to decode
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developmental processes from the complex pattern of functional topography. Using multivariate
ridge regression, functional topography predicted an unseen individual’s age with a high degree of
accuracy, with association networks contributing the most to this prediction.

When integrated across levels of analysis, these developmental results are consistent with a
process of network differentiation (Baum et al., 2017; Fair et al., 2007a; Gu et al., 2015; Sherman
etal., 2014; Wig, 2017). For example, while the fronto-parietal, ventral attention, and default mode
networks did not change in its total cortical representation with age, examination of multivariate
feature weights revealed a complex pattern of reconfiguration with both positive and negative
associations with age. Maturational changes were frequently concentrated at network boundaries,
suggesting that the network borders are refined in development. These results are align with the
protracted process of network differentiation within higher-order cortex, whereby functional
systems with divergent cognitive roles (such as executive and the default mode networks) become
more distinct in their functional topography (Baum et al., 2017; Fair et al., 2007a; Sherman et al.,
2014). This process may partially explain previous reports of developmental network segregation,
which is among the most-replicated results in developmental cognitive neuroscience (Baum et al.,
2017; Fair et al., 2007a; Gu et al., 2015; Satterthwaite et al., 2012; Sherman et al., 2014; Wig,
2017). Increasingly differentiated functional networks would reduce mixing of signals between
networks, and thus appear to have reduced inter-network connectivity. Indeed, this possibility was
recently suggested by work in adults (Bijsterbosch et al., 2018; Li et al., 2019), which showed that
topography and connectivity have distinct contributions to individual differences, and that ignoring
topography aliases topographic signals into measurement of connectivity. Although further
research is needed in parallel human and animal models, the observed developmental network

refinement may be in part driven by focused myelination and ongoing pruning, which continues

21


https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/694489; this version posted July 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

in association cortex through early adulthood (Hagmann et al., 2010).

In contrast to such complex network differentiation, we found that youth with a greater
cortical representation of executive control networks had better executive functioning. Results
were convergent at all scales of analysis, including network summary measures, high-resolution
analyses, and integrative multivariate models. These data suggest that the marked between-subject
variability of executive network topography has implications for behavior, and may be relevant
for neuropsychiatric disorders. At present, the origins of these individual differences in executive
network topography remain unknown. However, the substantial heritability of both cognitive
performance and functional connectivity suggests that topography is at least in part genetically
encoded (Colclough et al., 2017; Mollink et al., 2019). Furthermore, accruing evidence from
animal models and translational studies in humans emphasizes the likely importance of in-utero
and early-life stressors, which could potentially impact developmental initialization of functional
network topography (Graham et al., 2019). In the future, it will be possible to test this hypothesis
using a combination of studies in animal models and human infants with varying levels of stress
exposure.

The topographic variability, developmental plasticity, and potential vulnerability of higher-
order control networks may be in part understood by evolutionary constraints. Leveraging
independent data from multiple sources, we found that variability and developmental change in
topography is maximal in the same executive networks that have undergone the most evolutionary
expansion (Hill et al., 2010). These networks have low myelin content (Glasser and Van Essen,
2011) and receive the greatest relative blood flow (Satterthwaite et al., 2014c). As noted in multiple
prior accounts of cortical organization, higher order executive networks are spatially embedded

between somatosensory and default mode regions (Margulies et al., 2016). One prominent theory
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suggests that these systems may have become untethered from the detailed developmental
programing of highly conserved somatosensory cortex as part of their rapid evolutionary
expansion, thus allowing for non-canonical circuit properties and enhanced individual variability
(Buckner and Krienen, 2013). Our results are consistent with such an account, as highly variable
cortical networks that are under diminished anatomic constraints also evince the most marked
developmental change and individual variability.

Several potential limitations and countervailing strengths of the present study should be
noted. First, all data presented here were cross-sectional, which precludes inference regarding
within-individual developmental effects. Ongoing follow-up studies will yield informative
longitudinal data, as will large-scale studies such as the Adolescent Brain and Cognitive
Development study (Casey et al., 2018). Second, we used data combined across three fMRI runs,
including two where an fMRI task was regressed from the data. This choice was motivated by
convergent results from several independent studies, which have shown that functional networks
are primarily defined by individual-specific rather than task-specific factors (Gratton et al., 2018)
and that intrinsic networks during task performance are similar to those present at rest (Fair et al.,
2007b). By including task-regressed data, we were able to generate individualized networks using
27-minutes of high quality data. Prior work suggests that parcellations created using a timeseries
of this length show high concordance (r~0.92) with those generated using 380 minutes of data
(Laumann et al., 2015), and that longer timeseries allow for greatly improved prediction of
individual differences (Elliott et al., 2019). Third, it should be acknowledged that our
individualized parcellations are data driven, and at present there are no techniques for ascertaining
neurobiological ground truth in humans. Nonetheless, it is reassuring that our results were robust

to substantial methodological variation, including the use of a completely independent method for

23


https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/694489; this version posted July 8, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

defining individualized network. Fourth, because children tend to move more during the scanning
session, in-scanner motion continues to be a concern for all functional imaging studies of brain
development. However, in this study we rigorously followed best practices for mitigating this
confound, including use of an extensively-benchmarked, top-performing preprocessing pipeline
and co-varying for motion in all hypothesis testing (Ciric et al., 2018; Satterthwaite et al., 2013a).
Use of these conservative procedures bolsters confidence that our observed results are not driven
by the confounding influence of in-scanner motion.

These limitations notwithstanding, we provide novel evidence that individual-specific
functional network topography is refined during development and supports executive function.
These findings also emphasize the relevance of functional network topography for translational
clinical neuroscience. Notably, higher order networks that undergo the most developmental change
also are the same networks that have been linked to diverse neuropsychiatric illnesses including
psychosis, mood disorders, and ADHD (Cole et al., 2014; Xia et al., 2018). As neuropsychiatric
conditions are increasingly conceptualized as disorders of brain development (Insel, 2014),
functional topography may be critically important for understanding the neurodevelopmental
substrates of these debilitating disorders, and allow for early identification and intervention in
youth at risk. Finally, these results suggest clear next steps for integration with clinical trials of
personalized neuromodulatory interventions that are targeted using the specific functional

neuroanatomy of an individual patient.
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METHOD DETAILS

Participants

Overall, 1,601 participants were studied as part of the PNC (Satterthwaite et al., 2014a).
However, 340 subjects were excluded due to clinical factors, including medical disorders that
could affect brain function, current use of psychoactive medications, prior inpatient psychiatric
treatment, or an incidentally encountered structural brain abnormality. Among the 1,261 subjects
eligible for inclusion, 54 subjects were excluded for a low quality T1-weighted image or low
quality FreeSurfer reconstructions. Of the 1,207 subjects with a usable T1 image and adequate
FreeSurfer reconstruction, 514 participants were excluded for missing functional data or poor
functional image quality; all participants were required to have three functional runs which
passed QA. Specifically, as in prior work (Ciric et al., 2018), a functional run was excluded if
mean relative RMS framewise displacement was higher than 0.2mm, or it had more than 20
frames with motion exceeding 0.25mm. This set of exclusion criteria resulted in a final sample of
693 participants (Supplementary Figure 1), with mean age 15.93 years, SD = 3.23 years; the
sample included 301 males and 392 females. All study procedures were approved by the
Institutional Review Boards of both the University of Pennsylvania and the Children’s Hospital

of Philadelphia.

Cognitive assessment

The Penn computerized neurocognitive battery (Penn CNB) was administered to all
participants as part of a session separate from neuroimaging. The CNB consists of 14 tests
adapted from tasks applied in functional neuroimaging to evaluate a broad range of cognitive

domains (Gur et al., 2012). These domains include executive function (abstraction and mental
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flexibility, attention, working memory), episodic memory (verbal, facial, spatial), complex
cognition (verbal reasoning, nonverbal reasoning, spatial processing), social cognition (emotion
identification, emotion differentiation, age differentiation), and sensorimotor and motor speed.
Accuracy for each test was z-transformed. As previously described in detail, factor analysis was
used to summarize these accuracy scores into three factors (Moore et al., 2015), including
executive and complex cognition, episodic memory, and social cognition. Here, we focused on
the executive and complex cognition factor score. However, episodic memory and social

cognition factor scores were evaluated in specificity analyses.

Image acquisition
As previously described (Satterthwaite et al., 2014a), all MRI scans were acquired using
the same 3T Siemens Tim Trio whole-body scanner and 32-channel head coil at the Hospital of

the University of Pennsylvania.

Structural MRI: Prior to functional MRI acquisitions, a 5-min magnetization-prepared, rapid
acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810 ms; TE =3.51 ms; TI =
1100 ms, FOV = 180 x 240 mm?, matrix = 192 x 256, effective voxel resolution = 0.9 x 0.9 x 1
mm?®) was acquired.

Functional MRI: We used one resting-state and two task-based (i.e., n-back and emotion
identification) fMRI scans as part of this study. All fMRI scans were acquired with the same
single-shot, interleaved multi-slice, gradient-echo, echo planar imaging (GE-EPI) sequence
sensitive to BOLD contrast with the following parameters: TR = 3000 ms; TE = 32 ms; flip
angle = 90°; FOV = 192 x 192 mm?; matrix = 64 x 64; 46 slices; slice thickness/gap = 3/0 mm,

effective voxel resolution = 3.0 x 3.0 x 3.0 mm?. Resting-state scans had 124 volumes, while the
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n-back and emotion recognition scans had 231 and 210 volumes, respectively. Further details
regarding the n-back (Satterthwaite et al., 2013b) and emotion recognition (Wolf et al., 2015)
tasks have been described in prior publications.

Field map: In addition, a BO field map was derived for application of distortion correction
procedures, using a double-echo, gradient-recalled echo (GRE) sequence: TR = 1000ms; TE1 =
2.69ms; TE2 = 5.27ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; effective voxel
resolution = 3.8x3.8x4 mm.

Scanning procedure: Before scanning, to acclimate subjects to the MRI environment, a mock
scanning session where subjects practiced the task was conducted using a decommissioned MRI
scanner and head coil. Mock scanning was accompanied by acoustic recordings of the noise
produced by gradient coils for each scanning pulse sequence. During these sessions, feedback
regarding head movement was provided using the MoTrack motion tracking system (Psychology
Software Tools). Motion feedback was given only during the mock scanning session. To further
minimize motion, before data acquisition, subjects’ heads were stabilized in the head coil using

one foam pad over each ear and a third over the top of the head.

Image processing

The structural images were processed using FreeSurfer (version 5.3) to allow for the
projection of functional timeseries to the cortical surface (Fischl, 2012). Functional images were
processed using a top-performing preprocessing pipeline implemented using the eXtensible
Connectivity Pipeline (XCP) Engine (Ciric et al., 2018). This pipeline included (1) correction for
distortions induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) removal of

the initial volumes of each acquisition (i.e., 4 volumes for resting-state fMRI and 6 volumes for
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emotion recognition task fMRI), (3) realignment of all volumes to a selected reference volume
using FSL’s MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time series using
AFNTI’s 3dDespike utility, (5) demeaning and removal of any linear or quadratic trends, and (6)
co-registration of functional data to the high-resolution structural image using boundary-based
registration. Images were de-noised using a 36-parameter confound regression model that has
been shown to minimize associations with motion artifact while retaining signals of interest in
distinct sub-networks. This model included the six framewise estimates of motion, the mean
signal extracted from eroded white matter and cerebrospinal fluid compartments, the mean signal
extracted from the entire brain, the derivatives of each of these nine parameters, and quadratic
terms of each of the nine parameters and their derivatives. Both the BOLD-weighted time series
and the artefactual model time series were temporally filtered using a fist-order Butterworth filter
with a passband between 0.01 and 0.08 HZ to avoid mismatch in the temporal domain (Hallquist
et al., 2013). Furthermore, to derive “pseudo-resting state” timeseries that were comparable
across runs, the task activation model was regressed from n-back or emotion identification fMRI
data (Fair et al., 2007b). The task activation model and nuisance matrix were regressed out using

AFNTI’s 3dTproject.

For each modality, the fMRI timeseries of each individual were projected to each subject’s
FreeSurfer surface reconstruction and smoothed on the surface with a 6-mm full-width half-
maximum (FWHM) kernel. The smoothed data was projected to the fsaverage5 template, which
has 10,242 vertices on each hemisphere (18,715 vertices in total after removing the medial wall).
Finally, we concatenated the three fMRI acquisitions, yielding timeseries of 27 minutes, 45

seconds (555 timepoints) in total.
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Regularized non-negative matrix factorization

As previously described in detail (Li et al., 2017), we used non-negative matrix
factorization (NMF) (Lee and Seung, 1999) to derive individualized functional networks. The
NMF method factors the data by positively weighting cortical elements that covary, leading to a
highly specific and reproducible parts-based representation (Lee and Seung, 1999; Sotiras et al.,
2017). Our approach was enhanced by a group consensus regularization term that preserves the
inter-individual correspondence, as well as a data locality regularization term that makes the
decomposition robust to imaging noise, improves spatial smoothness, and enhances functional
coherence of the subject-specific functional networks (see Li et al. (2017) for details of the

method; see also: https://github.com/hmlicas/Collaborative_Brain Decomposition). As NMF

requires the input to be nonnegative values, we re-scaled the data by shifting time courses of
each vertex linearly to ensure all values were positive (Li et al., 2017). To avoid features in
greater numeric ranges dominating those in smaller numeric range, we further normalized the
time course by its maximum value so that all the time points have values in the range of [0, 1].
Given a group of n subjects, each having fMRI data X! € R*,i = 1, ..., n, consisting of S

vertices and T time points, we aimed to find K non-negative functional networks V! = (Vsi’k) €

RS*K and their corresponding time courses U' = (U} ) € RT*X for each subject, such that

X'~ UV +ELs.t.ULVI2 0V <i<n,

where (V1) is the transpose of (V'1), and E! is independently and identically distributed (i.i.d)

residual noise following Gaussian distribution with a probability density function of g(x) =

x2

e 202, Both U' and V! were constrained to be non-negative so that each functional network

V2mo

does not contain any anti-correlated functional units (Lee and Seung, 1999). A group consensus
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regularization term was applied to ensure inter-individual correspondence, which was

implemented as a scale-invariant group sparsity term on each column of V* and formulated as

— K Z7§=1(2‘-?=1(Vsi:k)2)1/2
k=1 (25:12?:1(‘/51,]{)2)1/2'

1,.n
Re = Zi=allV "
c k=11l"-k 21

The data locality regularization term was applied to encourage spatial smoothness and coherence
of the functional networks using graph regularization techniques (Cai et al., 2011). The data

locality regularization term was formulated as
Ry = Tr((V)'Li,V"),

where LY, = DI, — W}, is a Laplacian matrix for subject I, W}, is a pairwise affinity matrix to
measure spatial closeness or functional similarity between different vertices, and D, is its

corresponding degree matrix. The affinity between each pair of spatially connected vertices (i.e.,
vertices ¢ and b) was calculated as (1 + corr(XY,, X_fb)) /2, where corr(X',, X},) is the Pearson

correlation coefficient between time series X', and X', and others were set to zero so that Wy

has a sparse structure. We identified subject specific functional networks by optimizing a joint

model with integrated data fitting and regularization terms formulated b
min , o '
Wiy Tl X = UV + A Sy Rl + AR,

s.t.ULVE>0,|

il =1Lvi<k<Kvi<i<n

T
KXnpy

where 4y, = f X and A, = a - % are used to balance the data fitting, data locality, and

group consensus regularization terms, n,, is the number of neighboring vertices, a and f are free
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parameters. For this study, we used identical paramters settings as in prior validation studies (Li

et al., 2017).

Defining individualized networks

Our approach for defining individualized networks included three steps (see Figure 1). In
the first two steps, a consensus group atlas was created. In the third step, this group atlas was
used to define individualized networks for each participant. We decomposed the whole-brain into
17 networks, which allowed for a direct comparison to other methods used in prior work (Kong

et al., 2018; Wang et al., 2015; Yeo et al., 2011).

Step 1: Group network initialization. Although individuals exhibit distinct network
topography, they are also broadly consistent (Gordon et al., 2017c; Gratton et al., 2018).
Therefore, we first generated a group atlas and used it as an initialization for individualized
network definition. In this way, we also ensured spatial correspondence across all subjects. This
strategy has also been applied in other methods for individualized network definition (Kong et
al., 2018; Wang et al., 2015). To avoid the group atlas being driven by outliers and to reduce the
computational cost, a bootstrap strategy was utilized to perform the group-level decomposition
multiple times on a subset of randomly selected subjects. Subsequently, the resulting
decomposition results were fused to obtain one robust initialization that is highly reproducible.
As previously (Li et al., 2017), we randomly selected 100 subjects and temporally concatenated
their timeseries, resulting in a timeseries matrix with 55,500 rows (time-points) and 18,715
columns (vertices). Notably, the choice of sub-sample size did not impact results (sub-samples of
200 and 300 were also evaluated). We applied the above-mentioned regularized non-negative

matrix factorization method with a random non-negative initialization to decompose this matrix
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(Lee and Seung, 1999). A group-level network loading matrix V" was acquired, which had 17
rows and 18,715 columns. Each row of this matrix represents a functional network, while each
column represents the loadings of a given cortical vertex. As previously (Li et al., 2017), this
procedure was repeated 50 times, each time with a different subset of subjects; this yielded 50
different group atlases.

Step 2: Group network consensus. Next, we combined the 50 group network atlases to
obtain one robust and highly reproducible group network atlas using spectral clustering (Li et al.,
2017). Specifically, we concatenated the 50 group parcellations together across networks and
acquired a matrix with 850 rows (i.e., functional networks, abbreviated as FN) and 18,715

columns (i.e., vertices). Inter-network similarity was calculated as
di;
Sij = exp <— ;),

where d;; =1 — corr (F N;, F N]), Corr(F N;, F N]) is Pearson correlation coefficient between FN;
and FN;, and o is the median of d;; across all possible pairs of FNs. Then, we applied normalized-

cuts (Cai et al., 2011) based spectral clustering method to group the 850 FNs into 17 clusters. For
each cluster, the FN with the highest overall similarity with all other FNs within the same cluster
was selected as the most representative. The final group network atlas was composed of the

representatives of these 17 clusters.

Step 3: Individualized networks. In this final step, we derived each individual’s specific
network atlas using NMF based on the acquired group networks (17 x 18,715 loading matrix) as
initialization and each individual’s specific fMRI times series (555 x 18,715 matrix). See Li et al.
(2017) for optimization details. This procedure yielded a loading matrix V (17 x 18,715 matrix)

for each participant, where each row is a FN, each column is a vertex, and the value quantifies
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the extent each vertex belongs to each network. This probabilistic (soft) definition can be
converted into discrete (hard) network definitions for display and comparison with other methods
(Kong et al., 2018; Wang et al., 2015; Yeo et al., 2011) by labeling each vertex according to its

highest loading.

Multi-session Hierarchical Bayesian Model (MS-HBM)
To evaluate whether our results were robust to methodological variation, we also applied a
a recently introduced multi-session hierarchical Bayesian model (MS-HBM,

https://github.com/ThomasYeolLab/CBIG/tree/master/stable projects/brain parcellation/Kong20

19 MSHBM) that has been used for defining individualized networks. See Kong et al. (2018) for
the details of the method. Using a group atlas, this method calculates inter-subject resting-state
functional connectivity (RSFC) variability, intra-subject RSFC variability, and finally parcellates
for each single subject based on this prior information. We used the initialization values
calculated using data from the Genomic Superstruct Project (GSP) dataset (Holmes et al., 2015),
which were released along with Kong et al. (2018)

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable _projects/brain_parcellation/Kong20

19 MSHBM/examples/input), as prior input of the single parcellation. Notably, the GSP was

acquired using the identical fMRI sequences and scanning platform as the PNC. MS-HBM
requires functional connectivity profiles of multiple sessions as input; here, the three fMRI runs
were entered as three separate sessions. As in Kong et al. (Kong et al., 2018), we used MS-HBM
to define 17 discrete individualized networks for each participant. Finally, we used the adjusted
rand index (ARI) to calculate the similarity between the networks from MS-HBM and

discretized networks from NMF.
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Spatial permutation testing (spin test)

In order to evaluate the significance of the alignment between individualized networks
derived using NMF and MS-HBM, we used a spatial permutation procedure called the spin test

(Alexander-Bloch et al., 2018; Gordon et al., 2016; Sotiras et al., 2017; Vandekar et al., 2015)

(https://github.com/spin-test/spin-test). The spin test is a spatial permutation method based on
angular permutations of spherical projections at the cortical surface. Critically, the spin test
preserves the spatial covariance structure of the data and as such is far more conservative than
randomly shuffling locations, which destroys the spatial covariance structure of the data and
produce an unrealistically weak null distribution. In contrast, the spin test generates a null
distribution of randomly rotated brain maps that preserve spatial features of the original map.
To evaluate the significance of the alignment between NMF and MS-HBM based
networks, we compared the ARI of two parcellations to the ARI of 1,000 random rotations,
generating a null distribution that preserves the spatial covariance structure. The permutation-
based p-value was calculated as the proportion of times that the observed ARI was higher than
the null distribution of ARI values from rotated parcellations. As described below, we also used
the spin test to evaluate the significance of the alignment between across-subject parcellation

variability to informative maps of brain organization.

Homogeneity of functional networks
Network homogeneity is a commonly used method for evaluating the success of a
functional parcellation (Gordon et al., 2016; Kong et al., 2018). As previously, network

homogeneity was calculated as the average of the Pearson’s correlations between the time series
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of all pairs of vertices within each network (Kong et al., 2018). To summarize network
homogeneity for comparisons across methods, we averaged the homogeneity value across

networks.

Across-subject variability of network topography

Prior studies of adults have consistently reported that across-subject variability of
functional networks is high in higher-order association networks and lower in primary
somatomotor and visual networks (Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2018;
Lietal., 2019; Mueller et al., 2013; Wang et al., 2015). Here we evaluated this observation in our
sample of youth. For each of 17 networks, we calculated the median absolute deviation of
loading values across all subjects for each vertex. We used this non-parametric measure of
variance as loadings did not follow normal distribution. Next, we averaged the 17 median
absolute deviation maps to generate the final across-network variability map that quantified the

across-subject parcellation variance at each vertex.

Additionally, we also calculated the network variability of the discretized network atlas,
allowing for further validation of our main results and better comparison to other methods (Kong

et al., 2018). Specifically, we used entropy to define variability (Hoskisson et al., 1993):

V(x) = = Xy, p(x) logs p(xy),

where x is a vertex; x; is a value of the vertex x, which has 17 values; p(x;) is the proportion of
subjects have values x; in the vertex x. If a vertex has same values for all subjects, V(x) will be 0,

indicating there is no variance of this vertex.
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Associations of network topography with development and executive function

We evaluated mass-univariate assocations between network topography and both
development and executive function at two scales: total relative network representation and at
each vertex. As an initial step, for each network, we summed the loading of all vertices to
quantify the relative presence of this network on the cortex. Notably, as this was conducted in
normalized template space, this measure was not impacted by individual differences in structural
surface area. To model both linear and nonlinear developmental effects, we used generalized
additive models (GAMs) with penalized splines (Wood, 2004). Importantly, the GAM estimates
nonlinearities using restricted maximum likelihood (REML), penalizing nonlinearity in order to
avoid over-fitting the data. We included sex and in-scanner head motion during scanning as
model covariates. As we considered three functional runs, in-scanner motion was summarized as
the grand mean of the mean relative RMS displacement of each functional run. To evaluate
assocations with executive function, the executive function factor score was added as another
model term with covariates as above (including a spline of age). Multiple comparisons were

accounted for using the Bonferroni method.

To evaluate more complex topographic reconfiguration, we next evaluated each network
at each vertex. For each network, we calculated associations between network loading and age
for each vertex using GAMs while controlling sex and in-scanner head motion. Similarly, we
calculated associations between network loadings and executive function while controlling sex,
head motion, and a spline of age. Given the large number of multiple comparisons, for

vertexwise analyses we used the False Discovery Rate (Q < 0.05).

Prediction of brain maturity and executive function performance from spatial topography
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Having tested if network topography was related to development and executive function in
mass-univariate fashion, we next evaluated whether the overall multivariate spatial pattern of
network topography encodes brain maturity or executive function. To address this question, we
used ridge regression with nested two-fold cross validation (2F-CV, see Fig. S3) to test if
multivariate network topography pattern could be used to identify an unseen individual
participant’s age or executive function in an unbiased fashion. Accordingly, we combined the 17
network loading maps into a feature vector to represent the multivariate spatial pattern of
network topography of each individual.

Ridge regression: A linear regression model was adopted to predict the brain maturity and
executive function performance using the pattern of whole-brain spatial topography of
parcellations. The linear model can be formalized as follows:

Yi = ?:1 B;xij + Bo,
where y; is the age of the i individual, p is the number of features, x;; is the value of the j*

feature of the i subject, and f; is the regression coefficient.

To avoid over-fitting and to improve the prediction accuracy, we used ridge regression.
Ridge regression uses an L2 penalty during model fitting; we have previously shown often out-
performs other methods for regression problems using high-dimensional imaging data and
computationally more efficient than other methods (Cui and Gong, 2018; Hoerl and Kennard,

1970). The objective function is:

N P
mﬁinZ(f(xi) -y + Az ||'8f||2'
i=1 Jj=1

This technique shrinks the regression coefficients, resulting in better generalizability for
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predicting unseen samples. In this algorithm, a regularization parameter A is used to control the
trade-off between the prediction error of the training data and L2-norm regularization, i.e., a
trade-off of penalties between the training error and model complexity. A large A corresponds to
a greater penalty on model complexity, and a small 4 represents a greater penalty on training

CITOr.

Prediction framework: We applied a nested 2-fold cross validation (2F-CV), with outer
2F-CV estimating the generalizability of the model and the inner 2F-CV determining the optimal
parameter A for the ridge regression model (see Figure S6 for schematic of the prediction
framework).

Outer 2F-CV: In the outer 2F-CV, the data was divided into 2 subsets. Specifically, we
sorted the subjects according to the outcome (i.e., age or executive performance) and then
assigned the individuals with an odd rank to subset 1 and the individuals with an even rank to
subset 2 (Cui and Gong, 2018; Cui et al., 2018). We intitally used subset 1 as the training set,
with subset 2 used as the test set. Each feature was linearly scaled between zero and one across
the training dataset, and the scaling parameters were also applied to scale the testing dataset (Cui
and Gong, 2018; Erus et al., 2015). We applied an inner 2-fold cross validation (2F-CV) within
training set to select the optimal A parameter. Based on the optimal A, we trained a model using
all subjects in the training set, and then used that model to predict the outcome of all subjects in
the testing set. Analogously, we used subset 2 as the training set and subset 1 as the test set, and
repeated the above procedure. Across the testing subjects for each fold, the partial correlation and
mean absolute error (MAE) between the predicted and actual outcome was used to quantify the
prediction accuracy. In evaluation of the prediction of participant age, we controlled for sex and

in-scanner head motion by calculating a partial correlation. Furthermore, we additionally
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controlled for participant age (in addition to sex and motion) when calculating the partial
correlation between actual and predicted executive function. Here, we used the scikit-learn

library to implement ridge regression (http://scikit-learn.org) (Pedregosa et al., 2011).

Inner 2F-CV: Within each loop of the outer 2F-CV, we applied inner 2F-CVs to determine
the optimal A. Specially, the training set for each loop of the outer 2F-CV was further partitioned
into 2 subsets according to their rank of the outcome (i.e., age or executive performance), as in
the outer loop (i.e., subjects with odd rank in subset 1 and subjects with even rank in subset 2).
One subset was selected to train the model under a given A in the range [2°19, 27, ..., 24, 2°] (i.e.,
16 values in total) (Cui and Gong, 2018; Hsu et al., 2003), and the remaining subset was used to
test the model. This procedure was repeated 2 times such that each subset was used once as the
testing dataset, resulting in 2 inner 2F-CV loops in total. For each inner 2F-CV loop, the
correlation » between the actual and predicted outcome and the mean absolute error (MAE) were
calculated for each A, and averaged over each fold. The sum of the mean correlation » and
reciprocal of the mean MAE was defined as the inner prediction accuracy, and the A with the
highest inner prediction accuracy was chosen as the optimal A (Cui and Gong, 2018; Cui et al.,
2018). Of note, the mean correlation » and the reciprocal of the mean MAE cannot be summed
directly, because the scales of the raw values of these two measures are quite different.
Therefore, we normalized the mean correlation r and the reciprocal of the mean MAE across all

values and then summed the resultant normalized values.

Significance of prediction performance. To evaluate if prediction performance (i.e., the
partial correlation » and MAE) were significantly better than expected by chance, we performed
a permutation test (Mourao-Miranda et al., 2005). Specifically, prediction procedure was re-

applied 1,000 times. In each run, we permuted the outcome (i.e., age or executive function)
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across the training samples without replacement. The significance was determined by ranking the
actual prediction accuracy versus the permuted distribution; the p-value of the partial correlation
r was the proportion of permutations that showed a higher value than the actual value for the real
data. Similarly, the p-value of the MAE was the proportion of permutations that showed a lower

value than the actual value for the real data.

Interpreting model feature weights. The features with a nonzero regression
coefficient/weight in the model trained using all subjects can be understood as contributing
features for the prediction model (Cui and Gong, 2018; Mourao-Miranda et al., 2005). Absolute
value of the weight quantified the contribution of the features to the model (Mourao-Miranda et
al., 2005). To understand which network contributed the most to the prediction, we summed the
absolute weight of all vertices in each network. Specifically, the vertices positively related to the
outcome and that negatively related to the outcome were summed separately. We further tested if
the veretices with small mean loadings, which were localized on the border of functional
networks, contributed more to the prediction. We calculated the Pearson correlation between the
absolute contribution weight and network loadings and used spin test to evaluate its significance.
Finally, we tested if the spatial contribution of locations to the prediction was constrained by the
variability of functional topography. As each vertex had 17 loading values (one for each
network), we summed the absolute weight across all 17 networks to summarize the prediction
weight of this vertex, which represents the importance of the vertex to the prediction, and then
calculated the Pearson correlation between the summarized vertex weight and network

variability across all vertices.

Validation of multivariate prediction analysis
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Randomly split 2F-CV: In the above prediction analysis, we split subjects into two halves
according to the rank of the outcome (i.e., age or executive performance). To validate that our
split was representative, we tested the prediction accuracy using repeated random 2F-CV.
Specifically, we split the subjects randomly into two halves for both outer 2F-CV and inner 2F-
CV, and calculated the mean partial correlation » and MAE across two folds. Because the split
was random, we repeated this procedure 100 times and averaged the partial correlation
(accounting for covariates) and MAE across the 100 times to determine the overall prediction
accuracy. We used permutation testing to determine if the acquired prediction accuracy was
significantly better than acquired by chance. Specifically, we repeated the random 2F-CV 1,000
times, but each time we permuted the outcome across the training data. Finally, we compared the

actual mean partial correlation » and mean MAE to that of the null distrubtion.

Prediction by discrete network parcellations: Having demonstrated that continuously-
weighted functional topography predicts age and executive performance, we next tested if the
pattern of discrete network labels could predict age and executive performance. We extracted the
whole-brain discrete network labels into a feature vector to represent the multivariate spatial
pattern of network topography of each individual. Based on these features, we applied the above
2F-CV framework to predict age and executive performance using multivariate ridge regression.
As network labels are categorical features, we first encoded each vertex feature as a one-hot
numeric array (https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html), which was

further used as input of the prediction analysis. This framework was applied to discrete networks

from both NMF and MS-HBM.
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Prediction of other cognitive measurements by network loadings: As a final step, we
evaluated if the associations with network topography were specific to executive function. We
used the same ridge regression framework and vertexwise loading maps to try to predict factor

scores summarizing memory accuracy and social cognition accuracy.

Visualization
Connectome Workbench (version: 1.3.2) provided by the human connectome project

(https://www.humanconnectome.org/software/connectome-workbench; Marcus et al. (2013)) was

used to visualize the brain surface.

Data & code availability

The PNC data is publicly available in the Database of Genotypes and Phenotypes:
accession number: phs000607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study id=phs000607.v3.p2. All analysis code is available here:

https://github.com/ZaixuCui/pncSingleFuncParcel, with detailed explanation in

https://github.com/ZaixuCui/pncSingleFuncParcel/wiki.
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SUPPLEMENTARY FIGURES

PNC Sample
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D4, Structural Image Quality
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192 Emotion identification fMRI Quality

693

Supplementary Figure 1. Sample construction. The Philadelphia Neurodevelopmental Cohort
(PNC) included 1,601 participants who completed neuroimaging. Of these, 340 subjects were
excluded owing to clinical factors, such as medical co-morbidity or use of psychotropic
medication. Additionally, 568 subjects were excluded because of low quality or missing structural,
resting-state, n-back, or emotion identification imaging data (details in Online Methods). The final
sample consisted of the remaining 693 subjects.
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Supplementary Figure 2. Individualized parcellation maximizes functional homogeneity within
networks. The homogeneity of timeseries within each network is a common metric of parcellation
quality. Both NMF and an alternative method for individualized network parcellation (MS-HBM)
out-performed the group atlas from either NMF or the canonical 17 networks defined by (Yeo et
al., 2011). All methods displayed greater within-network homogeneity than a null distribution of
randomly rotated individualized networks that preserved the data’s spatial covariance structure.
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Supplementary Figure 3. Across-subject variability of network topography of discrete network
parcellations created by NMF (A) and MS-HBM (B).
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Supplementary Figure 4. Vertex-wise associations with age for all networks (FDR Q < 0.05);
underlay depicts group network atlas.
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Supplementary Figure 5. Schematic overview of one outer loop of the nested 2-fold cross-
validation (2F-CV) prediction framework. All subjects were divided into two balanced halves
according to the rank of the outcome (i.e., age or executive performance), with the first half used
as a training set and the second half used as a testing set. Each feature was linearly scaled between
zero and one across the training dataset; these scaling parameters were applied to the testing
sample. An inner 2F-CV was applied within the training set to select the optimal A parameter.
Based on the optimal 4, we trained a model using all subjects in the training set, and then used that
model to predict the outcome of all subjects in the testing set.
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Supplementary Figure 6. The vertices with the highest (first 25%) absolute regression weight in
the multivariate prediction model of brain maturity; underlay depicts group network atlas.
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Supplementary Figujre 7. The absolute contribution weight (first 25%) was negatively
correlated with group network loadings across vertices. Significance testing used the
conservative spatial permutation procedure (spin test).
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Supplementary Figure 8. Supplementary analyses for brain maturity prediction using
multivariate pattern of functional topography. (A) Evaluated by repeated random 2-fold cross-
validation (2F-CV), functional topography of network loadings predict an unseen individual’s
brain maturity significantly higher than by chance. Black histogram is the distribution of prediction
accuracy of repeated random 2F-CV, and the inset histogram displays the distribution of prediction
accuracy from a permutation test. There was no overlap between these distributions. (B) Functional
topography of discrete NMF parcellations predict brain maturity. (C) Functional topography of

discrete MS-HBM parcellations predict brain maturity.
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Supplementary Figure 9. Vertex-wise associations with executive performance for all networks
(FDR Q < 0.05); underlay depicts group network atlas.
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Supplementary Figure 10. The vertices with the highest (top 25%) absolute regression weight
in the multivariate prediction model of executive performance; underlay depicts group network
atlas.
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Supplementary Figure 11. Supplementary analyses of executive function prediction using
multivariate patterns of functional topography. (A) Evaluated by repeated random 2-fold cross-
validation (2F-CV), functional topography of network loadings predict an unseen individual’s
executive performance significantly higher than by chance. Black histogram is the distribution of
prediction accuracy of repeated random 2F-CV, and the inset histogram displays the distribution
of prediction accuracy from a permutation test. There was no overlap in these distributions. (B)
Functional topography of discrete NMF parcellations predicts unseen individuals’ executive
performance. (C) Functional topography of discrete MS-HBM parcellations predicts unseen
individuals’ executive performance.
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