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ABSTRACT 

The spatial distribution of large-scale functional networks on the anatomic cortex differs 

between individuals, and is particularly variable in networks responsible for executive function. 

However, it remains unknown how this functional topography evolves in development and 

supports cognition. Capitalizing upon advances in machine learning and a large sample of youth 

(n=693, ages 8-23y) imaged with 27 minutes of high-quality fMRI data, we delineate how 

functional topography evolves during youth. We found that the functional topography of 

association networks is refined with age, allowing accurate prediction of an unseen individual’s 

brain maturity. Furthermore, the cortical representation of executive networks predicts individual 

differences in executive function. Finally, variability of functional topography is  associated with 

fundamental properties of brain organization including evolutionary expansion, cortical 

myelination, and cerebral blood flow. Our results emphasize the importance of considering both 

the plasticity and diversity of functional neuroanatomy during development, and suggest advances 

in personalized therapeutics.  

Keywords:  Adolescence, Development, Functional MRI, Individualized Parcellation, 

Topographic Variability  

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694489doi: bioRxiv preprint 

https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

INTRODUCTION 
 
During childhood, adolescence, and young adulthood, the human brain must develop to 

support increasingly complex cognitive and behavioral capabilities. One broad domain of 

cognition that undergoes particularly protracted development is executive function, which 

encompasses diverse cognitive processes including working memory, performance monitoring, 

and task switching (Best and Miller, 2010; Gur et al., 2012). Individual differences in executive 

function have been linked to meaningful functional outcomes such as academic achievement 

(Arffa, 2007; Best et al., 2011), and deficits of executive function are associated with violence, 

initiation of drug use, and risk taking behaviors (Reynolds et al., 2019). Executive dysfunction is 

also associated with most major neuropsychiatric diseases (Shanmugan et al., 2016), including 

attention deficit hyperactivity disorder and psychosis (Barkley, 1997; Wolf et al., 2015).  

Executive processes rely upon a spatially distributed set of brain regions that span frontal, 

parietal, and temporal cortex (Alvarez and Emory, 2006; Niendam et al., 2012; Rottschy et al., 

2012). These regions have low cortical myelin content (Glasser and Van Essen, 2011), receive a 

disproportionate amount of cerebral blood flow (Satterthwaite et al., 2014b; Taki et al., 2011), and 

have greater areal expansion compared to other cortical regions in humans (Reardon et al., 2018) 

and analogous regions in non-human primates (Hill et al., 2010). Non-invasive studies using 

functional MRI (fMRI) in humans have shown that these distributed regions activate together 

during cognitively demanding executive tasks and also show coherent signal fluctuations at rest 

(Cole and Schneider, 2007; Marek and Dosenbach, 2018; Satterthwaite et al., 2013b), allowing 

them to be understood as large-scale functional networks. Typically, these networks have been 

compared across individuals by alignment with brain structure, which assumes that there is a stable 

correspondence between functional and structural anatomy across individuals (Laumann et al., 
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2015). However, recent evidence from multiple independent efforts has demonstrated that there is 

marked inter-individual variability in the spatial topography of functional brain networks even 

after accurate alignment of brain structure (Bijsterbosch et al., 2018; Braga and Buckner, 2017; 

Glasser et al., 2016; Gordon et al., 2017a; Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 

2018; Laumann et al., 2015; Li et al., 2019; Wang et al., 2015).     

Studies of highly-sampled individuals for whom numerous sessions of scanning data were 

acquired have established that an individual’s functional topography is highly reproducible across 

scanning sessions (Gordon et al., 2017c; Laumann et al., 2015). Furthermore, several studies have 

reported that topographic variability across individuals is maximal in brain networks responsible 

for executive functioning (Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2018; Li et al., 

2019; Wang et al., 2015). This finding aligns with work showing that these same association 

networks also show the greatest inter-individual variation in their connectivity profiles (Gratton et 

al., 2018; Kong et al., 2018; Li et al., 2019; Mueller et al., 2013), and can be used for accurate 

identification of individuals (Finn et al., 2015; Miranda-Dominguez et al., 2014). Understanding 

subject-specific functional topography also allows prediction of an individual’s spatial pattern of 

activation across diverse tasks (Gordon et al., 2017c; Laumann et al., 2015; Li et al., 2019; Tavor 

et al., 2016; Wang et al., 2015). Failure to account for such individual variation in functional 

topography may lead differences in spatial distribution to be aliased into measurement of inter-

regional functional connectivity, potentially biasing both inference and interpretation (Bijsterbosch 

et al., 2018; Li et al., 2019). 

Despite such rapidly accruing evidence for the importance of individual differences in 

functional neuroanatomy, to our knowledge no studies have characterized variation of functional 

topography in youth. To address this gap, here we tested three inter-related hypotheses. First, we 
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hypothesized that functional topography would be systematically refined during development, 

with developmental changes being concentrated in association cortex. Second, we predicted that 

variation in the functional topography of executive networks would predict individual differences 

of executive functioning. Third and finally, we anticipated that these developmental changes and 

associations with executive functioning would be constrained by fundamental properties of brain 

organization, including evolutionary expansion and cortical myelination. To test these hypotheses, 

we capitalized upon recent advances in machine learning and a large sample of youth who 

participated in the Philadelphia Neurodevelopmental Cohort (PNC; Satterthwaite et al. (2014a)).  

 

RESULTS 
 
We studied 693 youths aged 8-23 years who completed imaging as part of the PNC 

(Supplementary Figure 1) with over 27 minutes of high-quality fMRI data (see Supplementary 

Methods). To delineate person-specific functional networks, we used a spatially-regularized form 

of non-negative matrix factorization (NMF; Lee and Seung (1999)) that has previously been shown 

to accurately identify functional networks in individuals (Li et al., 2017). This approach involved 

three steps (Figure 1). In the first step, a group atlas was created by running NMF on the 

concatenated timeseries of a sub-sample of 100 subjects. In the second step, to ensure 

reproducibility, the group atlas was re-created on a total of 50 sub-samples (n = 100 participants 

each), and a consensus set of networks was derived using spectral clustering. In the third step, 

individualized networks were identified for each participant by iteratively applying NMF to each 

participant’s data, with the consensus networks used as a prior to ensure correspondence across 

participants. 
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Figure 1. Schematic of spatially regularized non-negative matrix factorization (NMF) for 
individualized network parcellation. Each subject had three fMRI runs; we concatenated these for 
each subject, resulting in a 27.4 minutes timeseries with 555 time points for each subject. In the 
first step, we randomly selected 100 subjects and concatenated their time series into a matrix with 
55,500 time points (rows) and 18,715 vertices (columns). Non-negative matrix factorization was 
used to decompose this matrix into a timeseries matrix and loading matrix. The loading matrix had 
17 rows and 18,715 columns, which encoded the membership of each vertex at each network. This 
procedure was repeated 50 times, with each run including a different subset of 100 subjects. In the 
second step, a normalized cut-based spectral clustering method was applied to cluster the 50 
loading matrices into one consensus loading matrix, which served as the group atlas and ensured 
correspondence across individuals. In the third step, NMF was used to calculate individualized 
networks for each participant, with the group atlas used as a prior. 
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To facilitate comparison to other methods (Kong et al., 2018), we identified 17 functional 

networks in each participant (Figure 2). In contrast to methods that discretely assign each vertex 

to a single network, NMF yields a probabilistic (soft) parcellation. This probabilistic parcellation 

can be converted into discrete (hard) network definitions for both display and comparison with 

other methods by labeling each vertex according to its highest loading. Visual inspection suggested 

that these discretized networks showed a high correspondence with a widely-used 17-networks 

solution (Yeo et al., 2011). To quantitatively compare these atlases, as well as subsequent analyses 

of individual parcellations and other cortical properties (see below), we used a spatial permutation 

test that relies on random surface-based rotations (or "spins") to test the significance of spatial 

correlation between brain maps (Alexander-Bloch et al., 2018; Gordon et al., 2016). This 

conservative statistical procedure preserves the spatial covariance structure of the data and 

provides a more appropriate null distribution than randomly shuffling surface locations (see 

Supplementary Methods). Using this approach, we found significant alignment (Pspin < 0.001)  

between our group atlas and the canonical 17 networks (Yeo et al., 2011).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694489doi: bioRxiv preprint 

https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

 

 
Figure 2. Group atlas of 17 networks. Our NMF-based method for network parcellation relies on 
a group atlas as a prior for identifying networks in individuals. In this atlas, there are 17 loadings 
for each vertex, which quantify the extent it belongs to each network. The networks in the group 
atlas include medial and lateral visual networks (numbers 2 and 5); hand, foot and face motor 
networks (numbers 3, 8, and 10); dorsal attention networks (number 12 and 15), ventral attention 
networks (numbers 6 and 13); a limbic network (number 7); fronto-parietal control networks 
(numbers 9, 11, 16, and 17), and  default mode networks (numbers 1, 4, and 14). For display, 
vertices can be assigned to the network with the highest loading, yielding a discrete network 
parcellation (center).  
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Individualized networks improves functional homogeneity compared to group averaged networks   

Next, this group atlas was tailored to each individual’s data using NMF, providing subject-

specific networks. As in previous work (Gordon et al., 2016; Kong et al., 2018), we evaluated the 

quality of these individualized networks by calculating the homogeneity of the functional 

timeseries within each network. The mean within-network homogeneity for individualized 

networks using NMF was significantly higher than in randomly rotated networks (Pspin < 0.001). 

Furthermore, homogeneity within NMF-based individualized networks was higher than that in 

either the NMF-based group atlas or the standard 17-network group atlas (Supplementary Figure 

2). As an additional validation step, we compared our NMF-based method with a recently-

introduced method which uses a multi-session hierarchical Bayesian model (MS-HBM; Kong et 

al. (2018)) to identify individualized networks. The mean homogeneity of MS-HBM in our sample 

was numerically lower than our NMF based method, and nearly identical to a prior application of 

MS-HBM to adults (0.31 vs. approximately 0.32; Kong et al. (2018)). Furthermore, we found that 

the individual parcellations provided by NMF and MS-HBM were significantly aligned (Pspin < 

0.001). These initial results suggest that single-subject parcellations provide an improved fit to 

each participant’s data compared to standard atlases that do not consider variation in functional 

neuroanatomy.  

 
Across-subject variability of network topography is maximal association cortex 

Visual examination of many individual subjects revealed that while the gross spatial 

distribution of networks was consistent across participants, distinct person-specific topographic 

features could be readily observed (Figure 3). Consistent with prior reports (Gordon et al., 2017b; 

Gordon et al., 2017c; Kong et al., 2018; Li et al., 2019; Mueller et al., 2013; Wang et al., 2015), 

heterogeneity in the spatial distribution of networks was particularly apparent in association 
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networks such as the fronto-parietal control, ventral attention, and default mode networks. In 

contrast, participant-level representations of somatomotor and visual networks appeared to be 

much more consistent across individuals.  

 

 
 
Figure 3. Individual subjects display distinct functional network topography. While the gross 
spatial distribution of networks was consistent across participants, distinct person-specific 
topographic features could be readily observed. Heterogeneity in the spatial distribution of 
networks was particularly apparent in higher-order networks including fronto-parietal, ventral 
attention, and default mode networks. In contrast, subject level representations of somatomotor 
and visual networks appeared to be much more consistent across individuals.  
 

In order to evaluate this observation in the entire sample, we quantified the across-subject 

variance in network loadings using a non-parametric statistic (the median absolute deviation). As 

expected from prior reports in adults (Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 

2018; Li et al., 2019; Mueller et al., 2013; Wang et al., 2015), we observed the highest across-

subject variability in frontal, parietal, and temporal cortex (Figure 4A). When variability was 
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ranked by network, we found that fronto-parietal networks had the highest topographic variability 

across subjects, whereas sensory and motor networks had the lowest (Figure 4B). Results were 

highly similar when the variability of discrete networks derived using NMF or MS-HBM were 

examined (Supplementary Figure 3). Having confirmed that functional topography is most 

variable in higher-order networks, we next evaluated whether this variation was related to brain 

maturation during youth. 

 

 

Figure 4. Variability of functional network topography is highest in executive networks. (A)  A 
non-parametric measure of variability (median absolute deviation) revealed that functional 
topography was most variable across individuals in fronto-parietal cortex and least variable in 
visual and motor cortex. (B) Summarizing variability by network revealed that across-subject 
variability was highest in networks critical for executive functioning including fronto-parietal 
control networks and the ventral attention network. FP: fronto-parietal; VA: ventral attention; DA: 
dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual.  

 

Functional topography is refined with age and encodes brain maturity 

As an initial step, we examined whether the total cortical representation of each network 

was associated with age. Specifically, for each network, we summed the loadings of all vertices to 

summarize the total cortical representation of each probabilistic network. Notably, as networks 

were derived in template space, this measure controls for individual differences in total surface 
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area, which varies across development (Tamnes et al., 2017). As brain development is known to 

be a nonlinear process (Blakemore, 2012; Grayson and Fair, 2017; Tamnes et al., 2017), we used 

general additive models (GAMs; Wood (2004)) to capture both linear and nonlinear associations 

with age. Within each GAM, age was modeled using a penalized spline, while covarying for sex 

and in-scanner motion. After correcting for multiple comparisons with the Bonferroni method, 

these analyses revealed that the cortical representation of the limbic network (network 7, Z = 5.42, 

PBonf  = 1.03 ́  10-6, partial r = 0.20, Confidence Interval (CI) = [0.13, 0.27]) significantly increased 

with age, while that of the visual network (network 5, Z = -3.95, PBonf  = 1.31 ´ 10-3, partial r = -

0.15, Confidence Interval (CI) = [-0.22, -0.08]) significantly decreased with age (Figure 5A).  

It should be noted that a coarse summary measure such as the total network representation 

does not capture complex patterns of topographic reconfiguration. However, mass-univariate 

models of each network across individual verticies are limited by necessary corrections for 

multiple comparisons, and cannot model multivariate relationships within high-dimensional data 

(see Supplementary Figure 4).  Accordingly, we used a multivariate approach to understand the 

degree to which the overall pattern of functional topography encoded developmental information. 

Specifically, we used ridge regression with nested two-fold cross validation (2F-CV, 

Supplementary Figure 5) to predict the age of an unseen individual based on the functional 

topography of all networks. Using training and testing sets that were matched on age, we calculated 

both the mean absolute error (MAE) and the partial correlation between the predicted age (“brain 

age”) and chronologic age in the test set, while controlling for sex and motion. Model significance 

was evaluated using permutation testing, where the correspondence between training subjects’ 

network topography and their age was shuffled at random. This multivariate analysis revealed that 

the complex pattern of network topography could accurately predict an unseen individual’s age 
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with a high degree of accuracy (Figure 5B): the partial correlation between the predicted age and 

chronological age was 0.73 (Pperm < 0.001), while MAE was 1.84 years (Pperm < 0.001). We 

repeated this procedure while reversing the training and testing sets, and found very similar results 

(partial r = 0.70, Pperm < 0.001; MAE = 1.89 years, Pperm < 0.001). 

 To understand the developmental effects underlying these results, we evaluated model 

feature weights. In the multivariate model, each vertex received a feature weight for each network.  

Summing the absolute weights within each network, we found that high-order association 

networks contributed the most to the multivariate model (Figure 5C). However, we also found 

that there was a complex pattern of both positive and negative relationships with age 

(Supplementary Figure 6), cohering with the initial finding that the total network representation 

did not change with age in most networks. Examining the spatial distribution of these feature 

weights, we observed that vertices with the highest weights often tended to be at the edge of the 

network. For example, refinement of network boundaries with age was particularly prominent in 

several fronto-parietal networks (e.g., network 17; Figure 5D). In order to quantify this 

observation, we examined the relationship between mean network loading and the absolute weight 

of features in the multivariate model predicting age. Consistent with a process of edge refinement 

and spatial differentiation between networks, we found that higher feature weights were present at 

edge vertices with low loadings in multiple networks, including fronto-parietal networks (Figure 

5E and Supplementary Figure 7).   

As a final step, we sought to understand whether variability of functional topography 

constrained patterns of network maturation. To concisely summarize the spatial contribution of 

locations in the multivariate model, we summed the absolute weights of each vertex across 

networks, and related this to our non-parametric measure of network variability (see Figure 4A).  
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We found that multivariate patterns of brain maturation were driven by vertices with high across-

participant variability, and were present primarily in frontal, parietal, and temporal cortex (Figure 

5F; r = 0.53, Pspin < 0.001).   

 

 
 
Figure 5. Functional topography evolves with age in youth and predicts unseen individuals’ brain 
maturity. (A) The total cortical representation of the limbic network increased with age, while the 
representation of the lateral visual network declined with age (PBonf < 0.05; dashed lines indicate 
networks with non-significant age effects). (B) Beyond this coarse summary measure, the complex 
pattern of developmental reconfiguration of functional topography could be used to predict age in 
unseen data using a multivariate ridge regression model with 2-fold cross-validation and nested 
parameter tuning. Data points represent predicted age of subjects in a model trained on independent 
data; inset histogram represents the null distribution of prediction accuracy from a permutation 
test. (C) Examining the sum of the absolute model weight of all vertices within each network 
revealed that high-order networks in association cortex contributed the most to predicting age. 
Both positive and negative associations with age were present within each network. (D) Model 
feature weights driving prediction were highest at network edges;  the 25% vertices of network 17 
that had the highest absolute contribution weight are displayed. (E) Absolute feature weight was 
negatively correlated with network loadings across vertices for network 17; inset displays spatial 
association compared to null distribution from spin test. (F) Functional network maturation is 
constrained by network variability. Vertices that contributed the most to the multivariate age 
prediction model were those that varied most across subjects. FP: fronto-parietal; VA: ventral 
attention; DA: dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual. 
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We conducted several supplementary analyses to confirm that our results were robust to 

methodological choices. In order to ensure that our matched split of the data was representative, 

we repeated this procedure with 100 random splits of the data, which returned highly consistent 

results and feature weights (mean partial r = 0.69, Pperm < 0.001; mean MAE = 1.93 years, Pperm < 

0.001; Supplementary Figure 8). For comparison, we repeated this procedure using both the 

discrete network parcellation derived from NMF and also that from MS-HBM. While still highly 

significant (Pperm < 0.001), not considering network probability mildly degraded predictive 

accuracy (see Supplementary Figure 8). Taken together, these results demonstrate that functional 

network topography encodes brain maturity, is driven by refinement of higher-order association 

networks, and is constrained by the individual variability of these systems.    

 

Control network topography predicts individual differences in executive function 

 Having found that functional topography accurately encoded brain maturation, we next 

evaluated the implications of topographic variability for cognition. Specifically, we investigated 

whether variation in functional network topography predicted individual differences in executive 

function. Executive function was summarized using a previously-published factor analysis of the 

Penn Computerized Neurocognitive Battery (Moore et al., 2015). While controlling for age, sex, 

and motion, general additive models revealed that the improved executive performance was 

associated with a greater total cortical representation of bilateral fronto-parietal control networks 

and the cingulo-opercular ventral attention network (Figure 6A; left fronto-parietal: network 11, 

Z = 5.88, PBonf = 1.09 ´ 10-7, partial r = 0.22, CI = [0.15, 0.29]; right fronto-parietal: network 17, 

Z = 5.23, PBonf = 3.90 ´ 10-6, partial r = 0.19, CI = [0.12, 0.26];  ventral attention: network 6, Z = 

4.41, PBonf = 2.06 ´ 10-4, partial r = 0.17, CI = [0.09, 0.24]). In contrast, greater representation of 
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the right temporal default mode network (network 4, Z = -3.43, PBonf = 0.01, partial r = -0.13, CI 

= [-0.20, -0.06]) and the limbic network (network 7, Z = -3.35, PBonf = 0.01, partial r = -0.13, CI = 

[-0.20, -0.05]) were associated with reduced executive performance. High resolution analyses of 

vertices provided convergent results (Supplementary Figure 9).  

 As for our analyses of development, we also evaluated the degree to which an individual’s 

multivariate pattern of network topography could be used to predict executive performance using 

a model trained on independent data. We found that an individualized functional topography 

accurately predicted executive functioning in matched split-half samples while controlling for age, 

sex and motion (Figure 6B; split 1: partial r = 0.50, MAE = 0.57, Pperm < 0.001; split 2: partial r 

= 0.45, MAE = 0.59, Pperm < 0.001). Critically, topographic features within the ventral attention 

and fronto-parietal networks were the most predictive of individual differences in executive 

functioning (Figure 6C & Supplementary Figure 10).  Multivariate feature weights aligned with 

analyses of the total network representation, with a preponderance of positive relationships with  

executive performance being found within executive networks. As for patterns of brain maturation, 

we found that the topographic features that predicted executive functioning were those that varied 

most across individuals (Fig. 7C; r = 0.60, Pspin < 0.001).   
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Figure 6. Functional topography of control networks predicts individual differences in executive 
function. (A) Executive performance was positively correlated with the total cortical 
representation of two fronto-parietal networks and one ventral attention network (PBonf < 0.05; 
dashed lines indicates networks with non-significant age effects). (B) The complex pattern of 
functional network topography predicted executive function in unseen data using a multivariate 
ridge regression model with 2-fold cross-validation and nested parameter tuning (data points 
represent predicted age of subjects by a model trained on independent data; inset histogram 
represents the distribution of prediction accuracy from a permutation test). (C) The most important 
topographic features in this model were found in association cortex critical for executive 
functioning, and were maximal in the fronto-parietal control network and the ventral attention 
network. (D) The vertices that contributed the most in this multivariate model were those that 
varied most across participants. EF: executive function; FP: fronto-parietal; VA: ventral attention; 
DA: dorsal attention; DM: default mode; LM: Limbic; MT: motor; VS: visual. 
 

 To again ensure our initial matched split of the data was representative, we repeated the 

analysis with 100 random splits, which yielded highly consistent results (mean partial r = 0.47, 

mean MAE = 0.58; Supplementary Figure 11). Furthermore, we repeated this procedure using a 

discrete network parcellation from either NMF or MS-HBM, which returned similar results 

(Supplementary Figure 11). Finally, we tested the specificity of associations with executive 

function. We found that the ability of functional topography to predict either memory (split 1: 

partial r = 0.23, Pperm = 0.002, MAE = 0.70, Pperm < 0.001; split 2: partial r = 0.23, Pperm = 0.008, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694489doi: bioRxiv preprint 

https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 

MAE = 0.69, Pperm < 0.001) and social cognition (split 1: partial r = 0.11, Pperm = 0.07, MAE = 

0.63, Pperm < 0.001; split 2: partial r = 0.09, Pperm = 0.16, MAE = 0.62, Pperm < 0.001) was 

substantially lower than the executive function. These results emphasize that patterns of functional 

topography within high-order control networks that are most variable across individuals predict 

individual differences in executive function. 

 

Variability of functional topography is constrained by fundamental properties of brain 

organization  

 Having demonstrated that variability in functional topography predicts both brain 

maturation and individual differences in executive function, we next sought to understand if 

topographic variability is constrained by evolutionary properties of brain structure. One prominent 

theory of cortical organization suggests that large-scale association networks arose in evolution by 

becoming untethered from rigid developmental programming present in lower-order 

somatosensory systems (Buckner and Krienen, 2013). This theory is supported by the distribution 

of cortical myelin: association cortex that has undergone dramatic evolutionary expansion also has 

greatly reduced myelination compared to somatosensory cortex. Notably, such lightly-myelinated 

association cortex has higher metabolic demands and receives a disproportionate proportion of 

cerebral blood flow. Having demonstrated that functional topography is the highest in association 

cortex, and that this variation predicts both age and executive function, we sought to directly relate 

topographic variability to these fundamental properties of brain organization. Specifically, we 

hypothesized that higher variability in functional topography would be associated with greater 

evolutionary expansion, reduced myelin content, and higher cerebral blood flow. 

 Using our statistically conservative spatial permutation testing procedure, we found that 
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the cortical regions that exhibit the most topographic variability are also those that have expanded 

the most in evolution (Figure 8A; r = 0.47, Pspin = 0.014). In contrast, variability in cortical 

topography was inversely related to cortical myelin content (Figure 8B; r = -0.33, Pspin = 0.004). 

Finally, higher network variability was significantly associated with cerebral blood flow (Figure 

8C, r = 0.31, Pspin = 0.001). Thus, lightly-myelinated cortex that has expanded dramatically in 

evolution and receives a disproportion degree of cerebral blood flow also exhibits the greatest 

variability in functional neuroanatomy during youth. 

 

 
 
Figure 7. Variability in functional topography aligns with fundamental properties of brain 
organization. Higher variability in network topography was associated with greater evolutionary 
expansion (A), lower myelin content (B), and higher cerebral blood flow (C). Inset histograms 
represent spatial association compared to a null distribution obtained from spatial permutation 
testing. 

 
 

DISCUSSION 
 
In this study we leveraged advances in machine learning and a large sample of youth to 

delineate how the functional topography of the cortex develops during youth and supports 

executive function.  Building upon findings from studies of adults, we confirmed that networks 

necessary for executive function also show the most topographic variability in childhood and 
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adolescence. Critically, we demonstrate that these same networks are refined during development 

and predict individual differences in executive performance. Finally, we provide evidence that 

topographic variability is strongly linked to fundamental properties of brain organization. Taken 

together, these results offer a new account of both developmental plasticity and diversity, and 

highlight potential for progress in personalized diagnostics and therapeutics.  

This work builds on a series of studies that have documented inter-individual variability in 

the spatial layout of canonical functional networks (Braga and Buckner, 2017; Glasser et al., 2016; 

Gordon et al., 2017a; Gordon et al., 2017c; Kong et al., 2018; Laumann et al., 2015; Li et al., 2017; 

Li et al., 2019; Wang et al., 2015; Wang et al., 2018). Though previous efforts have used a variety 

of analysis techniques to define functional networks in individuals, they have yielded convergent 

results. Prior work in adults has emphasized that variability in functional topography is 

heterogeneously distributed across the cortex, with higher-order functional networks responsible 

for control processes displaying the greatest variance across individuals (Braga and Buckner, 2017; 

Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2018; Li et al., 2019; Wang et al., 2015). 

Building upon these results from adults, we found that these same higher-order networks are also 

the most variable in youth. Moreover, we demonstrated that this variability in functional 

topography constrains patterns of brain maturation and is associated with individual differences in 

executive capability during youth.  

Our results demonstrate that individual variation in functional network topography is linked 

to both brain development and executive functioning. Specifically, we found that at any given age 

a greater cortical representation of control networks is associated with improved executive 

performance. In contrast, while the relative proportion of cortex allocated to association networks 

does not appear to undergo large shifts in youth, machine learning techniques were able to decode 
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developmental processes from the complex pattern of functional topography. Using multivariate 

ridge regression, functional topography predicted an unseen individual’s age with a high degree of 

accuracy, with association networks contributing the most to this prediction.   

When integrated across levels of analysis, these developmental results are consistent with a 

process of network differentiation (Baum et al., 2017; Fair et al., 2007a; Gu et al., 2015; Sherman 

et al., 2014; Wig, 2017). For example, while the fronto-parietal, ventral attention, and default mode 

networks did not change in its total cortical representation with age, examination of multivariate 

feature weights revealed a complex pattern of reconfiguration with both positive and negative 

associations with age. Maturational changes were frequently concentrated at network boundaries, 

suggesting that the network borders are refined in development. These results are align with the 

protracted process of network differentiation within higher-order cortex, whereby functional 

systems with divergent cognitive roles (such as executive and the default mode networks) become 

more distinct in their functional topography (Baum et al., 2017; Fair et al., 2007a; Sherman et al., 

2014). This process may partially explain previous reports of developmental network segregation, 

which is among the most-replicated results in developmental cognitive neuroscience (Baum et al., 

2017; Fair et al., 2007a; Gu et al., 2015; Satterthwaite et al., 2012; Sherman et al., 2014; Wig, 

2017). Increasingly differentiated functional networks would reduce mixing of signals between 

networks, and thus appear to have reduced inter-network connectivity. Indeed, this possibility was 

recently suggested by work in adults (Bijsterbosch et al., 2018; Li et al., 2019), which showed that 

topography and connectivity have distinct contributions to individual differences, and that ignoring 

topography aliases topographic signals into measurement of connectivity. Although further 

research is needed in parallel human and animal models, the observed developmental network 

refinement may be in part driven by focused myelination and ongoing pruning, which continues 
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in association cortex through early adulthood (Hagmann et al., 2010). 

In contrast to such complex network differentiation, we found that youth with a greater 

cortical representation of executive control networks had better executive functioning. Results 

were convergent at all scales of analysis, including network summary measures, high-resolution 

analyses, and integrative multivariate models. These data suggest that the marked between-subject 

variability of executive network topography has implications for behavior, and may be relevant 

for neuropsychiatric disorders. At present, the origins of these individual differences in executive 

network topography remain unknown. However, the substantial heritability of both cognitive 

performance and functional connectivity suggests that topography is at least in part genetically 

encoded (Colclough et al., 2017; Mollink et al., 2019). Furthermore, accruing evidence from 

animal models and translational studies in humans emphasizes the likely importance of in-utero 

and early-life stressors, which could potentially impact developmental initialization of functional 

network topography (Graham et al., 2019). In the future, it will be possible to test this hypothesis 

using a combination of studies in animal models and human infants with varying levels of stress 

exposure. 

 The  topographic variability, developmental plasticity, and potential vulnerability of higher-

order control networks may be in part understood by evolutionary constraints. Leveraging 

independent data from multiple sources, we found that variability and developmental change in 

topography is maximal in the same executive networks that have undergone the most evolutionary 

expansion (Hill et al., 2010). These networks have low myelin content (Glasser and Van Essen, 

2011) and receive the greatest relative blood flow (Satterthwaite et al., 2014c). As noted in multiple 

prior accounts of cortical organization, higher order executive networks are spatially embedded 

between somatosensory and default mode regions (Margulies et al., 2016). One prominent theory 
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suggests that these systems may have become untethered from the detailed developmental 

programing of highly conserved somatosensory cortex as part of their rapid evolutionary 

expansion, thus allowing for non-canonical circuit properties and enhanced individual variability 

(Buckner and Krienen, 2013). Our results are consistent with such an account, as highly variable 

cortical networks that are under diminished anatomic constraints also evince the most marked 

developmental change and individual variability.  

Several potential limitations and countervailing strengths of the present study should be 

noted. First, all data presented here were cross-sectional, which precludes inference regarding 

within-individual developmental effects. Ongoing follow-up studies will yield informative 

longitudinal data, as will large-scale studies such as the Adolescent Brain and Cognitive 

Development study (Casey et al., 2018). Second, we used data combined across three fMRI runs, 

including two where an fMRI task was regressed from the data. This choice was motivated by 

convergent results from several independent studies, which have shown that functional networks 

are primarily defined by individual-specific rather than task-specific factors (Gratton et al., 2018) 

and that intrinsic networks during task performance are similar to those present at rest (Fair et al., 

2007b). By including task-regressed data, we were able to generate individualized networks using 

27-minutes of high quality data. Prior work suggests that parcellations created using a timeseries 

of this length show high concordance (r~0.92) with those generated using 380 minutes of data 

(Laumann et al., 2015), and that longer timeseries allow for greatly improved prediction of 

individual differences (Elliott et al., 2019). Third, it should be acknowledged that our 

individualized parcellations are data driven, and at present there are no techniques for ascertaining 

neurobiological ground truth in humans. Nonetheless, it is reassuring that our results were robust 

to substantial methodological variation, including the use of a completely independent method for 
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defining individualized network. Fourth, because children tend to move more during the scanning 

session, in-scanner motion continues to be a concern for all functional imaging studies of brain 

development. However, in this study we rigorously followed best practices for mitigating this 

confound, including use of an extensively-benchmarked, top-performing preprocessing pipeline 

and co-varying for motion in all hypothesis testing (Ciric et al., 2018; Satterthwaite et al., 2013a). 

Use of these conservative procedures bolsters confidence that our observed results are not driven 

by the confounding influence of in-scanner motion. 

These limitations notwithstanding, we provide novel evidence that individual-specific 

functional network topography is refined during development and supports executive function. 

These findings also emphasize the relevance of functional network topography for translational 

clinical neuroscience. Notably, higher order networks that undergo the most developmental change 

also are the same networks that have been linked to diverse neuropsychiatric illnesses including 

psychosis, mood disorders, and ADHD (Cole et al., 2014; Xia et al., 2018). As neuropsychiatric 

conditions are increasingly conceptualized as disorders of brain development (Insel, 2014), 

functional topography may be critically important for understanding the neurodevelopmental 

substrates of these debilitating disorders, and allow for early identification and intervention in 

youth at risk. Finally, these results suggest clear next steps for integration with clinical trials of 

personalized neuromodulatory interventions that are targeted using the specific functional 

neuroanatomy of an individual patient.  
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METHOD DETAILS 
 

Participants 

Overall, 1,601 participants were studied as part of the PNC (Satterthwaite et al., 2014a). 

However, 340 subjects were excluded due to clinical factors, including medical disorders that 

could affect brain function, current use of psychoactive medications, prior inpatient psychiatric 

treatment, or an incidentally encountered structural brain abnormality. Among the 1,261 subjects 

eligible for inclusion, 54 subjects were excluded for a low quality T1-weighted image or low 

quality FreeSurfer reconstructions. Of the 1,207 subjects with a usable T1 image and adequate 

FreeSurfer reconstruction, 514 participants were excluded for missing functional data or poor 

functional image quality; all participants were required to have three functional runs which 

passed QA. Specifically, as in prior work (Ciric et al., 2018), a functional run was excluded if 

mean relative RMS framewise displacement was higher than 0.2mm, or it had more than 20 

frames with motion exceeding 0.25mm. This set of exclusion criteria resulted in a final sample of 

693 participants (Supplementary Figure 1), with mean age 15.93 years, SD = 3.23 years; the 

sample included 301 males and 392 females. All study procedures were approved by the 

Institutional Review Boards of both the University of Pennsylvania and the Children’s Hospital 

of Philadelphia. 

 

Cognitive assessment 

The Penn computerized neurocognitive battery (Penn CNB) was administered to all 

participants as part of a session separate from neuroimaging. The CNB consists of 14 tests 

adapted from tasks applied in functional neuroimaging to evaluate a broad range of cognitive 

domains (Gur et al., 2012). These domains include executive function (abstraction and mental 
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flexibility, attention, working memory), episodic memory (verbal, facial, spatial), complex 

cognition (verbal reasoning, nonverbal reasoning, spatial processing), social cognition (emotion 

identification, emotion differentiation, age differentiation), and sensorimotor and motor speed.  

Accuracy for each test was z-transformed. As previously described in detail, factor analysis was 

used to summarize these accuracy scores into three factors (Moore et al., 2015), including 

executive and complex cognition, episodic memory, and social cognition. Here, we focused on 

the executive and complex cognition factor score. However, episodic memory and social 

cognition factor scores were evaluated in specificity analyses. 

 

Image acquisition 

As previously described (Satterthwaite et al., 2014a), all MRI scans were acquired using 

the same 3T Siemens Tim Trio whole-body scanner and 32-channel head coil at the Hospital of 

the University of Pennsylvania. 

Structural MRI: Prior to functional MRI acquisitions, a 5-min magnetization-prepared, rapid 

acquisition gradient-echo T1-weighted (MPRAGE) image (TR = 1810 ms; TE = 3.51 ms; TI = 

1100 ms, FOV = 180 × 240 mm2, matrix = 192 × 256, effective voxel resolution = 0.9 × 0.9 × 1 

mm3) was acquired. 

Functional MRI: We used one resting-state and two task-based (i.e., n-back and emotion 

identification) fMRI scans as part of this study. All fMRI scans were acquired with the same 

single-shot, interleaved multi-slice, gradient-echo, echo planar imaging (GE-EPI) sequence 

sensitive to BOLD contrast with the following parameters: TR = 3000 ms; TE = 32 ms; flip 

angle = 90°; FOV = 192 × 192 mm2; matrix = 64 × 64; 46 slices; slice thickness/gap = 3/0 mm, 

effective voxel resolution = 3.0 × 3.0 × 3.0 mm3. Resting-state scans had 124 volumes, while the 
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n-back and emotion recognition scans had 231 and 210 volumes, respectively. Further details 

regarding the n-back (Satterthwaite et al., 2013b) and emotion recognition (Wolf et al., 2015) 

tasks have been described in prior publications. 

Field map: In addition, a B0 field map was derived for application of distortion correction 

procedures, using a double-echo, gradient-recalled echo (GRE) sequence: TR = 1000ms; TE1 = 

2.69ms; TE2 = 5.27ms; 44 slices; slice thickness/gap = 4/0 mm; FOV = 240 mm; effective voxel 

resolution = 3.8×3.8×4 mm.  

Scanning procedure: Before scanning, to acclimate subjects to the MRI environment, a mock 

scanning session where subjects practiced the task was conducted using a decommissioned MRI 

scanner and head coil. Mock scanning was accompanied by acoustic recordings of the noise 

produced by gradient coils for each scanning pulse sequence. During these sessions, feedback 

regarding head movement was provided using the MoTrack motion tracking system (Psychology 

Software Tools). Motion feedback was given only during the mock scanning session. To further 

minimize motion, before data acquisition, subjects’ heads were stabilized in the head coil using 

one foam pad over each ear and a third over the top of the head.  

 

Image processing 

The structural images were processed using FreeSurfer (version 5.3) to allow for the 

projection of functional timeseries to the cortical surface (Fischl, 2012). Functional images were 

processed using a top-performing preprocessing pipeline implemented using the eXtensible 

Connectivity Pipeline (XCP) Engine (Ciric et al., 2018). This pipeline included (1) correction for 

distortions induced by magnetic field inhomogeneity using FSL’s FUGUE utility, (2) removal of 

the initial volumes of each acquisition (i.e., 4 volumes for resting-state fMRI and 6 volumes for 
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emotion recognition task fMRI), (3) realignment of all volumes to a selected reference volume 

using FSL’s MCFLIRT, (4) interpolation of intensity outliers in each voxel’s time series using 

AFNI’s 3dDespike utility, (5) demeaning and removal of any linear or quadratic trends, and (6) 

co-registration of functional data to the high-resolution structural image using boundary-based 

registration. Images were de-noised using a 36-parameter confound regression model that has 

been shown to minimize associations with motion artifact while retaining signals of interest in 

distinct sub-networks. This model included the six framewise estimates of motion, the mean 

signal extracted from eroded white matter and cerebrospinal fluid compartments, the mean signal 

extracted from the entire brain, the derivatives of each of these nine parameters, and quadratic 

terms of each of the nine parameters and their derivatives. Both the BOLD-weighted time series 

and the artefactual model time series were temporally filtered using a fist-order Butterworth filter 

with a passband between 0.01 and 0.08 HZ to avoid mismatch in the temporal domain (Hallquist 

et al., 2013). Furthermore, to derive “pseudo-resting state” timeseries that were comparable 

across runs, the task activation model was regressed from n-back or emotion identification fMRI 

data (Fair et al., 2007b). The task activation model and nuisance matrix were regressed out using 

AFNI’s 3dTproject.  

For each modality, the fMRI timeseries of each individual were projected to each subject’s 

FreeSurfer surface reconstruction and smoothed on the surface with a 6-mm full-width half-

maximum (FWHM) kernel. The smoothed data was projected to the fsaverage5 template, which 

has 10,242 vertices on each hemisphere (18,715 vertices in total after removing the medial wall). 

Finally, we concatenated the three fMRI acquisitions, yielding timeseries of 27 minutes, 45 

seconds (555 timepoints) in total.  
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Regularized non-negative matrix factorization  

As previously described in detail (Li et al., 2017), we used non-negative matrix 

factorization (NMF) (Lee and Seung, 1999) to derive individualized functional networks. The 

NMF method factors the data by positively weighting cortical elements that covary, leading to a 

highly specific and reproducible parts-based representation (Lee and Seung, 1999; Sotiras et al., 

2017). Our approach was enhanced by a group consensus regularization term that preserves the 

inter-individual correspondence, as well as a data locality regularization term that makes the 

decomposition robust to imaging noise, improves spatial smoothness, and enhances functional 

coherence of the subject-specific functional networks (see Li et al. (2017) for details of the 

method; see also: https://github.com/hmlicas/Collaborative_Brain_Decomposition). As NMF 

requires the input to be nonnegative values, we re-scaled the data by shifting time courses of 

each vertex linearly to ensure all values were positive (Li et al., 2017). To avoid features in 

greater numeric ranges dominating those in smaller numeric range, we further normalized the 

time course by its maximum value so that all the time points have values in the range of [0, 1]. 

Given a group of n subjects, each having fMRI data 𝑋" ∈ 𝑅×, 𝑖 = 1,… , 𝑛, consisting of S 

vertices and T time points, we aimed to find K non-negative functional networks 𝑉" = (𝑉.,/" ) ∈

𝑅1×2 and their corresponding time courses 𝑈" = (𝑈4,/" ) ∈ 𝑅5×2 for each subject, such that 

𝑋" ≈ 𝑈"7𝑉"89 + 𝐸", 𝑠. 𝑡. 𝑈", 𝑉" ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑛, 

where (𝑉")′ is the transpose of (𝑉"), and 𝐸" is independently and identically distributed (i.i.d) 

residual noise following Gaussian distribution with a probability density function of 𝑔(𝑥) =

F
√HIJ

𝑒L
MN

NON. Both 𝑈" and 𝑉" were constrained to be non-negative so that each functional network 

does not contain any anti-correlated functional units (Lee and Seung, 1999). A group consensus 
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regularization term was applied to ensure inter-individual correspondence, which was 

implemented as a scale-invariant group sparsity term on each column of 𝑉" and formulated as 

𝑅P = ∑ R𝑉∙,/
F,..,TR

H,F
U2

/VF = ∑
∑ (∑ (WX,Y

Z )N[
Z\] )]/N_

X\]

(∑ ∑ (WX,Y
Z )N[

Z\]
_
X\] )]/N

2
/VF . 

The data locality regularization term was applied to encourage spatial smoothness and coherence 

of the functional networks using graph regularization techniques (Cai et al., 2011). The data 

locality regularization term was formulated as  

𝑅`" = 𝑇𝑟((𝑉")′𝐿`" 𝑉"), 

where 𝐿`" = 𝐷`" −𝑊`
"  is a Laplacian matrix for subject I, 𝑊`

"  is a pairwise affinity matrix to 

measure spatial closeness or functional similarity between different vertices, and 𝐷`"  is its 

corresponding degree matrix. The affinity between each pair of spatially connected vertices (i.e., 

vertices a and b) was calculated as g1 + 𝑐𝑜𝑟𝑟7𝑋.,j" , 𝑋.,k" 8l /2, where 𝑐𝑜𝑟𝑟(𝑋.,j" , 𝑋.,k" ) is the Pearson 

correlation coefficient between time series 𝑋.,j"  and 𝑋.,k" , and others were set to zero so that 𝑊`
"  

has a sparse structure. We identified subject specific functional networks by optimizing a joint 

model with integrated data fitting and regularization terms formulated by 

𝑚𝑖𝑛
(𝑈", 𝑉") ∑ R𝑋" − 𝑈"7𝑉"8R

o
H + 𝜆` ∑ 𝑅`"T

"VF
T
"VF + 𝜆P𝑅P, 

𝑠. 𝑡. 𝑈", 𝑉" ≥ 0, R𝑉.,/" Rq = 1, ∀1 ≤ 𝑘 ≤ 𝐾, ∀1 ≤ 𝑖 ≤ 𝑛 

where 𝜆` = 𝛽 × 5
2×Tu

 and 𝜆P = 𝛼 ∙ T∙5
2

 are used to balance the data fitting, data locality, and 

group consensus regularization terms, 𝑛` is the number of neighboring vertices, 𝛼 and 𝛽 are free 
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parameters. For this study, we used identical paramters settings as in prior validation studies (Li 

et al., 2017). 

 

Defining individualized networks 

Our approach for defining individualized networks included three steps (see Figure 1). In 

the first two steps, a consensus group atlas was created. In the third step, this group atlas was 

used to define individualized networks for each participant. We decomposed the whole-brain into 

17 networks, which allowed for a direct comparison to other methods used in prior work (Kong 

et al., 2018; Wang et al., 2015; Yeo et al., 2011). 

Step 1: Group network initialization. Although individuals exhibit distinct network 

topography, they are also broadly consistent (Gordon et al., 2017c; Gratton et al., 2018). 

Therefore, we first generated a group atlas and used it as an initialization for individualized 

network definition. In this way, we also ensured spatial correspondence across all subjects. This 

strategy has also been applied in other methods for individualized network definition (Kong et 

al., 2018; Wang et al., 2015). To avoid the group atlas being driven by outliers and to reduce the 

computational cost, a bootstrap strategy was utilized to perform the group-level decomposition 

multiple times on a subset of randomly selected subjects. Subsequently,  the resulting 

decomposition results were fused to obtain one robust initialization that is highly reproducible. 

As previously (Li et al., 2017), we randomly selected 100 subjects and temporally concatenated 

their timeseries, resulting in a timeseries matrix with 55,500 rows (time-points) and 18,715 

columns (vertices). Notably, the choice of sub-sample size did not impact results (sub-samples of 

200 and 300 were also evaluated). We applied the above-mentioned regularized non-negative 

matrix factorization method with a random non-negative initialization to decompose this matrix 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2019. ; https://doi.org/10.1101/694489doi: bioRxiv preprint 

https://doi.org/10.1101/694489
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 

(Lee and Seung, 1999). A group-level network loading matrix V was acquired, which had 17 

rows and 18,715 columns. Each row of this matrix represents a functional network, while each 

column represents the loadings of a given cortical vertex. As previously (Li et al., 2017), this  

procedure was repeated 50 times, each time with a different subset of subjects; this yielded  50 

different group atlases. 

Step 2: Group network consensus. Next, we combined the 50 group network atlases to 

obtain one robust and highly reproducible group network atlas using spectral clustering (Li et al., 

2017). Specifically, we concatenated the 50 group parcellations together across networks and 

acquired a matrix with 850 rows (i.e., functional networks, abbreviated as FN) and 18,715 

columns (i.e., vertices). Inter-network similarity was calculated as 

𝑆"x = 𝑒𝑥 𝑝 z−
{Z|
N

JN
}, 

where 𝑑"x = 1 − 𝑐𝑜𝑟𝑟7𝐹𝑁", 𝐹𝑁x8, 𝑐𝑜𝑟𝑟7𝐹𝑁", 𝐹𝑁x8 is Pearson correlation coefficient between 𝐹𝑁"   

and 𝐹𝑁x, and 𝜎 is the median of 𝑑"x across all possible pairs of FNs. Then, we applied normalized-

cuts (Cai et al., 2011) based spectral clustering method to group the 850 FNs into 17 clusters. For 

each cluster, the FN with the highest overall similarity with all other FNs within the same cluster 

was selected as the most representative. The final group network atlas was composed of the 

representatives of these 17 clusters.  

Step 3: Individualized networks. In this final step, we derived each individual’s specific 

network atlas using NMF based on the acquired group networks (17 ´ 18,715 loading matrix) as 

initialization and each individual’s specific fMRI times series (555 ´ 18,715 matrix). See Li et al. 

(2017) for optimization details. This procedure yielded a loading matrix V (17 ´ 18,715 matrix) 

for each participant, where each row is a FN, each column is a vertex, and the value quantifies 
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the extent each vertex belongs to each network. This probabilistic (soft) definition can be 

converted into discrete (hard) network definitions for display and comparison with other methods 

(Kong et al., 2018; Wang et al., 2015; Yeo et al., 2011) by labeling each vertex according to its 

highest loading.  

 

Multi-session Hierarchical Bayesian Model (MS-HBM)  

To evaluate whether our results were robust to methodological variation, we also applied a 

a recently introduced multi-session hierarchical Bayesian model (MS-HBM, 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong20

19_MSHBM) that has been used for defining individualized networks. See Kong et al. (2018) for 

the details of the method. Using a group atlas, this method calculates inter-subject resting-state 

functional connectivity (RSFC) variability, intra-subject RSFC variability, and finally parcellates 

for each single subject based on this prior information. We used the initialization values 

calculated using data from the Genomic Superstruct Project (GSP) dataset (Holmes et al., 2015), 

which were released along with Kong et al. (2018) 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Kong20

19_MSHBM/examples/input), as prior input of the single parcellation. Notably, the GSP was 

acquired using the identical fMRI sequences and scanning platform as the PNC. MS-HBM 

requires functional connectivity profiles of multiple sessions as input; here, the three fMRI runs 

were entered as three separate sessions. As in Kong et al. (Kong et al., 2018), we used MS-HBM 

to define 17 discrete individualized networks for each participant. Finally, we used the adjusted 

rand index (ARI) to calculate the similarity between the networks from MS-HBM and 

discretized networks from NMF. 
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Spatial permutation testing (spin test) 

In order to evaluate the significance of the alignment between individualized networks 

derived using NMF and MS-HBM, we used a spatial permutation procedure called the spin test 

(Alexander-Bloch et al., 2018; Gordon et al., 2016; Sotiras et al., 2017; Vandekar et al., 2015) 

(https://github.com/spin-test/spin-test). The spin test is a spatial permutation method based on 

angular permutations of spherical projections at the cortical surface. Critically, the spin test 

preserves the spatial covariance structure of the data and as such is far more conservative than 

randomly shuffling locations, which destroys the spatial covariance structure of the data and 

produce an unrealistically weak null distribution. In contrast, the spin test generates a null 

distribution of randomly rotated brain maps that preserve spatial features of the original map. 

To evaluate the significance of the alignment between NMF and MS-HBM based 

networks, we compared the ARI of two parcellations to the ARI of 1,000 random rotations, 

generating a null distribution that preserves the spatial covariance structure. The permutation-

based p-value was calculated as the proportion of times that the observed ARI was higher than 

the null distribution of ARI values from rotated parcellations. As described below, we also used 

the spin test to evaluate the significance of the alignment between across-subject parcellation 

variability to informative maps of brain organization.   

 

Homogeneity of functional networks 

Network homogeneity is a commonly used method for evaluating the success of a 

functional parcellation (Gordon et al., 2016; Kong et al., 2018). As previously, network 

homogeneity was calculated as the average of the Pearson’s correlations between the time series 
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of all pairs of vertices within each network (Kong et al., 2018). To summarize network 

homogeneity for comparisons across methods, we averaged the homogeneity value across 

networks. 

 

Across-subject variability of network topography 

Prior studies of adults have consistently reported that across-subject variability of 

functional networks is high in higher-order association networks and lower in primary 

somatomotor and visual networks (Gordon et al., 2017b; Gordon et al., 2017c; Kong et al., 2018; 

Li et al., 2019; Mueller et al., 2013; Wang et al., 2015). Here we evaluated this observation in our 

sample of youth. For each of 17 networks, we calculated the median absolute deviation of 

loading values across all subjects for each vertex. We used this non-parametric measure of 

variance as loadings did not follow normal distribution. Next, we averaged the 17 median 

absolute deviation maps to generate the final across-network variability map that quantified the 

across-subject parcellation variance at each vertex. 

Additionally, we also calculated the network variability of the discretized network atlas, 

allowing for further validation of our main results and better comparison to other methods (Kong 

et al., 2018). Specifically, we used entropy to define variability (Hoskisson et al., 1993):  

𝑉(𝑥) = −∑ 𝑝(𝑥") 𝑙𝑜𝑔H 𝑝(𝑥")�Z , 

where x is a vertex; xi is a value of the vertex x, which has 17 values; p(xi) is the proportion of 

subjects have values xi in the vertex x. If a vertex has same values for all subjects, V(x) will be 0, 

indicating there is no variance of this vertex.  
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Associations of network topography with development and executive function 

We evaluated mass-univariate assocations between network topography and both 

development and executive function at two scales: total relative network representation and at 

each vertex.  As an initial step, for each network, we summed the loading of all vertices to 

quantify the relative presence of this network on the cortex. Notably, as this was conducted in 

normalized template space, this measure was not impacted by individual differences in structural 

surface area. To model both linear and nonlinear developmental effects, we used generalized 

additive models (GAMs) with penalized splines (Wood, 2004). Importantly, the GAM estimates 

nonlinearities using restricted maximum likelihood (REML), penalizing nonlinearity in order to 

avoid over-fitting the data. We included sex and in-scanner head motion during scanning as 

model covariates. As we considered three functional runs, in-scanner motion was summarized as 

the grand mean of the mean relative RMS displacement of each functional run. To evaluate 

assocations with executive function, the executive function factor score was added as another 

model term with covariates as above (including a spline of age). Multiple comparisons were 

accounted for using the Bonferroni method.  

To evaluate more complex topographic reconfiguration, we next evaluated each network 

at each vertex. For each network, we calculated associations between network loading and age 

for each vertex using GAMs while controlling sex and in-scanner head motion.  Similarly, we 

calculated associations between network loadings and executive function  while controlling sex, 

head motion, and a spline of age. Given the large number of multiple comparisons, for 

vertexwise analyses we used the False Discovery Rate (Q < 0.05).  

 

Prediction of brain maturity and executive function performance from spatial topography 
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Having tested if network topography was related to development and executive function in 

mass-univariate fashion, we next evaluated whether the overall multivariate spatial pattern of 

network topography encodes brain maturity or executive function. To address this question, we 

used ridge regression with nested two-fold cross validation (2F-CV, see Fig. S3) to test if 

multivariate network topography pattern could be used to identify an unseen individual 

participant’s age or executive function in an unbiased fashion. Accordingly, we combined the 17 

network loading maps into a feature vector to represent the multivariate spatial pattern of 

network topography of each individual.  

Ridge regression: A linear regression model was adopted to predict the brain maturity and 

executive function performance using the pattern of whole-brain spatial topography of 

parcellations. The linear model can be formalized as follows: 

𝑦" = ∑ 𝛽x𝑥",x
�
xVF + 𝛽�, 

where yi is the age of the ith individual, p is the number of features, xi,j is the value of the jth 

feature of the ith subject, and βj is the regression coefficient. 

To avoid over-fitting and to improve the prediction accuracy, we used ridge regression.  

Ridge regression uses an L2 penalty during model fitting; we have previously shown often out-

performs other methods for regression problems using high-dimensional imaging data and 

computationally more efficient than other methods (Cui and Gong, 2018; Hoerl and Kennard, 

1970). The objective function is: 

𝑚𝑖𝑛
�
�(𝑓(𝑥") − 𝑦")H
�

"VF

+ 𝜆���𝛽x��
H

�

xVF

. 

This technique shrinks the regression coefficients, resulting in better generalizability for 
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predicting unseen samples. In this algorithm, a regularization parameter 𝜆 is used to control the 

trade-off between the prediction error of the training data and L2-norm regularization, i.e., a 

trade-off of penalties between the training error and model complexity. A large 𝜆 corresponds to 

a greater penalty on model complexity, and a small 𝜆 represents a greater penalty on training 

error.  

Prediction framework: We applied a nested 2-fold cross validation (2F-CV), with outer 

2F-CV estimating the generalizability of the model and the inner 2F-CV determining the optimal 

parameter 𝜆 for the ridge regression model (see Figure S6 for schematic of the prediction 

framework).   

Outer 2F-CV: In the outer 2F-CV, the data was divided into 2 subsets. Specifically, we 

sorted the subjects according to the outcome (i.e., age or executive performance) and then 

assigned the individuals with an odd rank to subset 1 and the individuals with an even rank to 

subset 2 (Cui and Gong, 2018; Cui et al., 2018). We intitally used subset 1 as the training set, 

with subset 2 used as the test set. Each feature was linearly scaled between zero and one across 

the training dataset, and the scaling parameters were also applied to scale the testing dataset (Cui 

and Gong, 2018; Erus et al., 2015). We applied an inner 2-fold cross validation (2F-CV) within 

training set to select the optimal 𝜆 parameter. Based on the optimal 𝜆, we trained a model using 

all subjects in the training set, and then used that model to predict the outcome of all subjects in 

the testing set. Analogously, we used subset 2 as the training set and subset 1 as the test set, and 

repeated the above procedure. Across the testing subjects for each fold, the partial correlation and 

mean absolute error (MAE) between the predicted and actual outcome was used to quantify the 

prediction accuracy. In evaluation of the prediction of participant age, we controlled for sex and 

in-scanner head motion by calculating a partial correlation. Furthermore, we additionally 
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controlled for participant age (in addition to sex and motion) when calculating the partial 

correlation between actual and predicted executive function. Here, we used the scikit-learn 

library to implement ridge regression (http://scikit-learn.org) (Pedregosa et al., 2011). 

Inner 2F-CV: Within each loop of the outer 2F-CV, we applied inner 2F-CVs to determine 

the optimal 𝜆. Specially, the training set for each loop of the outer 2F-CV was further partitioned 

into 2 subsets according to their rank of the outcome (i.e., age or executive performance), as in 

the outer loop (i.e., subjects with odd rank in subset 1 and subjects with even rank in subset 2). 

One subset was selected to train the model under a given 𝜆 in the range [2-10, 2-9, ..., 24, 25] (i.e., 

16 values in total) (Cui and Gong, 2018; Hsu et al., 2003), and the remaining subset was used to 

test the model. This procedure was repeated 2 times such that each subset was used once as the 

testing dataset, resulting in 2 inner 2F-CV loops in total. For each inner 2F-CV loop, the 

correlation r between the actual and predicted outcome and the mean absolute error (MAE) were 

calculated for each 𝜆, and averaged over each fold. The sum of the mean correlation r and 

reciprocal of the mean MAE was defined as the inner prediction accuracy, and the 𝜆 with the 

highest inner prediction accuracy was chosen as the optimal 𝜆 (Cui and Gong, 2018; Cui et al., 

2018). Of note, the mean correlation r and the reciprocal of the mean MAE cannot be summed 

directly, because the scales of the raw values of these two measures are quite different. 

Therefore, we normalized the mean correlation r and the reciprocal of the mean MAE across all 

values and then summed the resultant normalized values. 

Significance of prediction performance. To evaluate if prediction performance (i.e., the 

partial correlation r and MAE) were significantly better than expected by chance, we performed 

a permutation test (Mourao-Miranda et al., 2005). Specifically, prediction procedure was re-

applied 1,000 times. In each run, we permuted the outcome (i.e., age or executive function) 
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across the training samples without replacement. The significance was determined by ranking the 

actual prediction accuracy versus the permuted distribution; the  p-value of the partial correlation 

r was the proportion of permutations that showed a higher value than the actual value for the real 

data. Similarly, the p-value of the MAE was the proportion of permutations that showed a lower 

value than the actual value for the real data.  

Interpreting model feature weights. The features with a nonzero regression 

coefficient/weight in the model trained using all subjects can be understood as contributing 

features for the prediction model (Cui and Gong, 2018; Mourao-Miranda et al., 2005). Absolute 

value of the weight quantified the contribution of the features to the model (Mourao-Miranda et 

al., 2005). To understand which network contributed the most to the prediction, we summed the 

absolute weight of all vertices in each network. Specifically, the vertices positively related to the 

outcome and that negatively related to the outcome were summed separately. We further tested if 

the veretices with small mean loadings, which were localized on the border of functional 

networks, contributed more to the prediction. We calculated the Pearson correlation between the 

absolute contribution weight and network loadings and used spin test to evaluate its significance. 

Finally, we tested if the spatial contribution of locations to the prediction was constrained by the 

variability of functional topography. As each vertex had 17 loading values (one for each 

network), we summed the absolute weight across all 17 networks to summarize the prediction 

weight of this vertex, which represents the importance of the vertex to the prediction, and then 

calculated the Pearson correlation between the summarized vertex weight and network 

variability across all vertices.  

 

Validation of multivariate prediction analysis 
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Randomly split 2F-CV: In the above prediction analysis, we split subjects into two halves 

according to the rank of the outcome (i.e., age or executive performance). To validate that our 

split was representative, we tested the prediction accuracy using repeated random 2F-CV. 

Specifically, we split the subjects randomly into two halves for both outer 2F-CV and inner 2F-

CV, and calculated the mean partial correlation r and MAE across two folds. Because the split 

was random, we repeated this procedure 100 times and averaged the partial correlation 

(accounting for covariates) and MAE across the 100 times to determine the overall prediction 

accuracy. We used permutation testing to determine if the acquired prediction accuracy was 

significantly better than acquired by chance. Specifically, we repeated the random 2F-CV 1,000 

times, but each time we permuted the outcome across the training data. Finally, we compared the 

actual mean partial correlation r and mean MAE to that of the null distrubtion. 

Prediction by discrete network parcellations: Having demonstrated that continuously-

weighted functional topography predicts age and executive performance, we next tested if the 

pattern of discrete network labels could predict age and executive performance. We extracted the 

whole-brain discrete network labels into a feature vector to represent the multivariate spatial 

pattern of network topography of each individual. Based on these features, we applied the above 

2F-CV framework to predict age and executive performance using multivariate ridge regression. 

As network labels are categorical features, we first encoded each vertex feature as a one-hot 

numeric array (https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html), which was 

further used as input of the prediction analysis. This framework was applied to discrete networks 

from both NMF and MS-HBM.   
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Prediction of other cognitive measurements by network loadings: As a final step, we 

evaluated if the associations with network topography were specific to executive function. We 

used the same ridge regression framework and vertexwise loading maps to try to predict factor 

scores summarizing memory accuracy and social cognition accuracy.   

 

Visualization 

Connectome Workbench (version: 1.3.2) provided by the human connectome project 

(https://www.humanconnectome.org/software/connectome-workbench; Marcus et al. (2013)) was 

used to visualize the brain surface.  

 

Data & code availability 

The PNC data is publicly available in the Database of Genotypes and Phenotypes: 

accession number: phs000607.v3.p2; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000607.v3.p2. All analysis code is available here: 

https://github.com/ZaixuCui/pncSingleFuncParcel, with detailed explanation in 

https://github.com/ZaixuCui/pncSingleFuncParcel/wiki. 
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SUPPLEMENTARY FIGURES 
 

 

 
 
Supplementary Figure 1. Sample construction. The Philadelphia Neurodevelopmental Cohort 
(PNC) included 1,601 participants who completed neuroimaging. Of these, 340 subjects were 
excluded owing to clinical factors, such as medical co-morbidity or use of psychotropic 
medication. Additionally, 568 subjects were excluded because of low quality or missing structural, 
resting-state, n-back, or emotion identification imaging data (details in Online Methods). The final 
sample consisted of the remaining 693 subjects.  
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Supplementary Figure 2. Individualized parcellation maximizes functional homogeneity within 
networks. The homogeneity of timeseries within each network is a common metric of parcellation 
quality. Both NMF and an alternative method for individualized network parcellation (MS-HBM) 
out-performed the group atlas from either NMF or the canonical 17 networks defined by (Yeo et 
al., 2011). All methods displayed greater within-network homogeneity than a null distribution of 
randomly rotated individualized networks that preserved the data’s spatial covariance structure. 
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Supplementary Figure 3. Across-subject variability of network topography of discrete network 
parcellations created by NMF (A) and MS-HBM (B).  
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Supplementary Figure 4. Vertex-wise associations with age for all networks (FDR Q < 0.05); 
underlay depicts group network atlas.  
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Supplementary Figure 5. Schematic overview of one outer loop of the nested 2-fold cross-
validation (2F-CV) prediction framework. All subjects were divided into two balanced halves 
according to the rank of the outcome (i.e., age or executive performance), with the first half used 
as a training set and the second half used as a testing set. Each feature was linearly scaled between 
zero and one across the training dataset; these scaling parameters were applied to the testing 
sample. An inner 2F-CV was applied within the training set to select the optimal 𝜆 parameter. 
Based on the optimal 𝜆, we trained a model using all subjects in the training set, and then used that 
model to predict the outcome of all subjects in the testing set.   
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Supplementary Figure 6. The vertices with the highest (first 25%) absolute regression weight in 
the multivariate prediction model of brain maturity; underlay depicts group network atlas.  
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Supplementary Figujre 7. The absolute contribution weight (first 25%) was negatively 
correlated with group network loadings across vertices. Significance testing used the 
conservative spatial permutation procedure (spin test). 
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Supplementary Figure 8. Supplementary analyses for brain maturity prediction using 
multivariate pattern of functional topography. (A) Evaluated by repeated random 2-fold cross-
validation (2F-CV), functional topography of network loadings predict an unseen individual’s 
brain maturity significantly higher than by chance. Black histogram is the distribution of prediction 
accuracy of repeated random 2F-CV, and the inset histogram displays the distribution of prediction 
accuracy from a permutation test. There was no overlap between these distributions. (B) Functional 
topography of discrete NMF parcellations predict brain maturity. (C) Functional topography of 
discrete MS-HBM parcellations predict brain maturity.  
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Supplementary Figure 9. Vertex-wise associations with executive performance for all networks 
(FDR Q < 0.05); underlay depicts group network atlas. 
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Supplementary Figure 10. The vertices with the highest (top 25%) absolute regression weight 
in the multivariate prediction model of executive performance; underlay depicts group network 
atlas.   
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Supplementary Figure 11. Supplementary analyses of executive function prediction using 
multivariate patterns of functional topography. (A) Evaluated by repeated random 2-fold cross-
validation (2F-CV), functional topography of network loadings predict an unseen individual’s 
executive performance significantly higher than by chance. Black histogram is the distribution of 
prediction accuracy of repeated random 2F-CV, and the inset histogram displays the distribution 
of prediction accuracy from a permutation test. There was no overlap in these distributions.  (B) 
Functional topography of discrete NMF parcellations predicts unseen individuals’ executive 
performance. (C) Functional topography of discrete MS-HBM parcellations predicts unseen 
individuals’ executive performance.  
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