

Evidence for a unitary structure of spatial cognition beyond general intelligence.

Margherita Malanchini^{1,2,3a*}, Kaili Rimfeld^{2,a}, Nicholas G. Shakeshaft², Andrew McMillan², Kerry L. Schofield², Maja Rodic⁴, Valerio Rossi⁵, Yulia Kovas^{4,6}, Philip S. Dale⁷, Elliot M. Tucker-Drob^{3,8}, & Robert Plomin²

¹ Department of Biological and Experimental Psychology, Queen Mary University of London, UK

² Social Genetic and Developmental Psychiatry Centre, King's College London, UK

³ Population Research Center, The University of Texas at Austin, USA

⁴ InLab, Department of Psychology, Goldsmiths University of London, UK

⁵ ETT Solutions LTD, London, UK

⁶ Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk, Russia

⁷ Department of Speech and Hearing Sciences, University of New Mexico, Albuquerque, USA

⁸ Department of Psychology, The University of Texas at Austin, USA

^aJoint first authors

*Corresponding author.

Correspondence should be addressed to Margherita Malanchini, Department of Biological and Experimental Psychology, Queen Mary University of London, Office 2.02, G.E. Fogg Building, Mile End Road, London E1 4NS. E-mail: m.malanchini@qmul.ac.uk

ABSTRACT

Performance in everyday spatial orientation tasks (e.g. map reading and navigation) has been considered functionally separate from performance on more abstract object-based spatial abilities (e.g. mental rotation and visualization). However, evidence remains scarce and unsystematic. With a novel gamified battery, we assessed six tests of spatial orientation in a virtual environment and examined their association with ten object-based spatial tests, as well as their links to general cognitive ability (g). We further estimated the role of genetic and environmental factors in underlying variation and covariation in these spatial tests.

Participants ($N = 2,660$) were part of the Twins Early Development Study, aged 19 to 22. The 6 tests of spatial orientation clustered into a single '*Navigation*' factor that was 64% heritable. Examining the structure of spatial ability across all 16 tests, three factors emerged: *Navigation*, *Object Manipulation* and *Visualization*. These, in turn, loaded strongly onto a general factor of *Spatial Ability*, which was highly heritable (84%). A large portion (45%) of this high heritability was independent of g . The results from this most comprehensive investigation of spatial abilities to date point towards the existence of a common genetic network that supports all spatial abilities.

1
2 Spatial skills are fundamental for everyday life as they make it possible for us to understand and operate on the
3 physical world around us. Studies in primates and other animals have highlighted the importance of spatial
4 ability for evolution and survival. Food-hoarding birds rely on spatial memory to retrieve their caches, which is
5 crucial to their subsistence, and climate harshness has been found to positively drive the evolution of spatial
6 memory skills in black-capped chickadee, another bird species.¹ Spatial skills are also important in modern
7 technologically-oriented societies² as individual differences in spatial skills are associated with positive
8 developmental, educational and life outcomes. Spatial ability reliably predicts scholastic and professional
9 success and career choices, particularly in Science, Technology, Engineering and Mathematics (STEM) and
10 related fields, even after controlling for general cognitive ability.³⁻⁵ In spite of the increasingly fundamental role
11 that spatial ability has for individuals and contemporary societies,⁶ numerous questions remain regarding the
12 nature of spatial ability as well as its origins and structure.⁷

13
14 What constitutes good spatial skills? Since its earliest conceptualization,⁸ spatial ability has been considered a
15 multifaceted construct comprising several related, yet separable, skills.⁹ One of the most widely adopted
16 definitions of spatial ability describes it as the ability to generate, retain, retrieve and transform well-structured
17 visual images.¹⁰ Contrary to this very broad characterization of spatial ability, however, extant research has
18 largely focused on measuring only specific aspects of object-based spatial ability. Among the most widely
19 studied spatial skills are individuals' abilities to mentally rotate shapes,¹¹ to visualize objects from different
20 perspectives, and to find figures embedded within other shapes.¹² A much smaller body of research has
21 considered larger-scale, practical everyday spatial orientation abilities, such as navigation, map reading and
22 way-finding.

23
24 Until recent years, studies of spatial orientation skills had been hindered by the difficulty in measuring
25 navigation and way-finding abilities in real-life settings utilizing rigorous approaches that are standardized
26 across participants. In addition, assessing navigation in the real environment can be highly costly and time
27 consuming and thus unlikely to be scalable to large samples nation-wide or world-wide. Technological
28 advances in the field of virtual reality (VR) provide a novel powerful tool to study individual differences in
29 spatial orientation skills in realistic settings that can be fully controlled and standardized across participants.^{13,14}
30 Studies assessing the validity of measuring navigation skills using VR have observed strong correlations (~.60)
31 with performance in real world navigation skills.^{13,15} The reliability of assessing spatial abilities in VR is likely
32 to continue increasing as accelerating technological developments provide progressively immersive and realistic
33 tools.

35 Likely due, at least in part, to such difficulties in assessing multiple spatial orientation skills reliably in large,
36 representative samples, few studies have examined the structure of spatial orientation ability and its association
37 with other spatial skills. More broadly, evidence concerning the nature and factor structure of spatial ability
38 remains mixed, with most studies focusing on differentiating between relatively few measures rather than
39 examining the communalities across a broad range of spatial skills.^{7,10,16,17} In our previous work,¹⁸ we have
40 shown that a general factor of spatial ability captures a substantial proportion of variance across numerous tests
41 of spatial skills, and that communalities across tests are largely explained by shared genetic variance.¹⁸
42 However, one major limitation characterized our previous study: Although we considered ten object-based
43 spatial abilities, including tests of rotation, visualization and scanning abilities, we did not include measures of
44 spatial orientation, such as navigation, map reading and way-finding.

45
46 The omission of spatial orientation measures has special theoretical relevance because evolutionary and
47 cognitive theories have pointed to a distinction between the ability to mentally manipulate objects on a small
48 scale (object-based spatial skills) and the ability to orient in large-scale environments (spatial orientation
49 ability).¹⁹⁻²¹ This proposition is partly supported by psychological studies suggesting that the two abilities are
50 influenced by separate cognitive processes and brain structures. For example, in a study of the association
51 between performance in object-based psychometric spatial tests and large-scale spatial learning, partial support
52 was found for a differentiation between these skills. Individual differences in measures of spatial learning
53 (measuring skills such as placing landmarks on a map, intra-route distance estimates and route reversal) were
54 unrelated to variation in object-based spatial tests. However, the ability to learn maze and maze reversal, was
55 found to be related to both object-based tests and spatial learning.²² Other studies in the field of cognitive
56 psychology have found evidence for a partial dissociation between object-based tests and large-scale spatial
57 orientation skills.²³⁻²⁵

58
59 Neuroimaging studies have also provided preliminary converging evidence for the distinction between object-
60 based abilities and spatial orientation skills, suggesting that the two are supported by separate brain networks.
61 Object-based spatial skills, and particularly mental rotation ability, were found to be primarily associated with
62 activation of the parietal lobes.²⁶ Conversely, variation in learning and remembering the layout of large-scale
63 spaces has been found to be related to processing in the hippocampus and the medial temporal lobes.²⁷

64
65 Other theoretical accounts and studies, however, have suggested that object-based and spatial orientation skills
66 might be closely related. For example, theories concerning the evolution of sex differences have argued that
67 individual variation in object-based spatial skills, such as mental rotation, are the product of different selection
68 pressures for large-scale spatial orientation abilities between males and females over evolutionary history,^{28,29}

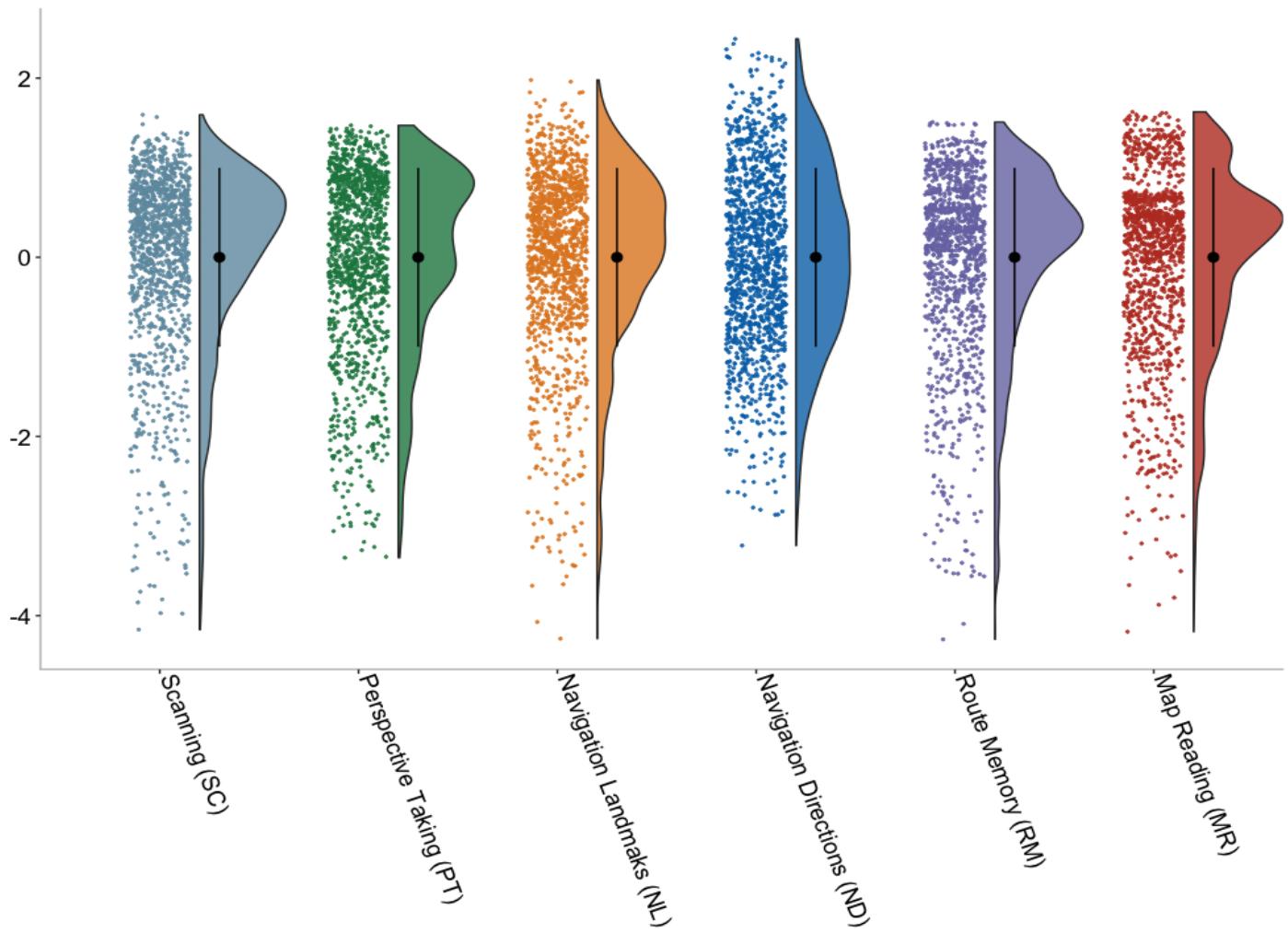
69 therefore suggesting that the two largely reflect common skills. Empirical evidence also supports the idea of a
70 largely unitary set of abilities. A study of the association between object-based spatial abilities, measured with a
71 limited battery of three psychometric tests, and large-scale spatial orientation skills, measured both in realistic
72 settings and a virtual environment, found a substantial correlation between the two.¹⁵

73
74 The proposition of a unitary set of cognitive processes underlying object-based and spatial orientation skills is
75 consistent with the idea that these are aspects of a more general set of cognitive abilities. It is plausible that at
76 the heart of individual differences in all spatial skills is general cognitive ability, or general intelligence (g). G is
77 a psychometric construct that emerged at the beginning of twentieth century from observations that almost all
78 cognitive tests correlate moderately and positively.³⁰ Individuals performing highly on one cognitive test are
79 also likely to show good performance on other tests of cognitive abilities, and g indexes this covariance
80 observed between cognitive measures. Therefore, g is thought to represent individual differences in the domain-
81 general abilities to plan, learn, think abstractly, and solve problems that are necessary for successfully
82 completing cognitive tests.³¹

83
84 In our previous work on the factor structure of object-based spatial tests, we have shown that individual
85 differences in spatial abilities cluster into a unitary factor, at both the observed and genetic levels, even after
86 accounting for g .¹⁸ Along the same lines, another study found that the association between object-based and
87 spatial orientation abilities was largely independent of verbal ability.¹⁵ These studies suggest that the coherence
88 of spatial abilities is not simply due to their being part of g , but rather inherent in the spatial domain itself.
89 However, neuropsychological evidence contradicts this view. Case studies of patients with neuropsychological
90 impairments suggest that damage to navigation-related structures in humans typically leads to broad memory
91 deficits that are not limited to the spatial domain.¹⁰

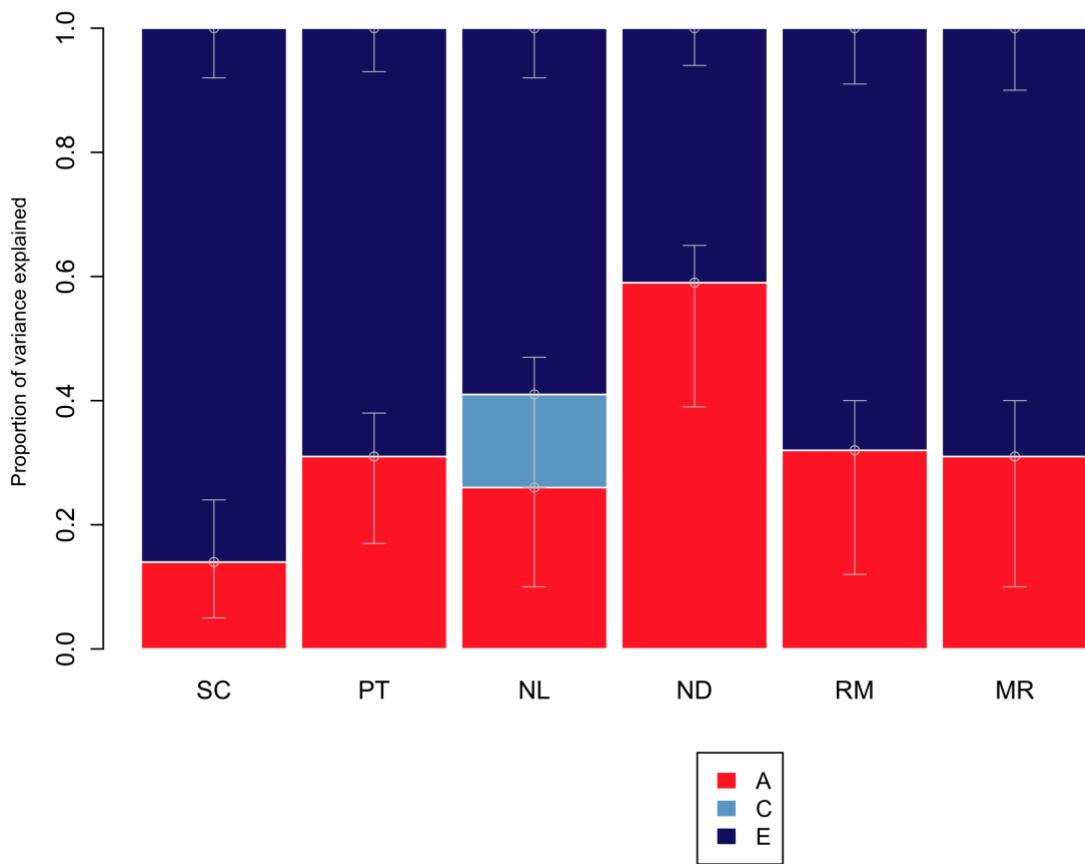
92
93 Extant literature is therefore characterized by contrasting theories and evidence with respect to the factor
94 structure and associations between object-based spatial abilities, assessed mostly through psychometric tests,
95 and large-scale spatial orientation skills, assessed both in real settings and VR. The lack of a cohesive account is
96 likely due to a paucity of studies that have investigated the association between object-based and large-scale
97 spatial orientation skills with a sufficiently diverse battery of tests. In addition, to our knowledge, no study to
98 date has investigated their links within a genetically informative framework, testing the hypothesis that a
99 common genetic network, independent of g , supports performance in all spatial skills.

100
101 The current study addresses these limitations by investigating the structure of spatial ability using two
102 comprehensive online batteries of object-based and spatial orientation skills, administered to a large genetically-


103 informative sample of twins aged 19 to 22. Importantly, we assessed spatial orientation abilities with an
104 innovative gamified battery of six tests measuring navigation, map reading, wayfinding and large-scale
105 scanning and perspective-taking skills set in a virtual environment. The current work has three main aims: First,
106 we examined, for the first time, the factor structure and origins of spatial orientation skills. Second, we
107 investigated the structure and genetic and environmental origins of spatial ability across sixteen tests of object-
108 based and spatial orientation skills. Third, we explored the role that g has in unifying individual differences in
109 performance across tests of spatial abilities.

110
111 Addressing outstanding questions on the factor structure of spatial ability applying a genetically informative
112 design provides new evidence about its genetic and environmental underpinnings. This new knowledge
113 provides a critical foundation for future advances in the study of individual differences in spatial cognition,
114 impacting several scientific fields, from cognitive psychology to neuroscience, anthropology and evolutionary
115 biology.

116 117 118 **RESULTS**


119
120 *Individual differences in spatial orientation can be measured reliably in a virtual environment and are*
121 *moderately heritable*

122
123 We first assessed whether our newly developed gamified battery set in a virtual environment could effectively
124 capture individual differences in spatial orientation skills in our large sample of twins. Beyond showing good
125 test-retest reliability (average $r = .74$, ranging from .60 to .89, see Methods for information on the reliability of
126 each tests), the six tests –scanning, perspective taking, navigation based on landmarks, navigation following
127 directions, route memorizing and map reading– showed normal distributions, with acceptable values for
128 skewness and kurtosis (Figure 1; Supplementary Table S1). Therefore, our gamified battery was able to
129 discriminate and reliably capture variation in spatial orientation abilities.

131
132 **Figure 1.** Individual differences and distributions for the six tests included in our novel gamified battery of spatial orientation set in a
133 virtual environment. All variables were residualized for age and sex, and standardized in one randomly-selected half of the sample
134 (only one twin within each pair was randomly selected for descriptive and phenotypic analyses in order to account for the non-
135 independence of observations); full descriptive statistics for both randomly selected halves of the sample are presented in
136 Supplementary Table S1.

137
138
139 We adopted the twin method (Methods) to calculate heritability estimates for the six measures of spatial
140 orientation; these are presented in Figure 2. Heritability estimates, the extent to which variation in a
141 trait is accounted for by genetic differences,³² ranged from modest to strong (14-57%). The remaining variance
142 in all tests was accounted for by non-shared environmental factors, environmental factors that do not contribute
143 to similarities between siblings,³² with the only exception being the test of orientation ability using landmarks,
144 which showed a significant proportion of shared environmental variance (15%). These substantial non-shared
145 environmental estimates might in part reflect measurement error.

148
149 **Figure 2.** Genetic and environmental estimates for navigation tests: univariate model-fitting results. A: additive genetic; C: shared
150 environmental; E: non-shared environmental components of variance. SC: scanning test; PT: perspective taking; NL: navigation
151 according to landmarks; ND: navigation according to directions (cardinal points); RM: route memory; MR: map reading.

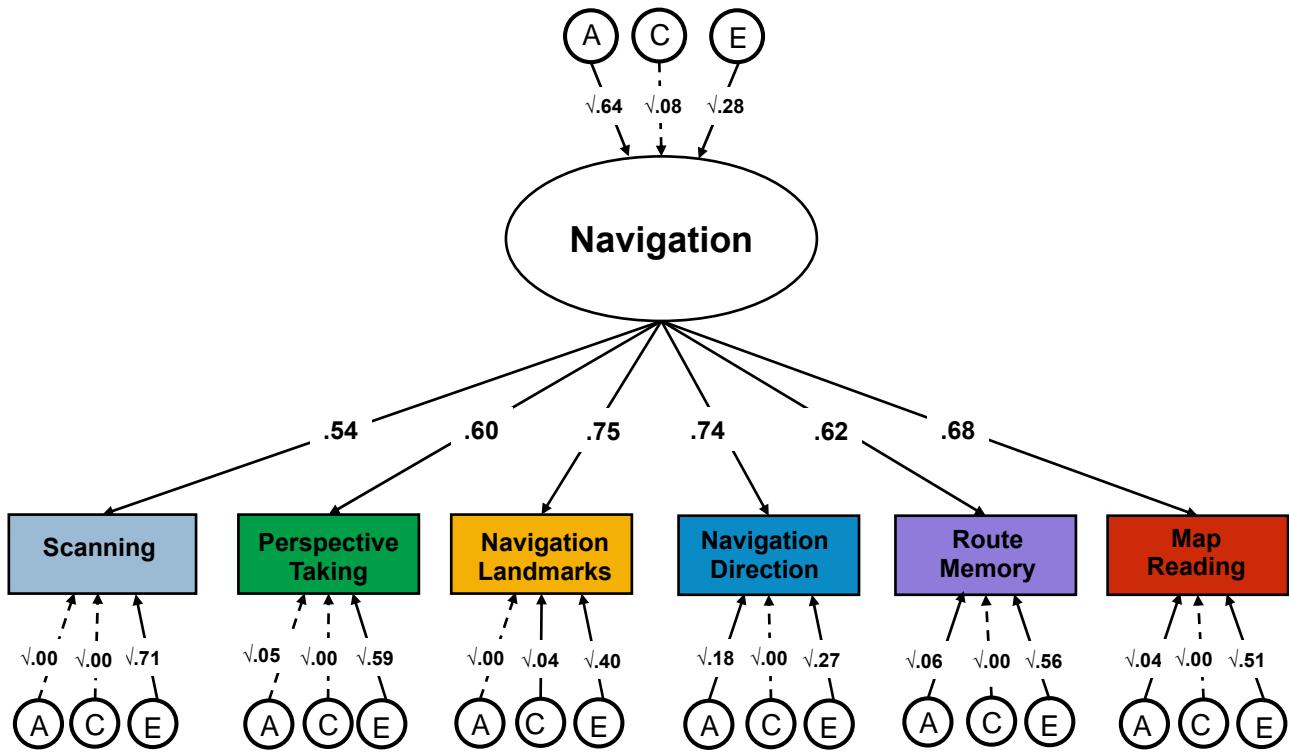
152
153
154 Because sex differences are often found for spatial abilities (though not always in the same direction),^{33,34} we
155 conducted univariate full sex-limitation model (Methods) to examine whether these estimates of heritability
156 differed between males and females. We found no evidence for qualitative genetic sex differences, meaning that
157 the same genetic and environmental factors seemed to influence individual differences in spatial orientation
158 abilities for males and females. No significant quantitative sex differences were found (Supplementary Table
159 S2), that is, differences in the magnitude of genetic and environmental influences. For example, for an overall
160 composite measure of navigation ability, heritability was 52% (95% CI: 0.31; 0.70) for males and 54% for
161 females (95% CI: 0.29; 0.62). These estimates have overlapping confidence intervals, indicating that they are
162 not statistically different from one another. Even with a sample of over 800 complete twin pairs who took part
163 in the spatial orientation battery, the sample size was not sufficient for the sex-limitation model to reliably
164 detect quantitative and qualitative sex differences, if they in fact exist. This is evident from the wide confidence
165 intervals around estimates when calculated for males and females separately. For these reasons, and to increase

166 power, the full sample was used in subsequent analyses, combining males and females, and same- and opposite-
167 sex twin pairs.

168

169 ***A single ‘navigation’ factor captured the variance common across all tests of spatial orientation***

170


171 We applied factor analysis (Methods) to examine the covariance structure across the six tests in the spatial
172 orientation battery. The results showed that the six tests correlated substantially and clustered into one common
173 factor, which we named ‘Navigation’, as it indexed abilities that are generally described in the literature as
174 spatial navigation skills (see Supplementary Table S3—factor structure, and Figure 4 –intercorrelations between
175 tests). This unifactorial model provided a good fit for the data ($\chi^2 = 269.937$ (148), $p = 0.0000$; CFI = 0.968; TLI =
176 0.971; RMSEA = 0.030; SRMR = 0.049).

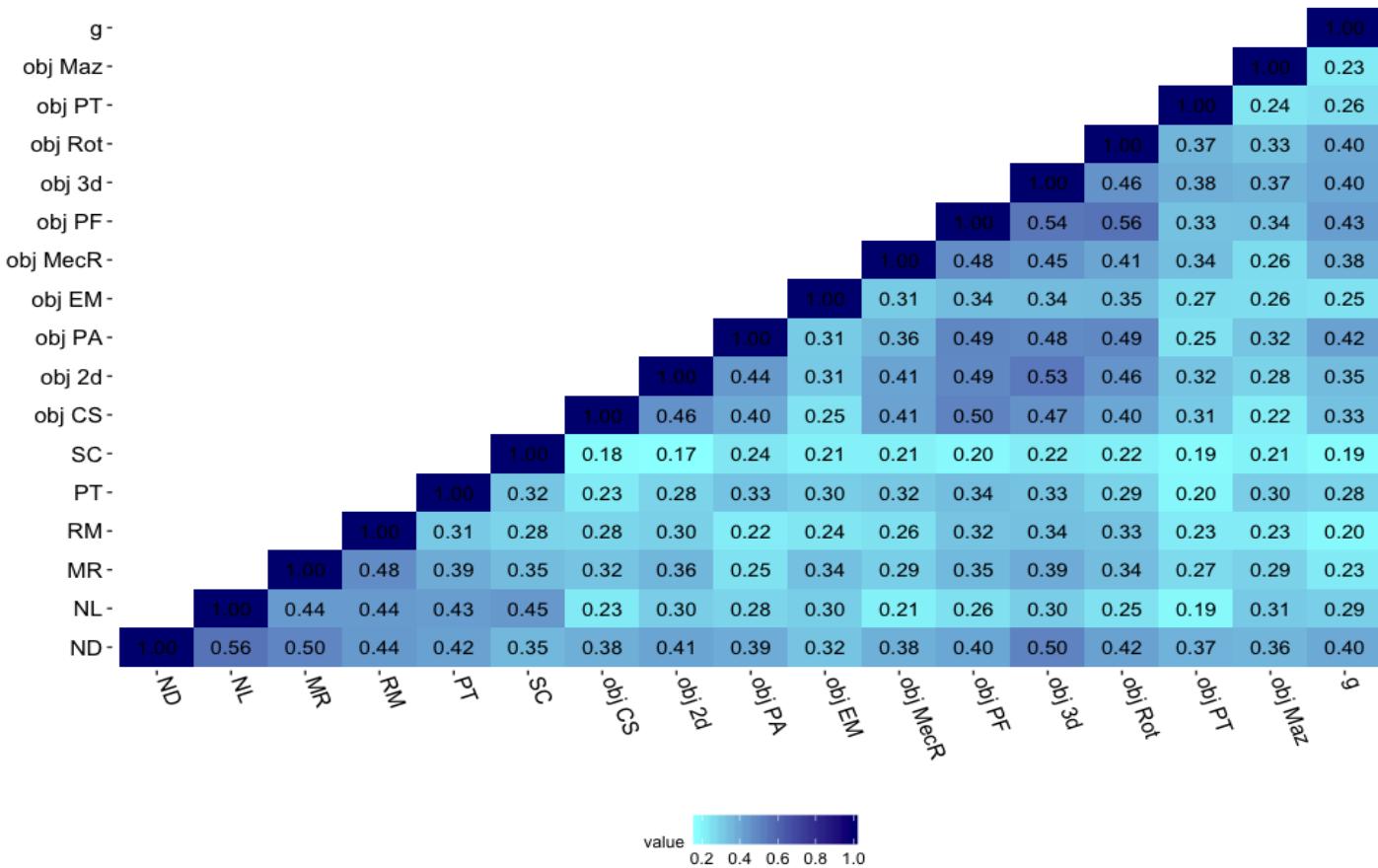
177

178 We used the Common Pathway model (Methods) to examine the extent to which genetic (A), shared
179 environmental (C) and nonshared environmental (E) effects were common or specific across the six tests
180 (Figure 3). We found that the heritability of the common navigation factor was 64% (CIs = 0.41; 0.91); shared
181 environmental and non-shared environmental factors accounted for smaller proportions of variance, 8% (CIs -
182 .00; .43) and 28% (CIs 0.21-0.36), respectively. The largest part of the genetic variance in navigation ability
183 was shared across all tests; between 66% and 100% of the heritability of each test was captured by the common
184 factor of navigation. Consequently, test-specific genetic effects were found to account for between 0% and 34%
185 of the genetic variance in each test of spatial orientation (Supplementary Table S4).

186

187 Environmental factors were largely specific to each test, as indicated by the considerable size of the specific E
188 paths (bottom of Figure 3), between 64% and 90% of the nonshared environmental variance was found to be
189 specific to each test. The common navigation factor only captured between 10% and 36% of nonshared
190 environmental variance in each test of spatial orientation (Table S4).

191
192 **Figure 3.** Factor structure and genetic and environmental variance common across the six tests of spatial orientation. We applied the
193 common pathway model to parse the genetic (A), shared environmental (C) and nonshared environmental (E) variance that is shared
194 across all the tests (represented by the A, C and E paths leaving from the common *Navigation* factor) from the genetic and
195 environmental variance that is specific to each test (indexed by the individual A, C, and E latent factors leaving from each rectangle).
196 Each individual test loaded substantially onto a common factor, which we named *Navigation factor* (loadings ranging from $\lambda = .54$ for
197 scanning ability to $\lambda = .75$ for navigation based on landmarks). All A, C and E paths are standardized and squared.


198
199 ***Substantial associations between measures of spatial orientation and object-based spatial tests***

200
201 We investigated the structure of spatial ability across a greater diversity of spatial tests. To this end, we
202 extended our analyses beyond the six tests of spatial orientation to incorporate 10 additional tests of object-
203 based spatial skills¹⁸. This additional battery of spatial tasks included measures that very closely align with
204 traditional psychometric tests of spatial ability, including mental rotation, visualization, 2D and 3D drawing
205 ability, and mechanical reasoning. Figure 4 presents phenotypic correlations between the sixteen spatial tests
206 included in the two batteries (spatial orientation and object-based) and their correlations with *g*.

207
208 Correlations between spatial tests were positive and moderate (.17-.56), with stronger links observed between
209 certain tests within each battery. For example, the four tests assessing navigation and map reading skills in the
210 spatial orientation battery clustered more strongly together (*r* ranging from .44 to .56). The same was observed

211 for measures of 2D and 3D drawing, pattern assembly, paper folding, and mental rotation in the object-based
212 battery (r ranging from .34 to .54).

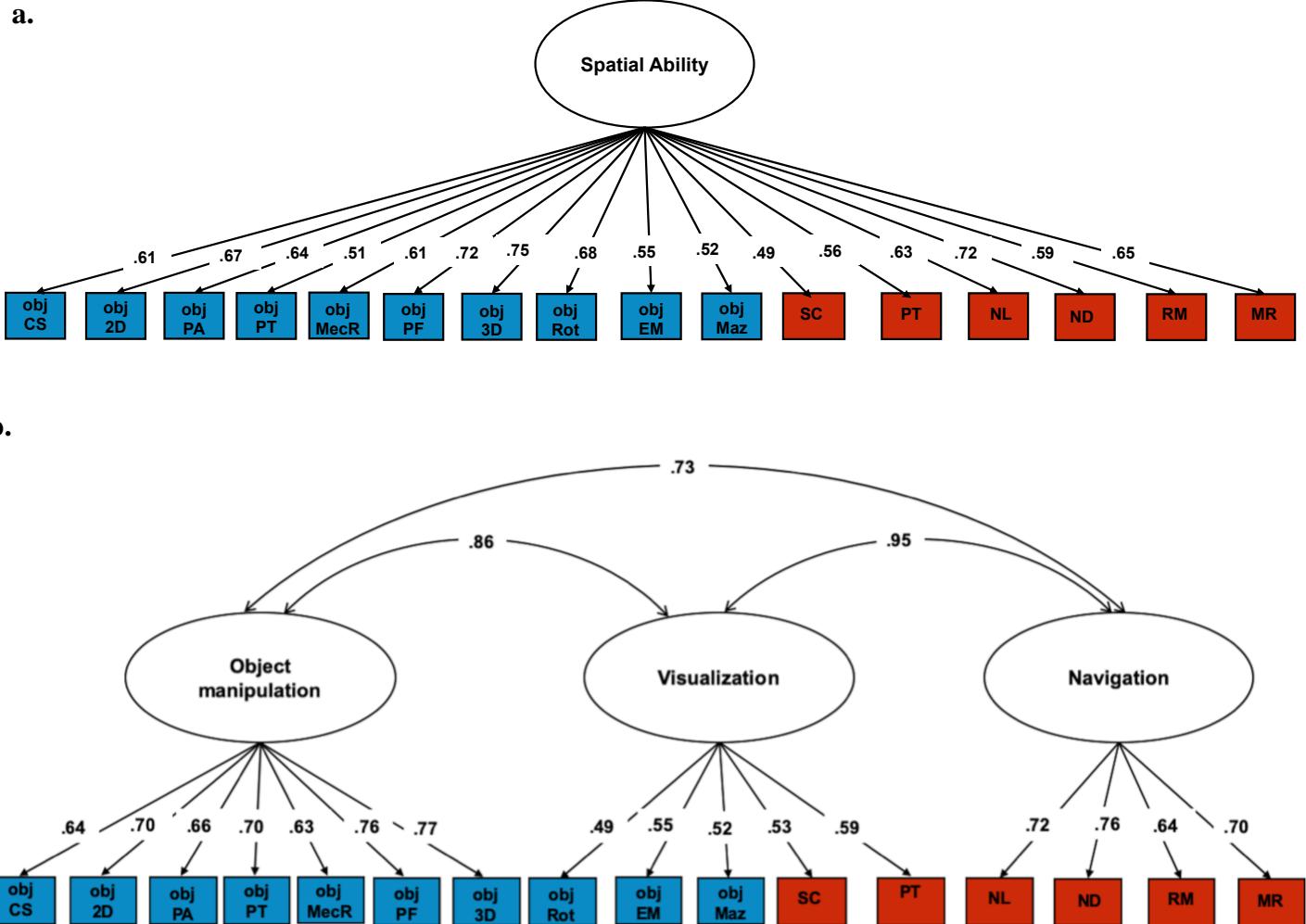
213
214

215
216 **Figure 4.** Correlations between the 16 tests of spatial ability and g . Starting from the bottom left of the matrix, the first six tests are
217 part of the spatial orientation battery. ND = navigation according to directions, NL = navigation according to landmarks, MR = map
218 reading, RM = route memory, PT = perspective taking, SC = scanning. The following 10 tests were part of the other battery assessing
219 object-based spatial skills: obj CS = cross-section, obj 2d = 2d drawing, obj PA = pattern assembly, obj EM = Elithorn Maze, obj
220 MecR = Mechanical Reasoning, obj PF = paper folding, obj 3d = 3d drawing, obj Rot = mental rotation, obj PT = perspective taking,
221 obj Maz = mazes, g = general cognitive ability. All correlations were significant at $p < .001$; variables were residualized for age and
222 sex and standardized prior to analyses.

223

224 We conducted a series of confirmatory factor analyses to formally evaluate the covariance structure between the
225 16 spatial tests. We tested different theoretical models about the structure of spatial skills, starting from the
226 simplest model and progressing to increasingly complex representations of the structure of spatial skills. The
227 first model we tested was a one-factor model (Figure 5a), positing that variation in spatial orientation and
228 object-based skills could be largely considered a unitary ability. Although all tests loaded substantially onto a

229 single factor (Figure 5a), model fit indices ($\chi^2 = 692.730$ (104), $p < .001$, CFI = 0.890, TLI = 0.873, RMSEA =
230 0.061, SMRS = 0.059) suggested that this structure did not provide a good fit for the data.

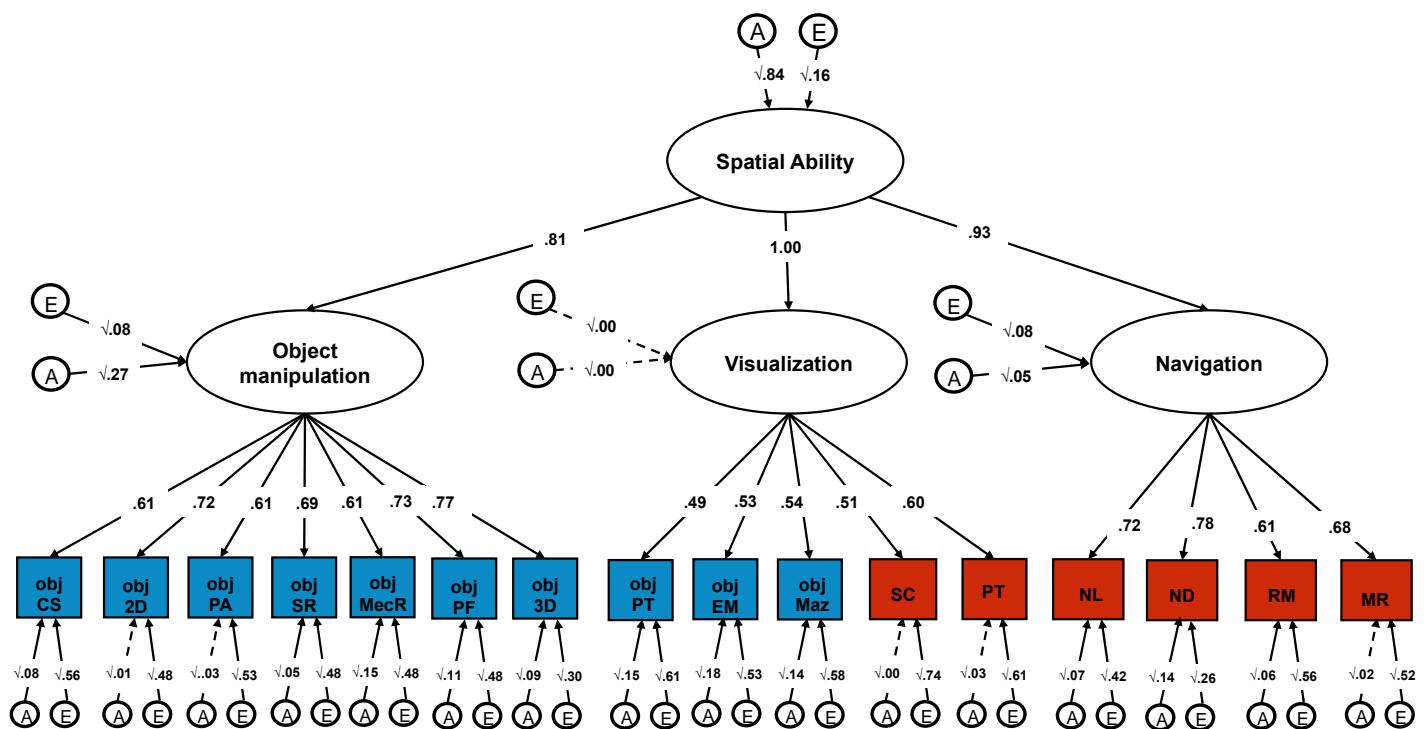

231
232 Secondly, we tested whether including two factors of spatial ability (one for each battery, Figure S1) would
233 provide a more accurate description of the structure of spatial skills. This model provided a good fit ($\chi^2 =$
234 316.000 (103), $p < .001$, CFI = 0.958, TLI = 0.951, RMSEA = 0.037, SMRS = 0.040). However, it also
235 presented one major limitation: due to the substantial difference in test administration and properties of the two
236 batteries, we could not exclude the possibility that the two separate factors emerging from this analysis were a
237 product of differences between the two batteries, rather than underlying a real set of separate, although
238 substantially correlated, abilities. In addition, the two batteries included some cases of parallel measures, so that
239 specific skills were tested in both batteries using different methods (e.g. scanning and perspective taking).

240
241 In order to overcome this limitation, we tested another two-factor model, but this time we constructed the two
242 factors based on theoretically-driven differences between the constructs. The first factor included all those tests
243 that are described in the literature as tapping spatial orientation abilities (navigation, way-finding and map
244 reading) available across the two batteries. This resulted in six tests loading onto a first factor of '*Spatial
245 Orientation*': navigation according to directions, navigation according to landmarks, map reading, route
246 memory and two tests originally part of the object-based battery, Elithorne maze and mazes. The second factor
247 of '*Object Manipulation*' included the eight remaining tests part of the of object-based battery along with the
248 scanning and perspective-taking measures included the spatial orientation battery (Figure S2). However, this
249 model did not provide a good fit for the data (supplementary Table S5).

250
251 The last model we examined was based on the structure of the correlations observed between the 16 spatial tests
252 (Figure 4), which clustered into three main components. Consequently, this fourth model included three factors
253 representing individual differences in: (1) *Object Manipulation*, (2) *Navigation* and (3) *Visualization* abilities
254 (Figure 5b). This model provided a good fit for the data ($\chi^2 = 351.870$ (101), $p < .001$, CFI = 0.953, TLI =
255 0.944, RMSEA = 0.041, SMRS = 0.041). However, the three factors were strongly correlated (r ranging from
256 .73 to .95). Based on these strong correlations, we re-specified the model as a hierarchically-structured model of
257 spatial skills: The 16 tests of spatial skills clustered onto three separate abilities (object manipulation, navigation
258 and visualization), which in turn loaded onto a common factor of *Spatial Ability* (Figure 6).

259
260 This hierarchical characterization of spatial skills describes the complexity of the structure of individual
261 differences in spatial abilities, while highlighting the strong interconnection between all abilities at a higher
262 level of analysis. The higher order factor of spatial ability accounted for a large portion of individual differences

263 in the navigation ($R^2 = .791$), object manipulation ($R^2 = .689$) and visualization ($R^2 = 1.00$) factors. We adopted
 264 this hierarchical characterization of individual differences in spatial skills in subsequent analyses.
 265


268
 269 **Figure 5.** Factor structure across all 16 tests. (a) Unifactorial model of spatial ability; (b) Three-factor model of spatial ability. Obj CS
 270 = cross-section, obj 2D = 2D drawing, obj PA = pattern assembly, obj SR = shapes rotation, obj MecR = mechanical reasoning, obj PF
 271 = paper folding, obj 3D = 3D drawing, obj PT = perspective taking, obj EM = Elithorn Maze, obj Maz = Mazes, SC = scanning, PT =
 272 perspective taking, NL = navigation according to landmarks, ND = navigation according to directions, RM = route memory, MR =
 273 map reading.

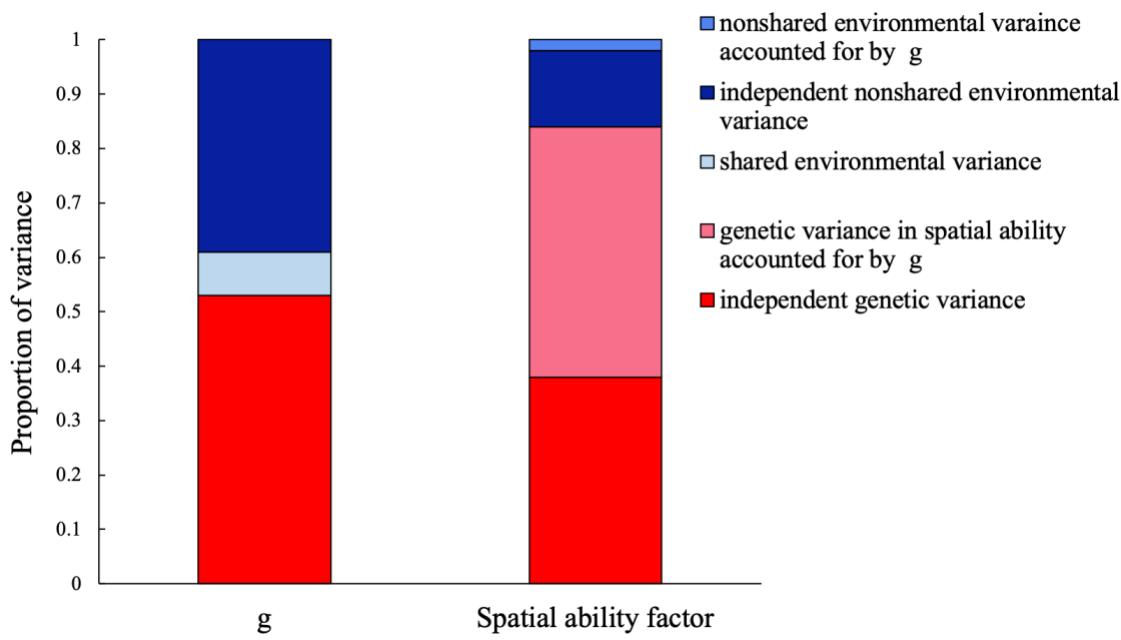
274
 275 ***A common genetic network underlies performance in all spatial tests***

276
 277 We used multivariate twin analysis to analyse the genetic and environmental origins of the hierarchical structure
 278 of spatial abilities. First, we found that a model decomposing variation in spatial abilities into additive genetic
 279 (A) and nonshared environmental (E) factors provided a good fit for the data ($\chi^2 = 1681.128$ (1040), $p < 0.0005$,
 280 CFI = 0.941, TLI = 0.944, RMSEA = 0.026, SMRS = 0.056). That is, there was no evidence that shared

281 environmental variance, which encompasses those experiences that make children growing up in the same
 282 family more similar to one another beyond their genetic similarity, played a meaningful role in accounting for
 283 individual differences in spatial skills.

284
 285 This hierarchical AE model (Figure 6) showed that spatial skills clustered together largely due to shared genetic
 286 variance. The common spatial ability factor was in fact highly heritable (84%) and subsumed 67% of the
 287 genetic variance in object manipulation. This is calculated, based on path tracing, as the standardized squared
 288 genetic variance in the general factor of spatial ability (.84) multiplied by twice the path estimate for object
 289 manipulation (.81) divided by the total genetic variance (.84 * .81² + .27), resulting in
 290 (.84 * .81²) / (.84 * .81² + .27). The common factor of spatial ability accounted for 93% of the genetic variance in
 291 the navigation factor and for the entirety of the genetic variance in the visualization factor (see Supplementary
 292 Table S6 for the full model including 95% confidence intervals). Nonshared environmental variance accounted
 293 for a much smaller proportion of individual differences in the common spatial ability factor (16%).

294
 295 **Figure 6.** Genetic and environmental variance characterizing the hierarchical structure of spatial ability. Within each blue rectangle
 296 are the ten tests that were included in the object-based spatial battery, while shaded in red are the six tests part of the spatial orientation
 297 battery set in a naturalistic virtual environment. Both the phenotypic ($\chi^2 = 351.870$ (101), $p < .001$, CFI = 0.953, TLI = 0.944,
 298 RMSEA = 0.041, SMRS = 0.041) and genetic ($\chi^2 = 1681.128$ (1040), $p = 0.0000$; CFI = 0.941; TLI = 0.944; RMSEA = 0.026 ; SRMR
 299 = 0.056) model provided good fit for the data.
 300
 301


302 **General cognitive ability (*g*) only partly accounts for the genetic clustering of spatial skills**

303

304 It is well established that cognitive skills correlate with each other, and that a substantial portion of variation in
305 different abilities can be accounted for by a general factor of cognitive ability (*g*), both at the observed and
306 genetic level.^{17,35,36} We applied a Cholesky decomposition (Method) to examine to what extent the genetic and
307 environmental variance in spatial ability could be captured by *g*. The Cholesky approach, similar to hierarchical
308 regression, parses the genetic and environmental variation in each trait into that which is accounted for by traits
309 that have previously been entered into the model and the variance which is unique to a newly entered trait. We
310 applied this method to examine the extent to which the clustering of spatial tests into a common factor of spatial
311 ability could be accounted for by the broader *g* factor. The results presented in Figure 7 (see Figure S3 for the
312 full model) showed that *g* accounted for 55% of the genetic variance in the second-order common spatial ability
313 factor. In other words, 45% of the genetic variance in spatial ability was independent of *g*.

314

315 When we accounted for *g* at different levels in the models (Supplementary Figures S4 to S9), results remained
316 consistent with the existence of a general genetic network of spatial skills that covaries independently of *g*.

319

320 **Figure 7.** Genetic and environmental variance in a developmental stable measure of *g* and in the common spatial ability factor. For the
321 common spatial ability factor the bar is divided into the genetic and environmental contributions independent of *g* and those that are
322 accounted for by the genetic and environmental variance in *g*. Results are from a Cholesky decomposition (see Supplementary Figure
323 S3 for the full model).

325
326 **DISCUSSION**
327

328 The current study provides new knowledge on the structure and nature of spatial ability, which addresses three
329 outstanding issues in the field of spatial cognition. First, we examined the structure of spatial orientation
330 abilities, measured with a novel gamified battery set in a virtual environment that included a broad range of
331 measures tapping putatively different aspects of spatial orientation ability. Second, we explored the structure of
332 the associations between spatial orientation skills and object-based spatial tests, a topic that remains mostly
333 unexplored in the cognitive psychology literature and is characterized by strong, contrasting theoretical views.
334 ^{7,15,22} Third, we investigated the extent to which an index of the developmentally stable component of g
335 accounted for the shared variance observed across spatial skills. Across these three broad aims, we leveraged
336 the genetically informative quality of our twin sample to address parallel questions related to the genetic and
337 environmental structure of spatial ability and of its association with g . At every level of analysis our results
338 highlighted communalities rather than differences across tests of spatial ability, largely supporting a unitary
339 structure of spatial cognition.

340
341 Support for the unitary structure of spatial cognition first emerged from phenotypic analyses of our battery of
342 spatial orientation tasks. This finding of a strong general component of variation was remarkable given the
343 breath of spatial orientation skills covered by our newly developed battery. In fact, the development of this
344 innovative, gamified, battery set in a virtual environment was guided by a careful process of literature review
345 aimed at covering all the main domains of spatial orientation described in the existing literature. This resulted in
346 six broad domains that ranged from navigation according to directions and large-scale perspective taking,
347 which, based on Newcombe and Shipley's (2015) taxonomy, could be categorized as extrinsic-dynamic spatial
348 abilities, to route memory and large-scale scanning, which, based on the same taxonomy, could be described as
349 extrinsic-static spatial abilities⁷. Although extrinsic-static and extrinsic-dynamic abilities have been proposed to
350 be separate skills,⁷ and a meta-analysis of the effects of training spatial ability partly supported this distinction
351 for a few selected tests,³⁷ our results contradict this largely theoretical taxonomy.

352
353 We found support for a unitary structure of spatial orientation skills not only at an observed (phenotypic) level,
354 but also in terms of the genetic and environmental factors supporting spatial orientation skills. We found that a
355 common factor of 'navigation ability' that was 64% heritable and captured between 66% and 100% of the
356 heritability of the six individual tests of spatial orientation, and to a lesser extent their nonshared environmental
357 variance (between 10% and 36%). This suggests that, to the extent that measures of spatial orientation covary,
358 they do so largely due to their shared genetic variance. These results push our knowledge of the nature of spatial

359 orientation skills further, providing support for a unitary structure of spatial orientation skills at the genetic
360 level.

361

362 Further support for a unitary structure of spatial cognition emerged when we considered an even greater breadth
363 of spatial tests, including, in addition to our six measures of spatial orientation, ten psychometric tests of object-
364 based spatial skills, administered in the same sample as part of another gamified spatial battery. These sixteen
365 tests of spatial skills were specifically selected to cover all the main areas of spatial cognition identified in
366 extant literature, making the current work, to our knowledge, the most comprehensive investigation of spatial
367 abilities to date. We approached the examination of the structure of associations between such a broad umbrella
368 of spatial measures by moving through increasing levels of complexity.

369

370 A simple unitary account of spatial ability, represented by a general factor common to all measures, was found
371 not to provide an accurate description of the foundations of spatial skills. At a first glance, the results could
372 have been interpreted as supporting the existence of three factors of spatial ability. These three factors described
373 individual differences in navigation, object-based abilities and visualization. Existing taxonomies of spatial
374 ability,⁷ differentiate not only between static and dynamic spatial skills, but also between intrinsic and extrinsic
375 abilities. Consistent with this account we observed a partial differentiation between object-based spatial tests,
376 such as mental rotation, that are largely concerned with the intrinsic properties of objects, and visualization
377 tests, such as perspective taking and scanning, which are largely concerned with extrinsic relations among
378 objects.^{7,38} However, the very strong correlations, from .73 to .95, observed between the object-based,
379 navigation and visualization factors contradicted this putative distinction, and opened the possibility that a
380 coherent, underlying set of abilities held these three factors together.

381

382 Factor analytic evidence supported this hierarchical account of spatial cognition: All sixteen tests were found to
383 load onto three factors (navigation ability, object-based ability and visualization ability), which in turn loaded
384 strongly onto a common factor of spatial ability. A hierarchical structure, which highlights both communalities
385 and differences between cognitive tests, has also been found to provide the most accurate characterization in
386 other domains of cognition, most notably executive functions.³⁹⁻⁴² Also consistent with what has been observed
387 for individual differences in executive functions, we found that genetic factors were largely shared across all
388 tests of spatial abilities. These results point to the existence of a common genetic network at the basis of
389 individual differences in spatial ability, therefore providing additional support for a unitary account of spatial
390 cognition.

391

392 A further line of evidence supporting the existence of a unitary account of spatial cognition was provided by our
393 analyses examining the role of g in the clustering of spatial ability at the genetic and environmental levels. We
394 found that individual differences in g correlated moderately with all individual tests of spatial skills and
395 substantially with the common spatial ability factor. However, nearly half of the substantial genetic variance in
396 spatial ability was found to be independent of the genetic variance in g , measured aggregating multiple
397 cognitive tests over development. Taken together, our results indicate that spatial skills cluster together
398 phenotypically and genetically beyond the simple fact that they are all tests reflecting a general,
399 developmentally stable, capacity for planning, thinking abstractly and solving problems, all skills that are
400 indexed by g .³⁵ It should be noted that, since the genetic and environmental components of cognitive abilities
401 have differential longitudinal stabilities, aggregating across waves might have resulted in ‘cancelling out’
402 environmental variance that is specific to each developmental stage, in favour of aggregating stable genetic
403 variance in g over development.³⁶

404

405 In summary, our current work provides a threefold line of support for the unitary nature of spatial cognition,
406 partly independent of other measures of cognitive skills. Interestingly, this unitary account of abilities is at odds
407 with individuals’ perceptions of their own ability and feelings towards spatial activities. In our previous work
408 examining the structure of spatial and mathematics anxiety, we found evidence for a separation between the
409 anxiety people feel towards spatial navigation and the anxiety towards object-based skills, such as completing
410 difficult jigsaw puzzles and building flat-pack furniture from instructions.⁴³ This observed difference in
411 perceptions and feelings towards different spatial activities might contribute to explaining why ideas, theories
412 and taxonomies of spatial cognition have mostly favoured a multifaceted account of spatial skills.

413

414 Although our study provides the most comprehensive investigation of the structure of spatial ability to date in a
415 large sample and addresses several outstanding research questions concerning spatial cognition, it was limited
416 by the technology available to us at the time. Although we developed a new gamified battery set in a virtual
417 environment to reliably examine individual differences in spatial orientation skills, it is possible that assessment
418 in a computer-simulated environment might not be able to capture individual differences in spatial orientation
419 and navigation as well as does assessment in real life settings. It has been proposed that spatial orientation in
420 computer-simulated environments might reflect an allocentric (object-to-object) approximation of the abilities
421 involved in egocentric (self-to-object) real-life spatial orientation.⁴⁴ However, studies that have examined the
422 reliability of measuring navigation skills in virtual reality, as compared to real life settings, have found good
423 concordance between the two.¹³ While we leveraged the newest technological developments to create a realistic
424 virtual environment to host our gamified test, future studies might explore navigation in virtual reality applying
425 even more immersive tools such as, for example, head-mounted displays (e.g. oculus technology).

426 Our finding of a unitary structure of spatial cognition across sixteen diverse tests of spatial skills, is likely to
427 inform several disciplines beyond cognitive psychology. Investigations on the nature and structure of spatial
428 ability have concerned researchers in a wide range of scientific disciplines, from evolutionary biology, to
429 neuroscience, ecology and molecular genetics. Our evidence for a largely unitary phenotypic and genetic
430 network supporting individual differences in spatial cognition can serve as a basis for future research on the
431 nature of spatial ability across all these disciplines and will likely provide a shift in our consideration of the
432 architecture of human cognitive abilities. These findings are also likely to inform educational practices and
433 interventions, particularly the development of programs aimed at advancing STEM learning through training
434 spatial skills.⁴⁵

436 437 METHODS

438 439 **Sample**

440 Participants were part of the Twins Early Development Study (TEDS), a longitudinal study of twins born in the
441 United Kingdom between 1994 and 1996. The families in TEDS are representative of the British population in
442 their socio-economic distribution, ethnicity and parental occupation. See Rimfeld et al. for additional
443 information on the TEDS sample.⁴⁷ The present study focuses on data collected in a sample of 2,660 TEDS
444 twins aged 19-22 ($M = 21.23$, $SD = 0.53$, *range* = 2.29). TEDS twins completed two online batteries assessing
445 multiple aspects of spatial abilities. One was set in a virtual environment and assessed six aspects of large-scale
446 spatial navigation and orientation skills. 2,660 twins (356 MZ males, 338 MZ females, 650 DZ males, 520 DZ
447 females and 796 opposite sex) took part in this battery (868 complete twin pairs). 74.3% of participants who
448 completed the spatial orientation battery ($N = 1978$, 740 complete pairs) also completed an online battery of
449 tests developed to assess ten aspects of object-based spatial abilities. At least five months passed between the
450 administration of the two batteries. The object-based spatial battery was administered first, starting from May
451 2015, while the data collection for the spatial orientation battery started in September 2015.

452 453 **Measures**

454 455 *Spatial orientation battery*

456 Putatively different facets of spatial orientation skills were assessed through a novel gamified battery called
457 'Spatial Spy'. Participants were invited to solve a mystery by collecting clues while orienting and navigating
458 around the streets of a virtual environment (Figure 8). The online battery was developed in Unity
459 (<https://unity3d.com>) by ETT Solutions. After a comprehensive literature review, we identified four core

aspects of spatial orientation and navigation skills: 1) navigating when reading a map; 2) navigating based on a previously memorized map or route; 3) navigating following directions (e.g. cardinal points), and 4) navigating using reference landmarks. In addition to these four abilities, the spatial orientation battery included two tests based on paradigms that have been frequently used in the object manipulation spatial literature: perspective-taking and scanning. Two research aims motivated the decision to include these two tests in the battery. First, we aimed to explore how perspective taking and scanning measured within a large-scale spatial framework (i.e. within a more naturalistic context approximating a virtual environment) related to the same abilities assessed within a smaller-scale, object manipulation framework (i.e. psychometric tests collected as part of another online battery). Secondly, due to the innovative and experimental nature of the spatial orientation battery, we included measures of scanning and perspective taking, for which we had corresponding data from more traditional psychometric tests, in order to explore the external validity of assessing spatial skills within this new virtual environment. The measures included in this spatial orientation battery are described in detail below. The statistical properties (distribution characteristics and test-retest reliability) of each measure were assessed through two pilot studies.

The final battery started with a training session that helped participants become acquainted with using the cursor or mouse for navigating around the virtual environment, as well as with the requirements and mechanics of each of the six tests. The battery was administered online, with participants taking the tests in web browsers on their own desktop or laptop computers, using a mouse or trackpad to 'look' around the virtual environment, and the keyboard to move. The battery took between 35 and 60 minutes (median time 43 minutes) to complete and participants could pause at any time by pressing the key 'P' on their keyboard and could resume the game at any given time. Prior to the testing session, participants were provided with practice trials for every test. A two-minute video providing examples of how each subtest was implemented within the Spatial Spy virtual environment is available at the following link <https://www.youtube.com/watch?v=wHj0-19rbI>. Following is a detailed description of each test included in the spatial orientation battery. Test-retest reliability for each measure was calculated as part of a pilot study including a sample of 100 participants who completed the battery twice over the space of two months.

Map Reading (Figure 8a), assessed individual differences in the ability to efficiently read a map to travel from one location to another. Once a map had appeared on the top-right corner of the screen, a flashing yellow dot on the map indicated participants' starting location (A), while a red pointer designated the end-point location on the map (B). Participants were instructed to get from A to B by finding the fastest route and notified that they had 1 minute to complete their mission. If participants could not reach their destination within 60 seconds, they were 'teleported' back to the initial location and allowed a second opportunity to complete the task. The ability

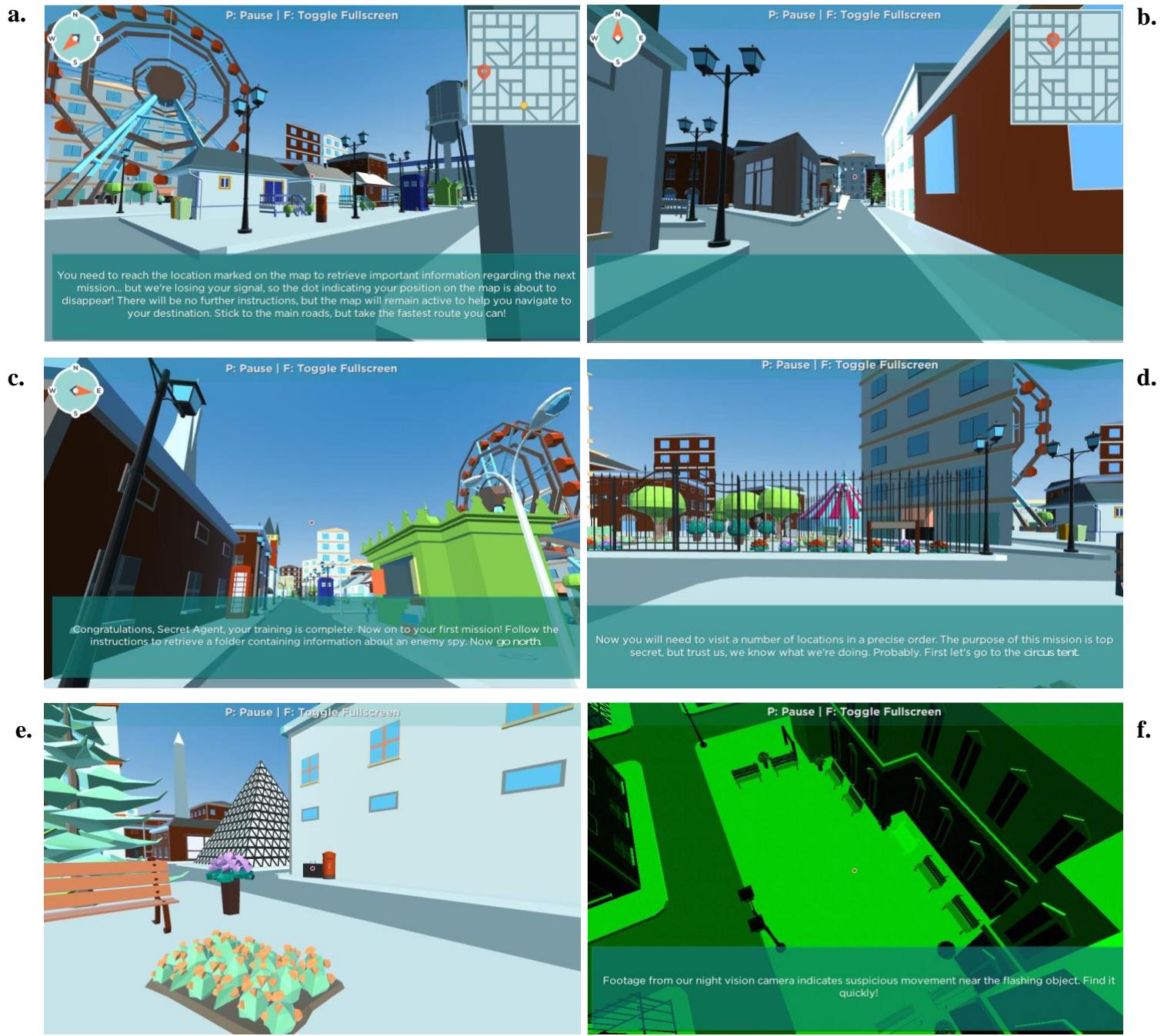
494 was assessed through five non-consecutive iterations of increasing difficulty. Each iteration was allocated a
495 score of 2 if participants had successfully travelled from A to B through the quickest (most direct) route, a score
496 of 1 if participants had successfully completed the mission but had not selected the fastest route, and a score of 0
497 if participants had failed to complete the mission. This created a final maximum score of 10. The final score
498 was calculated by combining this accuracy score with participants' reaction time (time taken to successfully
499 complete the mission), equally weighted. The test showed good test-retest reliability ($r = .69$, $p < .001$) and
500 distribution (Figure 1).

501
502 *Memorizing a Route* (Figure 8b), assessed individual differences in the ability to travel from one location to
503 another by remembering the content of a map. As for the map reading condition, a map appeared on the top-
504 right corner of the screen, with a flashing yellow dot indicating participant's starting location (A), and a red
505 pointer designating the end-point location (B). However, the route memorizing test asked participants to
506 memorise the content of the map before the map disappeared from the screen. Participants were given 20
507 seconds to memorize the map and plan the route before travelling from A to B and were allowed 120 seconds to
508 reach the target location. The number of increasingly difficult iterations, procedure and scoring were the same
509 as those for the previously described map-reading without memory task. Test-retest reliability was good ($r =$
510 $.60$, $p < .001$), and distribution (Figure 1).

511
512 *Navigation according to directions* (Figure 8c) assessed participants' skills in navigating around a virtual
513 environment following instructions based on directions. At the start of the task, participants were 'teleported' to
514 one location of the virtual environment and given instructions to navigate around the virtual city in terms of
515 compass points (north, south, east and west). The test included 5 non-consecutive iterations of increasing
516 difficulty and each iteration comprised 4-6 tasks. Each task that was solved correctly was assigned a score of 1.
517 Participants were allowed a maximum of three attempts to respond correctly to each task and consequently
518 proceed to the next set of instructions. After three consecutive failed attempts, the iteration was discontinued
519 and the remaining tasks in that iteration (if any) were assigned a score of 0. Each iteration had a time limit of
520 180 seconds, if the time limit expired before participants had completed all the tasks, the remaining tasks for
521 that iteration were discontinued and assigned a score of 0. There was no progress bar or timer on screen to help
522 participants keep track of time; however, "hurry up" prompts appeared on screen as the time limit approached.
523 At the end of each iteration (either successfully completed or discontinued) participants were teleported to
524 another part of the virtual environment to complete the following iteration. For the first two iterations the image
525 of a compass providing cardinal directions was available on the top-left corner of the screen, but the compass
526 was not available for the last three iterations, making them more difficult to complete. Examples of instructions
527 were: 'Now turn east' and 'You are facing southwest. Go north and immediately turn west'. The final score was

528 calculated by combining the accuracy score with participants' reaction time (time taken to successfully
529 complete each iteration), equally weighted. The test showed excellent test-retest reliability ($r = .89$, $p < .001$)
530 and distribution of the scores (see Figure 1).

531


532 Navigating based on reference landmarks (Figure 8d) measured the ability to navigate following instructions
533 based on the descriptive features of the destination or other nearby landmarks. The test included 5 non-
534 consecutive iterations each comprising 4 or 5 tasks. Each task lasted for a maximum of 60 seconds, so
535 participants had 60 seconds to reach a certain landmark within the virtual environment. If the time limit expired
536 before participants had reached the required landmark, they were discontinued, teleported to the landmark in
537 question, and were able to proceed to the next task. Each task solved correctly, meaning that participants were
538 able to reach the described landmark within the time limit, was assigned a score of 1, while for each trial when
539 participants were not able to reach the location in 60 seconds, they were assigned a score of 0. Neither a map
540 nor a compass was provided to help participants navigate around the environment. Examples of instructions are:
541 '*Now reach the tall white pyramid skyscraper*', and '*The message instructs you to go to the park near the old
542 clock tower*'. The target landmark was visible at the start of the session, but it was not always in plain sight as
543 participants were navigating throughout the city to reach the target landmark. The final score was calculated by
544 combining this accuracy score with participants' reaction time (time taken to successfully complete each
545 iteration), equally weighted. The test showed excellent test-retest reliability ($r = .80$, $p < .001$) and distribution of
546 the scores (see Figure 3a).

547

548 Large-scale scanning ability (Figure 8e) measured participants' ability to quickly process visual information
549 and identify a target object, a black briefcase, located somewhere nearby within the virtual city. The target
550 object remained the same across the five non-consecutive iterations of increasing difficulty. When looking for
551 the target, participants' perspective could be rotated freely in any direction, but could not be moved vertically or
552 horizontally around the virtual environment. Participants could identify the target object by clicking on the
553 mouse or trackpad within 60-seconds. Within the time limit, participants were allowed four attempts to
554 correctly spot the target object and, as for all other tasks, they were encouraged to do it as quickly as possible.
555 Feedback was provided after each attempt, and as soon as participants had identified the target object correctly,
556 they were 'teleported' to the next task. It was not possible to pause half-way through the 60-second iteration.
557 The final score was calculated by combining this accuracy score with participants' reaction time (time taken to
558 successfully complete each iteration). The test showed excellent test-retest reliability ($r = .80$, $p < .001$) and wide
559 distribution of the scores (see Figure 1).

560

561 Large-scale perspective taking (Figure 8f) measured participants' ability to identify objects from a different
562 perspective in large-scale 'naturalistic' settings. The test comprised five iterations of increasing difficulty that
563 followed the same test rules. Each iteration started with a CCTV-like image showing an aerial shot of a location
564 within the virtual world, and within this location one target object was depicted flashing on screen for ten
565 seconds. During this initial stimulus presentation, participants could not move within the virtual environment,
566 so all participants were exposed to the same image of the flashing target object. After the ten seconds had
567 elapsed, the CCTV image disappeared and participants were teleported back to the target location within the
568 virtual environment, which shifted their perspective shifted back to ground level; they were then instructed to
569 identify the target object as quickly as possible. When looking for the target object (the one that was flashing
570 when presented from the CCTV perspective), participants' perspective could be freely rotated but could not be
571 moved vertically or horizontally around the virtual environment. Participants could identify the target object by
572 clicking on it with their mouse or trackpad within 60-seconds. Within the time limit, participants were allowed
573 four attempts to correctly spot the target object and they were encouraged to do it as quickly as possible. A
574 message would appear on the screen after each attempt (either 'Yes' or 'Try again') to provide participants with
575 feedback on their performance, and each iteration terminated either after a successful attempt, or after
576 participants had used up their four attempts, or if they timed out. A 'Hurry up' message was displayed on the
577 screen a few seconds before the time for each iteration elapsed. The test showed good distribution (Figure 1)
578 and test-retest reliability ($r = .67$, $p < .001$).

579
580
581
582

Figure 8. The virtual city where the spatial orientation battery takes place and examples of the six tasks included in the gamified battery: (a) map reading (b) route memorizing; (c) navigation based on directions; (d) navigation based on reference landmarks; (e) scanning; (f) perspective taking.

583

584

585 *Object Manipulation*

586

587 Object manipulation was tested using an online, gamified, battery called ‘The King’s Challenge’¹⁸. This test
588 battery measures the major putative dimensions of spatial ability, and is comprised of 10 tests: 1) a mazes task

589 (searching for a way through a 2D maze in a speeded task); 2) 2D drawing (sketching a 2D layout of a 3D
590 object from a specified viewpoint); 3) Elithorn mazes (joining together as many dots as possible from an array);
591 4) pattern assembly (visually combining pieces of objects together to make a whole); 5) mechanical reasoning
592 (multiple-choice naïve physics questions); 6) paper folding (visualizing where the holes are situated after a
593 piece of paper is folded and a hole is punched through it); 7) 3D drawing (sketching a 3D drawing from a 2D
594 diagram); 8) mental rotation (mentally rotating objects); 9) perspective-taking (visualizing objects from a
595 different perspective), and 10) cross-sections (visualizing cross-sections of objects). The development of the
596 battery is described in detail elsewhere.¹⁸ A brief demonstration of the battery can be accessed
597 here: <https://www.youtube.com/watch?v=awnfeiAPmQc>

599 *General cognitive ability (g) over development*

600
601 General cognitive ability (g; intelligence) was assessed in TEDS at ages 7, 9, 10, 12, 14, and 16. For the
602 present analyses we created a longitudinal composite measure of g as a mean of these six assessments. See
603 Supplementary Methods for a more detailed description of g measures.

604 605 *Analytic Strategies*

606 The R package ‘psych’⁴⁸ was used to obtain descriptive statistics and correlations, and the R package
607 ‘ggplot2’⁴⁹ was used for data visualization purposes. For all phenotypic analyses, one twin was selected
608 randomly from each pair to ensure independence of data. Similar results were obtained when the analyses were
609 conducted on the second half of the sample (see supplementary Figures S10, S11 and S12). Structural Equation
610 modelling (SEM) was conducted in Mplus version 8⁵⁰, and Full Information Maximum Likelihood (FIML) was
611 applied to account for missingness in the data.

612 613 *Confirmatory Factor Analyses*

614
615 Confirmatory Factor Analysis (CFA) is a data reduction technique whereby latent factors are constructed from
616 observed (measured) indicators based on a pre-imposed structure which is hypothesized to underlie the data.
617 CFA is, in most instances, theory-driven and allows for testing hypothesis on the associations between variables
618 and their underlying latent constructs. Alternative theoretical models were compared examining multiple model
619 fit indices. Model fit indices include: a) the Chi-square test, which indicates the correspondence between the
620 expected and the observed covariance matrices, a chi-square value close to zero indicates greater
621 expected and the observed covariance matrices, a chi-square value close to zero indicates greater

623 correspondence between them; b) the Comparative Fit Index (CFI) is an incremental fit index that is based on
624 the non-centrality measure. The CFI ranges from 0 to 1.00, with values closer to 1.00 indicating better fit
625 (acceptable values > .90); c) the Root Mean Square Error of Approximation (RMSEA) is related to residual in
626 the model. RMSEA values range from to 1 with a smaller RMSEA value indicating better model fit. Acceptable
627 model fit is indicated by an RMSEA value of 0.08 or less.⁵¹

628

629 *Genetic Analyses: Univariate and Multivariate Twin modelling*

630

631 The twin method allows for the decomposition of individual differences in a trait into genetic and
632 environmental sources of variance by capitalizing on the genetic relatedness between monozygotic twins (MZ),
633 who share 100% of their genetic makeup, and dizygotic twins (DZ), who share on average 50% of the genes
634 that differ between individuals. The method is further grounded in the assumption that both types of twins who
635 are raised in the same family share their rearing environments to approximately the same extent.⁵² By
636 comparing how similar MZ and DZ twins are for a given trait (intraclass correlations), it is possible to estimate
637 the relative contribution of genetic factors and environments to variation in that trait. Heritability, the amount of
638 variance in a trait that can be attributed to genetic variance (A), can be roughly estimated as double the
639 difference between the MZ and DZ twin intraclass correlations.⁵³ The ACE model further partitions the variance
640 into shared environment (C), which describes the extent to which twins raised in the same family resemble each
641 other beyond their shared genetic variance, and non-shared environment (E), which describes environmental
642 variance that does not contribute to similarities between twin pairs (and also includes measurement error). It
643 also provides confidence intervals for all estimates.

644

645 When data are available from opposite- sex and same-sex DZ twin pairs, the standard univariate ACE model
646 can be extended to a sex-limitation model to test for the differences in the etiologies of sex differences by
647 comparing five sex and zygosity groups: MZ females, DZ females, MZ males, DZ females and DZ opposite-sex
648 twin pairs.³² This method allows for estimating quantitative and qualitative sex differences (i.e., the same
649 factors affecting males and females to a different extent). Differences in the magnitude of ACE estimates for
650 males and females are referred to as quantitative sex differences; qualitative sex differences indicate whether
651 different genetic or environmental factors influence males and females. The sex limitation model is described in
652 detail elsewhere.⁵⁴ Here we conducted sex-limitation model-fitting by fitting a series of nested models and then
653 testing the relative drop of the fit between the models when the parameters for the sexes are forced to be
654 equal.⁵⁵

656 The twin method can also be extended to the exploration of the covariance between two or more traits
657 (**multivariate genetic analysis**). Multivariate genetic analysis allows for the decomposition of the covariance
658 between multiple traits into genetic and environmental sources of variance, by modelling the cross-twin cross-
659 trait covariances. Cross-twin cross-trait covariances describe the association between two variables, with twin
660 1's score on variable 1 correlated with twin 2's score on variable 2, which are calculated separately for MZ and
661 DZ twins. The examination of shared variance between traits can be further extended to test the etiology of the
662 variance that is common between traits and of the residual variance that is specific to individual traits. Here we
663 used the **common pathway model** which is a multivariate genetic model in which the variance common to
664 all measures included in the analysis can be reduced to a common latent factor, for which the A, C and E
665 components are estimated. As well estimating the etiology of the common latent factor, the model allows for the
666 estimation of the A, C and E components of the residual variance in each measure that is not captured by the
667 latent construct.⁵⁶ The common pathway model estimates the extent to which the general factor of spatial
668 ability is explained by A, C and E. The common pathway model is illustrated in Figure 3. Based on factor
669 analytic evidence, the common pathway model can be extended to include multiple common factors and,
670 consequently to the examination of the genetic and environmental associations between the multiple latent
671 factors. This extension of the common pathway model is presented in Figure 6.

672 673 Acknowledgements

674 We gratefully acknowledge the ongoing contribution of the participants in the Twins Early Development Study
675 (TEDS) and their families. TEDS is supported by a program grant to R.P. from the UK Medical Research
676 Council [MR/M021475/1 and previously G0901245], with additional support from the US National Institutes of
677 Health [HD044454; HD059215]. R.P. is supported by a Medical Research Council Research Professorship
678 award [G19/2] and a European Research Council Advanced Investigator award [295366]. E.M.T. and M.M. are
679 Faculty Research Associates of the Population Research Center at the University of Texas at Austin, which is
680 supported by a grant, 5-R24-HD042849, from the Eunice Kennedy Shriver National Institute of Child Health
681 and Human Development (NICHD). E.M.T. is also supported by a Jacobs Foundation Research Fellowship and
682 NIH grant R01HD083613. M.M. is partly supported by a David Wechsler Early Career Grant for Innovative
683 Work in Cognition. The funders had no role in study design, data collection and analysis, decision to publish, or
684 preparation of the manuscript.

685 686 687 Author Contributions

688 Conceived and designed the experiment: M.M., K.R., N.G.S., K.L.S., M.R., Y.K., V.R., R.P. Analyzed the data:
689 M.M., K.R., N.G.S. Wrote the paper: M.M., K.R., R.P. All authors approved the final draft.

690

691 **Supplementary information accompanies this manuscript.**

692

693 **Competing interest:** The authors declare no competing financial interest.

694

695 **Data Access:** the Twins Early Development Study's data access policy can be found at the following link

696 <https://www.teds.ac.uk/researchers/teds-data-access-policy>

REFERENCES

1. Morand-Ferron, J., Cole, E. F. & Quinn, J. L. Studying the evolutionary ecology of cognition in the wild: A review of practical and conceptual challenges. *Biol. Rev.* **91**, 367–389 (2016).
2. Lubinski, D. Spatial ability and STEM: A sleeping giant for talent identification and development. *Pers. Individ. Dif.* **49**, 344–351 (2010).
3. Webb, R. M., Lubinski, D. & Benbow, C. P. Spatial ability: A neglected dimension in talent searches for intellectually precocious youth. *J. Educ. Psychol.* **99**, 397–420 (2007).
4. Wai, J., Lubinski, D. & Benbow, C. P. Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. *J. Educ. Psychol.* **101**, 817–835 (2009).
5. Kell, H. J., Lubinski, D., Benbow, C. P. & Steiger, J. H. Creativity and Technical Innovation. *Psychol. Sci.* **24**, 1831–1836 (2013).
6. Newcombe, N. Harnessing spatial thinking to support STEM learning. *OECD Educ. Work. Pap.* (2017). doi:10.1787/7d5dcae6-en
7. Newcombe, N. S. & Shipley, T. F. Thinking About Spatial Thinking: New Typology, New Assessments. *Stud. Vis. Spat. Reason. Des. Creat.* 179–192 (2015). doi:10.1007/978-94-017-9297-4_10
8. Galton, F. Generic images. *Ninet. Century* **6**, 157–169 (1879).
9. Buckley, J., Seery, N. & Canty, D. A Heuristic Framework of Spatial Ability: a Review and Synthesis of Spatial Factor Literature to Support its Translation into STEM Education. *Educ. Psychol. Rev.* **30**, 947–972 (2018).
10. Lohman, D. Spatial ability and G. in *Human Abilities: Their Nature and Measurement* (eds. Dennis, I. & Tapsfield, P.) 97–116 (Lawrence Erlbaum, 1996).
11. Shepard, R. N. & Metzler, J. Mental Rotation of Three-Dimensional Objects Abstract . The time required to recognize that two perspective drawings portray. *Science (80-)* **171**, 701–703 (1971).
12. Linn, M. C. & Petersen, A. C. Emergence and Characterization of Sex Differences in Spatial Ability : A Meta-Analysis Author (s): Marcia C . Linn and Anne C . Petersen Published by : Wiley on behalf of the Society for Research in Child Development Stable URL : <http://www.jstor.org/st>. *Child Dev.* **56**, 1479–1498 (1985).
13. Coutrot, A. *et al.* Virtual navigation tested on a mobile app (Sea Hero Quest) is predictive of real-world navigation performance: preliminary data. *bioRxiv* 1–10 (2018).
14. Newcombe, N. S. Finding our way: Book Review. *Curr. Biol.* **29**, R108–R109 (2019).
15. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T. & Lovelace, K. Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. *Intelligence* **34**, 151–176 (2006).

16. Mackintosh, N. & Mackintosh, N. *IQ and Human Intelligence*. (Oxford University Press, UK, 2011).
17. Carroll, J. B. (John B. *Human cognitive abilities : a survey of factor-analytic studies*. (Cambridge University Press, 1993).
18. Rimfeld, K. *et al.* Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. *Proc. Natl. Acad. Sci.* (2017). doi:10.1073/pnas.1607883114
19. Ittelson, W. H. *Environment and cognition*. (Seminar Press, 1973).
20. Cutting, J. & Vishton, P. Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. in *Handbook of perception and cognition* (2nd ed.). *Perception of space and motion* (eds. Epstein, W. & Rogers, S. J.) 69–117 (Academic Press, 1995).
21. Silverman, I. & Eals, M. Sex differences in spatial abilities: Evolutionary theory and data. in *he adapted mind: Evolutionary psychology and the generation of culture* (eds. Barkow, J. H., Cosmides, L. & Tooby, J.) 533–549 (Oxford University Press, 1992).
22. Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G. & Beck, S. Predicting environmental learning from spatial abilities: An indirect route. *Intelligence* **22**, 327–355 (1996).
23. Tversky, B., Bauer Morrison, J., Franklin, N. & Bryant, D. J. Three spaces of spatial cognition. *Prof. Geogr.* **51**, 516–524 (1999).
24. Zacks, J. M., Mires, J. O. N., Tversky, B. & Hazeltine, E. Mental spatial transformations of objects and perspective DISCUSSION (INTRODUCTION). *Spat. Cogn. Comput.* **2**, 315–332 (2002).
25. Hegarty, M. & Waller, D. A. Individual differences in spatial ability. in *The Cambridge Handbook of Visuospatial Thinking* (eds. Shah, P. & Miyake, A.) 121–169 (Cambridge University Press, 2005).
26. Kosslyn, S. M. & Thompson, W. L. When Is Early Visual Cortex Activated during Visual Mental Imagery? *Psychol. Bull.* **129**, 723–746 (2003).
27. Morris, R. G. & Parslow, D. Neurocognitive Components of Spatial Memory. in *Remembering Where* 217–250 (2003).
28. Gaulin, S. J. C. Does evolutionary theory predict sex differences in the brain? in *The cognitive neurosciences* (ed. Gazzaniga, M. S.) 1211–1225 (The MIT Press, 1995).
29. Jones, C. M., Braithwaite, V. A. & Healy, S. D. The evolution of sex differences in spatial ability. *Behav. Neurosci.* **117**, 403–11 (2003).
30. Spearman, C. ‘ General Intelligence ,’ Objectively Determined and Measured Author (s): C . Spearman Source : The American Journal of Psychology , Vol . 15 , No . 2 (Apr ., 1904), pp . 201–292 Published by : University of Illinois Press Stable URL : [http://www.jsto. Am. J. Psychol. 15, 201–292 \(1904\).](http://www.jsto. Am. J. Psychol. 15, 201–292 (1904).)
31. Deary, I. J. Intelligence. *Curr. Biol.* **23**, R673–R676 (2013).
32. Knopik, V. S., Neiderhiser, J. M., Defries, J. C. & Plomin, R. *Behavioral Genetics*. (Macmillan Higher Education, 2016).

33. Toivainen, T. *et al.* Prenatal testosterone does not explain sex differences in spatial ability. *Sci. Rep.* **8**, 1–8 (2018).
34. Newcombe, N., Bandura, M. M. & Taylor, D. G. Sex differences in spatial ability and spatial activities. *Sex Roles* **9**, 377–386 (1983).
35. Plomin, R. & Deary, I. J. Genetics and intelligence differences: Five special findings. *Mol. Psychiatry* **20**, 98–108 (2015).
36. Tucker-Drob, E. M. & Briley, D. A. Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. *Psychol. Bull.* **140**, 949–979 (2014).
37. Uttal, D. H. *et al.* The malleability of spatial skills: A meta-analysis of training studies. *Psychol. Bull.* **139**, 352–402 (2013).
38. Kozhevnikov, M. & Hegarty, M. A dissociation between object manipulation spatial ability and spatial orientation ability. *Mem. Cogn.* **29**, 745–756 (2001).
39. Friedman, N. P. *et al.* Individual Differences in Executive Functions Are Almost Entirely Genetic in Origin. *J. Exp. Psychol.* **137**, 201–225 (2008).
40. Engelhardt, L. E. *et al.* Strong Genetic Overlap Between Executive Functions and Intelligence. *J. Exp. Psychol. Gen.* **145**, 1141–1159 (2016).
41. Malanchini, M., Engelhardt, L. E., Grotzinger, A. D., Harden, K. P. & Tucker-drob, E. M. “ Same But Different ”: Associations Between Multiple Aspects of Self-Regulation, Cognition and Academic Abilities. *J. Pers. Soc. Psychol.* **advance on**, (2018).
42. Engelhardt, L. E., Briley, D. A., Mann, F. D., Harden, K. P. & Tucker-Drob, E. M. Genes Unite Executive Functions in Childhood. *Psychol. Sci.* 0956797615577209 (2015). doi:10.1177/0956797615577209
43. Malanchini, M. *et al.* The genetic and environmental aetiology of spatial, mathematics and general anxiety. *Sci. Rep.* **7**, (2017).
44. Tu, S., Spiers, H. J., Hodges, J. R., Piguet, O. & Hornberger, M. Egocentric versus Allocentric Spatial Memory in Behavioral Variant Frontotemporal Dementia and Alzheimer’s Disease. *J. Alzheimer’s Dis.* **59**, 883–892 (2017).
45. Levine, S. C., Foley, A., Lourenco, S., Ehrlich, S. & Ratliff, K. Sex differences in spatial cognition: Advancing the conversation. *Wiley Interdiscip. Rev. Cogn. Sci.* **7**, 127–155 (2016).
46. Haworth, C. M. A., Davis, O. S. P. & Plomin, R. Twins Early Development Study (TEDS): A Genetically Sensitive Investigation of Cognitive and Behavioral Development From Childhood to Young Adulthood. *Twin Res. Hum. Genet.* **16**, 117–125 (2013).
47. Rimfeld, K. *et al.* Twins Early Development Study: a genetically sensitive investigation into behavioural and cognitive development from infancy to emerging adulthood. *bioRxiv* **May**, (2019).
48. Revelle, W. psych: Procedures for Personality and Psychological Research. (2018).

49. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (2019).
50. Muthén, L. K. & Muthén, B. O. *Mplus User's Guide*. (2017).
51. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Struct. Equ. Model.* **6**, 1–55 (1999).
52. Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. . A twin study of recent life events and difficulties. *Arch. Gen. Psychiatry* **50**, 789–796 (1993).
53. Martin, N. G. & Eaves, L. J. Stages ; the First To Determine the Genetical and Environmental Model. *Most* **38**, 79–95 (1977).
54. Medland, S. E. Alternate parameterization for scalar and non-scalar sex-limitation models in Mx. *Twin Res.* **7**, 299–305 (2004).
55. Boker, S., Neale, M., Meas, H., Wilde, M., Spiegel, M., Brick, T., Spies, J., Estabrook, R., Kenny, S., Bates, T., Mehta, P., Fox, J. OpenMx: An Open Source Extended Structural Equation Modeling Framework. *Psychometrika* **76**, 306–317 (2011).
56. Rijsdijk, F. V. Common Pathway Model. in *Encyclopedia of Statistics in Behavioral Science* (ed. eds. Everitt, B. S. & Howell, D. C.) 330–331 (John Wiley & Sons Ltd., 2005).