

1 **Pangenomics reveal diversification of enzyme families and niche**
2 **specialization in globally abundant SAR202 bacteria**

3

4 Jimmy H.W. Saw^{1, #}, Takuro Nunoura², Miho Hirai³, Yoshihiro Takaki³, Rachel Parsons⁴,
5 Michelle Michelsen¹, Krista Longnecker⁵, Elizabeth B. Kujawinski⁵, Ramunas
6 Stepanauskas⁶, Zachary Landry⁷, Craig A. Carlson⁸, Stephen J. Giovannoni^{1*}

7 ¹ Oregon State University, 226 Nash Hall, Corvallis, OR 97330, USA

8 ² Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth
9 Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061,
10 Japan

11 ³ Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-
12 cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for
13 Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka,
14 Kanagawa 237-0061, Japan

15 ⁴ Bermuda Institute for Ocean Science (BIOS), St. Georges, GE 01, Bermuda

16 ⁵ Woods Hole Oceanographic Institution, 360 Woods Hole Rd, Woods Hole, MA 02543, USA

17 ⁶ Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, P.O. Box 380, East Boothbay,
18 Maine 04544, USA

19 ⁷ ETH Zürich, Stefano-Francini-Platz 5, 8093 Zürich, Switzerland

20 ⁸ University of California Santa Barbara, Marine Science Institute and the Department of
21 Ecology, Evolution, and Marine Biology, Santa Barbara, CA 93106-6150, USA

22 [#] current address: George Washington University, 2029 G St NW, Bell 303, Washington, DC
23 20052, USA

24 * Corresponding author. Email address: *steve.giovannoni@oregonstate.edu*

25

26

27

28

29

30

31 **Abstract**

32 It has been hypothesized that abundant heterotrophic ocean bacterioplankton in the
33 SAR202 clade of the phylum *Chloroflexi* evolved specialized metabolism for the oxidation of
34 organic compounds that are resistant to microbial degradation via common metabolic
35 pathways. Expansions of paralogous enzymes were reported and implicated in
36 hypothetical metabolism involving monooxygenase and dioxygenase enzymes. In the
37 metabolic schemes proposed, the paralogs serve the purpose of diversifying the range of
38 organic molecules that cells can utilize. To further explore this question, we reconstructed
39 SAR202 single amplified genomes and metagenome-assembled genomes from locations
40 around the world, including the deepest ocean trenches. In analyses of 122 SAR202
41 genomes that included six subclades spanning SAR202 diversity, we observed additional
42 evidence of paralog expansions that correlated with evolutionary history, and further
43 evidence of metabolic specialization. Consistent with previous reports, families of flavin-
44 dependent monooxygenases were observed mainly in the Group III SAR202, in the
45 proposed class *Monstramaria* and expansions of dioxygenase enzymes were prevalent in
46 Group IV. We found that Group I SAR202 encode expansions of racemases in the enolase
47 superfamily, which we propose evolved for the degradation of compounds that resist
48 biological oxidation because of chiral complexity. Supporting the conclusion that the
49 paralog expansions indicate metabolic specialization, fragment recruitment and
50 fluorescence *in situ* hybridization with phylogenetic probes showed that SAR202 subclades
51 are indigenous to different ocean depths and geographical regions. Surprisingly, some of
52 the subclades were abundant in surface waters and contained rhodopsin genes, altering
53 our understanding of the ecological role of SAR202 in stratified water columns.

54 **Importance**

55 The oceans contain an estimated 662 Pg C of dissolved organic carbon (DOC). Information
56 about microbial interactions with this vast resource is limited, despite broad recognition
57 that DOM turnover has a major impact on the global carbon cycle. To explain patterns in
58 the genomes of marine bacteria we propose hypothetical metabolic pathways for the
59 oxidation of organic molecules that are resistant to oxidation via common pathways. The
60 hypothetical schemes we propose suggest new metabolism and classes of compounds that
61 could be important for understanding of the distribution of organic carbon throughout the
62 biosphere. These genome-based schemes will remain hypothetical until evidence from
63 experimental cell biology can be gathered to test them, but until then they provide a
64 perspective that directs our attention to the biochemistry of resistant DOM metabolism.
65 Our findings also fundamentally change our understanding of the ecology of SAR202,
66 showing that metabolically diverse variants of these cells occupy niches spanning all
67 depths, and are not relegated to the dark ocean.

68 **Introduction**

69 Some dissolved organic matter (DOM) consists of labile molecules (LDOM) that are
70 recycled quickly by microbes in the epipelagic (0-200 m) near the point of origin, while
71 other DOM transits marine food webs and eventually accumulates in the deep ocean in the

72 form of refractory dissolved organic matter (RDOM). RDOM has residence times of
73 thousands of years (2) and is distributed throughout the water column, but is the main
74 DOM type in the bathypelagic realm (>1000 m). Here we use the term *semi-labile DOM*
75 (SLDOM) to encompass molecules that span a broad range of intermediate stabilities in the
76 environment, including compounds that are often referred to as *recalcitrant* (3). Two
77 general hypotheses put forward to explain SL DOM and RDOM are the *intrinsic stability*
78 *hypothesis*, which postulates that DOM stability is due to molecular structures that are
79 resistant to enzymatic cleavage (8), and the *molecular diversity hypothesis*, which predicts
80 that extreme dilution of compounds can render them unusable by heterotrophs (4). Here,
81 in genomes of the SAR202 clade of marine bacteria, we explore metabolic diversity related
82 to both the *intrinsic stability hypothesis* and the *molecular diversity hypothesis*.

83 The first reports on SAR202 used molecular data to demonstrate their relative abundance
84 increases dramatically at the transition between the euphotic and aphotic zones of the
85 oceans (5). Microbes adapted to dark ocean regions (mesopelagic, 200-1000 m;
86 bathypelagic, 1000-4000 m; abyssopelagic, 4000-6000 m; hadalpelagic, 6000-11,000 m)
87 exploit environments where the most abundant energy resources are SL DOM. These
88 compounds mainly are remnants from primary production in the epipelagic, which is
89 attenuated in transit through food webs. In the dark oceans, low levels of primary
90 production also occur locally, fueled by chemoautotrophy (6). The Microbial Carbon Pump
91 (MCP) is a conceptual framework that captures these features of food webs, and recognizes
92 that, in the process of transformation, a fraction of labile DOM is chemically altered to
93 forms that resist or escape microbial degradation (7).

94 SAR202 are the most abundant lineage of bacteria in the deep oceans. This clade diversified
95 approximately 2 billion years ago, forming six subclades, referred to as “Groups I-VI” (9,
96 10). Early work showed that they constitute, on average, about 10% of total
97 bacterioplankton throughout the mesopelagic of the Sargasso Sea, Central Pacific Ocean,
98 and Eastern Pacific coastal waters (11). A subsequent study revealed that they constitute
99 up to 5% of the total bacterioplankton community in the epipelagic and up to 30% in the
100 meso- and bathypelagic zones in parts of the Atlantic Ocean (12).

101 SAR202 have escaped cultivation to date. Insight into their metabolism has come from field
102 studies and comparative genomics (13). Recent studies, using both single-cell and
103 metagenomic sequencing, have highlighted the differing roles for SAR202 groups at sites
104 around the world. One study assembled three nearly complete SAR202 MAGs from
105 metagenomes from oxygen minimum zones in the Gulf of Mexico and observed expression
106 of nitrate reductase genes, suggesting these cells have the capacity for anaerobic
107 respiration (14). Another study investigated vertical stratification and concluded that
108 SAR202 might be sulfite oxidizers that utilize organosulfur compounds (15). An
109 investigation of SAR202 from the Arctic Ocean described expanded families of dioxygenase
110 enzymes that were proposed to function in aromatic compound degradation, potentially
111 utilizing organic matter discharged from terrestrial sources (16). Freshwater relatives of
112 SAR202 have also been discovered, shedding light on their diversity and ecology in aquatic
113 habitats (17).

114 In a recent study of Group III SAR202, we identified expansions of paralogous protein
115 families, including powerful oxidative enzymes that we hypothesized play a role in
116 degrading SLDOM (10). SAR202 flavin-dependent monooxygenases (FMNOs) were
117 hypothesized to oxidize a variety of chemically stable SLDOM molecules by introducing
118 single oxygen atoms, for example by oxidizing sterols and hopanoids to carboxyl-rich
119 alicyclic molecules (CRAM) (10). CRAM consists of fused aromatic and heterocyclic rings
120 decorated with carboxyl groups (18-20).

121 In this study we investigated paralogous gene expansions and gene co-occurrence in a
122 larger sample of SAR202 diversity. We reconstructed 10 new SAGs, isolated from
123 mesopelagic and hadal waters from the Northwestern Pacific Ocean, and 73 new MAGs
124 from the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea, and from
125 TARA Oceans Expedition metagenomes, a total of 83 new SAR202 genomes. We also
126 investigated the biogeography of these genomes, and their distribution as a function of
127 depth in water columns. Interpreting this information, we hypothesize that SAR202
128 evolved and diversified into multiple niches where they play roles in the oxidation of
129 resistant classes of DOM.

130 **Results**

131 **Overview of genomic bins and SAGs**

132 The total number of SAGs and MAGs in this study was 122, of which 83 are new, and the
133 remainder from previous studies (10, 14, 21-23). Ten new SAR202 SAGs were obtained
134 from three deep ocean trench stations: Mariana, Ogasawara, and Japan trenches. Sixty-two
135 new SAR202 MAGs were reconstructed from TARA Oceans metagenome re-assemblies in
136 this study. TARA metagenomic samples from different depths were assembled separately
137 to help us preserve depth information for each MAG. Eleven new SAR202 MAGs came from
138 metagenomic samples obtained at Bermuda Atlantic Time-series Study (BATS) site. A table
139 summarizing the origin and depth of samples from which the SAGs and MAGs were
140 obtained is provided as Supplemental Table 1.

141 **SAR202 diversity revealed through phylogenomic analyses**

142 A phylogenomic tree was constructed from 36 concatenated single-copy genes that were
143 selected based on their broad presence in genomes, suggesting core functions, and
144 evidence of linear inheritance (Fig. 1). Using ChloNOG subset of gene clusters from the
145 eggNOG database, we identified 639 orthologous gene clusters that are present as single
146 copies in 141 genomes (122 SAR202, 17 other *Chloroflexi*, and 2 cyanobacteria outgroup).

147 The phylogenomic tree supported earlier findings showing that SAR202 are a deeply-
148 branching monophyletic group that radiates from within the *Chloroflexi*, possibly
149 associated with *Dehalococcoides* (Fig. 1). Several deeply-branching subclades, Groups IV-
150 VI, radiate near the base of the clade. Groups III, II and I appear in that order, ascending
151 from the root. They are separated by large evolutionary distances and are the most
152 abundantly represented SAR202 subgroups (Supplemental Table 1). Previously, we
153 proposed that Group III be given the rank of class and assigned the name *Candidatus*

154 Monstramaria (classis nov.). Given the separation of the subclades and the evolutionary
155 distances between them in the phylogenomic tree, we propose the following names for the
156 rest of SAR202 groups: Group I (*Candidatus* Umibozia, classis nov.), Group II (*Candidatus*
157 *Scyllia*, classis nov.), Group IV (*Candidatus* Makaraia classis nov.), Group V (*Candidatus*
158 *Cetusia*, classis nov.), and Group VI (*Candidatus* Tiamatia, classis nov.).

159 **Overview of paralogous enzyme superfamilies in SAR202**

160 Paralog expansions, especially diverse, ancient ones, can indicate past evolutionary events
161 in which new enzyme activities were vehicles for niche expansions. Investigating paralog
162 expansions across SAR202 genomes, we constructed a heatmap showing relative
163 abundances of the top 50 most abundant COG categories (Fig. 2A). The heatmap revealed
164 five major expansions of paralogous gene families, and many other less prominent
165 expansions. The distributions of these groups of paralogs across the major SAR202
166 subclades are shown in Fig. 2B. COG4948, the enolase superfamily, were mainly found in
167 Group I and Group II (Fig. 2B); COG2141, the SAR202 FMNO paralogs were found mainly in
168 Group II and III; and COG4638, ring-hydroxylating dioxygenase paralogs, were found in
169 Group IV, as reported previously (16).

170 A correlation matrix of the top 50 most abundant COG categories showed that the
171 expansions of the five major paralog families discussed above are linked to broad shifts in
172 metabolism (Fig. 3). For example, COG3391, COG4102, and COG5267 are all
173 uncharacterized conserved proteins. COG0747, COG0601, and COG1173 are components
174 involved in dipeptide transport. We interpret these patterns as evidence that the ancient
175 paralog expansions described above accompanied metabolic reorganization and
176 specialization in the SAR202 subclades.

177 **The diversification of flavin-dependent monooxygenases in Group III**

178 An expansion and radiation of diverse FMNO members in Group III SAR202 was previously
179 reported (10). We found further support for this conclusion in this broader analysis of
180 SAR202 diversity, and also observed elevated numbers of FMNO paralogs in Groups II and
181 IV. The number of paralogous FMNO copies ranged from 1 and 114, with members of
182 Group IIIa encoding the highest numbers and the greatest relative abundances, up to 4%
183 when normalized to total number of resolved genes (Fig. 2B). FMNOs were also present in
184 other SAR202 subgroups, at lower copy numbers. Group 1 encode the fewest copies of
185 FMNOs; in some genomes this number approaches zero. The five most abundant FMNOs
186 were annotated as: alkanal mono-oxygenase alpha chain (23% of all annotations);
187 limonene 1,2-monoxygenase (21%); phthiodiolone/ phenolphthiodiolone
188 dimycocerosates ketoreductase (13.9%); F420-dependent glucose-6-phosphate
189 dehydrogenase (13.7%); and alkanesulfonate monooxygenase (7.2%).

190 Because automatic annotation can sometimes fail to assign proper function to the genes,
191 we built a maximum likelihood (ML) phylogenetic tree of all extant FMNOs identified in
192 databases to better visualize the functional diversity of the FMNOs (Fig. 4A). We identified
193 five broadly-classified functional groups: F420-dependent tetrahydromethanopterin
194 reductases, alkanal monooxygenases, nitrilotriacetate monooxygenases, alkanesulfonate
195 monooxygenases, and pyrimidine monooxygenases (RutA). Most fall into the alkanal and

196 F420-dependent monooxygenases. The SAR202 F420-dependent monooxygenases are
197 highly diverse and appear to be paraphyletic. It remains to be determined whether SAR202
198 can synthesize coenzyme F420.

199 Type II Baeyer-Villiger monooxygenases were found in Group IIIa SAR202 as described
200 previously (10) and fall into the broad category of alkanal monooxygenases. The alkanal
201 monooxygenases formed a monophyletic clade with deepest nodes belonging to Group IIIa
202 genes (Fig. 4A). This pattern indicates that this sub-family of enzymes may have originated
203 within SAR202 Group IIIa.

204 **The Group I & II enolase paralog expansion, an adaptation to unlock chiral diversity
205 in DOM resources?**

206 We observed an expansion of diverse enolase superfamily paralogs in Groups I and II (Fig.
207 2A, 2B, and 4B). The presence of enolase paralogs in SAR202 genomes was first noted in
208 MAGs obtained from a northern Gulf of Mexico 'dead zone' (14). Annotations of five most
209 abundant SAR202 enolases are: D-galactonate dehydratase (52.9% of all annotations); L-
210 rhamnonate dehydratase (16.4%); starvation-sensing protein RspA (10%); mandelate
211 racemase (6.8%); and L-Ala-D/L-Glu epimerase (5.4%).

212 The numbers of enolase paralogs in Group 1 ranged from 4 to 75 (1.3 to 3.5% of total genes
213 found in each subclade); other SAR202 clades appear to encode very few copies of this
214 enzyme (Fig. 2B), with the exception of Group II SAR202, which encode both FMNO and
215 enolase paralogs, in roughly equal abundances (Fig. 2B). Enzymes of the enolase
216 superfamily catalyze mechanistically diverse reactions such as racemizations,
217 epimerizations, β -eliminations of hydroxyl or amino groups, and cycloisomerizations, but
218 all the known reactions they catalyze involve abstraction of an α -proton from carbons
219 adjacent to carboxylic acid groups and stabilization of the enolate anion intermediate
220 through a divalent metal ion, usually Mg^{2+} (24, 25).

221 Muconate cycloisomerases were also detected in SAR202, although they constitute a small
222 fraction of the enolases found. They belong to the muconate lactonizing enzyme (MLE)
223 family and are involved in breaking down of lignin-derived aromatic compounds, catechols,
224 and protocatechuate to produce intermediates that are used in the citric acid cycle (26, 27).
225 It is worth noting that, although Group I members predominantly encode a large diversity
226 of enolase family enzymes, some Group III members also encode a few of these genes, the
227 majority of which are mandelate racemases (Fig. 2B and 4B).

228 A phylogenetic tree was constructed to highlight the diversity and functions of enolase
229 family enzymes found in Group I SAR202 genomes. Enzymes within this superfamily can be
230 divided into four categories: enolases, mandelate racemases, muconate lactonizing
231 enzymes, and methylaspartate ammonia lyases (Fig. 4B). Nearly all of the enolases in
232 SAR202 belong to the mandelate racemase family. Enzymes within this family include
233 mandelate racemase, galactonate dehydratase, glucarate dehydratase, idarate dehydratase
234 and similar enzymes that can either interconvert two stereoisomers or perform
235 dehydration reactions (24).

236 Enzymes that can interconvert between *R* and *S* forms (stereoisomers) could vastly
237 improve the fitness of an organism by making it able to utilize both compounds. For
238 example, organisms that encode mandelate racemase (MR) in their genomes can
239 interconvert between (*R*)-mandelate and (*S*)-mandelate, the latter of which is the first
240 compound in the mandelate and hydroxy-mandelate degradation pathways (28). We
241 postulate the expansion of diverse enolase superfamily paralogs in Groups I and II is an
242 adaptation to metabolize organic compounds that are recalcitrant to oxidation because of
243 chiral complexity. In the discussion section, we further explore the ramifications of these
244 observations.

245 **Sulfatases in Group I and II members**

246 Sulfatases in SAR202 were first reported in a study on dead zones in Gulf of Mexico (14).
247 We also detected a large number of genes belonging to COG3119 (AslA, Arylsulfatase A)
248 and related enzymes classified in inorganic ion transport and metabolism predominantly in
249 Group I and II bins (Fig. 2B). Arylsulfatases and choline sulfatases can hydrolyze sulfated
250 polysaccharides such as fucoidan produced by marine eukaryotes (algae or fungi). These
251 enzymes are expressed intracellularly by a species of marine fungus (29), and are also
252 found in marine *Rhodobacteraceae* that are mutualists of marine eukaryotes (30). Marine
253 brown algae, such as *Macrocystis*, are known to produce fucoidans, which consist of α -L-
254 fucosyl monomers (31). We speculate that SAR202 Groups 1 and 2 could be utilizing
255 arylsulfatases to break down similar sulfated polysaccharides produced by the algae in the
256 upper water column.

257 **Ring-hydroxylating dioxygenases in Group IV, a molecular arsenal to break down 258 aromatic compounds**

259 One of the enzyme families that seems to be disproportionately expanded in SAR202
260 belongs to COG4638, annotated as “phenylpropionate dioxygenases or related ring-
261 hydroxylating dioxygenases, large terminal subunit”. Enzymes belonging to the ring-
262 hydroxylating dioxygenases (RHDs) family occur as monomers of subunits alpha and beta
263 ($\alpha_2\beta_2$ or $\alpha_3\beta_3$) (32). The α subunit of RHDs contains a Rieske [2Fe-2S] center that transfer
264 electrons to iron at the active site while the β subunit is thought to play a structural role in
265 the enzyme complex (32). Members of SAR202 Group IV harbor a large number of these
266 RHDs, ranging from 1 to 62 paralogous copies for subunit α (COG4638) and 1 to 3 for
267 subunit β (COG5517). Given that there are more α than β subunits, it appears that most of
268 the RHDs in Group IV function as monomeric RHDs.

269 Of the 365 RHD α subunits found in SAR202, 136 copies came from Group 4. OSU_TB11, a
270 Group 4 SAR202, encodes the highest relative abundance of RHDs at 50 (2.64%) of all
271 genes in its genome (Fig. 2B). A sponge symbiont member of Group IV (MPMJ01) (22)
272 encodes the largest number of copies of RHDs (62 copies and 1.96% of its genes), but it also
273 has one of the largest genomes, 3.22 Mbp. Most of the RHDs were annotated as: phthalate
274 4,5-dioxygenase oxygenase subunit (38.9%), phenoxybenzoate dioxygenase subunit alpha
275 (26%), 3-phenylpropionate/cinnamic acid dioxygenase subunit alpha (20.5%), or
276 carbazole 1,9a-dioxygenase, terminal oxygenase component (8.2%).

277 While the vast majority of the RHDs are annotated as “phthalate 4,5-dioxygenases”, it is
278 unlikely that phthalates are common substrates in the ocean. Most of Group IV SAGs and
279 MAGs were recovered from euphotic zone samples; all bins originated from ≤ 200 m depth.
280 We speculate these enzymes are used to metabolize other mono- or polycyclic aromatic
281 compounds that are mainly released by phytoplankton, providing Group IV SAR202 with
282 energy and carbon.

283 A recent paper showed that some of the SAR202 members encode large numbers of RHDs
284 in their genomes, which were likely acquired by horizontal gene transfer (HGT), and
285 speculated they play a role in the catabolism of resistant DOM of terrestrial origin (16). We
286 found Group IV MAGs containing copies of RHDs predominantly in samples from coastal
287 regions of the Indian Ocean and Red Sea, and the Southern Ocean, near Antarctica (Fig. S1).

288 **Rhodopsins in epipelagic Group I and II SAR202**

289 Twenty-eight genomes, all from samples obtained from water depths shallower than 150
290 m, encoded proteorhodopsins, one of which was a heliorhodopsin. Most of the type-1
291 rhodopsins were found in members of Group Ia, Ib, Ic, and Group II, which we report are
292 prevalent in the euphotic zone. The single heliorhodopsin, which was found in a Group II
293 genome, is related to a recently described group of heliorhodopsins (35). Using the
294 backbone tree from that study (35), the SAR202 Type-1 rhodopsins were placed close to
295 previously known proteorhodopsins and the sole heliorhodopsin was placed deep within
296 the newly described heliorhodopsins (Fig. S2 and S3).

297 **Depth stratification and biogeography indicate niche specialization is correlated 298 with expansions of paralogous gene superfamilies in SAR202**

299 Group I genomes, including those that encoded rhodopsins, were mostly isolated from the
300 epipelagic (0-200 m), whereas the Group III members were mainly retrieved from the
301 mesopelagic (200-1000 m) (Fig. 2). We further analyzed a variety of data types and found
302 that the major SAR202 Groups have different depth ranges (Fig. 5). The oceanic water
303 column vertical gradients of light (PAR), inorganic nutrients and organic matter quality and
304 quantity establish specialized nutritional niches. The vertical stratification of SAR202
305 groups with the evidence described above for metabolic specialization, suggests that
306 SAR202 diversified to specialize in resources that vary across the water column.

307 **Fragment recruitment analyses**

308 Metagenome fragment recruitment showed that Group I members are most abundant in
309 the epipelagic (from surface to 200 m); Group III recruited more reads from meso, bathy,
310 abyso and hadalpelagic samples, and Group II recruited reads from the surface through
311 the mesopelagic (Fig. 6, S4, and S5). In TARA Oceans metagenomes, Group I members, most
312 notably Ib, were relatively more abundant in the epipelagic (5-80 m in the Indian Ocean, 5-
313 60 m in the Mediterranean Sea, 100-150 m in the South Atlantic Ocean, and 115-188 m in
314 the South Pacific Ocean) (Fig. S4). However, despite decreasing with depth, their
315 abundance didn't reach zero, indicating populations persist in the deep ocean. In waters
316 overlying the Japan and Mariana Trenches, Group I members (particularly Ib), were
317 abundant only near the surface.

318 There is a noticeable absence of Group IIIa members in upper water column above 200 m
319 in the Northwestern trenches metagenomes (Fig. 6), above 250 m in the TARA Oceans
320 metagenomes (Fig. S4), and above 200 m in BATS metagenomes (Fig. S5). They are most
321 abundant in deeper layers (600-1000 m in the Indian Ocean, 590-800 m in the North
322 Atlantic Ocean, 700-800 m in the South Atlantic Ocean, 375-650 m in the North Pacific
323 Ocean, 350-696 m in the South Pacific Ocean, and 790 m in the Southern Ocean) (Fig. S4).
324 Group IIIa members are found almost exclusively below 200 m (200-7000 m at Japan
325 Trench, 306-9697 m at Ogasawara Trench, and 203-10899 m at Mariana Trench). Members
326 of Group IIIb, however appear to be more abundant in the upper water columns and less so
327 in the deeper zones in two metagenome datasets (Fig. 6 and S4).

328 Group II members seem to occupy transitional zones between those occupied by Group I
329 and Group III members (for example, 270-600 m in the Indian Ocean, 250m in the North
330 Atlantic Ocean, and 40-450 m in the North Pacific Ocean). However, the zones occupied by
331 Group II members seem to largely overlap with those of both Group I and Group III
332 members as well (Fig. 6 and S4). Group II members are again found to occupy intermediate
333 depths in the Northwestern Pacific Ocean trenches (200-1000 m at Japan Trench, 306-
334 1206 at Ogasawara Trench, and 203-502 m at Mariana Trench). Some Group II members
335 are found in wider depth ranges, with one found to be quite abundant in deepest water
336 samples in all three trenches (Fig. 6).

337 **Group I, II and III Florescence in Situ Hybridization Profiles**

338 The first group-specific oligonucleotide probes for SAR202 Groups I, II and III were
339 developed and used to count cells throughout the BATS water column to 4000 m in July
340 2017 (Fig. 5). All three groups were detected in significant numbers throughout the water
341 column, summing to about 5% of total bacteria near the surface and up to 10% at 4000 m.
342 Group I SAR202 cell numbers peaked in the epipelagic and dropped off sharply below the
343 euphotic zone (100 m), whereas both Group II and III had a broader distribution across the
344 epipelagic, peaking sharply within the upper mesopelagic zone at ~ 250 m, as reported
345 previously. When plotted as relative abundance (lower panels, Fig. 5), the direct cell count
346 data was consistent with the observations from metagenome recruitment, which are also
347 presented in relative units.

348 **SAR202 FMNO gene relative abundance is correlated with depth**

349 The relative abundance of all TARA FMNO genes (Fig. S8C), and SAR202 specific FMNOs,
350 was correlated with depth (Fig. 7C), with Pearson r values for the latter of 0.87 ($P=9.6e^{-75}$).
351 From these results, it was clear that FMNOs appear to be more functionally important in
352 the deeper oceans.

353 Because it appeared that FMNOs are abundant in SAR202 members originating from the
354 bathy- and abyssopelagic, we checked to see if the relative abundances of FMNOs in
355 SAR202 genomes correlated with depth. Fig. S6A shows a significant positive correlation
356 between FMNO relative abundance vs. depth and Fig. S6B shows weak but significant
357 negative correlation between enolase abundances vs. depth. These data indicate that
358 FMNOs are mostly abundant SAR202 cells from deep waters, whereas the enolases are
359 more abundant in shallow water ecotypes.

360 The analysis in Fig. 7D tests the prediction that molecules differing by the addition of a
361 single oxygen atom, as expected from the chemical mechanism of FMNO enzymes, should
362 be more abundant in the deep ocean. In the plot, the ratio between the number of m/z
363 observations that differ in mass by one oxygen, to observations that differ in mass by one
364 carbon, increases dramatically below the epipelagic. In the model we presented previously,
365 cells are presumed to enzymatically modify resistant DOM compounds, channeling some to
366 catabolism, while exporting from the cell molecules that cannot be further degraded (10).

367 **Enolase abundances show weak correlation with depth**

368 Because enolases appear to be a notable feature of SAR202 SAGs and MAGs from the upper
369 water column, we assessed whether relative enolase abundances were also correlated with
370 depth. Fig. S6B shows that there is a slight negative correlation between the % abundance
371 of enolase genes in MAGS and SAGS and the depth they were recovered from, but SAR202
372 enolases in the TARA Oceans metagenomic data show a somewhat positive correlation with
373 depth (Pearson r value of 0.6, P=1.4e⁻²⁵) (Fig. S7). This was surprising because we reasoned
374 that the enolases might be involved in breaking down more labile compounds found in the
375 upper water column based on the genomic data and expected higher abundances of
376 enolases in the samples from upper water columns. One reason for this discrepancy could
377 be biased sampling of MAGs from TARA Oceans metagenome samples. We selected 43
378 TARA samples to re-assemble based on SAR202 abundances; some samples from deeper
379 regions that we did not assemble could harbor uncharacterized SAR202 subgroups that
380 encode a large number of enolases.

381 **Discussion**

382 Pangenome analysis confirmed earlier reports and uncovered further evidence of ancient
383 expansions of paralogous enzymes in the SAR202 clade (Fig. 2B, 4A, 4B). The paralogous
384 gene families were correlated with deep branches in the SAR202 genome tree, which divide
385 the clade into six subgroups. Metagenome analyses, and cell counts made with FISH
386 probes, showed that several of the SAR202 groups are vertically stratified through the
387 water column, suggesting niche specialization (Fig. 6). Collectively, these patterns amount
388 to strong evidence that the early evolutionary radiation of SAR202 into subgroups was
389 accompanied by metabolic specialization and expansion into different ocean niches.

390 It is striking that the major paralog expansions in SAR202 suggest three different metabolic
391 strategies, each potentially targeting a different class of semi-labile DOM compounds. In
392 the hypothetical schemes we developed, the evolutionary diversification of paralogous
393 enzyme families was driven by selection favoring substrate range expansion. We found
394 support for this scheme in evidence these gene lineages arose early in evolution. While
395 deep internal nodes for these genes in tree topologies could result from the recruitment of
396 paralogs by horizontal gene transfer, the rarity of near gene neighbors across the tree-of-
397 life favors the explanation that most of the paralog diversity arose within SAR202 by gene
398 duplication during evolution. If this interpretation is correct, it implies that much of the
399 functional diversity in two major enzyme families, the alkanal monooxygenases within the
400 FMNO superfamily and madelate racemases within the racemase superfamily, may have

401 originated within SAR202. This is apparently not the case for the Group IV dioxygenases,
402 for which there is evidence of acquisition by HGT (16).

403 Surprisingly, because SAR202 have the reputation of being deep ocean microbes, the
404 ecological data we gathered revealed that Group I SAR202 are mainly epipelagic, and
405 harbor large and diverse families of enolase paralogs. We interpret this proliferation of
406 enolase superfamily paralogs as evidence that these organisms have evolved to metabolize
407 organic matter that is resistant to oxidation because of chiral complexity. Enolase
408 superfamily enzymes remove the α -proton from carboxylic acids to form enolic
409 intermediates, which can rotate on the axis of the double bond of the intermediate, with
410 stereochemical consequences (24). These enzymes catalyze racemizations, β -eliminations
411 of water, β -eliminations of ammonia, and cycloisomerizations. Chemical oceanographers
412 have recognized a role for molecular chirality in diagenesis, reporting that the ratio of D- to
413 L-aspartic acid uptake by prokaryotic plankton increases by two to three orders magnitude
414 between surface and deep mesopelagic waters in the North Atlantic (36). This has been
415 interpreted as evidence that mesopelagic prokaryotic plankton are using bacterial cell
416 wall-derived organic matter because the bacterial peptidoglycan layer is the only major
417 biotic source of significant of D-amino acids in the ocean (37). However, information about
418 D-amino utilization by marine microbes remains limited (38).

419 The possibility that SAR202 harness paralogous enzymes of the enolase superfamily to
420 metabolize compounds that are resistant because of chirality is a powerful concept. We
421 propose that chiral complexity defines a class of resistant compounds, and that enolases
422 are an innovation that makes this DOM accessible to degradation by reducing the number
423 of enzymes needed to degrade it. The number of enantiomers of a compound increases by
424 2^n , where n is the number of chiral centers. Thus, a single compound with three chiral
425 centers might in principle require eight enzymes to recognize all stereoisomers. However,
426 if the three chiral centers were racemized by enolases, then only four enzymes would be
427 required – one degradative enzyme and one enzyme to racemize each of the chiral centers.
428 Spontaneous racemization might play a role in increasing the chiral complexity of DOM and
429 thereby transitioning it to more resistant forms, but it might also originate in biological
430 complexity, much of which is unexplored. The role for enolases that we propose evokes the
431 *molecular diversity hypothesis* by speculating there is a relationship between the complexity
432 of DOM and its resistance to degradation. Most often, the *molecular diversity hypothesis* is
433 used to explain the relationship between the dilution of DOM and its susceptibility to
434 degradation.

435 We speculate that Group I SAR202 are specialized to harvest a fraction of DOM molecules
436 that are semi-labile because of unusual chiral structures. Group II SAR202, which are most
437 abundant in the mesopelagic, maintain both the enolase and FMNO enzyme families in
438 equal abundances, suggesting they use both DOM resources – chirally complex organic
439 matter and compounds that can be catabolized via monooxygenases - in this intermediate
440 water column zone. Earlier studies have demonstrated that, in addition to a DOC
441 concentration decreasing with ocean depth, the abundance of diagenetically altered DOM
442 compounds increases below the euphotic zone (39-41). In bathypelagic, abyssopelagic and
443 hadalpelagic regions, Group III dominate, presumably indicating that molecules susceptible
444 to oxidation by FMNOs become one of the few remaining harvestable DOM resources at

445 these depths. In this scenario, SAR202 diversified strategically to exploit multiple different
446 classes of resistant carbon compounds in niches distributed throughout the water column.
447 The positions and separation of the subclades in trees, and the diversity of the enzymes
448 involved, suggest this evolution occurred early in SAR202 history. Close examination of
449 Fig. 6 shows that there are more finely structured patterns of congruence between tree
450 topologies and depth range than the broad patterns we focus our discussion on. For
451 example, some lineages of Group Ia were consistently observed in bathypelagic, and some
452 Group II near the surface. It is apparent that more complex relationships between ecology,
453 evolution and metabolism remain to be explored in SAR202.

454 This study confirmed previous reports of expansions of FMNO enzymes in Group III
455 genomes recovered from the deepest ocean regions (10), and RHD enzymes in Group IV
456 genomes from coastal sites. Both FMNO and RHD enzymes are powerful oxidases
457 implicated in the catabolism of resistant compounds such as sterols and lignins. The
458 expansion of these enzyme families is proposed to have enabled SAR202 to exploit new
459 niches defined by these DOM resources. In the case of Group IV this would be lignins and
460 other aromatic compounds of terrestrial origin, whereas Group III is proposed to partially
461 oxidize a wide variety of recalcitrant molecules, including perhaps sulfonates and
462 heterocyclic compounds. It has been hypothesized that the partial oxidation of these
463 compounds might produce more recalcitrant compounds that accumulate RDOM.

464 The genome-enabled hypotheses we propose will be challenging to test, but nonetheless
465 should be studied because the organic carbon pool in question is so large. Deep-ocean
466 regions beyond the reach of sunlight contain an estimated 662 Pg of DOC (1), which ranges
467 in quality between LDOM and RDOM (3, 42). If our hypotheses are correct, this pool would
468 be much larger if cells had not evolved strategies to oxidize many forms of resistant DOM.
469 In principle, the modern RDOM pool would become much smaller if contemporary cells
470 evolved mechanisms to oxidize it, with catastrophic consequences for the environment.

471 The complexity of DOM presents many challenges to proving these hypotheses. Thus far,
472 DOM chemical structures have not been resolved with sufficient accuracy to support a
473 detailed accounting of compounds and corresponding pathways of microbial catabolism.
474 An example of these problems is the issue of chemical enantiomers, which have identical
475 empirical formulas, making them perhaps the most difficult challenge. In brainstorming
476 these challenges, we encountered one success (Fig. 7D) which illustrates both the difficulty
477 of the task and the hope for finding solutions. Future work might focus both on the
478 composition of DOM and the activities of cells that are not yet cultured in laboratories.

479 **Materials and Methods**

480 Methods for metagenomic library preparation and sequencing, single-gene phylogenetic
481 and phylogenomic analyses, direct cell counts and fluorescent in-situ hybridization of
482 SAR202 can be found in the supplemental online document.

483 **Sample collection and sequencing of single amplified genomes and shotgun**
484 **metagenomic sequencing from the three trench sites**

485 SAG generation was performed using fluorescence-activated cell sorting and multiple
486 displacement amplification at Bigelow Laboratory Single Cell Genomics Center (SCGC;
487 scgc.bigelow.org), as previously described (43). Selection for genomic sequencing was
488 aimed at representing the diverse SAR202 subgroups based on their 16S rRNA
489 phylogenetic tree placement and 10 single-cell amplified genomes (SAGs) were selected for
490 genomic sequencing based on the phylogenetic placement (data not shown). They originate
491 from samples from three deep-sea trenches in the Northwestern Pacific Ocean: Mariana,
492 Japan, and Ogasawara Trenches. Water samples from the central part of the Izu-Ogasawara
493 (Izu-Bonin) Trench (29°9.00' N, 142°48.07' E, 9776 m below sea surface [mbs]) were
494 obtained using Niskin-X bottles (5-liter type, General Oceanics) during a total of two dives
495 of the *ROV ABISMO* during the Japan Agency for Marine-Earth Science & Technology
496 (JAMSTEC) *R/V Kairei* KR11-11 cruise (Dec 2011). Water samples from the southern part
497 of the Japan Trench (36° 5.88' N, 142° 45.91' E, 8012 mbs) was obtained by vertical
498 hydrocasts of the CTD-CMS (Conductivity Temperature Depth profiler with Carousel
499 Multiple Sampling system) with Niskin-X bottles (12-liter type, General Oceanics) during
500 the JAMSTEC *R/V Kairei* KR12-19 cruise (Dec 2012). From the Challenger Deep of the
501 Mariana Trench Water samples except for the trench bottom water were taken by Niskin-X
502 bottles (5-liter type) on the *ROV ABISMO* and the trench bottom water was obtained by a
503 lander system (44) during the JAMSTEC *R/V Kairei* KR14-01 cruise (Jan 2014). Samples for
504 SAG generation were stored at -80°C with 5 % glycerol and 1 x Tris-EDTA buffer (final
505 concentrations) (45). For the shotgun metagenomic library construction, Microbial cells in
506 approximately 3-4 L of seawater were filtered using a cellulose acetate membrane filter
507 (pore size of 0.22 µm, diameter of 47 mm) (Advantec, Tokyo, Japan).

508 Four SAGs were sequenced at SCGC and six SAGs were sequenced at Center for Genome
509 Research and Biocomputing (CGRB) at Oregon State University after NexteraXT sequencing
510 libraries were prepared at JAMSTEC. Sequencing libraries for SAGs obtained from the
511 Mariana Trench site was directly synthesized with Nextera XT DNA Library Preparation Kit
512 (Nextera XT) as described previously (46). The amplification cycle for the construction of
513 these libraries was 17 except the case of AD AD-812-D07 with 12 cycles of amplification.

514 **Genome assemblies, binning, and annotation**

515 Illumina library preparation, sequencing, de novo assembly and QC of SAGs AC-409-J13,
516 AC-647-N09, AC-647-P02 and AD-493-K16 were performed by SCGC, as previously
517 described (43). For the remaining six SAGs, raw sequences were first quality trimmed using
518 Trimmomatic tool (47). Four SAGs were assembled individually using SPAdes assembler
519 version 3.9.0 (48) with “-careful and -sc” flags. Due to cross-contamination present in a
520 second batch of 6 SAGs sequenced, they were co-assembled using metaSPAdes, then
521 CONCOCT was used to separate the contigs from each SAG into respective bins. CheckM
522 analysis of the bins showed that contamination levels in each identified bin were very low
523 (below 0.2%) and the 6 SAGs are from very divergent clades, so that they can be easily
524 separated by differential coverage binning approach.

525 Raw sequences from 17 metagenomics samples from Bermuda Atlantic Time-series Study
526 (BATS) and 43 metagenomic samples from TARA Oceans expedition were quality trimmed
527 using Trimmomatic and individually assembled using metaSPAdes version 3.9.0 (49). The
528 43 TARA Oceans metagenomes chosen contain at least 1% of relative SAR202 abundance
529 based on metagenomics tag (miTAG) sequence data (50) (Supplemental Table 2).

530 All metagenomics contigs larger than 1.5 kbp were separated using metabat (51) to gather
531 potential SAR202 bins. Metabat requires the use of multiple samples to calculate contig
532 abundance profile in the samples. For TARA Oceans metagenomes, in order to generate
533 abundance profiles, contigs were mapped against a minimum of 10 TARA oceans
534 metagenome samples chosen randomly (including the sample from which the contigs were
535 assembled) using BBmap (<http://sourceforge.net/projects/bbmap/>). For BATS
536 metagenomes, BBmap was also used against all 17 metagenomes to generate config
537 abundance profiles. Identities of the resulting bins were checked for presence of 16S rRNA
538 gene sequence matching known SAR202 sequences from Silva database release 128. In
539 cases where there were no 16S rRNA genes in the bins, concatenated ribosomal protein
540 phylogenies were constructed to identify members of the SAR202 clade. A total of 26 MAGs
541 from a recent study (23) was also included in the binning process. These also were
542 metagenomic bins from TARA metagenomes that have been assembled with megahit. The
543 list of bins used in this study are shown in Supplemental Table 1. We also checked the bins
544 obtained by another study using the TARA metagenomes (21) to see if there are redundant
545 genome bins in our assemblies.

546 After potentially novel SAR202 bins were identified, average nucleotide identities between
547 all TARA genome bins were determined with PyANI tool
548 (<https://github.com/widdowquinn/pyani>) and a custom Python script
549 “osu_uniquefy_TARA_bins.py” was used to identify bins that share 99% ANI. When near-
550 identical bins were matched, more complete and less contaminated genome bin was
551 retained. In cases where bins originated from the same TARA station, near-identical bins
552 were combined and co-assembled with Minimus2 tool (52) to improve the genome
553 completeness. Refinement of metagenomic bins was done using Anvi’o tool (53) to identify
554 any potentially contaminating contigs. Some genomic bins were entirely discarded if too
555 many multiple copies of single-copy genes are present that cannot be separated by Anvi’o.
556 Genome completeness and redundancies were estimated using the tool CheckM (54).
557 Genomes at various levels of completion that are less than 1.1% in redundancy of single-
558 cope marker genes and less than 5% contamination were included for further analyses.

559 All the SAGs and MAGs were annotated with Prokka version 1.11 (55) to assign functions.
560 Coding sequences predicted by Prokka were also submitted to GhostKOALA web server
561 (56) to assign KEGG annotations to the predicted genes. In addition, Interproscan
562 (database version 5.28-67.0) and eggNOG-Mapper (57) searches were also carried out.
563 Metagenome-assembled genomes (MAGs) and SAGs from previous studies were also re-
564 annotated together with the new genomes to keep the functional assignments consistent.

565 **Metagenome fragment recruitment analyses**

566 Recruitment of quality-trimmed metagenomic reads from three different metagenomic
567 databases against the SAG and MAG contigs masked to exclude ribosomal RNA-coding
568 regions (16S, 23S, and 5S rRNA genes as predicted by barrnap) was done using FR-hit (58)
569 with the following parameters: "-e 1e-5 -r 1 -c 80". These parameters allowed for reads
570 matching a given reference genome with similarity score of 80% or higher to be counted as
571 positive matches. The metagenomic samples used for fragment recruitment were: 17
572 samples from BATS, 43 samples from TARA, and 22 samples from (6 from Japan, 9 from
573 Ogasawara, and 7 from Mariana Trenches) (Supplemental Table 1). Recruitment was
574 calculated as a percentage of quality-trimmed metagenomic reads aligned against a SAG or
575 a MAG genome size in basepairs, normalized by total base pairs of reads in a given sample.
576 Recruitment plot was made using "osu_plot_recruitment_heatmap.py" Python script (see
577 https://bitbucket.org/jimmysaw/sar202_pangenomics/src/master/).

578 **Analysis of TARA Oceans metagenome SAR202 enzyme abundances**

579 A custom Kraken (59) database was first built from the 122 SAR202 genomes used in this
580 study. All coding DNA sequences in the 243 TARA Oceans metagenomic samples were then
581 searched against the custom Kraken database containing SAR202 genomes with rRNA
582 regions masked to identify all coding sequences belonging to SAR202 genomes.

583 **Data availability**

584 All the SAGs and metagenomes are deposited to National Center for Biotechnology
585 Information and their accession numbers are listed in the Supplemental Table 1. Prokka
586 annotations of the genomes are available on Figshare (DOI: 10.6084/m9.figshare.8343809).
587 All the metagenomes used for fragment recruitment analysis have been deposited to DNA
588 Data Bank of Japan with the following submission IDs: Ogasawara Trench: DRA005790,
589 Japan Trench: DRA005791, Mariana Trench: DRA005792. Accession numbers of each
590 metagenomic sample are provided in the Supplemental Table 1. All code (Bash, Python, R
591 scripts) used to analyze data and to generate figures are accessible at a Bitbucket
592 repository (https://bitbucket.org/jimmysaw/sar202_pangenomics/src).

593 **Acknowledgements**

594 We would like to thank the captain, crew, ROV and CTD operation teams, and science party
595 of the JAMSTEC RV Kairei cruises (KR11-11, KR12-19, and KR14-01). T.N. was supported in
596 part by a Grant-in-Aid for Scientific Research (B) (30070015) from the Japan Society for the
597 Promotion of Science (JSPS). We thank the staff of the Bigelow Laboratory for Ocean
598 Sciences' Single Cell Genomics Center for the generation of single cell genomic data. We
599 thank Mark Desenko from Center for Genome Research and Biocomputing at Oregon State
600 University for sequencing six of the Illumina SAG libraries. The funding for mass
601 spectrometry data collection and analysis came from the National Science Foundation (NSF
602 Grant OCE-1154320 to EBK and KL). This work was funded by Simons Foundation
603 International as part of BIOS-SCOPE initiative to SJG, CAC, and EBK, and by the NSF grants
604 OCE-1335810 and DEB-1441717 to RS.

605 **Figure Legends**

606

607 **Figure 1.** Phylogenomic tree of SAR202 genomes, built using 36 concatenated chloNOGs.
608 Phylogenomic inference was done using Phylobayes MPI version 1.7. Cyanobacterial
609 sequences were used for the outgroup. Color shading identifies SAR202 groups used in
610 subsequent figures. Detailed tree showing all tip labels are available on Figshare (DOI:
611 10.6084/m9.figshare.8478227).

612

613 **Figure 2 (A)** Heatmap of most abundant COG categories in SAR202 genomes categorized
614 by subgroups. The first column of color bars indicates different SAR202 subgroups and the
615 second column of color bars indicate the depth of samples from which the SAGs or the
616 MAGs were obtained. The number on the heatmap color gradient indicates z scores of
617 percent abundance of total number of genes. **(B)** Distribution of the major paralog
618 expansions among the SAR202 subgroups.

619

620 **Figure 3.** Correlations among top 50 most abundant COG functional categories,
621 demonstrating that the major paralog expansions identified in Figure 2 are linked to other
622 expanded families of proteins, indicating metabolic specialization.

623

624 **Figure 4. (A)** Phylogenetic tree of the FMNO superfamily of enzymes. Internal nodes
625 marked with colored circles indicate points of attachment for SAR202 lineages. The deep
626 positions of the SAR202 nodes suggest that a substantial part of enzyme diversity in the
627 FMNO superfamily is found in SAR202. The cluster of Group IIIA nodes deep in the alkanal
628 monooxygenase subclade suggest that these enzymes, in particular, may have evolved in
629 SAR202. **(B)** Phylogenetic tree of the enolase superfamily of enzymes. SAR202 paralogs
630 branch deeply and are confined to the madelate racemase-like enzyme sub-family of
631 enolases. Scale bar represents the number of amino acid substitutions.

632

633 **Figure 5.** Depth profiles showing SAR202 Group I abundance (blue circle and line);
634 SAR202 Group II abundance (green circle and line) and SAR202 Group III abundance
635 (yellow circle and line) as determined by FISH group-specific oligonucleotide probes.
636 Depth profiles showing SAR202 Group I percent contribution to total bacterioplankton
637 determined by DAPI cell counts (blue triangle and line); SAR202 Group II percent
638 contribution to total bacterioplankton (green triangle and line) and SAR202 Group III
639 percent contribution to total bacterioplankton (yellow triangle and line).

640

641 **Figure 6.** Fragment recruitment analysis of metagenomic reads from three deep-ocean
642 trenches against the SAR202 genomes. Arrangement of SAR202 genomes follows the
643 branching order in the Bayesian phylogenomic tree shown in Figure 1. Recruitment is
644 calculated as the number of bases of metagenomic reads aligned against SAGs or MAGs

645 normalized by total number of bases present in a given metagenomic sample. The intensity
646 of shading represents the degree of recruitment.

647

648 **Figure 7. (A)** World Map showing relative abundances of SAR202-specific FMNOs in TARA
649 Oceans metagenomes. Sample with highest relative abundance is highlighted in red circle.
650 **(B)** SAR202-specific FMNOs relative abundances vs. depth in TARA oceans metagenomes.
651 **(C)** Normalized FMNO abundances in SAR202 are highly correlated with depth in TARA
652 Oceans metagenomes. Normalization of FMNO abundances was obtained by dividing total
653 SAR202 FMNOs by total SAR202 single-copy genes found in each sample. **(D)** The ratio of
654 observations of organic metabolites with mass : charge ratio (m/z) that differ in mass by
655 one oxygen, to observations that differ in mass by one carbon, in FTICR-MS data from deep
656 ocean marine DOM samples collected from the Western Atlantic. The stations ranged from
657 38° S (station 2) to 10° N (station 23). Across the full dataset, the most common m/z
658 difference observed corresponds to one carbon atom of mass. The data show that
659 transformations corresponding to the addition of a single oxygen atom, as would be
660 catalyzed by a flavin-dependent monooxygenase, become relatively more frequent in the
661 dark ocean. Of several patterns predicted from a previous study (10), this one alone
662 showed a consistent trend.

663

664 **Figure S1. (A)** Distribution of SAR202 SAGs and MAGs encoding Ring-Hydroxylating
665 Dioxygenases (RHDs) and **(B)** SAR202-specific RHD abundances in TARA Oceans
666 metagenomes. SAGs/MAGs with highest RHD abundances are located in coastal locations.
667 Samples were normalized by dividing total SAR202 RHDs by total SAR202 single-copy
668 genes found in each sample.

669

670 **Figure S2.** Maximum Likelihood phylogenetic tree of rhodopsins found in SAR202 groups
671 based on a tree from a recent study (35). SAR202 rhodopsins are closely related to blue-
672 and green-light absorbing proteorhodopsins (PR). Orange and white node circles indicate
673 ultrafast bootstrap support values above and below 90, respectively.

674

675 **Figure S3.** Detailed phylogenetic tree of SAR202 rhodopsins from Figure S3, showing tips
676 colored according to SAR202 subgroups. The phylogenetic tree was built using IQ-Tree
677 with the following parameters: -m LG+C10+F+G -bb 1000.

678

679 **Figure S4.** Fragment recruitment of metagenomic reads from TARA Oceans metagenomic
680 samples against all SAR202 SAGs and MAGs. Color boxes on the left of the heatmap
681 represent different oceanic regions with the abbreviations of these oceanic regions shown
682 in the boxes. Metagenomic samples are arranged according to depth and sample names and
683 depth information are shown on the right of the heatmap. Branching order of the SAR202
684 genomes follow the order shown in the Bayesian phylogenetic tree in Figure 1.

685

686 **Figure S5.** Fragment recruitment of metagenomic reads from BATS metagenomic samples
687 against all SAR202 SAGs and MAGs. Color boxes on the left of the heatmap represent
688 different depths and the depth information is shown in the box. Metagenomic samples are
689 arranged according to depth and sample names are shown on the right of the heatmap.
690 Branching order of the SAR202 genomes follow the order shown in the Bayesian
691 phylogenetic tree in Figure 1.

692

693 **Figure S6.** Correlation of relative enzyme abundances vs. depth of origin of most abundant
694 paralogous families of genes in SAR202 SAGs and MAGs. The enzyme families are, **(A)**
695 FMNOs, **(B)** enolases, **(C)** RHDs, and **(D)** dehydrogenases.

696

697 **Figure S7. (A)** Relative abundances of SAR202-specific enolases in TARA Oceans
698 metagenome samples. Distribution of samples are plotted in order of sampling dates and
699 depth of origin of the samples. **(B)** Correlation of normalized SAR202-specific enolase
700 relative abundances vs. depth of origin in TARA Oceans metagenome samples. Samples
701 were normalized by dividing total SAR202 enolases by total SAR202 single-copy genes
702 found in each sample.

703

704 **Figure S8. (A)** World Map showing relative abundances of all FMNOs identified in all TARA
705 Oceans metagenomes. These include SAR202-specific FMNOs and those from other
706 organisms. Sample with highest relative abundance is highlighted in red. Different sizes of
707 the bubbles represent the different percentages of abundance as shown in the circles below
708 the map. **(B)** Relative abundances of FMNOs along depth profile in all TARA Oceans
709 metagenomes. Samples are sorted in order of sampling time (from beginning to end). **(C)**
710 Correlation between relative abundances of all FMNOs in TARA metagenomes vs. depth.

711

712

713

714

715

716

717

718

719

720

721

722 References

723

- 724 1. Hansell DA, Carlson CA, Repeta DJ, Schlitzer R. 2009. Dissolved Organic Matter in the
725 Ocean: A Controversy Stimulates New Insights. *Oceanography* 22.
- 726 2. Bauer JE, Williams PM, Druffel ERM. 1992. ¹⁴C activity of dissolved organic carbon
727 fractions in the north-central Pacific and Sargasso Sea. *Nature* 357:667-670.
- 728 3. Carlson CA, Hansell DA. 2015. Chapter 3 - DOM Sources, Sinks, Reactivity, and
729 Budgets, p 65-126. *In* Hansell DA, Carlson CA (ed), *Biogeochemistry of Marine*
730 *Dissolved Organic Matter* (Second Edition). Academic Press, Boston.
- 731 4. Dittmar T. 2015. Chapter 7 - Reasons Behind the Long-Term Stability of Dissolved
732 Organic Matter, p 369-388. *In* Hansell DA, Carlson CA (ed), *Biogeochemistry of*
733 *Marine Dissolved Organic Matter* (Second Edition), Second Edition ed. Academic
734 Press, Boston.
- 735 5. Giovannoni S, Rappé M, Vergin K, Adair N. 1996. 16S rRNA genes reveal stratified
736 open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria.
737 *Proc Natl Acad Sci USA* 93:7979-7984.
- 738 6. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T,
739 Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ,
740 Stepanauskas R. 2011. Potential for chemolithoautotrophy among ubiquitous
741 bacteria lineages in the dark ocean. *Science* 333:1296-300.
- 742 7. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL,
743 Weinbauer MG, Luo T, Chen F, Azam F. 2010. Microbial production of recalcitrant
744 dissolved organic matter: long-term carbon storage in the global ocean. *Nat Rev*
745 *Microbiol* 8:593-599.
- 746 8. Wang N, Luo YW, Polimene L, Zhang R, Zheng Q, Cai R, Jiao N. 2018. Contribution of
747 structural recalcitrance to the formation of the deep oceanic dissolved organic
748 carbon reservoir. *Environ Microbiol Rep*.
- 749 9. David LA, Alm EJ. 2011. Rapid evolutionary innovation during an Archaean genetic
750 expansion. *Nature* 469:93-6.
- 751 10. Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ. 2017. SAR202
752 Genomes from the Dark Ocean Predict Pathways for the Oxidation of Recalcitrant
753 Dissolved Organic Matter. *MBio* 8.
- 754 11. Morris RM, Rappe MS, Urbach E, Connon SA, Giovannoni SJ. 2004. Prevalence of the
755 Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic
756 zone and deep ocean. *Appl Environ Microbiol* 70:2836-2842.
- 757 12. Schattenhofer M, Fuchs BM, Amann R, Zubkov MV, Tarran GA, Pernthaler J. 2009.
758 Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic
759 Ocean. *Environ Microbiol* 11:2078-93.
- 760 13. Varela MM, van Aken HM, Herndl GJ. 2008. Abundance and activity of Chloroflexi-
761 type SAR202 bacterioplankton in the meso- and bathypelagic waters of the
762 (sub)tropical Atlantic. *Environ Microbiol* 10:1903-1911.
- 763 14. Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, Henrissat B,
764 Mason OU. 2017. Metabolic Roles of Uncultivated Bacterioplankton Lineages in the
765 Northern Gulf of Mexico "Dead Zone". *MBio* 8.

766 15. Mehrshad M, Rodriguez-Valera F, Amoozegar MA, Lopez-Garcia P, Ghai R. 2017. The
767 enigmatic SAR202 cluster up close: shedding light on a globally distributed dark
768 ocean lineage involved in sulfur cycling. *ISME J.*

769 16. Colatriano D, Tran PQ, Gueguen C, Williams WJ, Lovejoy C, Walsh DA. 2018. Genomic
770 evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean
771 Chloroflexi bacteria. *Commun Biol* 1:90.

772 17. Mehrshad M, Salcher MM, Okazaki Y, Nakano SI, Simek K, Andrei AS, Ghai R. 2018.
773 Hidden in plain sight—highly abundant and diverse planktonic freshwater
774 Chloroflexi. *Microbiome* 6:176.

775 18. Brocks JJ, Logan GA, Buick R, Summons RE. 1999. Archean molecular fossils and the
776 early rise of eukaryotes. *Science* 285:1033-1036.

777 19. Hertkorn N, Benner R, Frommberger M, Schmitt-Kopplin P, Witt M, Kaiser K, Kettrup
778 A, Hedges JI. 2006. Characterization of a major refractory component of marine
779 dissolved organic matter. *Geochimica et Cosmochimica Acta* 70:2990-3010.

780 20. Ourisson G, Albrecht P. 1992. Hopanoids. 1. Geohopanoids: the most abundant
781 natural products on Earth? *Accounts of Chemical Research* 25:398-402.

782 21. Delmont TO, Quince C, Shaiber A, Esen OC, Lee ST, Rappe MS, McLellan SL, Lucke S,
783 Eren AM. 2018. Nitrogen-fixing populations of Planctomycetes and Proteobacteria
784 are abundant in surface ocean metagenomes. *Nat Microbiol* 3:804-813.

785 22. Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. 2017. Metagenomic binning of a
786 marine sponge microbiome reveals unity in defense but metabolic specialization.
787 *ISME J.*

788 23. Tully BJ, Graham ED, Heidelberg JF. 2018. The reconstruction of 2,631 draft
789 metagenome-assembled genomes from the global oceans. *Sci Data* 5:170203.

790 24. Babbitt PC, Hasson MS, Wedekind JE, Palmer DR, Barrett WC, Reed GH, Rayment I,
791 Ringe D, Kenyon GL, Gerlt JA. 1996. The enolase superfamily: a general strategy for
792 enzyme-catalyzed abstraction of the alpha-protons of carboxylic acids. *Biochemistry*
793 35:16489-16501.

794 25. Gerlt JA, Babbitt PC, Rayment I. 2005. Divergent evolution in the enolase
795 superfamily: the interplay of mechanism and specificity. *Arch Biochem Biophys*
796 433:59-70.

797 26. Ornston LN. 1966. The conversion of catechol and protocatechuate to beta-
798 keto adipate by *Pseudomonas putida*. 3. Enzymes of the catechol pathway. *J Biol
799 Chem* 241:3795-3799.

800 27. Sistrom WR, Stanier RY. 1954. The mechanism of formation of beta-keto adipic acid
801 by bacteria. *J Biol Chem* 210:821-836.

802 28. Tsou AY, Ransom SC, Gerlt JA, Buechter DD, Babbitt PC, Kenyon GL. 1990. Mandelate
803 pathway of *Pseudomonas putida*: sequence relationships involving mandelate
804 racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and
805 expression of benzoylformate decarboxylase in *Escherichia coli*. *Biochemistry*
806 29:9856-9862.

807 29. Shvetsova SV, Zhurishkina EV, Bobrov KS, Ronzhina NL, Lapina IM, Ivanen DR,
808 Gagkaeva TY, Kulminskaya AA. 2015. The novel strain *Fusarium proliferatum* LE1
809 (RCAM02409) produces alpha-L-fucosidase and arylsulfatase during the growth on
810 fucoidan. *J Basic Microbiol* 55:471-479.

811 30. Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Dobler I, Ulbrich M,
812 Klenk HP, Schomburg D, Petersen J, Goker M. 2017. Phylogenomics of
813 Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine
814 habitats. *ISME J* 11:1483-1499.

815 31. Deniaud-Bouet E, Kervarec N, Michel G, Tonon T, Kloareg B, Herve C. 2014. Chemical
816 and enzymatic fractionation of cell walls from Fucales: insights into the structure of
817 the extracellular matrix of brown algae. *Ann Bot* 114:1203-1216.

818 32. Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S.
819 1998. Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-
820 dioxygenase. *Structure* 6:571-586.

821 33. Cabrita MT, Vale C, Rauter AP. 2010. Halogenated compounds from marine algae.
822 *Mar Drugs* 8:2301-2317.

823 34. Song YP, Miao FP, Fang ST, Yin XL, Ji NY. 2018. Halogenated and Nonhalogenated
824 Metabolites from the Marine-Alga-Endophytic Fungus *Trichoderma asperellum*
825 cf44-2. *Mar Drugs* 16.

826 35. Pushkarev A, Inoue K, Larom S, Flores-Uribe J, Singh M, Konno M, Tomida S, Ito S,
827 Nakamura R, Tsunoda SP, Philosof A, Sharon I, Yutin N, Koonin EV, Kandori H, Beja
828 O. 2018. A distinct abundant group of microbial rhodopsins discovered using
829 functional metagenomics. *Nature* 558:595-599.

830 36. Pérez MT, Pausz C, Herndl GJ. 2003. Major shift in bacterioplankton utilization of
831 enantiomeric amino acids between surface waters and the ocean's interior.
832 *Limnology and Oceanography* 48:755-763.

833 37. McCarthy MD, Hedges JI, Benner R. 1998. Major bacterial contribution to marine
834 dissolved organic nitrogen. *Science* 281:231-4.

835 38. Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S. 2016. Enantioselective
836 Utilization of D-Amino Acids by Deep-Sea Microorganisms. *Front Microbiol* 7:511.

837 39. Skoog A, Benner R. 1997. Aldoses in various size fractions of marine organic matter:
838 Implications for carbon cycling. *Limnology and Oceanography* 42:1803-1813.

839 40. Goldberg SJ, Carlson CA, Hansell DA, Nelson NB, Siegel DA. 2009. Temporal
840 dynamics of dissolved combined neutral sugars and the quality of dissolved organic
841 matter in the Northwestern Sargasso Sea. *Deep Sea Research Part I: Oceanographic*
842 *Research Papers* 56:672-685.

843 41. Goldberg SJ, Carlson CA, Brzezinski M, Nelson NB, Siegel DA. 2011. Systematic
844 removal of neutral sugars within dissolved organic matter across ocean basins.
845 *Geophysical Research Letters* 38.

846 42. Hansell DA, Carlson CA, Schlitzer R. 2012. Net removal of major marine dissolved
847 organic carbon fractions in the subsurface ocean. *Global Biogeochemical Cycles* 26.

848 43. Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, Becraft
849 ED, Brown JM, Pachiadaki MG, Povilaitis T, Thompson BP, Mascena CJ, Bellows WK,
850 Lubys A. 2017. Improved genome recovery and integrated cell-size analyses of
851 individual uncultured microbial cells and viral particles. *Nat Commun* 8:84.

852 44. Murashima T, Nakajoh H, Takami H, Yamauchi N, Miura A, Ishizuka T. 11,000m class
853 free fall mooring system, p 1-5. *In* (ed),

854 45. Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ. 2015.
855 Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution
856 across Yellowstone National Park Hot Springs. *Appl Environ Microbiol* 81:7860-8.

857 46. Hirai M, Nishi S, Tsuda M, Sunamura M, Takaki Y, Nunoura T. 2017. Library
858 Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea
859 Sediments. *Microbes Environ* 32:336-343.

860 47. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina
861 sequence data. *Bioinformatics* 30:2114-2120.

862 48. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
863 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G,
864 Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its
865 applications to single-cell sequencing. *J Comput Biol* 19:455-477.

866 49. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. 2017. metaSPAdes: a new
867 versatile metagenomic assembler. *Genome Res* 27:824-834.

868 50. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B,
869 Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d'Ovidio F,
870 Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-
871 Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C,
872 Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N,
873 Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L,
874 Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P. 2015.
875 Ocean plankton. Structure and function of the global ocean microbiome. *Science*
876 348:1261359.

877 51. Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately
878 reconstructing single genomes from complex microbial communities. *PeerJ* 3:e1165.

879 52. Treangen TJ, Sommer DD, Angly FE, Koren S, Pop M. 2011. Next generation sequence
880 assembly with AMOS. *Curr Protoc Bioinformatics Chapter 11:Unit-11.8.*

881 53. Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015.
882 Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ*
883 3:e1319.

884 54. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:
885 assessing the quality of microbial genomes recovered from isolates, single cells, and
886 metagenomes. *Genome Res* 25:1043-1055.

887 55. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*
888 30:2068-2069.

889 56. Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG Tools
890 for Functional Characterization of Genome and Metagenome Sequences. *J Mol Biol*
891 428:726-731.

892 57. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, Bork P.
893 2017. Fast Genome-Wide Functional Annotation through Orthology Assignment by
894 eggNOG-Mapper. *Mol Biol Evol* 34:2115-2122.

895 58. Niu B, Zhu Z, Fu L, Wu S, Li W. 2011. FR-HIT, a very fast program to recruit
896 metagenomic reads to homologous reference genomes. *Bioinformatics* 27:1704-
897 1705.

898 59. Wood DE, Salzberg SL. 2014. Kraken: ultrafast metagenomic sequence classification
899 using exact alignments. *Genome Biol* 15:R46.

900

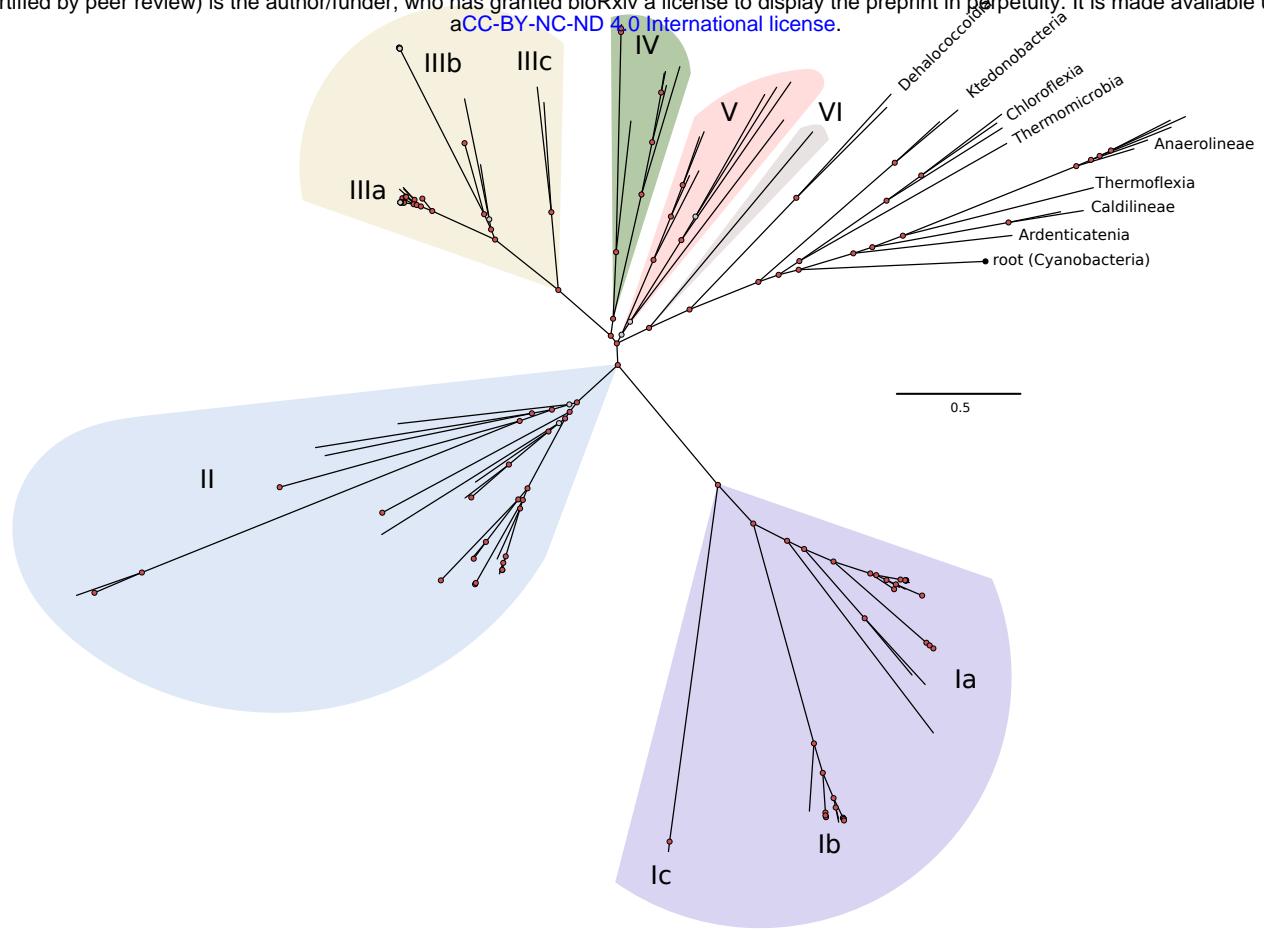


Figure 1: Phylogenomic tree of SAR202 genomes, built using 36 concatenated chloNOGs. Phylogenomic inference was done using Phylobayes MPI version 1.7. Cyanobacterial sequences were used for the outgroup. Color shading identifies SAR202 groups used in subsequent figures.

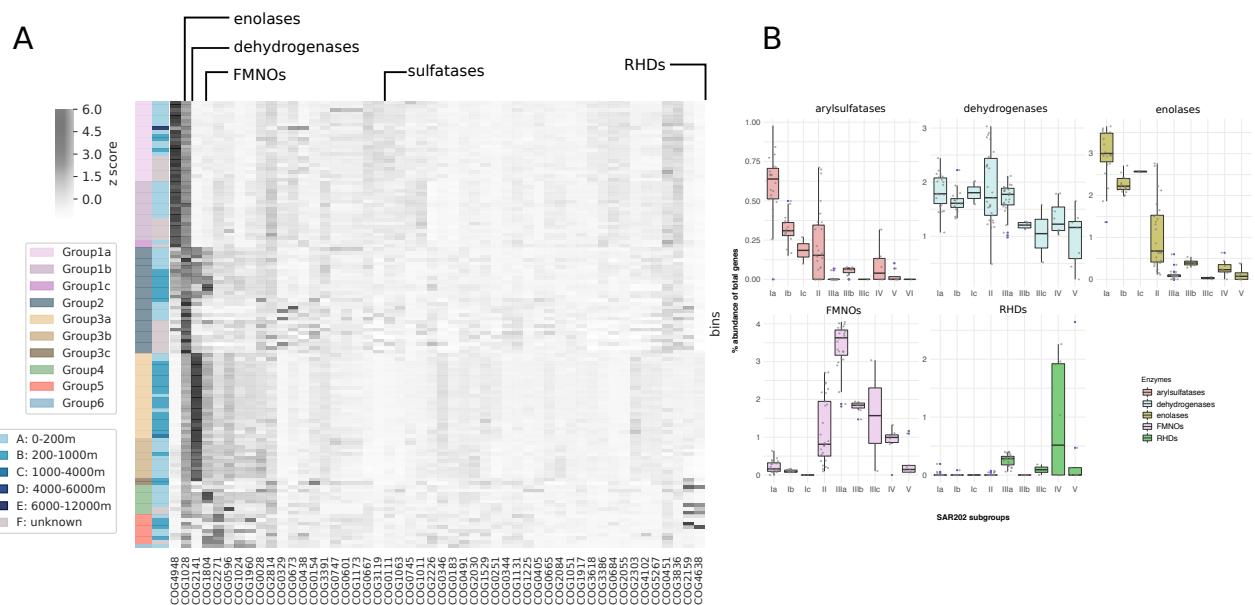


Figure 2: **(A)** Heatmap of most abundant COG categories in SAR202 genomes categorized by subgroups. The first column of color bars indicates different SAR202 subgroups and the second column of color bars indicate the depth of samples from which the SAGs or the MAGs were obtained. The number on the heatmap color gradient indicates z scores of percent abundance of total number of genes. **(B)** Distribution of the major paralog expansions among the SAR202 subgroups.

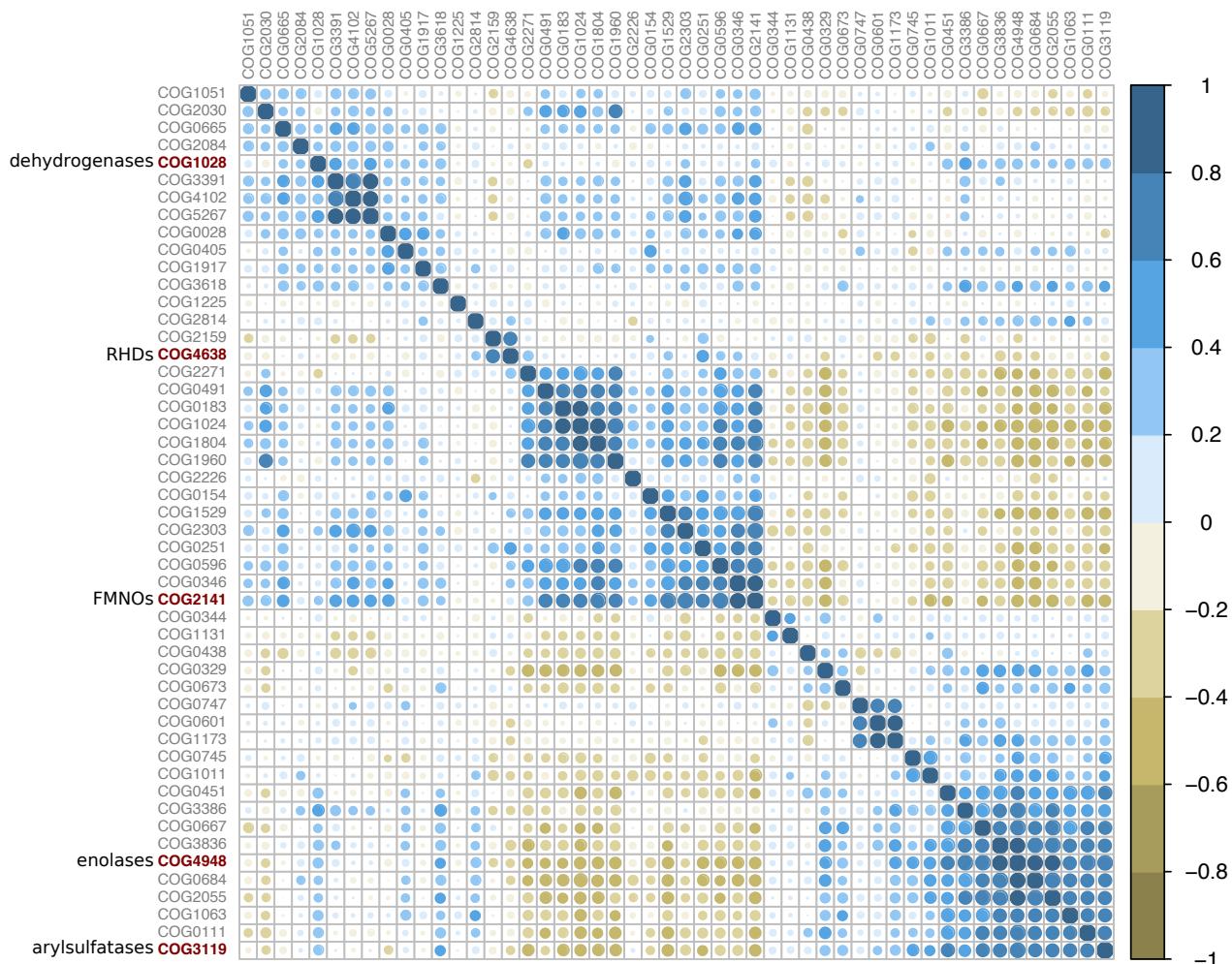


Figure 3: Correlations among top 50 most abundant COG functional categories, demonstrating that the major paralog expansions identified in Figure 2 are linked to other expanded families of proteins, indicating metabolic specialization.

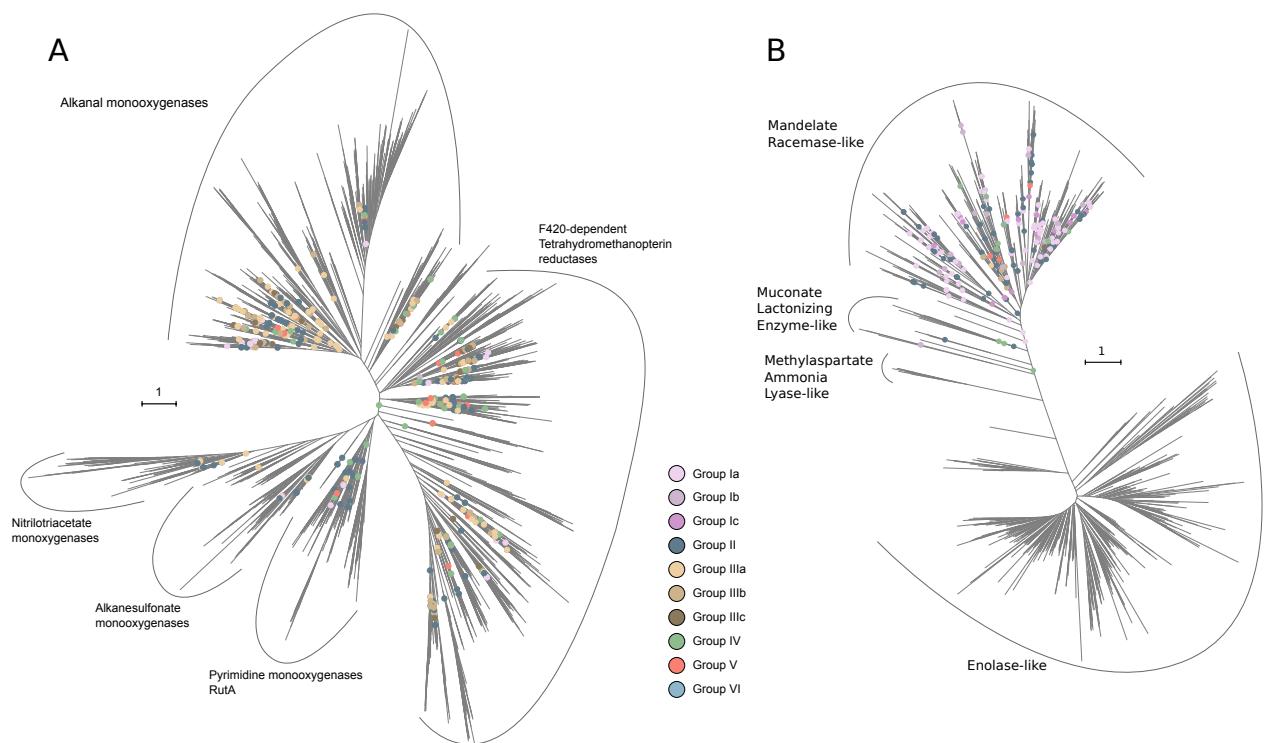


Figure 4: **(A)** Phylogenetic tree of the FMNO superfamily of enzymes. Internal nodes marked with colored circles indicate points of attachment for SAR202 lineages. The deep positions of the SAR202 nodes suggest that a substantial part of enzyme diversity in the FMNO superfamily is found in SAR202. The cluster of Group IIIA nodes deep in the alkanal monooxygenase subclade suggest that these enzymes, in particular, may have evolved in SAR202. **(B)** Phylogenetic tree of the enolase superfamily of enzymes. SAR202 paralogs branch deeply and are confined to the mandelate racemase-like enzyme sub-family of enolases. Scale bar represents the number of amino acid substitutions.

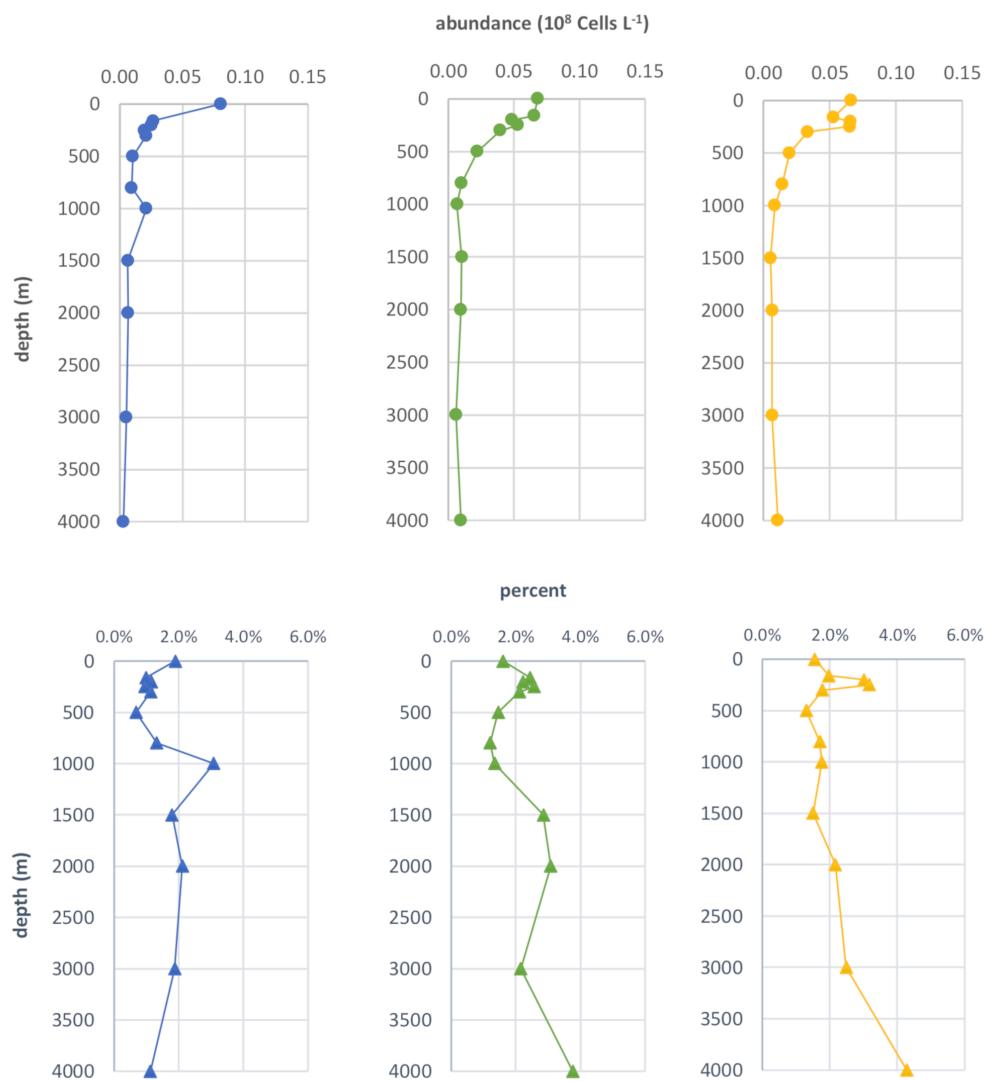


Figure 5: Depth profiles showing SAR202 Group I abundance (blue circle and line); SAR202 Group II abundance (green circle and line) and SAR202 Group III abundance (yellow circle and line) as determined by FISH group-specific oligonucleotide probes. Depth profiles showing SAR202 Group I percent contribution to total bacterioplankton determined by DAPI cell counts (blue triangle and line); SAR202 Group II percent contribution to total bacterioplankton (green triangle and line) and SAR202 Group III percent contribution to total bacterioplankton (yellow triangle and line).

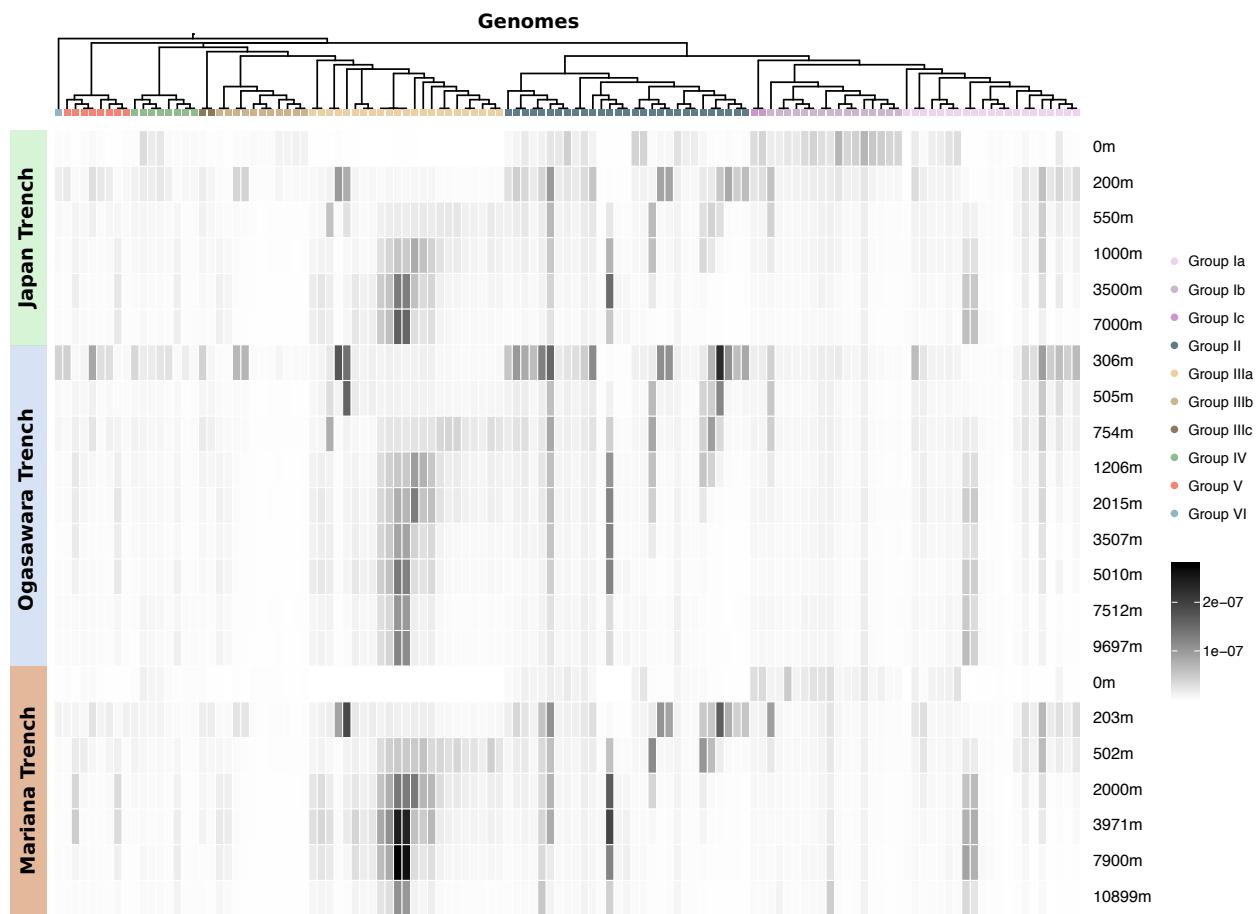


Figure 6: Fragment recruitment analysis of metagenomic reads from three deep-ocean trenches against the SAR202 genomes. Arrangement of SAR202 genomes follows the branching order in the Bayesian phylogenomic tree shown in Figure 1. Recruitment is calculated as the number of bases of metagenomic reads aligned against SAGs or MAGs normalized by total number of bases present in a given metagenomic sample. The intensity of shading represents the degree of recruitment.

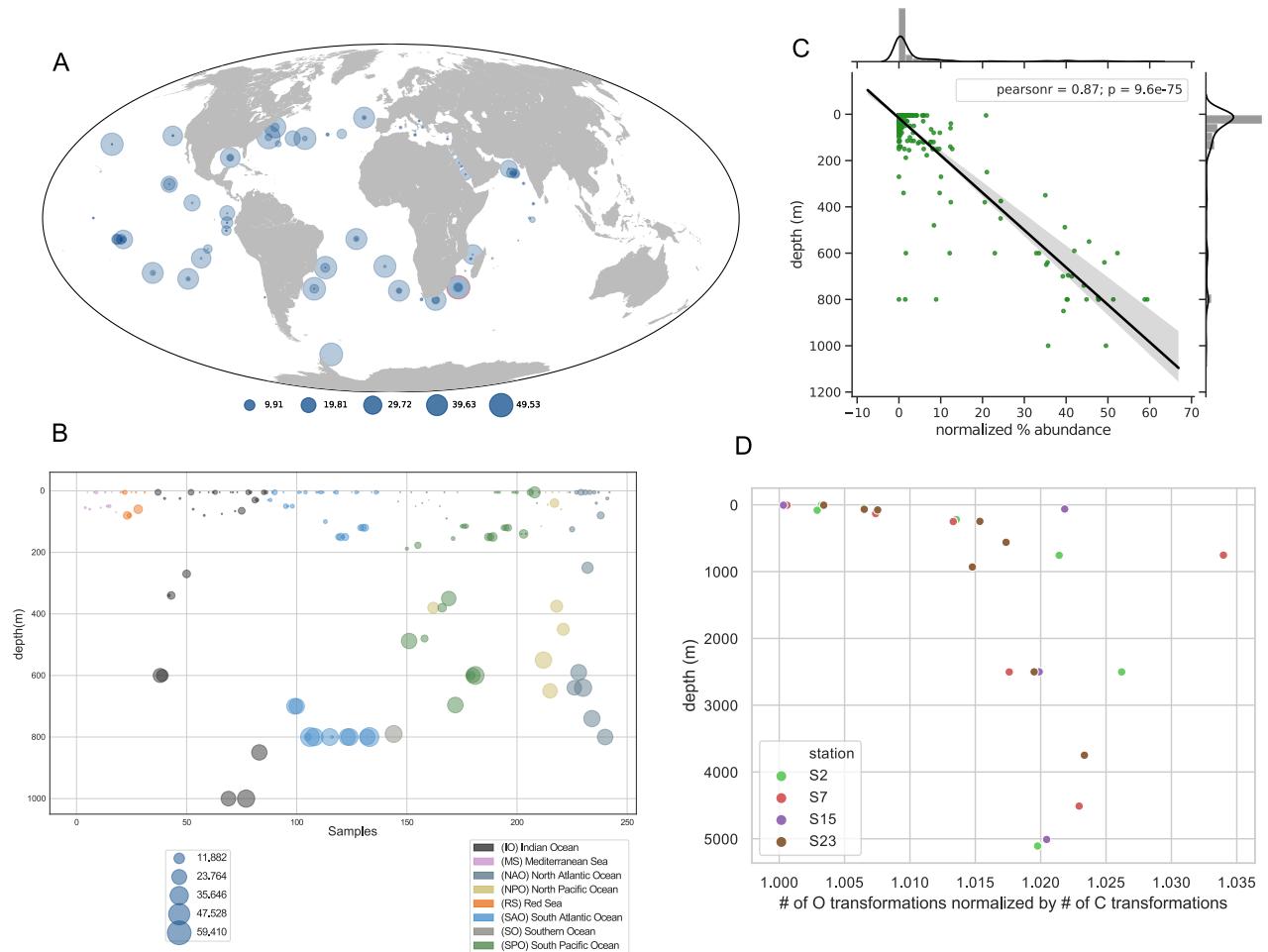


Figure 7: **(A)** World Map showing relative abundances of SAR202-specific FMNOs in TARA Oceans metagenomes. Sample with highest relative abundance is highlighted in red circle. **(B)** SAR202-specific FMNOs relative abundances vs. depth in TARA oceans metagenomes. **(C)** Normalized FMNO abundances in SAR202 are highly correlated with depth in TARA Oceans metagenomes. Normalization of FMNO abundances was obtained by dividing total SAR202 FMNOs by total SAR202 single-copy genes found in each sample. **(D)** The ratio of observations of organic metabolites with mass : charge ratio (m/z) that differ in mass by one oxygen, to observations that differ in mass by one carbon, in FTICR-MS data from deep ocean marine DOM samples collected from the Western Atlantic. The stations ranged from 38° S (station 2) to 10° N (station 23). Across the full dataset, the most common m/z difference observed corresponds to one carbon atom of mass. The data show that transformations corresponding to the addition of a single oxygen atom, as would be catalyzed by a flavin-dependent monooxygenase, become relatively more frequent in the dark ocean. Of several patterns predicted from a previous study (10), this one alone showed a consistent trend.