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Abstract

Phylogenetic networks extend the phylogenetic tree structure and
allow for modeling vertical and horizontal evolution in a single frame-
work. Statistical inference of phylogenetic networks is prohibitive and
currently limited to small networks. An approach that could signif-
icantly improve phylogenetic network space exploration is based on
first inferring an evolutionary tree of the species under consideration,
and then augmenting the tree into a network by adding a set of “hor-
izontal” edges to better fit the data.

In this paper, we study the performance of such an approach on
networks generated under a birth-hybridization model and explore its
feasibility as an alternative to approaches that search the phyloge-
netic network space directly (without relying on a fixed underlying
tree). We find that the concatenation method does poorly at ob-
taining a “backbone” tree that could be augmented into the correct
network, whereas the popular species tree inference method ASTRAL
does significantly better at such a task. We then evaluated the tree-to-
network augmentation phase under the minimizing deep coalescence
and pseudo-likelihood criteria. We find that even though this is a
much faster approach than the direct search of the network space,
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the accuracy is much poorer, even when the backbone tree is a good
starting tree.

Our results show that tree-based inference of phylogenetic net-
works could yield very poor results. As exploration of the network
space directly in search of maximum likelihood estimates or a repre-
sentative sample of the posterior is very expensive, significant improve-
ments to the computational complexity of phylogenetic network infer-
ence are imperative if analyses of large data sets are to be performed.
We show that a recently developed divide-and-conquer approach sig-
nificantly outperforms tree-based inference in terms of accuracy, albeit
still at a higher computational cost.

1 Introduction

As evidence of reticulation (hybridization, horizontal gene transfer, etc.) in
the evolutionary histories of diverse sets of species across the Tree (or, more
appropriately in our context, Network) of Life continues to grow, increasingly
sophisticated methods for phylogenetic network inference are being developed
to incorporate processes such as incomplete lineage sorting (ILS), gene du-
plication and loss, and gene flow [20, 21, 15, 16, 24, 28, 27]. These methods,
which are mostly statistical in nature, are computationally prohibitive due,
in part, to the complex space of phylogenetic networks that is explored. This,
in turn, has limited the applicability of such methods to data sets with small
numbers of taxa, loci, and reticulation events. To ameliorate this compu-
tational challenge, a divide-and-conquer approach was recently introduced
[26], where this accurate, yet computationally expensive, method could be
used to infer small networks that are then merged to produce a phylogenetic
network on the full data set. The accuracy of the method notwithstanding,
the inference of small networks remained a computational bottleneck.

An alternative approach that could be considered would first infer an un-
derlying “species tree”, and then augment this tree into a network by adding
reticulations to it to fit the data under some criterion that incorporates retic-
ulation. The benefit of such an approach is that it would utilize one of a wide
array of species tree inference methods that are both accurate and efficient,
thus drastically reducing the space of phylogenetic networks to explore by
limiting them to those “based” on inferred trees. Indeed, the question of
whether a species tree can be accurately inferred in the presence of reticula-
tion has been partially explored from theoretical [12] as well as empirical [4]
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angles. An extensive simulation study on small data sets demonstrated the
problems with inferring “the” species tree in the presence of high rates of
gene flow [13]. However, a more general question to ask is whether tree infer-
ence methods can infer a tree, not necessarily the species tree (if one insists
on using this designation), that can be augmented into the correct network.
Along the same lines, the class of tree-based networks was introduced [6] and
the set of trees that characterize a phylogenetic network in the presence of
ILS was revisited [29].

In this paper, we study the performance of tree-based inference of phylo-
genetic networks by exploring two popular methods for inferring a start tree
and two network criteria that scale to evaluating large networks. We consider
synthetic networks that are generated under a birth-hybridization model and
data simulated under the multispecies network coalescent [19]. We find that
the concatenation method does poorly at inferring a backbone tree of the
network, whereas the commonly used method ASTRAL [23] performs signif-
icantly better at this task. However, even when a correct network-backbone
tree is used, augmenting such a tree into the correct network is a challenging
task and results in poor accuracy under both the pseudo-likelihood and min-
imizing deep coalescences criteria of [21, 22]. It is worth noting that the size
of phylogenetic networks we consider in our study makes use of the likelihood
criterion of [20] infeasible. We demonstrate that the divide-and-conquer ap-
proach of [26] yields more accurate results, yet is orders of magnitude slower
than tree-based inference. We demonstrate that combining the strengths of
the two—the speed of tree-based inference and the accuracy of the divide-
and-conquer approach—could provide a promising approach to large-scale
network inference. Finally, our implementations of tree-based phylogenetic
network inference are implemented in PhyloNet [14, 17].

2 Background

A phylogenetic network ¥ on a set X of taxa is a rooted, directed,
acyclic graph (DAG) whose leaves are bijectively labeled by X. For ¥ =
(V(¥), E(V)), the set V() of nodes contains a root node with in-degree 0
and out-degree 2, tree nodes with in-degree 1 and out-degree 2, reticulation
nodes with in-degree 2 and out-degree 1, and leaf nodes with in-degree 1 and
out-degree 0. If v is a reticulation node, then the two edges incident into it
are reticulation edges, and all edges incident into tree nodes are tree edges. In
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a statistical setting, reticulation edges are associated with inheritance prob-
abilities, and all edges have lengths, so that the phylogenetic network defines
a distribution over gene trees under the multispecies network coalescent [20].

A phylogenetic tree T can be viewed as a phylogenetic network with
no reticulation nodes. There is a natural relationship between a phylogenetic
network and the set of trees it displays.

Definition 1 A tree T on set X of taza is displayed by a phylogenetic net-
work U (also on set X of taza) if T can be obtained from ¥ by removing a
set of reticulation edges followed by forced contraction of every node v of in-
and out-degree 1, where the edges (u,v) and (v,w) are replaced by a single
edge (u,w) and v is deleted.

We denote by T (V) the set of all trees displayed by W.

Several methods for inference of phylogenetic networks in the presence of
incomplete lineage sorting have been devised. These include parsimony meth-
ods [18], maximum likelihood methods [19, 20], maximum pseudo-likelihood
methods [21, 27], and Bayesian methods [15, 16, 24, 28]. These methods have
poor scalability in terms of time and memory requirements and are appli-
cable to very small data sets. The pseudo-likelihood methods were devised
to ameliorate the problem of computing the full likelihood of phylogenetic
networks, but these suffer from the large network space they need to explore.

One potential approach to tackling the computational requirements of
phylogenetic network inference is based on first inferring a “species tree” and
then adding a set of reticulation edges to it, in the hope of obtaining the true
network. Indeed, as discussed above, the plausibility of this approach has
been addressed, albeit in a limited fashion [4, 12, 6, 29, 13]. If this approach
works in practice, it would tremendously reduce the phylogenetic network
space to search and, consequently, scale phylogenetic network inference to
much larger data sets. The goal of this work is to systematically study this
approach on phylogenetic networks generated under a birth-hybridization
model to assess its potential. Next, we describe our implementation of this
approach.

3 Methods

Consider a data set S = (S1,5,...,5,) and G = (g1, 92, - - -, Gm), Where S;
is the alignment of a set of orthologous sequences of locus ¢ in the genomes

4


https://doi.org/10.1101/693986
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/693986; this version posted July 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

of a set X of taxa, and g; is a rooted gene tree for locus ¢ inferred from .S;.
Throughout this work we assume that loci are independent and each locus
is recombination-free.

Generally, a backbone-based approach to inferring a phylogenetic network
U on set X of taxa follows two steps.

Step 1. Build a start tree T, either using the sequences S directly or
using the estimated gene trees G.

Step 2. Augment the start tree T into a network ¥ by adding a set
E,. of reticulation edges to it to optimize some criterion given either &

or G.

A desired property of the start tree T" in Step 1 is that it is a backbone of
the network, that is, it is displayed by the true network so that the latter is
obtainable by the backbone-based approach. This property is illustrated in
Figure 1.

Figure 1: From a backbone tree to a phylogenetic network. (a) Phylo-
genetic network W. (b) A backbone tree that is displayed by ¥ and, thus, can
be augmented into the true network. (¢) A tree that cannot be augmented
to produce ¥ and therefore is not a backbone of the network.

3.1 Step 1: Building a start tree

As we only consider reticulation and incomplete lineage sorting (ILS) in this
paper (that is, we do not consider gene duplication and loss, for example),
we considered two methods that are heavily used to infer a species tree when
incongruence is suspected to be due to ILS. The first method infers a tree
on the concatenation of the sequence data S. For this purpose, we used
IQ-TREE [9] to infer a tree from the concatenated sequences. The second
method infers a species tree from individual gene trees in G. For this purpose,
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we used ASTRAL-III [23]. Both of these methods have been shown to have
good efficiency and accuracy in practice.

3.2 Step 2: Augmenting the start tree into a network

Let U be a phylogenetic network (including the case where W is a tree).
Adding a reticulation edge to W is done by selecting two edges (u,v) and
(x,y) in U, replacing them by (u,m), (m,v), (x,m'), and (m',y), and adding
an edge (m,m’). This operation results in creating a new reticulation node,
m/, in the phylogenetic network ¥ and results in a network with one more
reticulation node than those in W. The reticulation edge can be added to
initial edges or added edges. Hence, obtained networks are not limited to
tree-based networks.

Consider an optimality criterion ® that is defined on a given network
U and input data Z (Z could be sequences or trees, and the criterion has
to be appropriate for the type of data used). Given a maximum number
of reticulation nodes to consider M AX, one implementation of tree-based
inference of networks follows the steps of Algorithm StepwiseAugment,
given a start tree 7.

Algorithm 1: StepwiseAugment
v =T,
for j =0to (MAX —1) do
Wit i
foreach U’ obtained by adding a reticulation edge to U7 do
if ®(V',7) is better than ®(V/ ™' 7) then
R CARRER
end

end

© W N e oA W N R

end

return UM4X.

=
o

In other words, we exhaustively evaluate the optimal networks with j 41
reticulations that can be obtained by adding a single reticulation to the
optimal network found with j reticulations. It is important to highlight here
that this implementation is not the most exhaustive way to augment a tree
into a network with a given number of reticulations. The most exhaustive
way of augmenting a tree on n leaves into a phylogenetic network with k
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reticulations considers Hf;ol (*"~2*%) networks, which is O(n?*) when k < n.

Our implementation reduces this number to Zf:_ol (") = O(kn?).

Another approach to augment a start tree into a network is to heuris-
tically search for reticulation edges to add in a local search fashion. We
implemented LocalSearchAugment which starts with a tree T" and then
randomly chooses one of a set of operations to apply in order to augment the
current network into a new candidate network. If the resulting network has
a better optimality score, it is adopted as the new current network and the
search continues; otherwise, the move is rejected (or rejected with a proba-
bility) and a new candidate network is considered. The set of moves we con-
sidered consist of: (i) adding a new reticulation edge; (ii) removing one of the
reticulation edges that have been added; (iii) relocating the head of an added
reticulation edge; (iv) relocating the tail of an added reticulation edge; (v)
reversing the direction of an added reticulation edge; (vi) replacing an added
reticulation edge with a new one; and, (vii) modifying an edge parameter like
the inheritance probability and branch length in the network (if criterion @
requires such parameters). We define a probability distribution on this set of
moves, and in each iteration of the local search, a move is selected randomly
based on this distribution. The heuristic search applies random restarts to
ameliorate the local optima issue, where each search stops when the number
of consecutively rejected moves (they would be rejected because the proposed
solution candidates do not improve the optimality criterion) reaches a pre-set
threshold. It is important to emphasize that LocalSearchAugment never
removes any of the edges that exist in the start tree 7.

For ®, we considered two criteria in this study: the pseudo-likelihood
criterion of [21] and the minimizing deep coalescence (MDC) criterion of
[18]. Both of these criteria use gene trees as input data. The likelihood
criterion of [20] is infeasible to compute on the data sets we consider in this
study.

3.3 Evaluating the inferred trees and networks

While several dissimilarity measures exist for comparing networks and, by
extension, trees and networks, e.g., [2, 3, 8], these measures are very sensitive
to the misplacement of reticulation nodes, even in cases when networks agree
on much of their structure. Therefore, in this paper, we used two measures
of dissimilarity for tree-to-network and network-to-network comparisons.
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Letting RF be the Robinson-Foulds distance [11] (the size of the symmet-
ric difference between the two trees, divided by 2), the dissimilarity between
a tree T" and a network W is:

: !

D(T, V) = Tlren%?ql) RE(T,T"). (1)
For network-to-network comparison, we can extend the notion of display-
ing to networks: We say phylogenetic network W’ is displayed by phylogenetic
network W if U’ can be obtained by removing a set of reticulation nodes and
applying forced contraction to ¥ (but unlike in the case of trees, some retic-
ulation nodes remain in the network). We denote by N (V) the set of all
networks displayed by ¥ (obviously, 7(¥) C N (¥)). We denote by r(¥) the
number of reticulations and ¢t = 2|X’| — 1 the number of nodes for any dis-
played tree of U. Let ¥, and ¥; be true and inferred networks, respectively,
and U, € N(¥,) and ¥, € N (;) be the two displayed networks that have the
smallest distance d(W}, ¥}), as computed by [8], over all displayed networks of
the two networks W, and ¥;, and D(W;, ¥;) = Mg, A (W))W, N (T;) (v, vh).
If more than one pair of displayed networks have the smallest distance, a pair

with the largest number of reticulation nodes is selected. We now define:

e True positives: TPV, U;) =2 - r(W}) + ¢ — d(¥}, V).

e True positives rate: TPR(V;, ¥;) = TPV, V) /(t +2-r(¥y)).
e False positives: FP(U,, V;) = 2(r(¥;) — (V) + d(¥}, ¥)).

e False positives rate: FPR(VU,, V;) = FP(V,, ¥,)/(t+ 2-r(¥;)).
e False negatives rate: FNR(VU,, ¥;) =1 —TPR(V,;, ;).

For example, if the networks of Figure 1(a) and Figure 1(c) are the true
network W, and inferred network W,  respectively, then U, and W, are the
networks of Figure 1(b) and Figure 1(c), respectively. In this case, we have
AW, W) =3,r(V,)=0,TP =4, FP =3, TPR=4/9, and FPR = 3/7.

4 Results and Discussion

To assess the performance of tree-based inference of phylogenetic networks,
we tested both methods described above on simulated data. Furthermore,
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we analyzed a biological data set and contrasted the results to those obtained
by other methods.

For the simulated data, we used the same 24 networks used in [26], as
those were generated under a birth-hybridization model and varied in their
complexity. For each integer in [0, 5], four networks in the data set have that
number of reticulation nodes. Two of the 24 networks are not tree-based [25].

As in [26], these networks were divided into 3 groups of hardness (in terms
of inference): 8 “easy” (E), 8 “medium” (M), and 8 “hard” (H). Each network
has 16 taxa and 1 outgroup. For each network, we generated 100 gene trees
with two individuals per species using the program ms [7], and then generated
sequences of length 1000 using Seqg-gen [10] under the GTR model. We set
the population mutation rate at 0.02, base frequencies of A, C, G and T at
[0.2112,0.2888, 0.2896, 0.2104], respectively, and the transition probabilities
at [0.2173,0.9798,0.2575,0.1038, 1,0.2070]. We then ran the aforementioned
methods on the data. In terms of the complexity of the data sets, the number
of distinct gene trees (out of 100) in the 24 data sets varied between 69 and
100. That is, the rate of ILS is quite high.

4.1 Accuracy of the start tree
4.1.1 Performance of the concatenation method

By concatenating the sequence data of all loci, we obtained for each net-
work 34 sequences of length 100000 each (since we have two individuals per
species). We then inferred a tree on the concatenated sequences of each of
the 24 data sets using IQ-TREE [9]. As there are 34 taxa in the resulting
trees but there are only 17 species, we first identified the data sets where the
two individuals from each of the 17 species form a monophyletic group. We
found that for 21 data sets, the resulting tree group the two individuals from
each species monophyletically, whereas in the three remaining data sets, the
individuals of some species were not monophyletic. For the 21 data sets, we
“collapsed” the two individuals in the inferred tree into a single leaf with the
respective taxon name so as to compare the accuracy of the inferred “species
tree” to the true phylogenetic network.

Of the 21 data sets, we found that 12 of them resulted in species trees that
are displayed by, or are backbone trees of, their corresponding true network.
The remaining nine trees had an average distance, based on Eq. (1), of 3.33.

These results illustrate that in the presence of ILS and hybridization,
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concatenation has a poor performance; only in half of the 24 data sets did
the method infer a tree that could be augmented into the true network.

4.1.2 Performance of ASTRAL

We then turned to assessing the accuracy of species trees inferred by ASTRAL-
[T [23]. We inferred a gene tree on the sequence alignment of each locus using
IQ-TREE [9] and used these inferred gene trees as the input set G of gene
trees to ASTRAL-III.

ASTRAL-IIT had a much better performance than species tree inference
on the concatenated sequences. In fact, ASTRAL-III inferred a backbone tree
that could be augmented into the respective true network in 87.5% of the
data sets. More specifically, 21 out of 24 species trees inferred by ASTRAL-
ITI are backbone trees of the true networks. For the 3 data sets where the
inferred tree could not serve as a backbone of the true network, the average
distance between the trees and the true networks, as computed by Eq. (1),
was 2.67.

This shows that the start tree built from inferred gene trees using ASTRAL-
IIT is much better than concatenation using IQ-TREE. This is because the
rate of ILS is high, and ASTRAL-III considers the gene tree topology con-
flicts.

To explore whether the performance of ASTRAL-III would improve with
more loci, we increased the number of gene trees simulated on each network to
1,000 and used the true gene trees as input to ASTRAL-III. Now, ASTRAL-
I1T inferred a tree that is the backbone of its respective true network for 22
of the 24 data sets.

4.2 Accuracy of the inferred networks

Given the accuracy of the species trees produced by ASTRAL-III, we used
it as the start tree for network inference. Since the input gene trees and
output species trees of ASTRAL-III are all unrooted, we rerooted all the trees
at the designated outgroup and deleted it. Then we used the rooted gene
trees and rooted species trees as input to both network inference procedures.
We evaluated the performance of the network inference on NOTS (Night
Owls Time-Sharing Service), which is a batch scheduled High-Throughput
Computing (HTC) cluster.
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4.2.1 Performance of StepwiseAugment

We ran StepwiseAugment on the start trees obtained by ASTRAL-III on
all 24 data sets, under the MDC criterion, while specifying to the inference
method the true number of reticulations. While knowing the true number of
reticulations is not doable in practice, we made this decision for two reasons.
First, we wanted to test how the approach works under the ideal situation (of
knowing the true number of reticulations). Second, determining the number
of reticulations is not doable in a systematic way with the MDC criterion.
The correctness achieved by StepwiseAugment in this case is 41.7%, re-
flecting that in only 10 out of the 24 cases did the method infer the correct
networks. For the 3 data sets where the start trees are not backbone trees
of the networks, obviously, the method could not infer the correct network.
For the 17 data sets with at least one reticulation and correct start trees, the
method was able to find the correct reticulation in only 8 of them. These
results show that StepwiseAugment coupled with the MDC criterion is
not a viable approach for inferring phylogenetic networks.

4.2.2 Performance of LocalSearchAugment

We then set out to study the performance of LocalSearchAugment when
using the ASTRAL-III species tree as the start tree and under both the
pseudo-likelihood and MDC criteria. One might ask: If the “quasi brute-
force” procedure StepwiseAugment did not perform well, could a local
search heuristic perform better? The answer in our case is positive. The
reason for this is because when searching for an optimal network with k + 1
reticulations, Stepwise Augment is already “stuck” with the k reticulations
it had identified already, and this might not necessarily result in an optimal
solution. A truly brute-force approach for considering all networks with
M AX reticulations on a start tree 1" would first identify the set of all possible
reticulations that could be added to T' (including “dependent” reticulations,
where a reticulation edge is added between two reticulation edges or between
one tree and one reticulation edge), and then consider every subset of them.
Such an approach is not only computationally infeasible for the size of the
data sets we consider, but is also very hard to implement because of the
dependent reticulations.

Since inference under neither MDC nor pseudo-likelihood is equipped with
a systematic way to determine the number of reticulations (i.e., a stopping
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rule), we ran LocalSearchAugment under both criteria in two different
ways. In one way, we set the number of reticulations for each data set to
be the true number for that data set. In the figures below, we label results
based on this setting as MPL (for maximum pseudo-likelihood) and MDC
(for minimizing deep coalescences). In the other way, we set the maximum
number of reticulations at 5, which is the largest number of reticulations in
all 24 data sets. In the figures below, we label results based on this setting
as MPL’ (for maximum pseudo-likelihood) and MDC’ (for minimizing deep
coalescences). The local heuristic search on each data set was repeated 20
times with random restarts to obtain the network estimates.

We also ran MPL on 1,000 gene trees to explore its convergence when the
amount of data is larger. In the figures below, results of this run are labeled
MPL1000. Finally, we compared these methods to two methods that can
scale to larger data sets: The maximum pseudo-likelihood method of [21],
where the network space is searched directly without a fixed start tree (the
maximum number of reticulations is set at the true value), and the newly
developed divide-and-conquer method of [26] when the full set of trinets is
considered in the divide step (this method does not require a pre-set number
of reticulations). The results of these runs are labeled MPLo and D&C,
respectively, in the figures below. For these two methods, the input gene
trees is the set of gene trees inferred by IQ-TREE.

The results of all these runs are summarized in Figure 2.

As Figure 2(a) shows, when the true number of reticulations is assumed,
both MPL and MDC perform relatively similarly, with MDC outperforming
MPL by one of the easy data sets and MPL outperforming MDC by two of the
medium data sets. Neither of the two methods obtains the correct network
on any of the 8 hard data sets. When the true number of reticulations is
not assumed, MPL’ and MDC’s do not infer the correct network on any of
the 24 data sets. For all these four methods, when the correct network is
not inferred, the distance between the inferred network and true network is
D(V,, ¥;) = 0. That is, while the methods do not infer the correct network,
the inferred networks share an underlying structure with the true ones.

Increasing the number of gene trees in the input to 1,000 results in a
slight improvement to MPL, where the true network is inferred on two more
data sets. Furthermore, searching the network space directly under the MPL
criterion performs almost similarly to a tree-based approach, with the only
difference being that the method (MPLo) now infers two more networks
correctly and infers a wrong network in the case of the 8 easy networks. It
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Figure 2: Accuracy of inferred networks. (a) Blue corresponds to the
number of inferred networks that are topologically identical to the true net-
works. Yellow corresponds to the number of inferred networks that share
backbone networks of true networks. Gray corresponds to all other cases.
(b) Yellow corresponds to MPL. Green corresponds to MDC. Purple cor-
responds to D&C'. Triangles correspond to easy (E), crosses correspond to
medium (M) and squares correspond to Hard (H). The z-axis has no meaning
but is used for ease of visualization.
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is important, though, to emphasize again that for MPL, MDC, MPL1000,
and MPLo, the true number of reticulations is assumed. As the results
show, D&C' has the best accuracy where not only does it always either infer
the correct network or a network that shares an underlying structure with
the true one, but it also does so without a prior: knowledge of the true or
maximum number of reticulations.

To better understand the behavior of these methods, we inspected the
FPR and FNR of the methods. As Figure 2(b) shows, on average, the FPR
and FNR of MPL are 15.2% and 11.1% higher than those of D&C, respec-
tively, and those of MDC are 52.1% and 28.2% higher than those of D&C
respectively.

We show the running times of tree-based network inference under both
MPL and MDC in Figure 3. The figure shows that almost all data sets are
analyzed within 16 hours by MPL when the true number of reticulations is
assumed, but that time increases to about 40 hours for some data sets when
the search is allowed to explore networks up to 5 reticulations. Inference
based on the MDC criterion, on the other hand, takes much longer in some
cases, and as the figure shows, the number of reticulations itself is not the
only determinant of the running time. The placement of the reticulations
in the network is a major factor of the complexity, a result similar to that
shown in the case of computing the likelihood of networks [29, 5].

On average, when compared with 1636.8 CPU hours spent by D&C', the
tree-augmentation methods only spend 7.0, 16.4, 17.0, 26.4 and 3.8 hours for
MPL, MDC, MPL’, MDC’ and MPL1000, respectively. The computational
bottleneck of D&C' comes from the substantial time that it takes MCMC-
SEQ [16] to infer each of the 680 3-taxon subnetworks (though this can
be easily parallelizable, as the inferences of subnetworks are done indepen-
dently).

4.3 Towards combining the strengths of tree-based and
D&C' inference

As shown above, tree-based inference is much faster than inference by D&C,
whereas the latter produces more accurate results. As we mentioned, the
majority of the running time of D&C' comes from the costly step of inferring
the 3-taxon subnetworks using the expensive Bayesian approach of [16]. The
question that we set out to explore here is: Can the running time of D&C' be
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Figure 3: Running times of tree-based network inference based on
the MPL and MDC criteria. Each subfigure shows the running times on
24 networks for the respective method. Each bar represents the CPU hours
taken to infer this network. The x-axis is the number of reticulations, where
each number of reticulations has 4 networks with that number.

improved by utilizing tree-based inference of the trinets? We limit our atten-
tion in this study to one part of this question, namely, how does tree-based
inference perform in terms of inferring the 3-taxon subnetwork topologies
(when using a priori knowledge of the true number of reticulation)? To ex-
plore this question, we considered each 3-taxon subset of the 17 taxa in each
data set and inferred a network on it (with the true number of reticulation)
using tree-based inference (minimizing deep coalescence) starting from all
three possible topologies. Figure 4 shows the accuracy and running times
of this approach. As the figure shows, on average, the running time of 3-
taxon subnetwork inference is reduced from 1636.8 to 1.4 CPU hours with
a loss of only about 7% in accuracy when considering identical subnetworks
and about 1% when considering backbone networks. This is a massive im-
provement in the running times with hardly any sacrifice in the topological
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Figure 4: The accuracy and running time of tree-based inference of
3-taxon subnetworks. (a) Accuracy of the inferred subnetworks. Each
bar represents the number of subnetworks in each network that are identical
(blue), inside (orange), others (grey) to the true subnetworks. (b) Running
time for inferring subnetworks. Each bar represents the CPU hours spent to
infer all subnetworks for each network. The bars are arranged in a way that
they correspond in a 1-1 manner to Figure 3 in [26].

accuracy. However, there are two caveats here. First, the true number of
reticulations is assumed in this case (whereas that number is not assumed in
[26]). Second, the merger step of the D&C' method of [26] assumes knowledge
of the divergence times of the nodes in the 3-taxon subnetworks. A promising
direction that emerges from these results is that combining tree-based infer-
ence with the Bayesian method of [16] could potentially provide an accurate
and fast approach to inferring the subnetworks and, consequently, improving
the running of D&C' without sacrificing its accuracy.

4.4 Analysis of empirical data set

We reanalyzed an empirical data set of rainbow skinks [1]. Selecting 11 taxa
and 22 individuals, we inferred 100 gene trees from aligned sequences of 100
loci using IQ-TREE. We inferred a start species tree from gene trees using
ASTRAL-III, which is shown in Figure 5(a). We then rooted the gene trees
and start species trees at the Lampropholis guichenoti as an outgroup, and
deleted it. We then ran LocalSearch Augment under the pseudo-likelihood
criterion on the data and set the maximum number of reticulations at 1, in
order to compare with the results reported in [26]. The method took 6
minutes to obtain the network shown in Figure 5(b), while D&C' took 3670
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(a) (b)

Figure 5: The inferred species tree and network of the empirical
data set. (a) The ASTRAL species tree from IQTREE gene trees. (b)
The inferred network with 1 reticulation using maximum pseudo-likelihood
relying on the backbone tree.

CPU-hours. While the start species tree agrees with the inferred species
tree reported in Figure 2 in [1], the tree-based network is different from
the network inferred by D&C' and reported in Figure 5 in [26], once again,
demonstrating the efficiency of tree-based inference, but its limitations in
terms of accuracy when run on large data sets.

5 Conclusions and future work

In this paper, we set out to study the performance of tree-based inference of
phylogenetic networks, as this approach would be promising for large-scale
phylogenetic network inference provided it has good accuracy. While we find
the method to be much faster than a recently introduced divide-and-conquer
approach, its accuracy is inferior to the latter. However, the approach is
accurate for inference of small-scale networks, which could prove to be valu-
able for speeding up the divide-and-conquer approach while maintaining its
accuracy. For example, the topologies of the subnetworks could be inferred
using tree-based inference, and then the Bayesian method of [16] is run to
only estimate the divergence times, rather than estimating the topologies as
well. We identify this as an important direction for future research.
Another important open question whose answer would have practical im-
plications on searching the network space: is an optimal phylogenetic net-
work with k& + 1 reticulations (under some optimality criterion) obtainable
by adding a reticulation event to an optimal network with k reticulations?
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While the answer to this question could be negative for all optimality criteria
(likelihood, pseudo-likelihood, MDC, etc.), the answer could be positive for
certain classes of phylogenetic networks.
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