

1 *Classification: Biological Sciences – Plant Biology / Biochemistry*

2

3 **Title: Molecular mechanism for the recognition of sequence-divergent CIF peptides by the plant**
4 **receptor kinases GSO1/SGN3 and GSO2.** (124 characters, 135 max)

5

6 *Short-title:* Structure-guided peptide hormone identification. (47 characters, 50 max)

7

8 *Authors:* Satohiro Okuda^{1,*}, Satoshi Fujita^{2,*#}, Andrea Moretti¹, Ulrich Hohmann^{1,+}, Verónica G.
9 Doblas^{2,\$}, Yan Ma², Alexandre Pfister², Benjamin Brandt^{1,&}, Niko Geldner², Michael Hothorn¹

10

11 ORCID IDs' SO: 0000-0001-6172-2515, SF: 0000-0002-3514-3349, AM: 0000-0001-5778-2291, UH:
12 0000-0003-2124-1439, VGD: 0000-0002-5476-3228, BB: 0000-0001-5867-8760, NG:0000-0002-
13 2300-9644 , MH: 0000-0002-3597-5698

14

15 ¹Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva,
16 1211 Geneva, Switzerland.

17 ²Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.

18 ^{\$}Present address: Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay,
19 78000 Versailles, France.

20 [#]Present address: National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.

21 ⁺Present address: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA) &
22 Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria.

23 [&]Present address: Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich,
24 Switzerland.

25 *these authors contributed equally to this work.

26

27 *Corresponding Authors*

28 To whom correspondence should be addressed: niko.geldner@unil.ch, michael.hothorn@unige.ch

29

30 *Keywords:* membrane receptor kinase, leucine-rich repeat domain, peptide hormone identification,
31 Casparyan strip, root development, receptor activation

32 **Abstract**

33 **Plants use leucine-rich repeat receptor kinases (LRR-RKs) to sense sequence diverse peptide**
34 **hormones at the cell surface. A 3.0 Å crystal structure of the LRR-RK GSO1/SGN3 regulating**
35 **Caspary strip formation in the endodermis reveals a large spiral-shaped ectodomain. The**
36 **domain provides a binding platform for 21 amino-acid CIF peptide ligands, which are tyrosine**
37 **sulfated by the tyrosylprotein sulfotransferase TPST/SGN2. GSO1/SGN3 harbors a binding**
38 **pocket for sulfotyrosine and makes extended backbone interactions with CIF2. Quantitative**
39 **biochemical comparisons reveal that GSO1/SGN3 – CIF2 represents one of the strongest receptor**
40 **- ligand pairs known in plants. Multiple missense mutations are required to block CIF2 binding**
41 ***in vitro*, and GSO1/SGN3 function *in vivo*. Using structure-guided sequence analysis we uncover**
42 **novel CIF peptides conserved among higher plants. Quantitative binding assays with known and**
43 **novel CIFs suggest that the homologous LRR-RKs GSO1/SGN3 and GSO2 have evolved unique**
44 **peptide binding properties to control different developmental processes. A quantitative**
45 **biochemical interaction screen, a CIF peptide antagonist and genetic analyses together implicate**
46 **SERK LRR-RKs as essential co-receptor kinases required for GSO1/SGN3 and GSO2 receptor**
47 **activation. Our work provides a mechanistic framework for the recognition of sequence-**
48 **divergent peptide hormones in plants. (190 words)**

49

50 **Significance Statement**

51 Two sequence-related plant membrane receptor kinases and their shape-complementary co-receptors
52 are shown to selectively sense members of a small family of secreted peptide hormones to control
53 formation of an important diffusion barrier in the plant root. (36 words)

54

55 **Introduction**

56 Plant membrane receptor kinases with leucine-rich repeat ectodomains (LRR-RKs) form the
57 first layer of the plant immune system and are key regulators of plant growth and development (1).
58 LRR-RKs have evolved to sense small molecule, peptide and protein ligands, with small linear peptides
59 representing a large class of sequence-diverse signaling molecules in plants (1, 2). These linear
60 peptides are processed from larger pre-proteins and subsequently post-translationally modified (3). The

size of the final, bioactive peptide hormone ranges from five (phytosulfokine, PSK) (2) to ~ 21-23 amino-acids (PEP1; CASPARIAN STRIP INTEGRITY FACTORS, CIF1/2) (4-6). Post-translational peptide modifications include proline hydroxylation, hydroxyproline arabinosylation, and tyrosine sulfation (sTyr) (2), and these modifications may allow for specific ligand recognition by the cognate LRR-RK (7-9). The disulfated PSK peptide binds to a pocket that is formed by the LRR domain of the receptor PSKR and a small ‘island domain’ (9). PSK binding stabilizes the island domain and enables PSKR to interact with a SERK co-receptor kinase, which is shared between many LRR-RK signaling pathways (9, 1). Unsulfated PSK variants bound the receptor with ~25fold reduced affinity (9). Subsequently, other tyrosine sulfated peptides were discovered in plants, including the ROOT MERISTEM GROWTH FACTORS (RGFs), 13 amino-acid peptides containing an N-terminal Asp-Tyr (DY) motif (10), which is recognized by the sole tyrosylprotein sulfotransferase TPST in *Arabidopsis* (11). RGFs are sensed by a class of SERK-dependent LRR-RKs termed RGFRs (12, 13). RGFs bind the LRR ectodomain of RGFRs with dissociation constants in the high nanomolar range (13). Non-sulfated variants of the linear peptides showed a ~200fold reduction in binding affinity (13). The N-terminal sTyr in RGFs maps to a hydrophobic pocket located at the inner face of the LRR solenoid in RGF-RGFR complex structures, with the peptide adopting an extended conformation (13). A His-Asn diad forms the C-terminus of RGFs and many other plant peptide hormones, such as IDA/IDLs involved in organ abscission and CLE peptides controlling plant stem cell maintenance (7, 1). The C-terminal His/Asn motif has been shown to be specifically recognized by two arginines (the RxR motif) located at the inner surface of the LRR cores of different peptide sensing LRR-RKs (7, 13-16).

The LRR-RKs GASSHO1/SCHENGEN 3 (GSO1/SGN3) and GASSHO2 (GSO2) carry a conserved RxR motif and were initially shown to be redundantly required for embryonic development (17, 18). Subsequently, a non-redundant role for GSO1/SGN3 was identified through a genetic screen for Casparian strip formation, an endodermal barrier allowing for selective nutrient uptake in the root (19, 20). The presence of the RxR motif suggested that GSO1/SGN3 and GSO2 may bind peptide ligands *in planta*, but the identify of these peptides remained unknown. The discovery that *tpst/sgn2* loss-of-function mutants display Casparian strip phenotypes similar to *sgn3* resulted in the identification of two 21 amino-acid long, tyrosine sulfated peptides CIF1/2 as ligands for GSO1/SGN3 (6). A complementary biochemical interaction screen for CIF1/2 receptors identified GSO1/SGN3 and GSO2 as *bona fide* receptors for these peptide hormones (5). Here we report the crystal structure of the GSO1/SGN3 ectodomain in complex with CIF2 and dissect its mode of ligand binding. We define

92 novel CIF peptides differentially sensed by GSO1/SGN3 and GSO2 and report that GSO1 and GSO2
93 require SERK co-receptor kinases for receptor activation.

94

95 **Results**

96 The interaction between the GSO1/SGN3 ectodomain and synthetic CIF1/2 peptides has been
97 previously characterized in quantitative isothermal titration calorimetry (ITC) steady-state binding
98 assays, yielding dissociation constants (K_d 's) ranging from ~2 to 50 nM, but with varying binding
99 stoichiometries (6). We performed grating coupled interferometry (GCI) kinetic binding assays (21)
100 and found that GSO1/SGN3 binds the CIF1 and CIF2 peptides with K_d 's of ~5 and ~1 nM, respectively
101 (Fig. 1), in agreement with the earlier report (6). Next, we compared the binding kinetics of
102 GSO1/SGN3 - CIF1/CIF2 to other, known receptor – peptide ligand pairs from *Arabidopsis*: The 23
103 amino-acid PEP1 and PEP2 danger signal peptides bind the LRR-RK PEPR1 with drastically different
104 binding affinities of 90 nM and 18 μ M, respectively (Fig. 1). The hydroxyprolinated CLE9 peptide (12
105 amino-acids) binds the ectodomain of the LRR-RK BAM1 with a K_d of ~1 nM, similar to GSO1/SGN3
106 – CIF2 (Fig. 1), and in agreement with a previously reported ITC experiment (22). The well-
107 characterized immune elicitor peptide flg22 binds the isolated FLS2 ectodomain with a dissociation
108 constant of 1.5 μ M (Fig. 1). Together, our comparison reveals that plant LRR-RKs can sense peptide
109 ligands with drastically different binding affinities and kinetics, with the GSO1/SGN3 – CIF1/2
110 interaction ranking among the strongest receptor – ligand pairs.

111 To gain mechanistic insight into the GSO1/SGN3 – CIF1/2 interaction, we next determined the
112 crystal structure of a GSO1/SGN3 – CIF2 complex. We produced the GSO1/SGN3 ectodomain
113 (residues 19-870) by secreted expression in insect cells. The native protein did not yield diffraction
114 quality crystals and hence we partially deglycosylated GSO1/SGN3 using a mix of endoglycosidases
115 H, F1 and F3 (see Methods). Crystals obtained in the presence of a synthetic CIF2 peptide diffracted to
116 ~3.0 \AA resolution and the structure was solved using the molecular replacement method. The final
117 model contains two GSO1/SGN3 – CIF2 complexes in the asymmetric unit, with a solvent content of
118 ~70 %. The GSO1/SGN3 ectodomain contains 32 LRRs folding into a superhelical assembly
119 previously seen in other plant LRR-RKs (Fig. 2, *SI Appendix*, Fig. S1) (1). The structure completes
120 ~1.5 helical turns, forming the largest LRR ectodomain currently known in plants (Fig. 2). The LRR
121 core is sandwiched between canonical, disulfide bond-stabilized capping domains (Fig. 2, *SI Appendix*,
122 Fig. S1). 16 N-glycosylation sites are evident in the electron density maps of the partially deglycosylated

123 protein, evenly distributed along the spiral-shaped GSO1/SGN3 ectodomain (Fig. 2, *SI Appendix*, Fig. 124 S1). One CIF2 peptide binds in a fully extended conformation to the GSO1/SGN3 LRR core (LRRs 3- 125 23) (Fig. 2, *SI Appendix*, Fig. S1).

126 We compared our GSO1/SGN3 – CIF2 complex to the previously reported structure of the sTyr- 127 peptide binding receptor RGFR (13). The RGF peptide and the RGFR ectodomain are much smaller 128 compared to CIF2 and GSO1/SGN3 (Fig. 2). However, both RGFR and GSO1/SGN3 provide a binding 129 pocket for the N-terminal sTyr residue and a RxR motif in close proximity to the C-terminus of the 130 respective peptide ligand (*SI Appendix*, Fig. S2). In our structure we find sTyr64 located in a 131 hydrophobic pocket formed by GSO1/SGN3 residues originating from LRRs 3-5 (Fig. 3A). It has been 132 previously established that the tyrosylprotein sulfotransferase TPST/SGN2 is genetically required for 133 Casparyan strip formation (6). In line with this, recombinant TPST/SGN2 obtained by secreted 134 expression from insect cells has specific tyrosylprotein sulfotransferase activity towards CIF2, using 3'- 135 phosphoadenosine-5'-phosphosulfate as substrate (*SI Appendix*, Fig. S3). The GSO1/SGN3 ectodomain 136 bound tyrosine sulfated CIF2 (CIF2^{WT}) with K_d 's of ~2 nM and ~40 nM in GCI and ITC assays, 137 respectively (Fig. 3B, *SI Appendix*, Fig. S4). The binding stoichiometry is ~1 in our ITC assays, in 138 agreement with the GSO1/SGN3 – CIF2 complex structure (Fig. 2, *SI Appendix*, Fig. S4). Non-sulfated 139 CIF2^{nsY64} interacted with the GSO1/SGN3 ectodomain with ~100 - 1,000fold reduced binding affinity, 140 depending on the assay used (Fig. 3B, *SI Appendix*, Fig. S4). This suggests that the sTyr moiety formed 141 by TPST/SGN2 contributes to the specific recognition of CIF2 by GSO1/SGN3.

142 To validate our GSO1/SGN3 – CIF2 complex structure, we next replaced the conserved Ala173 143 and Ala175 from the sTyr binding pocket with glutamine (Fig. 3A, *SI Appendix*, Fig. S1). We found that 144 the GSO1/SGN3^{A173Q/A175Q} mutant protein bound CIF2^{WT} and CIF2^{nsY64} with low micromolar affinity in 145 ITC experiments (*SI Appendix*, Fig. S4). In kinetic GCI assays, no specific binding was detected for 146 CIF2^{WT} or CIF2^{nsY64} to GSO1/SGN3^{A173Q/A175Q} (Fig. 3B, *SI Appendix*, Fig. S4). However, while removal 147 of the TPST/SGN2-generated sulfation site or mutation of the sTyr binding pocket in the receptor 148 strongly decreased CIF2 binding (~100 – 1,000fold), the non-sulfated CIF2 peptide and the 149 GSO1/SGN3^{A173Q/A175Q} mutant protein complemented *cif1* *cif2* and *sgn3* loss-of-function phenotypes in 150 Casparyan strip formation, respectively (Fig. 3C,E, *SI Appendix*, Fig. S5).

151 We thus analyzed how other amino-acids in the large GSO1/SGN3 CIF2 binding site (~1,500 A^2 152 buried surface area) (23) would contribute to the specific recognition of the peptide hormone (Fig. 3A). 153 We first mutated the conserved RxR motif in GSO1/SGN3 LRR23, which is involved in the

154 coordination of the C-terminal Asn83 in CIF1/CIF2 (Fig. 3D) and in many other plant peptide
155 hormones (1, 7, 13, 16). Replacing Arg603 and/or Arg605 with alanine had a moderate effect on CIF2
156 binding by GSO1/SGN3 (2-10fold reduction) (Fig. 3F, *SI Appendix*, Fig. S4). In line with this, we find
157 Arg603 and Arg605 not in direct hydrogen bonding distance with either the side-chain of Asn83 or the
158 C-terminal carboxyl group of the CIF2 peptide (Fig. 3D). Despite their moderate contribution to CIF2
159 binding, a GSO1/SGN3^{R603A/R605A} mutant only partially complemented the *sgn3* Casparyan strip
160 phenotype (Fig. 3E) (see below).

161 The central part of the CIF peptide binding groove in GSO1/SGN3 is mainly formed by
162 hydrophobic residues and by selected hydrogen bond interactions between residues originating from
163 LRRs 6-17 and backbone atoms from CIF2 (Fig. 3G). CIF peptides have been previously demonstrated
164 to be hydroxyprolinated (5) and the corresponding Pro69 and Pro71 residues in CIF2 form part of the
165 central binding site (Fig. 3G). While the hydroxyl group of Hyp71 may establish a hydrogen bond with
166 GSO1/SGN3 residue Asp293, we found that CIF2^{Hyp69,71} and CIF2^{WT} bound GSO1/SGN3 with very
167 similar dissociation constants and both could complement the *cif1 cif2* Casparyan strip phenotype in a
168 same concentration range (*SI Appendix*, Fig. S6).

169 We replaced three conserved aromatic residues Tyr416, Phe438 and Tyr440 in the central
170 binding groove by alanine (hereafter called SGN3^{3x}), and again observed a moderate reduction in CIF2
171 binding (~10fold) (*SI Appendix*, Fig. S4). Transgenic plants recapitulating these mutations partially
172 rescued the *sgn3* phenotype *in planta* (Fig. 3E). However, when we combined this triple mutant with
173 the mutations targeting the sTyr binding pocket in GSO1/SGN3 (SGN3^{6x}) (Fig. 3), CIF2 binding was
174 disrupted (Fig. 3F, *SI Appendix*, Fig. S4) and the GSO1/SGN3^{6x} mutant failed to complement the *sgn3*
175 phenotype (Fig. 3E, *SI Appendix*, Fig. S5). Together, our structural and mutational analysis suggests
176 that GSO1/SGN3 uses a large number of interactions to specifically recognize CIF peptides, requiring
177 numerous receptor – peptide contacts to be altered in order to disrupt CIF peptide binding *in vitro* and
178 GSO1/SGN3 function *in vivo*.

179 We noted in our structure that outside the sTyr binding pocket, CIF2 mainly uses main-chain
180 atoms to contact the GSO1/SGN3 LRR domain. Thus, sequence-divergent tyrosine sulfated peptides
181 may represent *bona fide* ligands for GSO1/SGN3. Based on this observation, we identified additional,
182 putative CIF peptides in *Arabidopsis* and in other plant species, harboring an N-terminal Asp-Tyr motif
183 required for TPST/SGN2 substrate recognition (10), two central proline residues and a C-terminal His/
184 Asn residue (*SI Appendix*, Fig. S7). From these candidates we selected the closely related, previously

185 uncharacterized At5G04030 (CIF3 hereafter) and At1G28375 (CIF4) for further analysis (Fig. 4A).
186 GCI experiments revealed that tryosine sulfated but not the non-sulfated CIF3 synthetic peptide bound
187 to the GSO1/SGN3 ectodomain with nanomolar affinity (Fig. 4B). Due to its hydrophobicity, we could
188 not dissolve the CIF4 peptide in our GCI buffer, and thus performed ITC experiments instead, titrating
189 CIF4 into a GSO1/SGN3 solution containing 5% (v/v) DMSO. In these buffer conditions, CIF4 binds
190 GSO1/SGN3 with 300 nM affinity and with 1:1 binding stoichiometry (Fig. 4C). DMSO appears to
191 negatively affect binding, as the CIF2 control bound with ~6fold reduced binding affinity when
192 compared to aqueous buffer conditions (Fig. 4C, *SI Appendix*, Fig. S4). Together, the newly identified
193 CIF3 and CIF4 peptides bind to GSO1/SGN3 with high affinity *in vitro*.

194 We next tested if CIFs can also bind to the LRR-RK GSO2, which together with GSO1/SGN3
195 controls plant embryo development (17). We could purify ~50 µg GSO2 (residues 23-861) from 8 L of
196 insect cell culture, sufficient quantities to perform GCI assays. We found that CIF3 but neither CIF1 or
197 CIF2 bound to the recombinant GSO2 ectodomain (Fig. 4D). CIF3 binds both GSO1/SGN3 and GSO2
198 with a K_d of ~ 4 nM (Fig. 4D). Due to its hydrophobicity, we could not assess binding of CIF4 to
199 GSO2. Together, GSO1/SGN3 and GSO2 display different CIF peptide binding preferences *in vitro*.

200 In line with our biochemical findings, application of synthetic CIF3 and CIF4 peptides could
201 rescue the *cif1 cif2* Casparyan strip phenotypes (Fig. 5A). However, CIF3 and CIF4 marker lines
202 showed no expression in roots and a *cif3 cif4* double mutant had no apparent Casparyan strip or embryo
203 development defect (Fig. 5B-D, *SI Appendix*, Fig. S8). Given the fact that we could identify CIF3 and
204 CIF4 orthologs in other plant species (*SI Appendix*, Fig. S7), we speculate these CIF peptides to be
205 involved in yet unidentified GSO1/SGN3 / GSO2 regulated signaling events.

206 Many of the currently known LRR-RKs require the interaction with a shape-complementary co-
207 receptor kinase for high affinity ligand binding and for receptor activation (1, 21). In contrast to, for
208 example, the peptide hormone IDA, CIF1-4 bind to GSO1/SGN3 with nanomolar affinity already in the
209 absence of a co-receptor kinase (Figs. 1,3) (6, 7). This could in principle suggest that GSO1/SGN3 does
210 not require a co-receptor (6). However, we found that both apo and CIF2-bound GSO1/SGN3
211 ectodomains behaved as monomers in analytical size exclusion chromatography and right-angle light
212 scattering experiments, respectively (Fig. 6A). This makes it unlikely that CIF2 binding alters the
213 oligomeric state of GSO1/SGN3, an activation mechanism used by the LRR domain-containing animal
214 Toll-like receptors (24). However, structural features in the GSO1/SGN3 – CIF2 complex suggest that a
215 shape-complementary co-receptor kinase may be required for receptor activation: First, CIF2 contains a

216 C-terminal asparagine residue in close proximity to the GSO1/SGN3 RxR motif (Fig. 3D). Both motifs
217 are involved in the recruitment of a SERK co-receptor kinase in the structurally related IDA – HAESA
218 and RGF – RGFR complexes (7, 13). Second, mutation of the RxR motif to alanine has no apparent
219 effect on CIF2 binding *in vitro*, but the mutant receptor can only partially complement the *sgn3*
220 Casparyan strip phenotype (Fig. 3E,F). Thus, the GSO1/SGN3 RxR motif may not be essential for CIF
221 peptide binding, but may instead be part of a putative receptor – co-receptor complex interface. Third, a
222 surface area covering the C-terminus of the CIF2 peptide and the C-terminal LRRs in GSO1/SGN3 is
223 not masked by carbohydrate, thus representing a potential protein – protein interaction surface (Fig.
224 6B). The corresponding region in SERK-dependent LRR-RKs has been previously shown to represent
225 the receptor – co-receptor complex interface (1).

226 We thus sought to obtain evidence for the involvement of a co-receptor kinase in SGN3 signal
227 transduction. We hypothesized that a co-receptor may bind to the CIF2 C-terminus, coordinated by the
228 GSO1/SGN3 RxR motif (Fig. 6C). We replaced CIF2 Ile81, which faces the solvent in our structure,
229 with aspartate (CIF2^{I81D}) (Fig. 6C) and found that while the mutant peptide still binds GSO1/SGN3
230 with nanomolar affinity *in vitro* (Fig. 6D), it cannot rescue Casparyan strip membrane domain formation
231 in *cif1 cif2* (Fig. 6E). Importantly, wild-type plants treated with micromolar concentrations of CIF2^{I81D}
232 displayed dominant negative Casparyan strip integrity phenotypes, while treatment with CIF2^{WT} had no
233 apparent effect (Fig. 6E). Mutation of the neighboring Leu80 to aspartate more strongly reduced
234 binding to GSO1/SGN3 when compared to CIF2^{I81D}, in agreement with our complex structure, which
235 reveals Leu80 to be part of the CIF2 – GSO1/SGN3 complex interface (Fig. 6C,D). CIF2^{L80D}
236 application did not reveal a dominant negative effect but rather rescued the *cif1 cif2* double mutant
237 phenotype (Fig. 6E). Based on these findings, we speculate that CIF2^{I81D} and CIF2^{L80D} both can bind
238 GSO1/SGN3 *in vivo*, but CIF2^{I81D} specifically blocks interaction with an essential adapter protein
239 required for GSO1/SGN3 activation.

240 We initially used a reverse genetic approach to identify co-receptors for GSO1/SGN3, based on
241 previous studies on SERKs and SERK-related LRR-RKs (1, 22, 25, 26). However, analysis of known
242 *serk* and *cik/nik/clerk* loss-of-function mutant combinations revealed no apparent Casparyan strip
243 phenotype (SI Appendix, Fig. S9). We next performed a biochemical interaction screen, using the
244 known SERK1 and 3 co-receptors as well as other GSO1/SGN3 interacting LRR-RKs, recently
245 identified in a high-throughput biochemical screen (27). From the LRR-RK candidates identified in this
246 screen, we selected putative co-receptors with small LRR ectodomains, including SERK5 (1),

247 CIK/NIK/CLERK proteins recently reported as co-receptors for CLE peptide sensing LRR-RKs (22,
248 25, 26), the SRF receptor kinases (28), and the immune receptor kinase SOBIR1 (29). We expressed
249 and purified the LRR ectodomains of SERK1, SERK3, SERK5, NIK3, NIK4, SRF3, SRF9 and
250 SOBIR1 and tested for CIF-dependent interaction with the GSO1/SGN3 ectodomain in quantitative
251 GCI assays (Fig. 7A,B, *SI Appendix*, Fig. S10). Strikingly, we observed specific binding of SERK1 to
252 GSO1/SGN3 in the presence of either CIF1, 2 or 3, with dissociation constants ranging from ~20 – 300
253 nM (Fig. 7C, *SI Appendix*, Fig. S10). No SERK1 binding to SGN3 was observed in the absence of CIF
254 peptide (*SI Appendix*, Fig. S10), and the co-receptor did not bind the GSO1/SGN3^{6x} mutant (Fig. 7C,
255 see above). In line with our structural and physiological assays, the CIF2^{181D} peptide specifically
256 blocked GSO1/SGN3 – SERK1 interaction, rationalizing its dominant negative effect on Casparian
257 strip formation (Figs. 7C). GSO1/SGN3 also interacts with SERK3, but not with SERK5 or any of the
258 other co-receptor candidates derived from the high-throughput screen (*SI Appendix*, Fig. S10) (27).
259 Consistently, we observed specific SERK1/3 binding to GSO2 in the presence of CIF3 (K_d ~ 20-80
260 nM) (*SI Appendix*, Fig. S10).

261 To our surprise, the interaction of SERKs with ligand-associated GSO1 and GSO2 was much
262 tighter than previously reported for the LRR-RKs BRI1 and HAESA (21). GCI analysis of PEPR1 –
263 Pep1 – SERK1/3 complex formation however revealed an even tighter interaction (K_d 's 1-4 nM), while
264 the related LRR-RK immune receptors FLS2 and EFR bound SERK3 with low micromolar affinity (*SI*
265 *Appendix*, Fig. S11). Together, our quantitative receptor – co-receptor interaction screen revealed
266 SERK1/3 as *bona fide* co-receptors for GSO1/SGN3 and GSO2. We hypothesized that different SERKs
267 may act redundantly as co-receptor kinases for GSO1/SGN3 in the endodermis, complicating the
268 analysis of *serk* loss-of-function alleles (*SI Appendix*, Fig. S9). We thus generated an estradiol-
269 inducible, dominant-negative SERK3 line (30) and found that it significantly delays Casparian strip
270 formation. While the effect is not as strong as observed for *sgn3* loss-of-function alleles, this provides
271 *in vivo* support for a role of SERK3 and/or SERK homologs in GSO1/SGN3 mediated Casparian strip
272 formation. Taken together, our biochemical and genetic experiments implicate SERK proteins as co-
273 receptors for GSO1/SGN3 and GSO2.

274

275 **Discussion**

276 Plants harbor many different classes of signaling peptide hormones, the bioactive forms of
277 which are generated by proteolytic processing from larger pre-proteins and by post-translational

278 modifications including hydroxyprolination and tyrosine sulfation (2). Several of these peptide
279 hormones are specifically sensed by LRR-RKs (1). The 21 amino-acid CIF1 and 2 peptides carry a
280 sulfated tyrosine residue in position 64 *in vivo* (5) and have been shown to represent ligands for the
281 LRR-RK GSO1/SGN3 (5, 6). GSO1/SGN3 tightly interacts with CIF1 and CIF2 with dissociation
282 constants in the low nanomolar range (Fig. 1) (6). The sTyr-containing peptide hormone PSK binds its
283 cognate receptor PSKR with a K_d of $\sim 1 \mu\text{M}$ (9). RGF peptides that share the N-terminal Asp-Tyr motif
284 with CIF1/2, interact with different RGFRs with dissociation constants in the high nanomolar to mid-
285 micromolar range (13). Recently, the tyrosine sulfate RaXX peptide from *Xanthomonas oryzae* has
286 been shown to bind the rice LRR-RK XA21 with a K_d of $\sim 15 \text{ nM}$ (31). Thus, GSO1/SGN3 – CIF1/2
287 represents the strongest receptor – ligand pair for sTyr-modified signaling peptides currently known in
288 plants. Comparing GSO1/SGN3 – CIF1/2 to known LRR-RK - peptide ligand pairs reveals that plant
289 membrane receptor kinases can sense their cognate peptide ligands with drastically different binding
290 affinities (spanning the micro- to nanomolar range) (Fig. 1) (1, 7). A comparison of the association (k_a)
291 and dissociation rates (k_d) further suggests that high affinity peptide interactions are mainly driven by
292 slow dissociation rates, which however cannot be simply correlated to the size of the respective peptide
293 hormone (Fig. 1). In fact, the 12 amino-acid CLE9 peptide binds the LRR-RK BAM1 with a binding
294 affinity very similar to GSO1/SGN3 – CIF1/2, while the much longer Pep and flg22 peptides bind their
295 cognate receptors with micromolar affinity (Fig. 1). It is of note however that PEPR1 and FLS2 rely on
296 the co-receptor kinase BAK1. BAK1 and other SERK family LRR-RKs have been shown to promote
297 high affinity ligand sensing, with the co-receptor completing the ligand binding pocket and slowing
298 down ligand dissociation (7, 21).

299 Many plant peptides including the CLE and IDA/IDL families are post-translationally modified,
300 and in both cases these modifications have been shown to be important for high-affinity ligand
301 recognition, and for the bioactivity of the respective peptide hormone (8, 7). For CIF1 and 2, two post-
302 translational modifications have been identified, sulfation of tyrosine 64 and hydroxyprolination of
303 prolines 69 and 71. Using two complementary quantitative binding assays we find that the sulfation of
304 Tyr64 in different CIF peptides is required for high affinity ligand binding to GSO1/SGN3 *in vitro*, but
305 surprisingly removal of the sulfate group from the peptide, or mutation of the sTyr binding pocket in
306 GSO1/SGN3 had little effect on casparyan strip formation (Fig. 3). In sharp contrast to for example the
307 HAESA – IDA complex (7), both hydroxyproline residues in CIF2 do not seem to play a major role in
308 ligand sensing, or bioactivity, at least under the conditions tested (*SI Appendix*, Fig. S6). Similarly, the

309 mutation of the GSO1/SGN3 RxR motif conserved among many peptide ligand sensing LRR-RKs (13),
310 had little effect on CIF2 binding and resulted in intermediate Casparyan strip formation phenotypes
311 (Fig. 3). We had to go all the way to a GSO1/SGN3 sixtuple mutant to disrupt CIF2 binding *in vitro*,
312 and receptor function *in planta* (Fig. 3). Based on these findings, we speculate that the concentration of
313 mature CIF1 and 2 peptides in the Casparyan strip may exceed the nanomolar range, and thus partially
314 functional receptors can still rescue the *sgn3* phenotype. In line with, application of 10-100 nM of non-
315 sulfatable CIF2^{Y64F} can still complement the *cif1 cif2* phenotype, despite having a 100 – 1,000fold
316 reduced binding affinity to GSO1/SGN3 (Fig. 3).

317 Our GSO1/SGN3 – CIF2 structure prompted us to search for additional CIF peptides and we
318 indeed identified several new candidates and characterized CIF3 and CIF4 (Fig. 4, *SI Appendix*, Fig.
319 S7). We found that while GSO1/SGN3 binds CIF1-4 with high affinity, the homologous LRR-RK
320 GSO2 specifically senses CIF3 (Fig. 4). CIF3 and 4 are not expressed in the endodermis (Fig. 5, *SI*
321 *Appendix*, Fig. S12) and potentially control other, GSO1/SGN3 and GSO2 mediated developmental
322 processes (17, 32). The partially distinct binding specificities of SGN3 and GSO2 suggest that the two
323 receptor have evolved unique functions, possibly to mediate to specific signal inputs in as yet unknown
324 tissue and organ contexts during development. However, a single mutant phenotype for GSO2 has not
325 been described, the only currently known function being redundant with GSO1/SGN3 in embryonic
326 cuticle formation (17). In depth analysis of the GSO2 and CIF3/4 expression domains and targeted
327 phenotyping might identify such a specific, non-redundant function of GSO2 and CIF3/4 in the future.
328 Since neither *cif1 cif2*, nor *cif3 cif4* double mutants show an embryonic cuticle phenotype, it will also
329 be important to identify whether a combination of *cif1-4*, possibly a quadruple mutant is required for
330 this developmental process, or whether it is mediated by an additional, thus far unidentified, peptide
331 ligand.

332 While the high-affinity recognition of CIF peptides by GSO1/SGN3 and GSO2 does not require
333 a co-receptor kinase, the receptor activation mechanism for these LRR-RKs remained to be identified.
334 Despite our initial genetic analyses arguing against a role for the common SERK co-receptor kinases in
335 GSO1/SGN3 function, a quantitative biochemical interaction screen clearly identified SERK1 and 3 as
336 *bona fide* co-receptors. SERKs bind GSO1/SGN3 and GSO2 only in the presence of CIF peptide
337 ligands, suggesting that the previously established ligand-induced receptor – co-receptor
338 heteromerisation mechanism (1, 21) is conserved in GSO1/SGN3 and GSO2 (Fig. 7). CIF3 promotes a
339 much stronger interaction of GSO1/SGN3 or GSO2 with SERK1 when compared to CIF1/2,

340 suggesting that CIF peptides may not only have unique receptor binding specificities, but also different
341 affinities for SERK co-receptors (*SI Appendix*, Fig. S10). It is of note that CIF-dependent interaction of
342 GSO1/SGN3 or GSO2 with SERKs is ~50times stronger than previously described for the LRR-RKs
343 BRI1 and HAESA (21). We speculate that minute amounts of SERK co-receptor may suffice to allow
344 for GSO1/SGN3 receptor activation, possibly rationalizing why *serk* double and triple mutants show no
345 apparent Casparyan strip defects (*SI Appendix*, Fig. S9). The dominant negative effect of our
346 SGN3::XVE:SERK3Δkinase-GFP line nonetheless provides genetic support for the involvement of
347 SERK proteins in Casparyan strip formation (Fig. 7). Generation of clear-cut loss-of-function evidence
348 might prove challenging, since multiple SERK mutants lead to highly pleiotropic phenotypes, including
349 seedling lethality and sterility, in line with their involvement in a large number of LRR kinase-mediated
350 signaling processes (33–35). The biochemical identification of novel CIF peptides and of GSO1/2 co-
351 receptor kinases however now offers new avenues to dissect peptide hormone signaling specificity in a
352 developmental context.

353

354 **Acknowledgments**

355 We thank the staff of beam line PXIII of the Swiss Light Source, Villigen, Switzerland for their
356 technical assistance during data collection. This work was supported by grants no. 31003A_176237 and
357 31CP30_180213 (M.H.), 31003A_156261 and 310030E_176090 (N.G.) from the Swiss National
358 Science Foundation, an ERC Consolidator Grant (616228-ENDOFUN) (N.G.), a Human Frontier
359 Science Program Organization (HFSPO) postdoctoral fellowship no. LT000567/2016-L (S.O.), a
360 Japanese Society for the Advancement of Science (JSPS) fellowship (S.F.), and by an International
361 Research Scholar Award from the Howard Hughes Medical Institute (M.H.).

362

363 **Materials and Methods**

364 **Protein expression and purification**

365 SGN3 (residues 19 - 870) coding sequence was amplified from the AP018 plasmid containing SGN3
366 cDNA (19). GSO2 (residues 23 - 861), TPST (residues 25 - 441), SERK1 (residues 24 - 213), SERK3
367 (residues 1 – 220), NIK3 (residues 26 – 238), NIK4 (residues 31 – 238), SRF3 (residues 1 – 316), and
368 SRF9 (residues 1 – 334) were amplified from *A. thaliana* cDNA, SOBIR1 (residues 1 - 270), PEPR
369 (residues 1 - 767), FLS2 (residues 1 – 800), and EFR (residues 1 - 642) from *A. thaliana* genomic
370 DNA. BAM1 (residues 20 – 637), and SERK5 (residues 24 - 214) were synthesized (Geneart,

371 Germany) with codons optimized for expression in *Trichoplusia ni*. The constructs were cloned in a
372 modified pFastBac vector (Geneva Biotech) containing an azurocidin signal peptide, except for
373 SERK2, SERK3, SRF3, SRF9, SOBIR1, PEPR, and FLS2 with a native secretion signal peptide,
374 respectively, and a TEV (tobacco etch virus protease) cleavable C-terminal StrepII – 9x His tag. SGN3
375 and GSO2 were also cloned into the vector harboring the *Drosophila* BiP secretion signal peptide,
376 which was amplified from B02_SRF6_pECIA2 (27), a C-terminal TEV cleavable StrepII – 10x His tag
377 and a non-cleavable Avi-tag (36, 37). SGN3 variants carrying point mutations were generated using the
378 primer extension method for site-directed mutagenesis. *Trichoplusia ni* (strain Tnao38) (38) cells were
379 infected with a multiplicity of infection (MOI) of 1 at a density of 2×10^6 cells ml⁻¹ and incubated for
380 26 h at 28 °C and for additional 48 h at 22 °C. The secreted protein was purified from the supernatant
381 by Ni²⁺ (HisTrap Excel; GE healthcare; equilibrated in 50 mM KP_i pH 7.6, 250 mM NaCl, 1 mM 2-
382 Mercaptoethanol) and StrepII (Strep-Tactin XT Superflow high affinity chromatography: IBA;
383 equilibrated in 20 mM Tris pH 8.0, 250 mM NaCl, 1 mM EDTA) affinity chromatography. The tag was
384 cleaved with His-tagged TEV protease at 4 °C overnight and removed by a second Ni²⁺ affinity
385 chromatography step. Proteins were then further purified by size-exclusion chromatography on either a
386 Superdex 200 increase 10/300 GL, Hi Load 16/600 Superdex 200 pg, or HiLoad 26/600 pg column
387 (GE Healthcare), equilibrated in 20 mM sodium citrate pH 5.0, 250 mM NaCl. For crystallization, the
388 SGN3 protein was dialyzed against 20 mM sodium citrate pH 5.0, 150 mM NaCl and treated with
389 Endoglycosidase H, F1, and F3 to trim N-glycan chains, followed by size-exclusion chromatography to
390 further purify the deglycosylated SGN3. His-tagged BirA was purified from *E. coli* by Ni²⁺ affinity
391 chromatography.

392

393 **Crystallization and data collection**

394 Crystals of the deglycosylated SGN3 in complex with the CIF2 peptide developed at room temperature
395 in hanging drops composed of 1 µl protein solution (1 mg ml⁻¹) containing 0.5 mM CIF2 and 1 µl of
396 crystallization buffer (17 % [w/v] PEG 6,000, 0.1 M Tris pH 7.5, 0.2 M LiCl), suspended above 1.0 ml
397 of the latter as reservoir solution and using microseeding protocols. Crystals of SGN3 in complex with
398 the CIF2^{Hyp69, 71} peptide developed in crystallization buffer (16 % [w/v] PEG 4,000, 0.1 M Tris pH 8.5,
399 0.2 M MgCl₂). Crystals were cryo-protected by serial transfer into crystallization buffer supplemented
400 with 20 % (v/v) glycerol (SGN3 – CIF2) or 20 % (v/v) ethylene glycol (SGN3 – CIF2^{Hyp69, 71}) and cryo-
401 cooled in liquid nitrogen. Sulfur single-wavelength anomalous diffraction (SAD) data to 4.0 Å

402 resolution was collected at beam-line PXIII at the Swiss Light Source (SLS), Villigen, CH with λ =
403 2.066 Å. A native data set to 2.95 Å resolution was collected on a crystal from the same drop cryo-
404 protected by same way with λ = 1.0 Å. Data processing and scaling was done in XDS (39).

405

406 **Structure solution and refinement**

407 The structure was solved using the molecular replacement method as implemented in the program
408 PHASER (40), and using the isolated ectodomain of the LRR-RK PEPR as search model (PDB-ID
409 5gr8). The solution comprised a dimer in the asymmetric unit and the structure was completed in
410 alternative cycles of manual model building in COOT (41) and restrained TLS refinement in
411 phenix.refine (42). A phased anomalous difference electron density map calculated with the program
412 ANODE (43) was used to assign the position of disulfide bonds and free cysteines/methionines in the
413 the structure. Analysis with phenix.molprobity (44) reveal good stereochemistry of the final model.
414 Structural diagrams were prepared using Pymol (<https://sourceforge.net/projects/pymol/>) and povray
415 (<http://www.povray.org/>).

416

417 **Grating – coupled interferometry**

418 GCI experiments were performed with the Creoptix WAVE system (Creoptix AG, Switzerland) using
419 either 4PCP or 4PCH WAVE chips (thin quasiplanar polycarboxylate surface or quasiplanar
420 polycarboxylate surface with high capacity, respectively; Creoptix, Switzerland). For direct amine
421 coupling, chips were conditioned with borate buffer (100 mM sodium borate pH 9.0, 1 M NaCl;
422 Xantec, Germany) and the respective ligands were immobilized on the chip surface using standard
423 amine-coupling; 7 min activation (1:1 mix of 400 mM *N*-(3-dimethylaminopropyl)-*N*'-
424 ethylcarbodiimide hydrochloride and 100 mM *N*-hydroxysuccinimide (Xantec, Germany)), followed by
425 injection of the ligands (50 - 100 µg ml⁻¹) in 10 mM sodium acetate pH 5.0 (Sigma, Germany) until the
426 desired density was reached, passivation of the surface (0.5 % BSA (Roche, Switzerland) in 10 mM
427 sodium acetate pH 5.0) and final quenching with 1M ethanolamine pH 8.0 for 7 min (Xantec,
428 Germany). For biotinylated ligands capturing, streptavidin (50 µg ml⁻¹; Sigma, Germany) was
429 immobilized on the chip surfaces with same method with the direct amine coupling, followed by
430 capturing respective biotinylated ligands (50 – 100 µg ml⁻¹) until the desired density was reached.
431 Kinetic analyses for peptide ligands were performed at 25°C with a 1:2 dilution series from 100 nM for
432 CIF variants in the presence of sulfation or 10 µM in the absence of sulfation, for a co-receptor screen

433 using the biotinylated ligands-captured chips with a 1:3 dilution series from 6.7 μ M for SERK1, 3 or 20
434 μ M for the others in 20 mM citrate pH 5.0, 250 mM NaCl, 0.01 % Tween 20. Blank injections were
435 used for double referencing and a dimethylsulfoxide (DMSO) calibration curve for bulk correction.
436 Analysis and correction of the obtained data was performed using the Creoptix WAVE control software
437 (correction applied: X and Y offset; DMSO calibration; double referencing). Mass transport binding
438 models with bulk correction were used for the experiments of SGN3 - CIF peptides binding and one-to-
439 one binding models for the other experiments.

440

441 **Isothermal titration calorimetry**

442 All ITC experiments were performed on a MicroCal PEAQ-ITC (Malvern Panalytical) with a 200 μ l
443 sample cell and a 40 μ l injection syringe at 25 °C. Proteins were dialyzed into ITC buffer (20 mM
444 sodium citrate pH 5.0, 250 mM NaCl, exceptionally containing 5 % (v/v) DMSO for CIF4
445 experiments) prior to all titrations. A typical experiment consisted of injecting 200 μ M CIF peptide in 2
446 μ l intervals into the cell containing 20 μ M GSO1/SGN3 receptor. The MicroCal PEAQ-ITC analysis
447 software (version 1.21) was used for data analysis.

448

449 **Right-angle light scattering**

450 The oligmeric state of SGN3 was analyzed by size exclusion chromatography with a right angle light
451 scattering (RALS), using an OMNISEC RESOLVE / REVEAL combined system (Malvern
452 Panalytical). Instrument calibration was performed with a BSA standard (Thermo Scientific Albumin
453 Standard). 20 μ M SGN3 in the presence or absence of 100 μ M CIF2, in a volume of 50 μ l, were
454 separated on a Superdex 200 increase 10/300 GL column (GE Healthcare) in 20 mM sodium citrate pH
455 5.0, 250 mM NaCl, at a column temperature of 35 °C and a flow rate of 0.7 ml min⁻¹. Data were
456 analyzed using the OMNISEC software (version 10.41).

457

458 **Biotinylation of proteins**

459 The respective proteins (20 – 100 μ M) were biotinylated with biotin ligase BirA (2 μ M) (37) for 1 h at
460 25 °C, in a volume of 200 μ l; 25 mM Tris pH 8, 150 mM NaCl, 5 mM MgCl₂, 2 mM 2-
461 Mercaptoethanol, 0.15 mM Biotin, 2 mM ATP, followed by size-exclusion chromatography to purify
462 the biotinylated proteins.

463

464 **Sulfotransferase assay**

465 Sulfotransferase assays were performed with universal sulfotransferase activity kit (R&D systems,
466 UK). Non-sulfated CIF2 (residues 59 – 72) (1 mM) were mixed with TPST using a 1:2 dilution series
467 from 1 μ M (48 ng μ l $^{-1}$) in a volume of 50 μ l; 50 mM Tris pH 7.5, 50 mM NaCl, 15 mM MgCl $_2$, 0.2 mM
468 3'-Phosphoadenosine 5'-phosphosulfate (PAPS), phosphatase (500 ng) for 30 min at 30 °C. 30 μ l of
469 malachite green reagent A and B, 100 μ l of distilled water was added to each sample and incubated for
470 20 min at 30 °C. The absorption of each sample at 620 nm was determined with a microplate reader
471 (Synergy2, Biotek). Phosphate standard curves were determined using a 1:2 dilution series starting
472 from 100 mM KH $_2$ PO $_4$. Product formation was calculated using the conversion factor from the
473 phosphate standard curve.

474

475 **Analytical size-exclusion chromatography**

476 Gel filtration experiments were performed using a Superdex 200 Increase 10/300 GL column (GE
477 Healthcare) equilibrated in 20 mM sodium citrate pH 5.0, 250 mM NaCl. A 500 μ l aliquot of SGN3
478 and SERK3 (at a concentration of 10 μ M) was loaded sequentially onto the column and elution at 0.75
479 ml min $^{-1}$ was monitored by ultraviolet absorbance at 280 nm. The CIF2 peptide concentration was 20
480 μ M in the SGN3 – CIF2 – SERK3 complex sample prior to loading.

481

482 **Plant material and growth conditions**

483 For all experiments, *Arabidopsis thaliana* (ecotype Columbia) was used. T-DNA tagged lines for *sgn3*-
484 3 (SALK_043282), *gso2* (SALK_143123C) and *cif3-2* (GABI_516E10) were obtained from NASC
485 (<http://arabidopsis.info/>) and GABI (<https://www.gabi-kat.de/>) respectively. The *cif1-2* *cif2-2* double
486 mutant and *cif4* mutant were generated by CRISPR-Cas9 technique in Col wildtype or *cif3-2* mutant
487 background (see below). Insertion points of the T-DNA and the CRISPR lines were verified by Sanger
488 sequencing. Plants were grown on half-strength Murashige-Skoog (MS) agar (1%) for 5d vertically
489 after 2d stratification at 4°C in the dark. For peptide (Peptide Specialty Laboratories GmbH) treatment
490 assays, seeds were germinated on medium with or without the indicated peptide concentrations and
491 grown for 5d. Estradiol (Sigma) was dissolved in DMSO and used at 5 μ M final concentration. DMSO
492 concentration was 0.05% (v/v) at final dilution.

493

494

495 **Molecular cloning**

496 For promoter reporter lines, upstream regions of each gene - indicated by 'length upstream of ATG' -
497 were cloned into gateway entry vectors and fused to NLS-3 x Venus via an LR reaction (pSGN3 5583
498 bp, pGSO2 3893 bp, pCIF1 1797 bp, pCIF2 1756 bp, pCIF3 2092 bp and pCIF4 2201bp). The
499 pSGN3::SGN3-mVenus construct (19) was used as template to generate SGN3-mVenus variants by
500 site-directed mutagenesis. CRISPR-Cas9 constructs were generated following a published method (45)
501 after switching selection markers from Basta to FASTRed in the final construct with *S. pyogenes* Cas9.
502 For generating *cif1-2* and *cif2-2*, 5'- ttgggtataagcttggaaagg -3' and for generating *cif4-1* and *cif4-2*, 5'-
503 aacccaagcccggttacgg -3' and 5'- ttggatttcaccctaaacga -3' primers were used respectively. For
504 constructing the dominant negative SERK3 (pSGN3::XVE>>SERK3(residues 1-243)-GFP), a
505 fragment of SERK3 genomic region (residues 1-243.) was cloned into an entry vector and fused with
506 pSGN3::XVE-LexA and GFP via a LR reaction. The constructs were transformed into the wild-type or
507 *sgn3* mutant plants using the *Agrobacterium tumefaciens* GV3101 (MP90)-mediated floral dip method
508 (46).

509

510 **Microscopy**

511 Signals were visualized using an SP8 microscope (Leica). Excitation and detection windows,
512 respectively, were as follows: GFP (488 nm, 500-550 nm), Venus or mVenus (514 nm, 520 – 580 nm),
513 propidium iodide (488 nm, 600 – 650 nm) and fuchsin (561 nm, 570 – 650 nm). Images were processed
514 using the Fiji package of ImageJ (47).

515

516 **Propidium iodide barrier assay**

517 5d old seedlings were incubated in 10 µg/mL propidium iodide (PI) - water solution for 10 min and
518 transferred into fresh water. For quantification, "onset of cell elongation" was defined as the point
519 where endodermal cell length exceeded two times its width in a median longitudinal section. Cell
520 counting was done using a Zeiss LSM 700 with a 488 nm laser and an SP640 filter split at 600 nm.

521

522 **Visualization of lignin**

523 Lignin staining was performed as described in previous reports (48, 49). Briefly, 5d old seedlings were
524 fixed in 4% (v/v) paraformaldehyde PBS solution (pH 6.9) for 1h without vacuum treatment. The
525 samples were rinsed with PBS twice and incubated in ClearSee (10% (w/v) xylitol, 15% (w/v) sodium

526 deoxycholate, 25% (w/v) urea in water) solution overnight. After removing the solution, samples were
527 stained with 0.2% fuchsin in ClearSee solution overnight. Fuchsin solution was removed and the
528 seedlings were briefly rinsed with fresh ClearSee solution and washed by gently agitation in fresh
529 ClearSee solution for 30 min. After exchanging the ClearSee solution, the seedlings were washed
530 overnight.

531

532 **Figure legends**

533

534 **Fig. 1. GSO1/SGN3 – CIF2 represents one of the strongest LRR-RK – peptide ligand pairs in**
535 **Arabidopsis.** Quantitative comparison of GSO1/SGN3 – CIF2 with other known peptide ligands
536 binding to their cognate LRR-RKs by grating-coupled interferometry (GCI). Shown are sensorgrams
537 with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown
538 alongside (ka, association rate constant; kd, dissociation rate constant; Kd, dissociation constant).

539

540 **Fig. 2. GSO1/SGN3 harbors a large spiral-shaped LRR domain providing the CIF peptide**
541 **binding surface.** Shown is a structural comparison of the SGN3 – CIF2 complex (right) and the
542 RGFR1 – RGF1 complex (left; PDB ID 5hyx, (13)). LRR domains (ribbon diagram) are shown in blue,
543 peptide ligands in yellow (in bonds representation), N- and C- terminal capping domains in magenta,
544 disulfide bonds in green and N-glycans in gray. While the overall architecture and mode of ligand
545 binding is similar in RGFR1 and GSO1/SGN3, the latter receptor contains more LRRs and a much
546 larger peptide binding surface.

547

548 **Fig. 3. Many peptide – receptor interaction enable high affinity CIF2 binding by GSO1/SGN3.**
549 (A) (left) Overview of the CIF2 binding site in GSO1/SGN3, colors are as in Fig. 2. (right) Close-up
550 view of the sTyr binding pocket in GSO1/SGN3 with selected residues shown in bonds representation,
551 and with hydrogen bonds indicated as dotted lines (in magenta). (B) GCI binding assays of CIF2
552 variants versus the SGN3 wild-type ectodomain. Raw sensorgrams are shown in red, fitted data in
553 black. Table summaries of kinetic parameters are shown alongside (ka, association rate constant; kd,
554 dissociation rate constant; Kd, dissociation constant). (C) Quantitative analyses for the number of holes
555 in Casparyan strip domains per 100 μ m in *cif1 cif2* double mutants with CIF2 peptide-variant treatments
556 (b, c, statistically significant difference with p <0.05, one way ANOVA and Tukey test). (D) Close-up

557 view of the GSO1/SGN3 – CIF2 complex. Shown in the C-terminus of the CIF peptide (in bonds
558 representation) and the GSO1/SGN3 RxR motif (in gray). Potential hydrogen bonds are indicated as
559 dotted lines (in magenta) (E) Quantification of propidium iodide (PI) staining on *sgn3* mutants
560 complemented with wild-type or mutant SGN3-mVenus under the control of the *SGN3* promoter (no
561 statistically significant difference with one way ANOVA and Tukey test). (F) GCI assays of CIF2
562 versus SGN3 mutant ectodomains. Sensorgrams are shown with raw data in red and their respective fits
563 in black. Table summaries of GCI-derived binding kinetics are shown (ka, association rate constant; kd,
564 dissociation rate constant; Kd, dissociation constant; n.d., no detectable binding). (G) Details of the
565 interactions of the CIF2 central part with GSO1/SGN3 LRRs LRRs 6–17. Interface residues are shown
566 in bonds representations, hydrogen bonds as dotted lines (in magenta), amino-acids targeted for the
567 mutational analysis are shown in gray.

568

569 **Fig. 4. Structure-guided identification of novel CIF peptides.** (A) Multiple sequence alignment of
570 CIF1 – 4 peptides. The conserved sulfated tyrosine is highlighted in red, hydroxyprolines are in yellow,
571 and the C-terminal asparagine/histidine are shown in blue. (B) GCI assays of CIF3 in the presence or
572 absence of sulfation on tyrosine versus the SGN3 wild-type ectodomain. Sensorgrams are presented
573 with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown
574 alongside (ka, association rate constant; kd, dissociation rate constant; Kd, dissociation constant). (C)
575 ITC assays of CIF2 or CIF4 wild type peptides versus the SGN3 wild type ectodomain. Table
576 summaries for dissociation constants (Kd) and binding stoichiometries (N) are shown (\pm fitting error).
577 (D) GCI assays of CIF1 – 3 peptides versus the GSO2 wild-type ectodomain.

578

579 **Fig. 5 CIF3 and CIF4 are not involved in Casparyan strip formation.**

580 (A) Quantitative analyses of number of holes in Casparyan strip domains per 100 μ m in Col (WT) or the
581 *cif1 cif2* mutant with CIF2, CIF3 or CIF4 peptide treatments (n=12 (experiment with CIF3) and for
582 n \geq 12 (experiment with CIF4) for each condition). Different letters indicate statistically significant
583 differences (p <0.05, one-way ANOVA and Tukey test). Note that due to the solubility of CIF4, the
584 experiment with CIF4 was done with 0.05% (v/v) DMSO in all conditions including the control. (B)
585 Promoter activities around onset of Casparyan strip formation. Each promoter drives a NLS (nuclear
586 localization signal)-3xVenus reporter gene. Cell walls were stained with propidium iodide (PI). Cell
587 layers are labeled as Epi (epidermis), Cor (cortex), En (endodermis) and Ste (stele). Scale bar

588 corresponds to 40 μ m. (C) CIF peptides do not display *gso1 gso2* seed shape phenotypes. Show are
589 mature seeds from Col, *cif1cif2*, *cif3 cif4-1*, *cif3 cif4-2* and *sgn3/gso1 gso2*. The seeds from *sgn3/gso1*
590 *gso2* had aberrant shapes (indicated by a *) but seeds from other genotypes showed the normal shapes
591 as did the Col (WT) wild-type control. Scale bars correspond to 0.5 mm. (D) *cif3 cif4* double mutants
592 do not show Casparyan strip barrier defects. Lignin images were taken around 10 cells after onset of
593 CS. Scale bar corresponds to 20 μ m.

594

595 **Fig. 6. Structural and biochemical evidence for a co-receptor kinase required for GSO1/SGN3**
596 **activation.** (A) Isolated and CIF2-bound GSO1/SGN3 behave as monomers in solution. (*Left*)
597 Analytical size-exclusion chromatography traces of the SGN3 ectodomain in the absence (blue line) or
598 presence (red dotted line) of CIF2 peptides. Right angle light scattering (RALS) traces in the absence
599 (blue) or presence (red) of CIF2 peptides and including the derived molecular masses (black) of GSO1/
600 SGN3 apo or SGN3-CIF2. Table summaries report the observed molecular weight (MW) and the
601 dispersity (Mw/Mn). The theoretical molecular weight is 94.1 kDa for GSO1/SGN3 (residues 19-870).
602 (B) The GSO1/SGN3 – CIF complex structure reveals a potential co-receptor binding site. Shown is the
603 GSO1/SGN3 ectodomain (surface representation, in blue) in complex with the CIF2 peptide (surface
604 view and bonds representation, in yellow), N-glycans (surface representation in yellow). The potential
605 co-receptor binding surface not masked by carbohydrate is highlighted in orange. (C) Close-up view of
606 CIF2 C-terminus bound the GSO1/SGN3, indicating the positions of the side-chains of Leu80 (pointing
607 towards the receptor) and Ile81 (pointing to the solvent) (in magenta). (D) ITC assays of CIF2 mutant
608 peptides versus the SGN3 wild type ectodomain. Table summaries for dissociation constants (Kd) and
609 binding stoichiometries (N) are shown (\pm fitting error). (E) Quantitative analyses of number of holes in
610 Casparyan strip domains per 100 μ m in *cif1 cif2* double mutants upon treatment with CIF2 peptide
611 variants. (n=15 for the top panel, n=12 for the middle panel and n \geq 11 for the bottom panel). Different
612 letters indicate statistically significant differences ($p < 0.05$, one-way ANOVA and Tukey test).

613

614 **Fig. 7. A quantitative interaction screen identifies SERK proteins as putative co-receptors for**
615 **GSO1/SGN3.** (A) Schematic overview of the biochemical screen for a GSO1/SGN3 co-receptor.
616 GSO1/SGN3 is immobilized to the GCI chip surface (in blue), the CIF peptide is provided in access in
617 the running buffer (in black) and different recombinantly purified co-receptor candidates are assayed
618 for binding (in orange). (B) Coomassie-stained SDS PAGE depicting 1 μ g LRR ectodomain of the

619 indicated co-receptor candidate. Shown are isolated monomeric peak fractions from size-exclusion
620 chromatography experiments. (C) GCI assays of SERK1 LRR-RK ectodomain versus the SGN3 wild-
621 type and mutant ectodomains in the presence of CIF2 variant peptides. The remaining candidates are
622 shown in *SI Appendix* Fig. S10. Sensorgrams are shown with raw data in red and their respective fits in
623 black. Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation
624 rate constant; K_d , dissociation constant; n.d., no detectable binding). (D) Complex formation of SERK3
625 and SGN3 ectodomains. (Left) Analytical size-exclusion chromatography traces of the SGN3
626 ectodomain in the absence (blue line) or presence (red dotted line) of CIF2 peptides. An SDS-PAGE
627 analysis of the corresponding fractions is shown alongside. The theoretical molecular weight is 94.1
628 kDa for SGN3 (residues 19-870) and 21.7 kDa for SERK3 (residues 26 – 220) respectively. (E)
629 Induced barrier defect in inducible SERK3 dominant-negative lines. Quantification of barrier
630 permeability was done using the PI assay ($n \geq 12$ for each condition). Different letters indicate
631 statistically significant differences ($p < 0.05$, one-way ANOVA and Tukey test).

632

633 **Fig. S1 Structure-based multiple sequences alignment of SGN3 ectodomains from *Arabidopsis***
634 ***thaliana*** GSO1/SGN3 (NCBI (<https://www.ncbi.nlm.nih.gov/>) identifier: OAO97463), GSO2 (NCBI
635 identifier: OAO90459), *Capsella rubella* SGN3 (NCBI identifier: XP_006285037.2), *Brassica napus*
636 SGN3 (NCBI identifier: XP_013660918.1), *Populus trichocarpa* SGN3 (NCBI identifier:
637 XP_002299384.1), *Nicotiana tabacum* SGN3 (NCBI identifier: XP_016509707.1), and *Medicago*
638 *truncatula* SGN3 (NCBI identifier: XP_013457406.1). A secondary structure assignment, calculated
639 with DSSP (50), is shown beside. SGN3 residues forming hydrogen bonds with CIF2 in the SGN3 –
640 CIF2 complex are highlighted in blue, residues interacting with CIF2 in cyan, glycosylated asparagine
641 residues in orange, asparagine residues with glycans directly contacted with CIF2 in red, RxR motif in
642 gray, cysteines forming disulfide bonds in light green. All numbering refers to AtSGN3. Table
643 summarizes amino acid sequence identities among SGN3 ectodomains versus AtSGN3.

644

645 **Fig. S2. Different LRR-RKs binding tyrosine sulfated peptide share structural similarity.**
646 Structural superposition of SGN3 – CIF2 (blue and cyan, respectively) and RGFR – RGF1 (orange and
647 yellow; PDB ID 5hyx) complex structures. Asparagine residues of the RxR motif are shown. The two
648 complex structures align with a root mean square displacement (r.m.s.d.) ~ 3.1 Å comparing 498
649 corresponding C_α atoms.

650 **Fig. S3. CIF2 is a substrate of the plant tyrosylprotein sulfotransferase TPST/SGN2.** (A) Size-
651 exclusion chromatography trace of TPST (residues 25 – 441) purified from insect cells. (Right)
652 Coomassie-stained SDS PAGE of the corresponding elution fractions. (B) Scheme of sulfotransferase
653 assays. Inorganic phosphate (Pi) release was detected using a malachite green Pi quantification assay to
654 calculate the kinetics of the sulfotransferase reaction. (C) Pi standard curve used for the enzymatic
655 assay. (D) 0.2 mM 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) was incubated with varying
656 concentrations of TPST enzyme for 30 min at 30 °C. Optical densities (ODs) were plotted versus the
657 amount of TPST recombinant protein. A specific activity (1.25 pmol min⁻¹ µg⁻¹) was calculated.
658

659 **Fig. S4. Mutational characterization of the GSO1/SGN3 – CIF2 complex interface.**

660 (A,B) Isothermal titration calorimetry (ITC) assays of CIF2 variants versus SGN3 wild-type and mutant
661 ectodomains. Table summaries for dissociation constants (K_d) and binding stoichiometries (N) are
662 shown (± fitting error). (C,D) GCI assays of CIF variants versus SGN3 wild-type and mutant
663 ectodomains. sensorgrams are represented with raw data in red and their respective fits in black. Table
664 summaries of kinetic parameters are shown alongside (k_a, association rate constant; k_d, dissociation rate
665 constant; K_d, dissociation constant; n.d., no detectable binding).
666

667 **Fig. S5. The GSO1/SGN3 6x mutant fails to complement the *sgn3* Casparyan strip phenotype.**

668 (A) Casparyan strip domains are visualized in Col (WT) and *cif1 cif2* with or without CIF2. Scale bar =
669 20 µm (B) Representative images of PI permeability in the roots of the indicated genotypes. Pictures
670 were taken around 25-30 cells after onset of endodermal cell elongation. *sgn3* and *sgn3* transformed
671 with SGN36x-mVenus both display staining of vasculature, indicative of barrier defect. Scale bar = 40
672 µm.
673

674 **Fig. S6. Two hydroxylprolines in CIF2 play no major roles in GSO1/SGN3 binding.** (A) Details of
675 the interaction between hydroxyproline residues of CF2^{Hyp69,71} (yellow, in bonds representation) and the
676 SGN3 ectodomain (blue ribbon diagram). Hydrogen bonds are depicted as dotted lines (in magenta), a
677 2F_o-F_c omit electron density map contoured at 1.5 σ is shown alongside (gray mesh). (B) Quantitative
678 analyses of number of holes in Casparyan strip domains per 100 µm in *cif1 cif2* double mutants treated
679 with CIF peptide-variants (n=12 for each condition). Different letters indicate statistically significant
680 differences (p <0.05, one-way ANOVA and Tukey test) (C) GCI assays of hydroxyprolinated CIF

681 variants versus SGN3 wild type ectodomain. Sensorgrams are shown with raw data in red and their
682 respective fits in black. Table summaries of kinetic parameters are shown alongside (k_a , association rate
683 constant; k_d , dissociation rate constant; K_d , dissociation constant).

684

685 **Fig. S7. CIF3 and CIF4 orthologs are present in other plant species.** (A) Multiple sequence
686 alignment of CIF1-4 from *Arabidopsis thaliana* and their putative orthologs from other plant species.
687 Sequences were obtained from NCBI (<https://www.ncbi.nlm.nih.gov/>) and aligned with the program T-
688 coffee (version 12.0) (51). The conserved sulfated tyrosine is highlighted in red, hydroxyprolines in
689 yellow, the conserved isoleucine in orange, and the C-terminal asparagine or histidine residue in blue.
690 (B) Phylogenetic tree of CIF peptides prepared with the program BIONJ (52).

691

692 **Fig. S8. Overview of the CIF mutant alleles used in this study.**

693 Schematic models of the CIF genes and their mutant alleles. Single base pair insertion points (indicated
694 by red uppercase letters) are shown together with their neighboring sequences. The T-DNA (gray box)
695 insertion point is indicated in CIF3 locus.

696

697 **Fig. S9. A number of *serk* and *nik* co-receptor loss-of-function mutants display no apparent
698 Casparyan strip defects.**

699 PI penetration assay with several *serk* and *nik* *single and/or multiple* mutants. Barrier functions were
700 scored by counting the cell numbers until PI became impermeable to the steles.

701

702 **Fig. S10. GSO1/SGN3 and GSO2 bind SERK1 and 3 co-receptor kinases in the presence of CIF
703 peptides.** GCI assays of co-receptor candidates versus GSO1/SGN3 and GSO2 ectodomains in the
704 presence of CIF peptides. Sensorgrams are shown with raw data in red and their respective fits in black.
705 Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation rate
706 constant; K_d , dissociation constant; n.d., no detectable binding).

707

708 **Fig. S11. The LRR-RKs EFR, FLS2, PEPR1 bind SERKs with very different binding affinities
709 and -kinetics.** GCI assays of SERK co-receptors versus different, known LRR-RKs in the presence of
710 their cognate peptide ligands. Sensorgrams are shown with raw data in red and their respective fits in

711 black. Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation
712 rate constant; K_d , dissociation constant).

713

714 **Fig. S12 Expression analysis suggests putative functions for CIF3 and CIF4 outside Casparyan**
715 **strip formation / embryo development.** Expression-pattern images of CIF3 (A) and CIF4 (B) were
716 generated with the AtGenExpress eFP (<https://bar.utoronto.ca/eplant/>, (53)) using the publically
717 available microarray data (54, 55). CIF3 appears to be expressed at embryo stage and in cotyledons,
718 while CIF4 shows strong expression in early stage flowers and in stamens.

719 **Table S1.** Crystallographic data collection and refinement

	GSO1/SGN3 – CIF2 <i>sulfur SAD</i>	GSO1/SGN3 - CIF2 <i>native</i>
Data collection		
Space group	<i>P</i> 4 ₃ 2 ₁ 2	<i>P</i> 4 ₃ 2 ₁ 2
Wavelength (Å)	2.066403	1.000006
Cell dimensions		
<i>a, b, c</i> (Å)	192.1, 192.1, 149.3	192.4, 192.4, 149.8
α, β, γ (°)	90, 90, 90	90, 90, 90
Resolution (Å)	48.75 – 4.00 (4.10 – 4.00)	48.32 – 2.95 (3.03 – 2.95)
$R_{\text{meas}}^{\#}$	0.247 (0.80)	0.237 (4.54)
CC(1/2) (%) [#]	99.9 (96.5)	100.0 (47.7)
$I/\sigma I^{\#}$	15.6 (5.0)	19.1 (0.9)
Completeness (%) [#]	99.9 (99.9)	100.0 (100.0)
Redundancy [#]	27.6 (27.1)	40.1 (42.2)
Wilson B-factor [#]		84.1
Refinement		
Resolution (Å)		48.32 – 2.95
No. reflections		59,498
$R_{\text{work}}/R_{\text{free}}^{\$}$		0.21/0.28
No. atoms		
protein		12,732
CIF peptide		348
glycan		495
Res. B-factors ^{\$}		
protein		102.2
CIF peptide		117.1
glycan		128.7
R.m.s deviations ^{\$}		
Bond lengths (Å)		0.0125
Bond angles (°)		1.64
Molprobity results		
Ramachandran outliers (%) [‡]		0.18
Ramachandran favored (%) [‡]		91.75
Molprobity score [‡]		2.17
PDB - ID		6S6Q

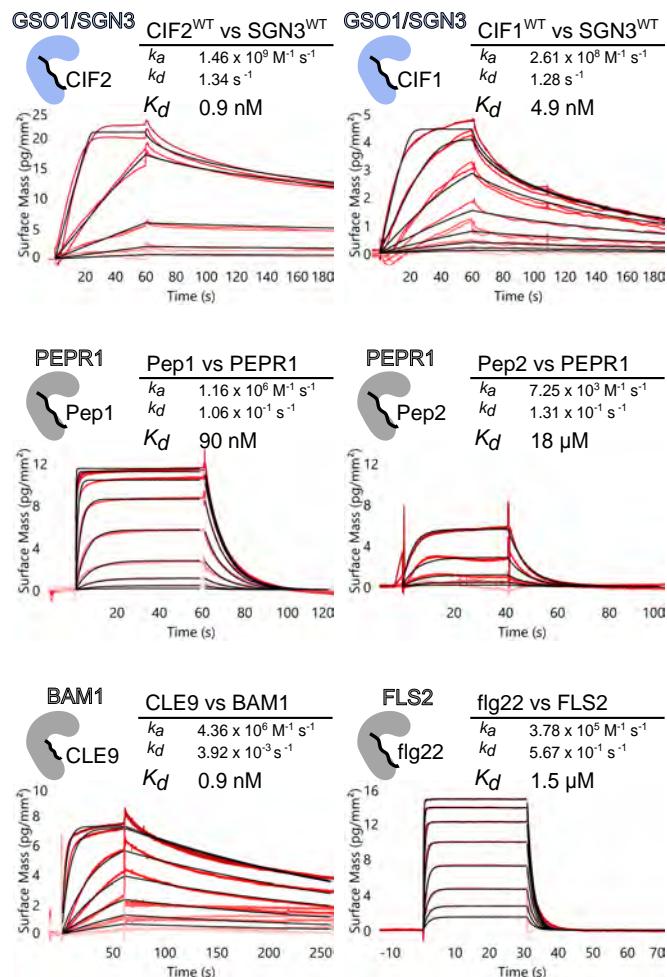
720 [#] as implemented in XDS (39)

721 ^{\\$} as implemented in phenix.refine (42)

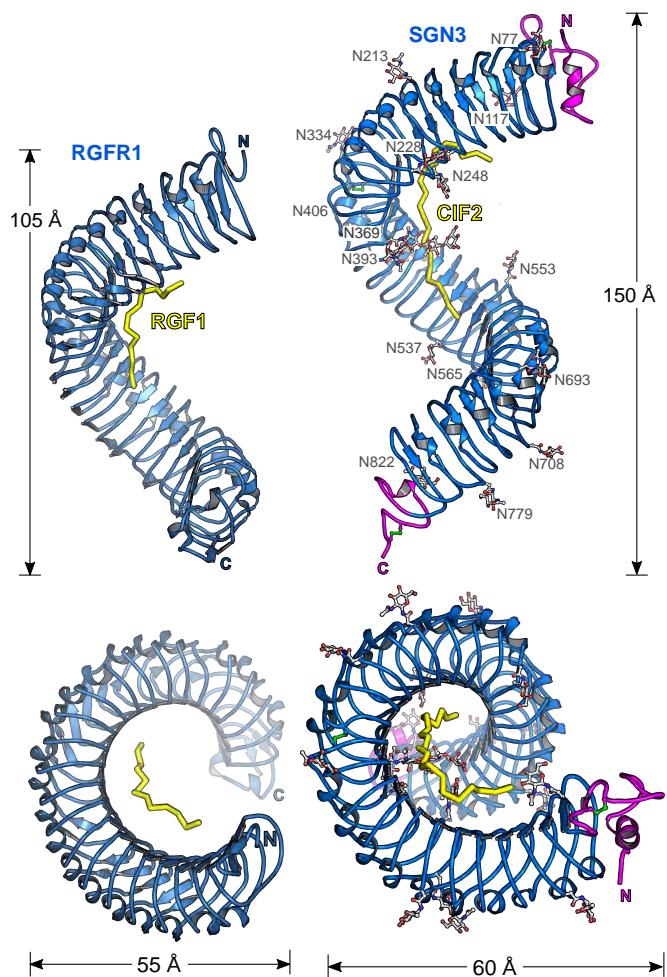
722 [‡] as implemented in phenix.molprobity (44)

723

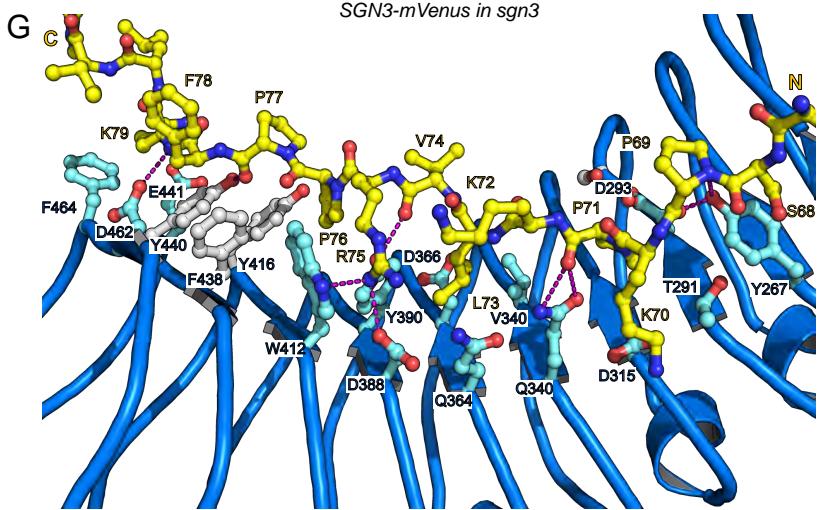
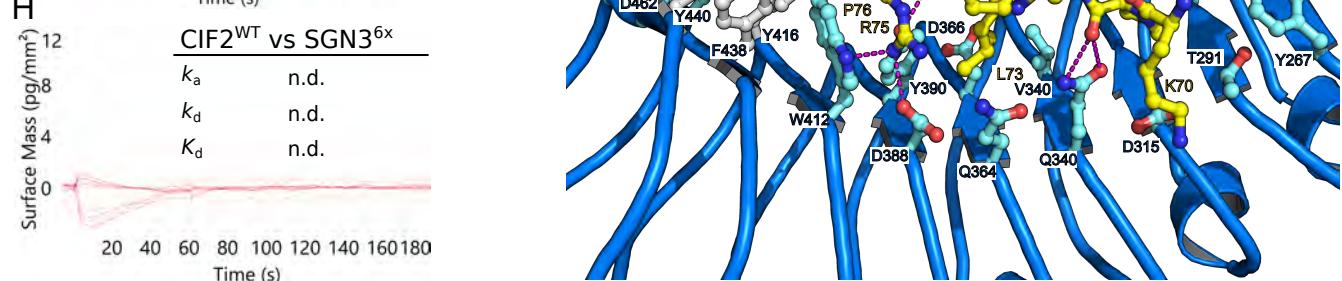
724 References

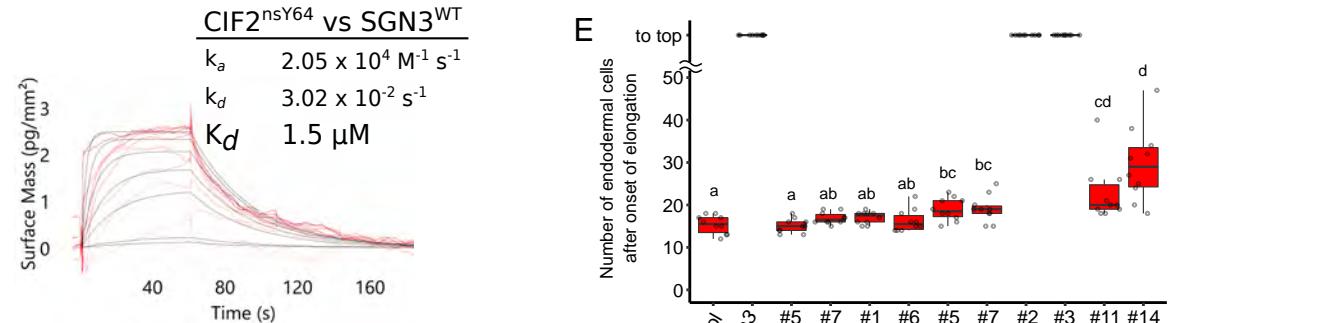
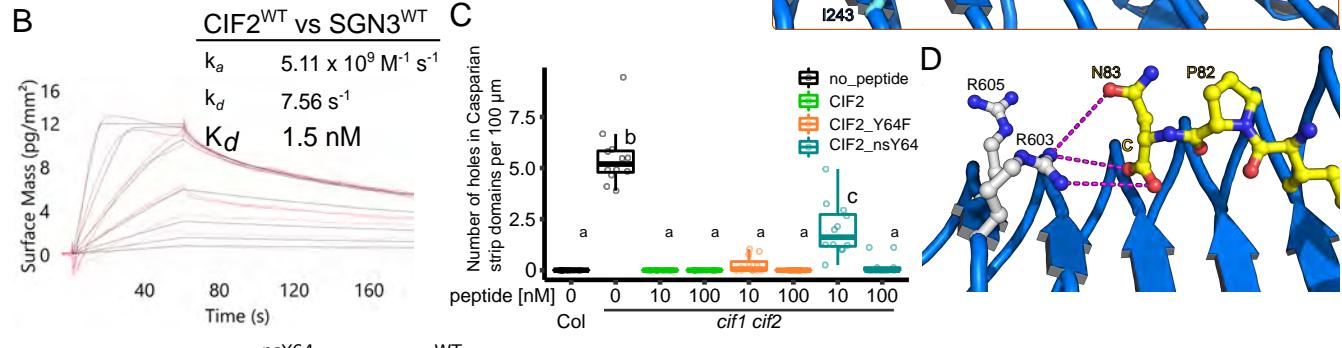
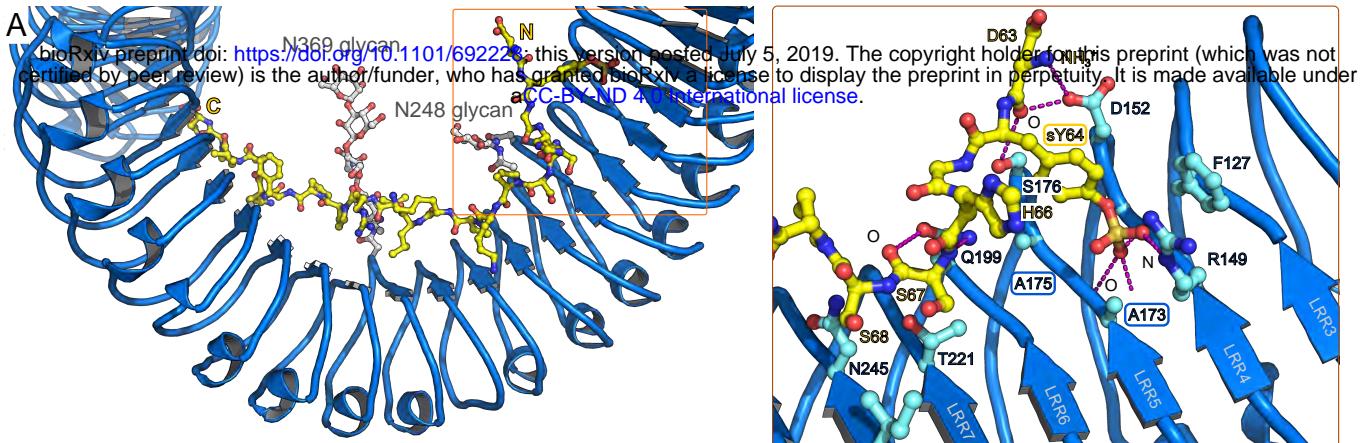

1. Hohmann U, Lau K, Hothorn M (2017) The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. *Annu Rev Plant Biol* 68:109–137.
2. Matsubayashi Y (2014) Posttranslationally Modified Small-Peptide Signals in Plants. *Annual Review of Plant Biology* 65(1):385–413.
3. Schardon K, et al. (2016) Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. *Science* 354(6319):1594–1597.
4. Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in *Arabidopsis* activates components of the innate immune response. *Proc Natl Acad Sci U S A* 103(26):10098–10103.
5. Nakayama T, et al. (2017) A peptide hormone required for Casparyan strip diffusion barrier formation in *Arabidopsis* roots. *Science* 355(6322):284–286.
6. Doblas VG, et al. (2017) Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. *Science* 355(6322):280–284.
7. Santiago J, et al. (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. *eLife* 5:10.7554/eLife.15075.
8. Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009) A glycopeptide regulating stem cell fate in *Arabidopsis thaliana*. *Nat Chem Biol* 5(8):578–580.
9. Wang J, et al. (2015) Allosteric receptor activation by the plant peptide hormone phytosulfokine. *Nature* 525(7568):265–268.
10. Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y (2010) Secreted Peptide Signals Required for Maintenance of Root Stem Cell Niche in *Arabidopsis*. *Science* 329(5995):1065–1067.
11. Komori R, Amano Y, Ogawa-Ohnishi M, Matsubayashi Y (2009) Identification of tyrosylprotein sulfotransferase in *Arabidopsis*. *PNAS* 106(35):15067–15072.
12. Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y (2016) Identification of three LRR-RKs involved in perception of root meristem growth factor in *Arabidopsis*. *PNAS* 113(14):3897–3902.
13. Song W, et al. (2016) Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. *Cell Res.* doi:10.1038/cr.2016.62.
14. Tang J, et al. (2015) Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. *Cell Res* 25(1):110–120.
15. Zhang H, Lin X, Han Z, Qu L-J, Chai J (2016) Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. *Cell Res* 26(5):543–555.

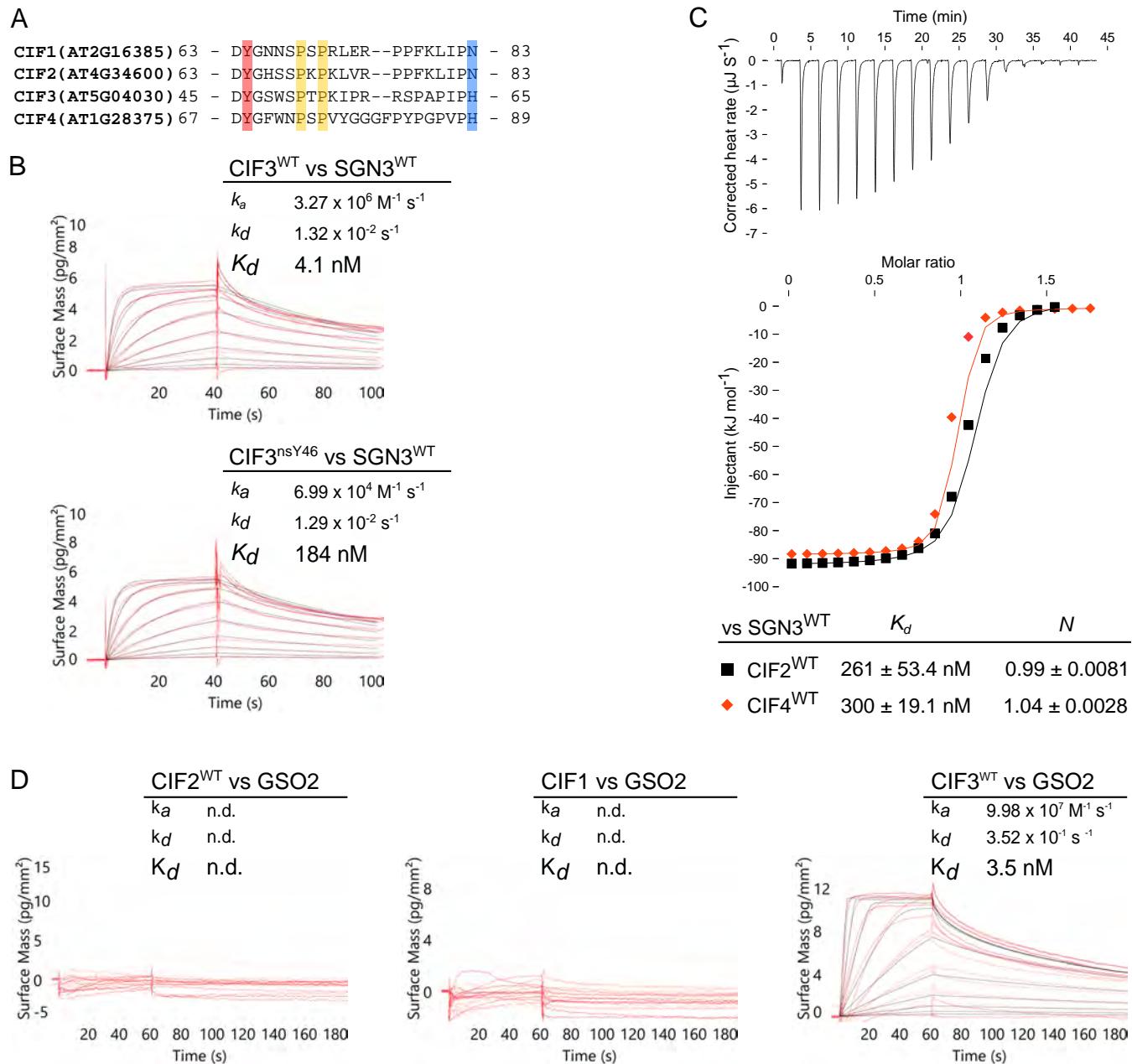
16. Hazak O, et al. (2017) Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. *EMBO Rep* 18(8):1367–1381.
17. Tsuwamoto R, Fukuoka H, Takahata Y (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in *Arabidopsis* embryos. *The Plant Journal* 54(1):30–42.
18. San Bento R, Farcot E, Galletti R, Creff A, Ingram G (2014) Epidermal identity is maintained by cell–cell communication via a universally active feedback loop in *Arabidopsis thaliana*. *The Plant Journal* 77(1):46–58.
19. Pfister A, et al. (2014) A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. *eLife* 3:e03115.
20. Doblas VG, Geldner N, Barberon M (2017) The endodermis, a tightly controlled barrier for nutrients. *Curr Opin Plant Biol* 39:136–143.
21. Hohmann U, et al. (2018) Mechanistic basis for the activation of plant membrane receptor kinases by SERK-family co-receptors. *Proceedings of the National Academy of Sciences* 115(13):3488–3493.
22. Anne P, et al. (2018) CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in *Arabidopsis*. *Development* 145(10):dev162354.
23. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. *J Mol Biol* 372(3):774–797.
24. Leonard JN, et al. (2008) The TLR3 signaling complex forms by cooperative receptor dimerization. *Proc Natl Acad Sci USA* 105(1):258–263.
25. Hu C, et al. (2018) A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. *Nature Plants* 4(4):205–211.
26. Cui Y, et al. (2018) CIK Receptor Kinases Determine Cell Fate Specification during Early Anther Development in *Arabidopsis*. *Plant Cell* 30(10):2383–2401.
27. Smakowska-Luzan E, et al. (2018) An extracellular network of *Arabidopsis* leucine-rich repeat receptor kinases. *Nature*. doi:10.1038/nature25184.
28. Eyüboğlu B, et al. (2007) Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in *Arabidopsis thaliana*. *BMC Plant Biol* 7:16.
29. Hohmann U, Hothorn M (2019) Crystal structure of the leucine-rich repeat ectodomain of the plant immune receptor kinase SOBIR1. *Acta Crystallogr D Struct Biol* 75(Pt 5):488–497.
30. Domínguez-Ferreras A, Kiss-Papp M, Jehle AK, Felix G, Chinchilla D (2015) An Overdose of the *Arabidopsis* Coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR


KINASE1 or Its Ectodomain Causes Autoimmunity in a SUPPRESSOR OF BIR1-1-Dependent Manner. *Plant Physiol* 168(3):1106–1121.

31. Luu DD, et al. (2019) Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor. *Proc Natl Acad Sci USA* 116(17):8525–8534.
32. Racolta A, Bryan AC, Tax FE (2014) The receptor-like kinases GSO1 and GSO2 together regulate root growth in arabidopsis through control of cell division and cell fate specification. *Dev Dyn* 243(2):257–278.
33. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI (2005) Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. *Plant Cell* 17(12):3350–3361.
34. He K, et al. (2007) BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent cell-death pathways. *Curr Biol* 17(13):1109–1115.
35. Zhang H, et al. (2016) SERK Family Receptor-Like Kinases Function as a Co-receptor with PXY for Plant Vascular Development. *Mol Plant*. doi:10.1016/j.molp.2016.07.004.
36. Cull MG, Schatz PJ (2000) Biotinylation of proteins in vivo and in vitro using small peptide tags. *Methods in Enzymology*, Applications of Chimeric Genes and Hybrid Proteins Part A: Gene Expression and Protein Purification. (Academic Press), pp 430–440.
37. Fairhead M, Howarth M (2015) Site-Specific Biotinylation of Purified Proteins Using BirA. *Site-Specific Protein Labeling: Methods and Protocols*, Methods in Molecular Biology., eds Gautier A, Hinner MJ (Springer New York, New York, NY), pp 171–184.
38. Hashimoto Y, Zhang S, Blissard GW (2010) Ao38, a new cell line from eggs of the black witch moth, *Ascalapha odorata* (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins. *BMC Biotechnol* 10:50.
39. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. *J Appl Crystallogr* 26(6):795–800.
40. McCoy AJ, et al. (2007) Phaser crystallographic software. *J Appl Crystallogr* 40(Pt 4):658–674.
41. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. *Acta Cryst D* 60(Pt 12 Pt 1):2126–2132.
42. Adams PD, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr* 66(Pt 2):213–221.
43. Thorn A, Sheldrick GM (2011) ANODE: anomalous and heavy-atom density calculation. *J Appl Cryst* 44(6):1285–1287.
44. Davis IW, et al. (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. *Nucleic Acids Res* 35(Web Server issue):W375-383.




45. Fauser F, Schimpl S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in *Arabidopsis thaliana*. *Plant J* 79(2):348–359.
46. Clough SJ, Bent AF (1998) Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *The Plant Journal* 16(6):735–743.
47. Schindelin J, et al. (2012) Fiji: an open-source platform for biological-image analysis. *Nat Methods* 9(7):676–682.
48. Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. *Development* 142(23):4168–4179.
49. Ursache R, Andersen TG, Marhavý P, Geldner N (2018) A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. *Plant J* 93(2):399–412.
50. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* 22(12):2577–2637.
51. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. *Journal of Molecular Biology* 302(1):205–217.
52. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. *Mol Biol Evol* 14(7):685–695.
53. Waese J, et al. (2017) ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. *Plant Cell* 29(8):1806–1821.
54. Schmid M, et al. (2005) A gene expression map of *Arabidopsis thaliana* development. *Nat Genet* 37(5):501–506.
55. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in *Arabidopsis thaliana* seed germination: epigenetic and genetic regulation of transcription in seed. *Plant J* 41(5):697–709.


Fig. 1. GSO1/SGN3 – CIF2 represents one of the strongest LRR-RK – peptide ligand pairs in *Ara bidopsis*. Quantitative comparison of GSO1/SGN3 – CIF2 with other known peptide ligands binding to their cognate LRR-RKs by grating-coupled interferometry (GCI). Shown are sensorgrams with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown alongside (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant).

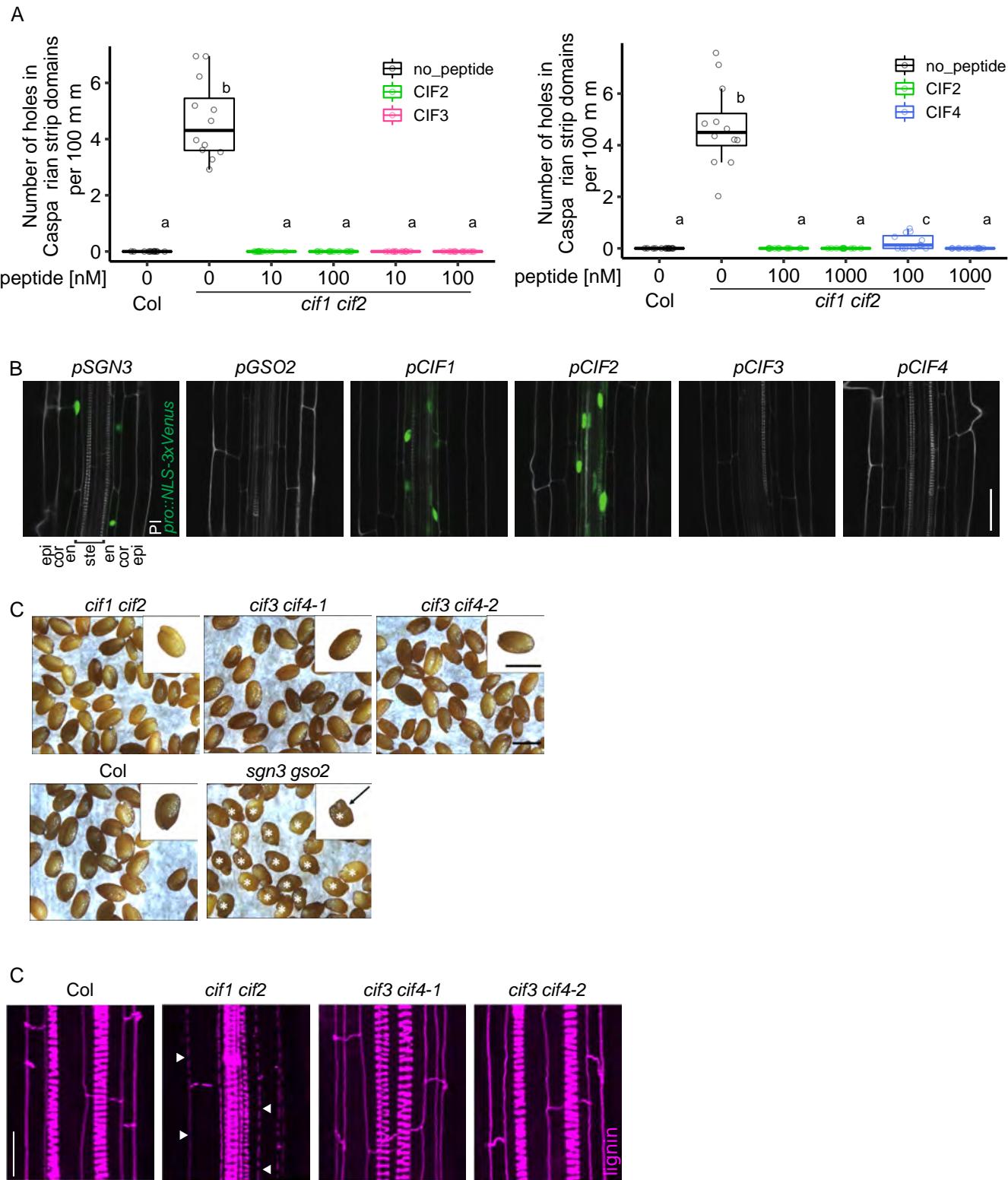

Fig. 2. GSO1/SGN3 harbors a large spiral-shaped LRR domain providing the CIF peptide binding surface. Shown is a structural comparison of the SGN3 – CIF2 complex (right) and the RGFR1 – RGF1 complex (left; PDB ID 5hyx, (13)). LRR domains (ribbon diagram) are shown in blue, peptide ligands in yellow (in bonds representation), N- and C-terminal capping domains in magenta, disulfide bonds in green and N-glycans in gray. While the overall architecture and mode of ligand binding is similar in RGFR1 and GSO1/SGN3, the latter receptor contains more LRRs and a much larger peptide binding surface.

Fig. 3. Many peptide – receptor interaction enable high affinity CIF2 binding by GSO1/SGN3. (A) (left) Overview of the CIF2 binding site in GSO1/SGN3, colors are as in Fig. 2. (right) Close-up view of the sTyr binding pocket in GSO1/SGN3 with selected residues shown in bonds representation, and with hydrogen bonds indicated as dotted lines (in magenta). (B) GCI binding assays of CIF2 variants versus the SGN3 wild-type ectodomain. Raw sensorgrams are shown in red, fitted data in black. Table summaries of kinetic parameters are shown alongside (ka, association rate constant; kd, dissociation rate constant; Kd, dissociation constant). (C) Quantitative analyses for the number of holes in Casparian strip domains per 100 μm in cif1 cif2 double mutants with CIF2 peptide-variant treatments (b, c, statistically significant difference with $p < 0.05$, one way ANOVA and Tukey test). (D) Close-up view of the GSO1/SGN3 – CIF2 complex. Shown in the C-terminus of the CIF peptide (in bonds representation) and the GSO1/SGN3 RxR motif (in gray). Potential hydrogen bonds are indicated as dotted lines (in magenta) (E) Quantification of propidium iodide (PI) staining on sgn3 mutants complemented with wild-type or mutant SGN3-mVenus under the control of the SGN3 promoter (no statistically significant difference with one way ANOVA and Tukey test). (F) GCI assays of CIF2 versus SGN3 mutant ectodomains. Sensorsgrams are shown with raw data in red and their respective fits in black. Table summaries of GCI-derived binding kinetics are shown (ka, association rate constant; kd, dissociation rate constant; Kd, dissociation constant; n.d., no detectable binding). (G) Details of the interactions of the CIF2 central part with GSO1/SGN3 LRRs 6–17. Interface residues are shown in bonds representations, hydrogen bonds as dotted lines (in magenta), amino-acids targeted for the mutational analysis are shown in gray.

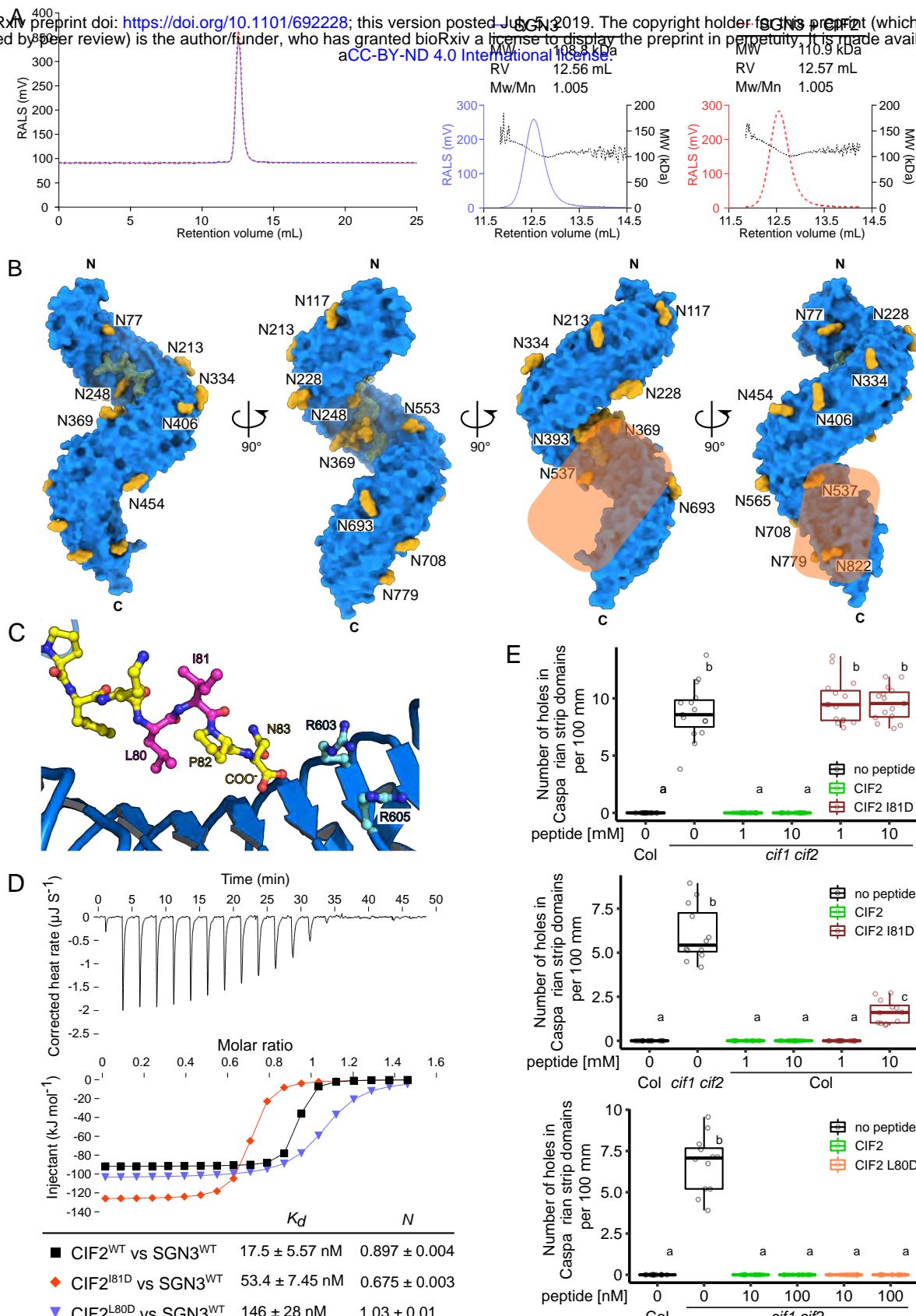


Fig. 4. Structure-guided identification of novel CIF peptides. (A) Multiple sequence alignment of CIF1 – 4 peptides. The conserved sulfated tyrosine is highlighted in red, hydroxyprolines are in yellow, and the C-terminal asparagine/histidine are shown in blue. (B) GCI assays of CIF3 in the presence or absence of sulfation on tyrosine versus the SGN3 wild-type ectodomain. Sensorgrams are presented with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown alongside (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant). (C) ITC assays of CIF2 or CIF4 wild type peptides versus the SGN3 wild type ectodomain. Table summaries for dissociation constants (K_d) and binding stoichiometries (N) are shown (\pm fitting error). (D) GCI assays of CIF1 – 3 peptides versus the GSO2 wild-type ectodomain.

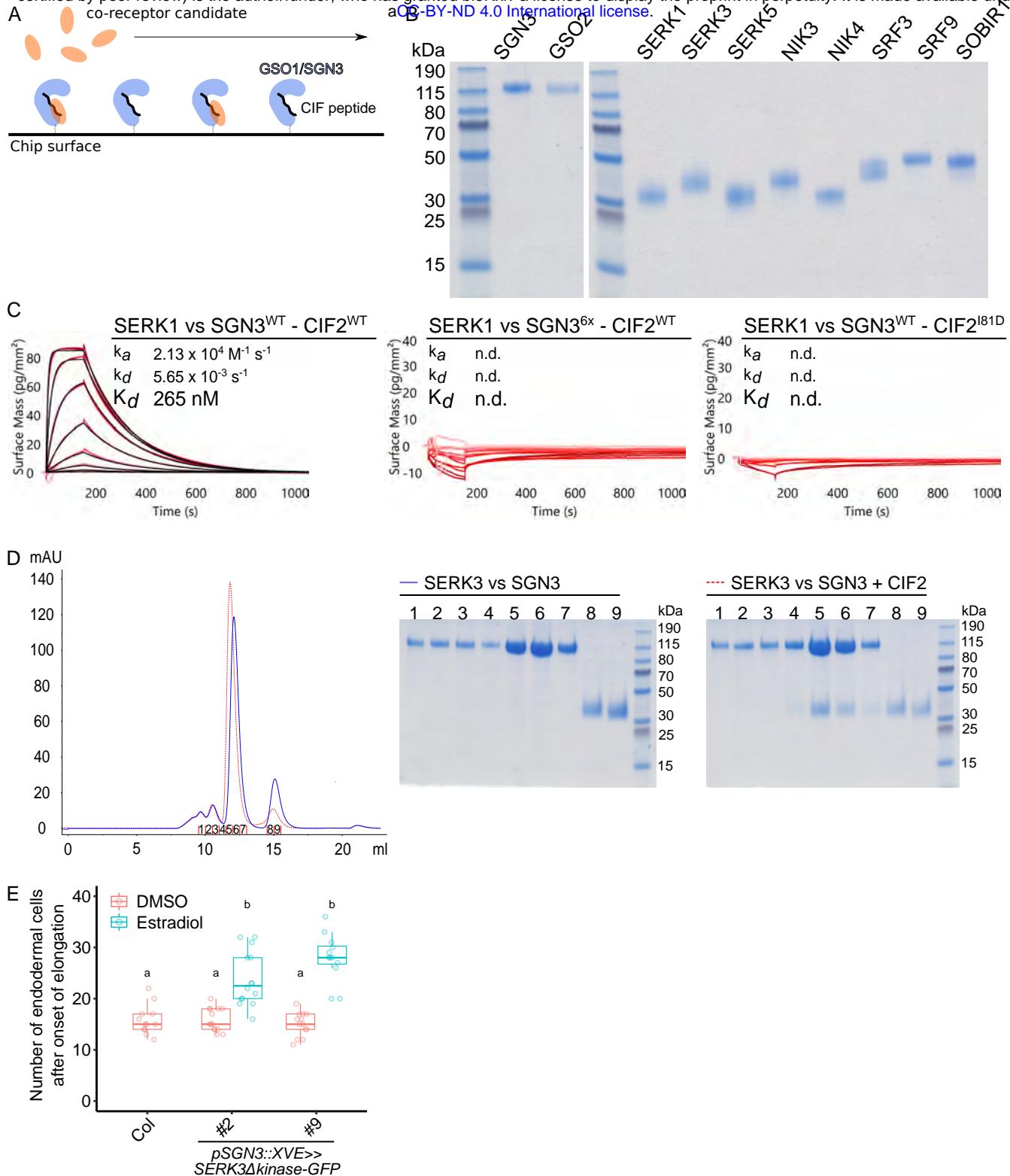
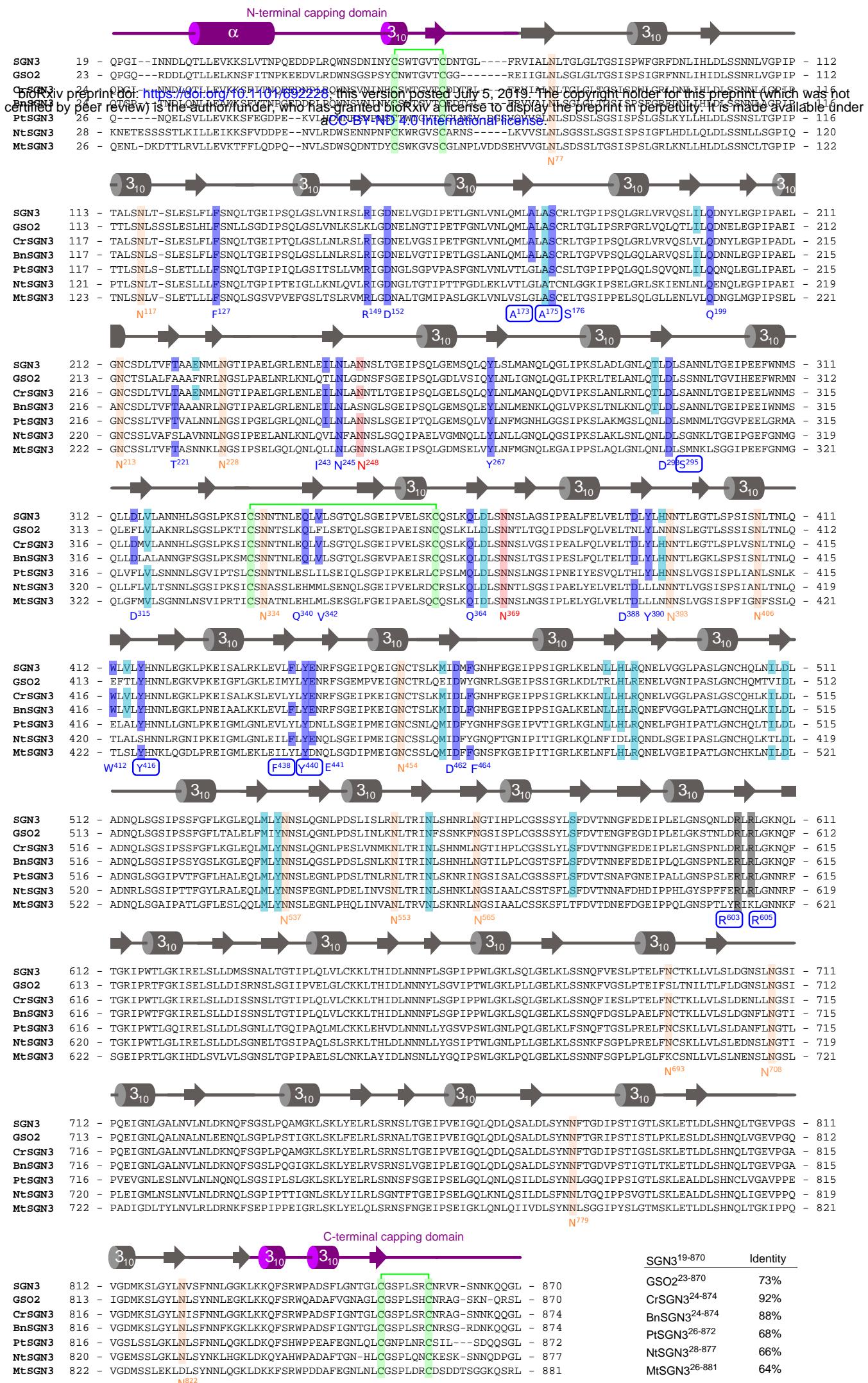
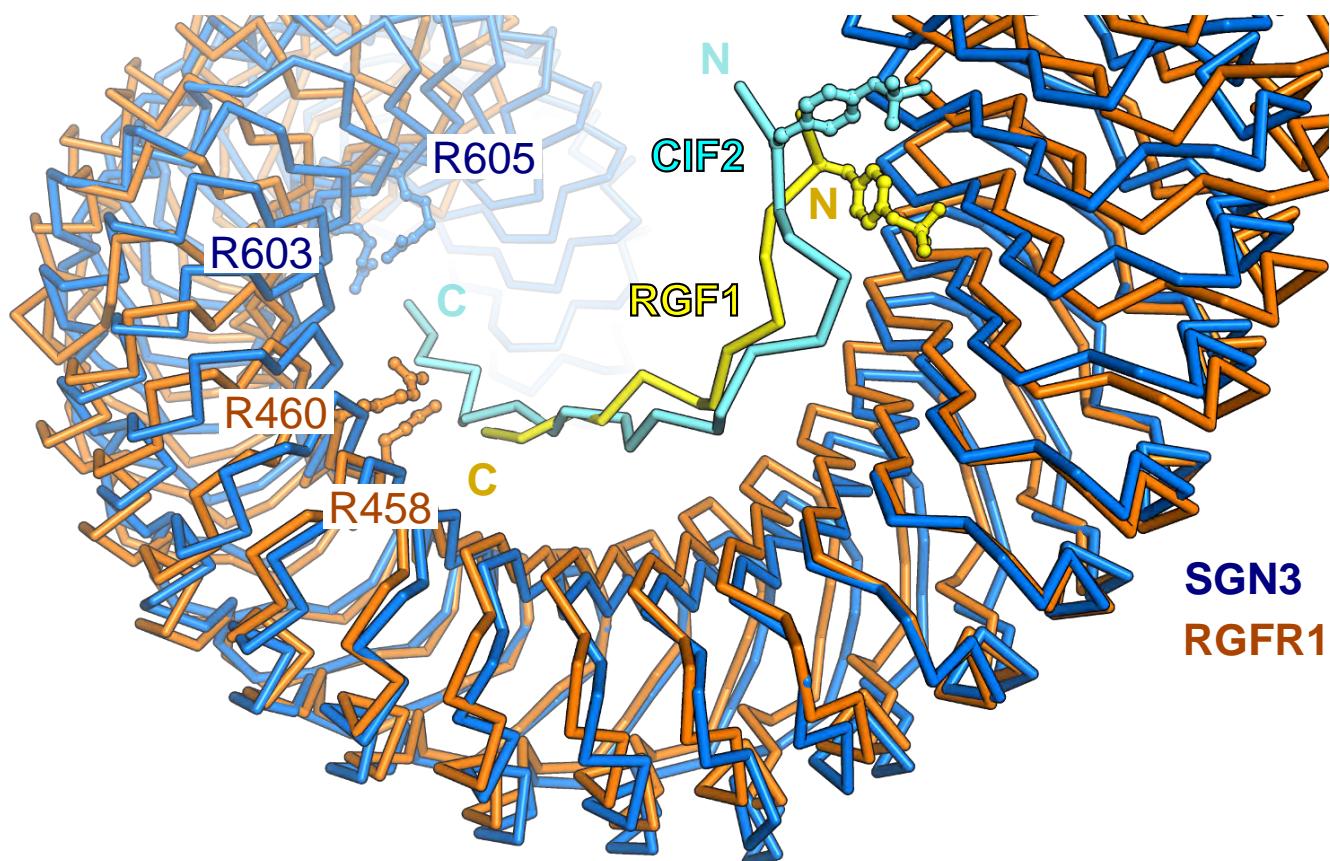


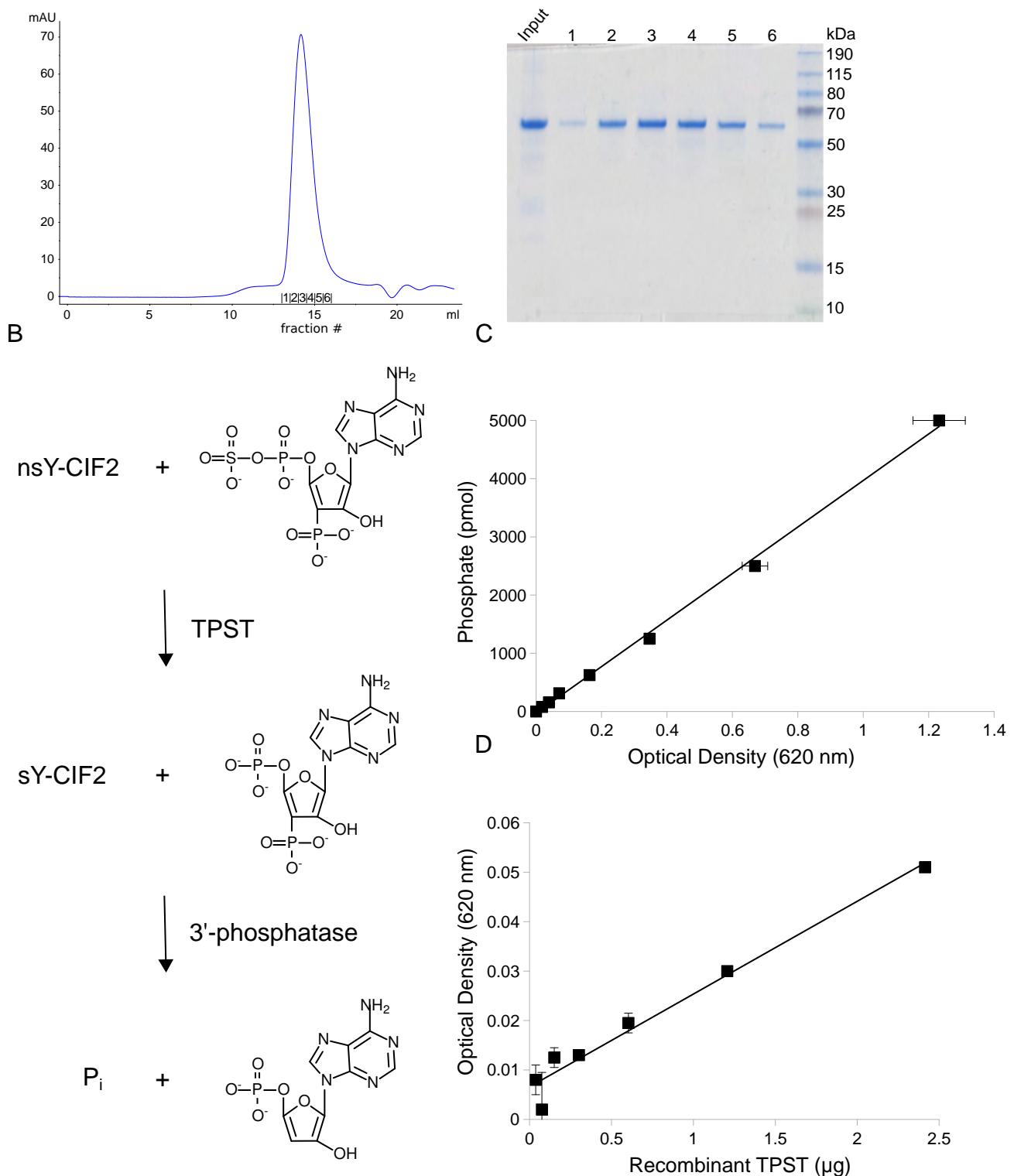
Fig. 5 CIF3 and CIF4 are not involved in Casparyan strip formation.

(A) Quantitative analyses of number of holes in Casparyan strip domains per 100 μ m in Col (WT) or the *cif1 cif2* mutant with CIF2, CIF3 or CIF4 peptide treatments (n=12 (experiment with CIF3) and for n \geq 12 (experiment with CIF4) for each condition). Different letters indicate statistically significant differences (p <0.05, one-way ANOVA and Tukey test). Note that due to the solubility of CIF4, the experiment with CIF4 was done with 0.05% (v/v) DMSO in all conditions including the control. (B) Promoter activities around onset of Casparyan strip formation. Each promoter drives a NLS (nuclear localization signal)-3xVenus reporter gene. Cell walls were stained with propidium iodide (PI). Cell layers are labeled as Epi (epidermis), Cor (cortex), En (endodermis) and Ste (stele). Scale bar corresponds to 40 μ m. (C) CIF peptides do not display *gso1 gso2* seed shape phenotypes. Show are mature seeds from Col, *cif1 cif2*, *cif3 cif4-1*, *cif3 cif4-2* and *sgn3/gso1 gso2*. The seeds from *sgn3/gso1 gso2* had aberrant shapes (indicated by a *) but seeds from other genotypes showed the normal shapes as did the Col (WT) wild-type control. Scale bars correspond to 0.5 mm. (D) *cif3 cif4* double mutants do not show Casparyan strip barrier defects. Lignin images were taken around 10 cells after onset of CS. Scale bar corresponds to 20 μ m.

Fig. 6. Structural and biochemical evidence for a co-receptor kinase required for GSO1/SGN3 activation. (A) Isolated and CIF2-bound GSO1/SGN3 behave as monomers in solution. (Left) Analytical size-exclusion chromatography traces of the SGN3 ectodomain in the absence (blue line) or presence (red dotted line) of CIF2 peptides. Right angle light scattering (RALS) traces in the absence (blue) or presence (red) of CIF2 peptides and including the derived molecular masses (black) of GSO1/SGN3 apo or SGN3-CIF2. Table summaries report the observed molecular weight (MW) and the dispersity (Mw/Mn). The theoretical molecular weight is 94.1 kDa for GSO1/SGN3 (residues 19-870). (B) The GSO1/SGN3 – CIF complex structure reveals a potential co-receptor binding site. Shown is the GSO1/SGN3 ectodomain (surface representation, in blue) in complex with the CIF2 peptide (surface view and bonds representation, in yellow), N-glycans (surface representation in yellow). The potential co-receptor binding surface not masked by carbohydrate is highlighted in orange. (C) Close-up view of CIF2 C-terminus bound the GSO1/SGN3, indicating the positions of the side-chains of Leu80 (pointing towards the receptor) and Ile81 (pointing to the solvent) (in magenta). (D) ITC assays of CIF2 mutant peptides versus the SGN3 wild type ectodomain. Table summaries for dissociation constants (K_d) and binding stoichiometries (N) are shown (\pm fitting error). (E) Quantitative analyses of number of holes in Casparyan strip domains per 100 μ m in *cif1 cif2* double mutants upon treatment with CIF2 peptide variants. ($n=15$ for the top panel, $n=12$ for the middle panel and $n\geq 11$ for the bottom panel). Different letters indicate statistically significant differences ($p < 0.05$, one-way ANOVA and Tukey test).

Fig. 7. A quantitative interaction screen identifies SERK proteins as putative co-receptors for GSO1/SGN3. (A) Schematic overview of the biochemical screen for a GSO1/SGN3 co-receptor. GSO1/SGN3 is immobilized to the GCI chip surface (in blue), the CIF peptide is provided in access in the running buffer (in black) and different recombinant purified co-receptor candidates are assayed for binding (in orange). (B) Coomassie-stained SDS PAGE depicting 1 μ g LRR ectodomain of the indicated co-receptor candidate. Shown are isolated monomeric peak fractions from size-exclusion chromatography experiments. (C) GCI assays of SERK1 LRR-RK ectodomain versus the SGN3 wild-type and mutant ectodomains in the presence of CIF2 variant peptides. The remaining candidates are shown in *SI Appendix* Fig. S10. Sensorgrams are shown with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant; n.d., no detectable binding). (D) Complex formation of SERK3 and SGN3 ectodomains. (Left) Analytical size-exclusion chromatography traces of the SGN3 ectodomain in the absence (blue line) or presence (red dotted line) of CIF2 peptides. An SDS-PAGE analysis of the corresponding fractions is shown alongside. The theoretical molecular weight is 94.1 kDa for SGN3 (residues 19-870) and 21.7 kDa for SERK3 (residues 26 - 220) respectively. (E) Induced barrier defect in inducible SERK3 dominant-negative lines. Quantification of barrier permeability was done using the PI assay ($n \geq 12$ for each condition). Different letters indicate statistically significant differences ($p < 0.05$, one-way ANOVA and Tukey test).


Figure S1

bioRxiv preprint doi: <https://doi.org/10.1101/692228>; this version posted July 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Fig. S1. Structure-based multiple sequences alignment of SGN3 ectodomains from *Arabidopsis thaliana*, GSO1 (NCBI identifier: OAO97463), GSO2 (NCBI identifier: OAO90459), *Capsella rubella* SGN3 (NCBI identifier: XP_006285037.2), *Brassica napus* SGN3 (NCBI identifier: XP_013660918.1), *Populus trichocarpa* SGN3 (NCBI identifier: XP_002299384.1), *Nicotiana tabacum* SGN3 (NCBI identifier: XP_016509707.1), and *Medicago truncatula* SGN3 (NCBI identifier: XP_013457406.1). A secondary structure assignment, calculated with DSSP (49), is shown beside. SGN3 residues forming hydrogen bonds with CIF2 in the SGN3 – CIF2 complex are highlighted in blue, residues interacting with CIF2 in cyan, glycosylated asparagine residues in orange, asparagine residues with glycans directly contacted with CIF2 in red, RxR motif in gray, cysteines forming disulfide bonds in light green. All numbering refers to AtSGN3. Table summarizes amino acid sequence identities among SGN3 ectodomains versus AtSGN3.

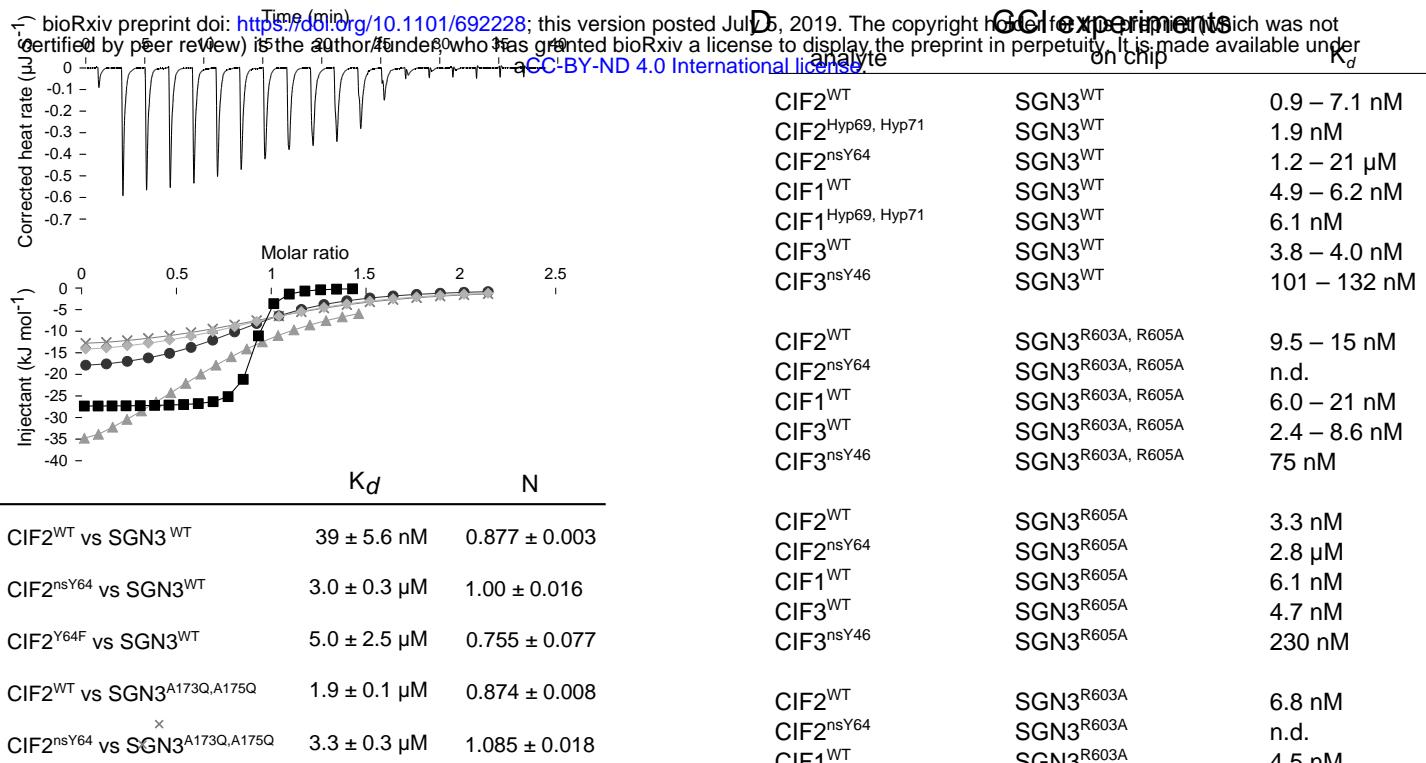


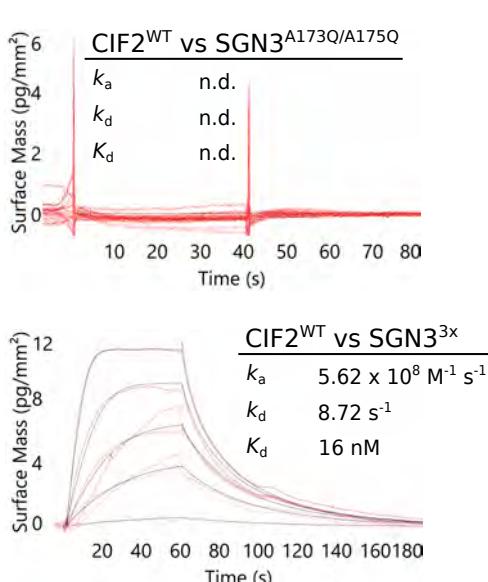
Fig. S2. Different LRR-RKs binding tyrosine sulfated peptide share structural similarity. Structural superposition of SGN3 – CIF2 (blue and cyan, respectively) and RGFR – RGF1 (orange and yellow; PDB ID 5hyx) complex structures. Asparagine residues of the RxR motif are shown. The two complex structures align with a root mean square displacement (r.m.s.d.) $\sim 3.1 \text{ \AA}$ comparing 498 corresponding C_{α} atoms.

Fig. S3. CIF2 is a substrate of the plant tyrosylprotein sulfotransferase TPST/SGN2. (A) Size-exclusion chromatography trace of TPST (residues 25 – 441) purified from insect cells. (Right) Coomassie-stained SDS PAGE of the corresponding elution fractions. (B) Scheme of sulfotransferase assays. Inorganic phosphate (Pi) release was detected using a malachite green Pi quantification assay to calculate the kinetics of the sulfotransferase reaction. (C) Pi standard curve used for the enzymatic assay. (D) 0.2 mM 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) was incubated with varying concentrations of TPST enzyme for 30 min at 30 °C. Optical densities (ODs) were plotted versus the amount of TPST recombinant protein. A specific activity (1.25 pmol min⁻¹ μg⁻¹) was calculated.

A

GCI experiments

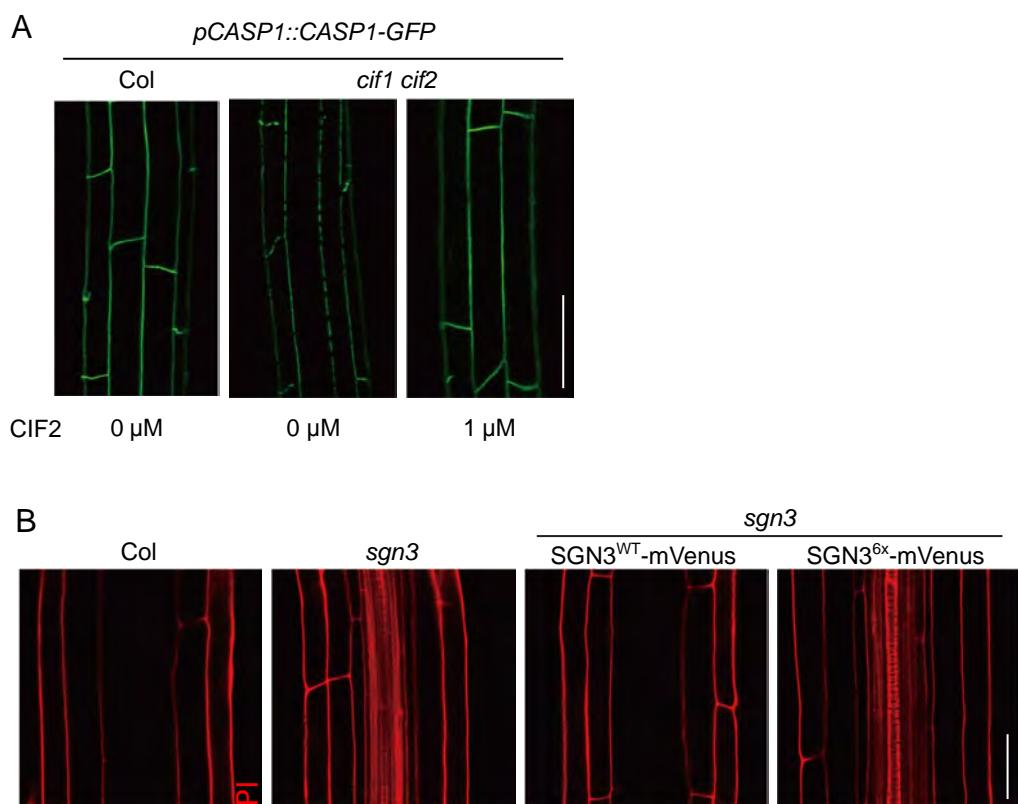
on chip


CIF2 ^{WT}	SGN3 ^{WT}	$0.9 - 7.1$ nM
CIF2 ^{Hyp69, Hyp71}	SGN3 ^{WT}	1.9 nM
CIF2 ^{nsY64}	SGN3 ^{WT}	$1.2 - 21$ μM
CIF1 ^{WT}	SGN3 ^{WT}	$4.9 - 6.2$ nM
CIF1 ^{Hyp69, Hyp71}	SGN3 ^{WT}	6.1 nM
CIF3 ^{WT}	SGN3 ^{WT}	$3.8 - 4.0$ nM
CIF3 ^{nsY46}	SGN3 ^{WT}	$101 - 132$ nM
CIF2 ^{WT}	SGN3 ^{R603A, R605A}	$9.5 - 15$ nM
CIF2 ^{nsY64}	SGN3 ^{R603A, R605A}	n.d.
CIF1 ^{WT}	SGN3 ^{R603A, R605A}	$6.0 - 21$ nM
CIF3 ^{WT}	SGN3 ^{R603A, R605A}	$2.4 - 8.6$ nM
CIF3 ^{nsY46}	SGN3 ^{R603A, R605A}	75 nM
CIF2 ^{WT}	SGN3 ^{R605A}	3.3 nM
CIF2 ^{nsY64}	SGN3 ^{R605A}	2.8 μM
CIF1 ^{WT}	SGN3 ^{R605A}	6.1 nM
CIF3 ^{WT}	SGN3 ^{R605A}	4.7 nM
CIF3 ^{nsY46}	SGN3 ^{R605A}	230 nM
CIF2 ^{WT}	SGN3 ^{R603A}	6.8 nM
CIF2 ^{nsY64}	SGN3 ^{R603A}	n.d.
CIF1 ^{WT}	SGN3 ^{R603A}	4.5 nM
CIF2 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A173Q, A175Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A173Q, A175Q}	n.d.
CIF2 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A173Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A173Q}	n.d.
CIF2 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A175Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A175Q}	n.d.
CIF2 ^{WT}	SGN3 ^{3x}	16 nM
CIF2 ^{nsY64}	SGN3 ^{3x}	14 μM
CIF2 ^{WT}	SGN3 ^{6x}	n.d.
CIF2 ^{nsY64}	SGN3 ^{6x}	n.d.

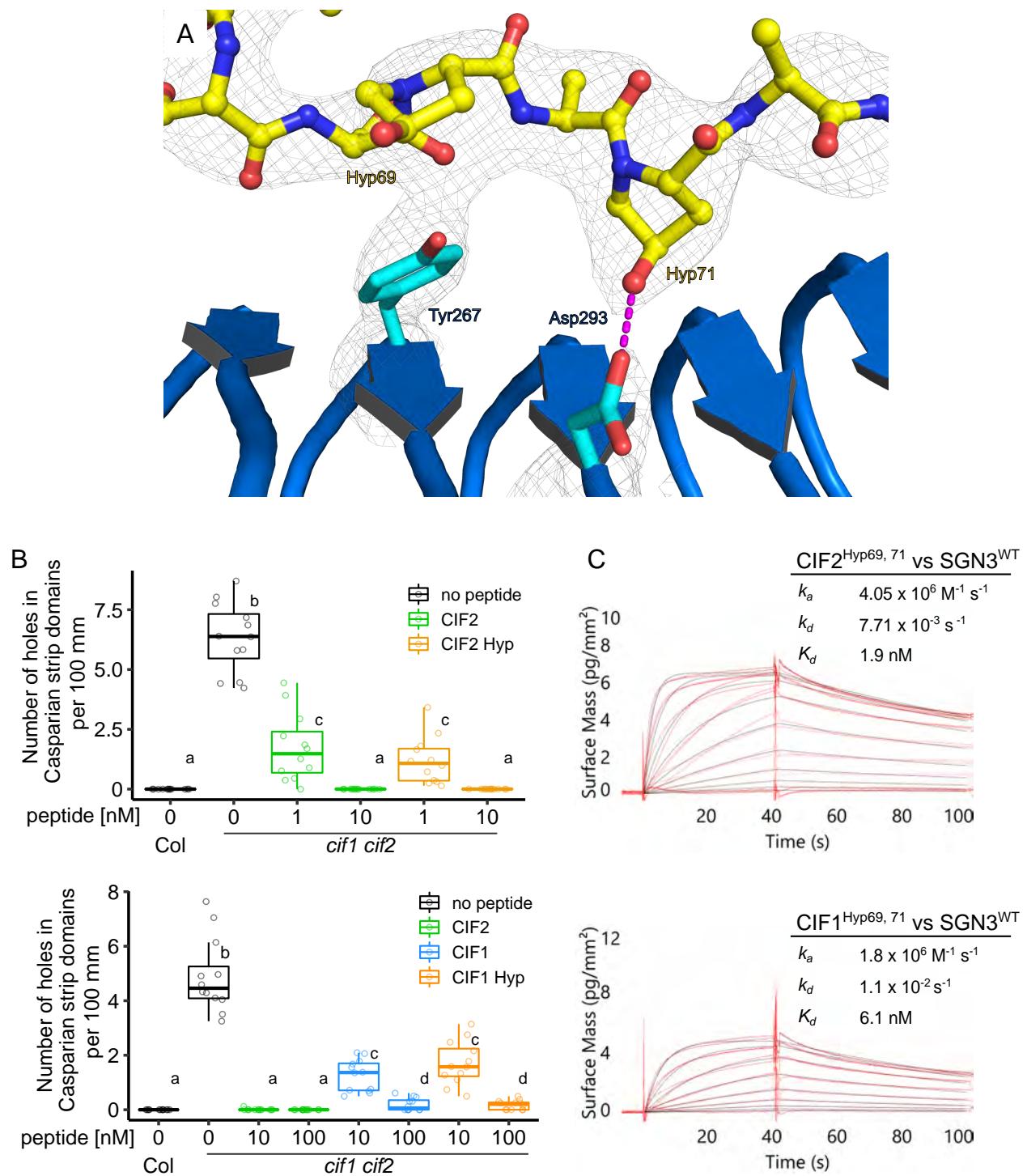
B

ITC experiments

syringe	cell	K_d	Additive
CIF2 ^{WT}	SGN3 ^{WT}	$9.04 - 49.9$ nM	
CIF2 ^{nsY64}	SGN3 ^{WT}	$1.16 - 2.66$ μM	
CIF2 ^{Y64F}	SGN3 ^{WT}	$2.14 - 4.97$ μM	
CIF ^{L80D}	SGN3 ^{WT}	146 nM	
CIF2 ^{181D}	SGN3 ^{WT}	$71.2 - 74.2$ nM	
CIF1 ^{Hyp69, Hyp71}	SGN3 ^{WT}	43.2 nM	
CIF2 ^{WT}	SGN3 ^{WT}	$94.7 - 337$ nM	+DMSO
CIF4	SGN3 ^{WT}	$285 - 309$ nM	+DMSO
CIF2 ^{WT}	SGN3 ^{A173Q, A175Q}	$1.71 - 3.1$ μM	+DMSO
CIF2 ^{nsY64}	SGN3 ^{WT}	6.35 μM	+DMSO


C

CIF2 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A173Q, A175Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A173Q, A175Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A173Q, A175Q}	n.d.
CIF2 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A173Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A173Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A173Q}	n.d.
CIF2 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF2 ^{nsY64}	SGN3 ^{A175Q}	n.d.
CIF1 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF3 ^{WT}	SGN3 ^{A175Q}	n.d.
CIF3 ^{nsY46}	SGN3 ^{A175Q}	n.d.
CIF2 ^{WT}	SGN3 ^{3x}	16 nM
CIF2 ^{nsY64}	SGN3 ^{3x}	14 μM
CIF2 ^{WT}	SGN3 ^{6x}	n.d.
CIF2 ^{nsY64}	SGN3 ^{6x}	n.d.


Fig. S4. Mutational characterization of the GSO1/SGN3 – CIF2 complex interface.

(A,B) Isothermal titration calorimetry (ITC) assays of CIF2 variants versus SGN3 wild-type and mutant ectodomains. Table summaries for dissociation constants (K_d) and binding stoichiometries (N) are shown (\pm fitting error). (C,D) GCI assays of CIF variants versus SGN3 wild-type and mutant ectodomains. sensorgrams are represented with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown alongside (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant; n.d., no detectable binding).

Fig. S5. The GSO1/SGN3 6x mutant fails to complement the *sgn3* Caspian strip phenotype.

(A) Caspian strip domains are visualized in Col (WT) and *cif1 cif2* with or without CIF2. Scale bar = 20 μ m (B) Representative images of PI permeability in the roots of the indicated genotypes. Pictures were taken around 25-30 cells after onset of endodermal cell elongation. *sgn3* and *sgn3* transformed with SGN36x-mVenus both display staining of vasculature, indicative of barrier defect. Scale bar = 40 μ m.

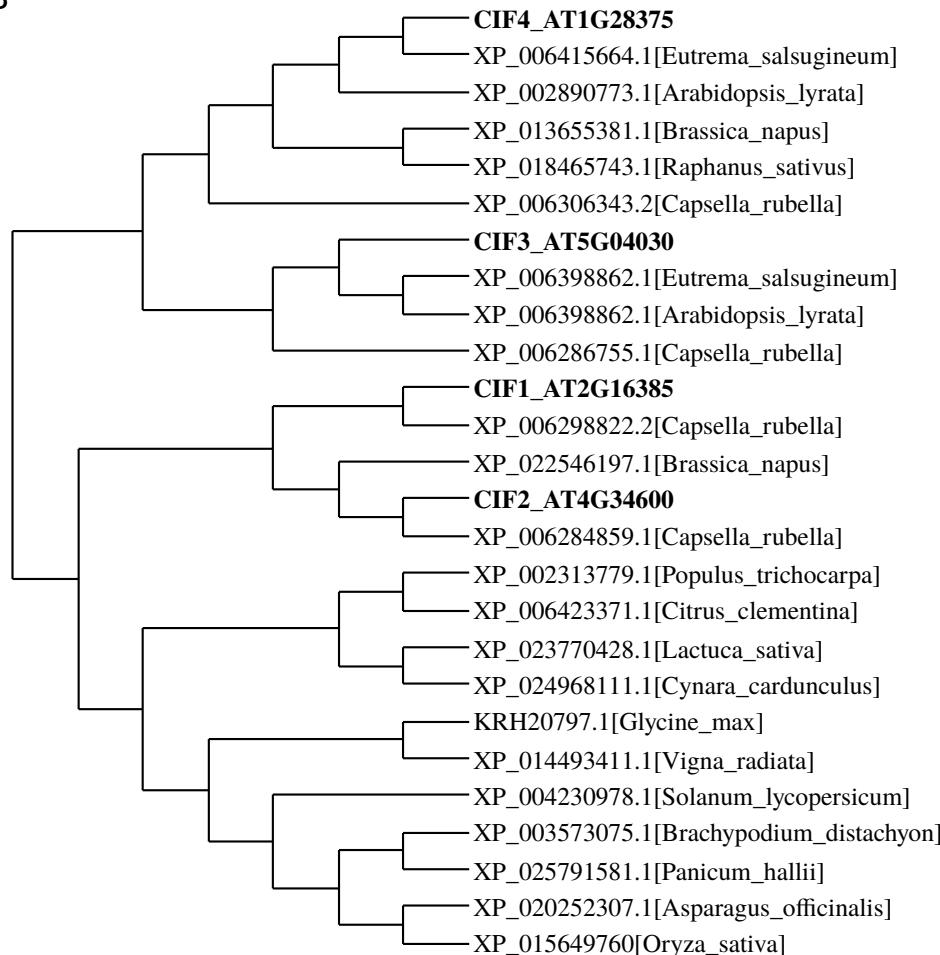
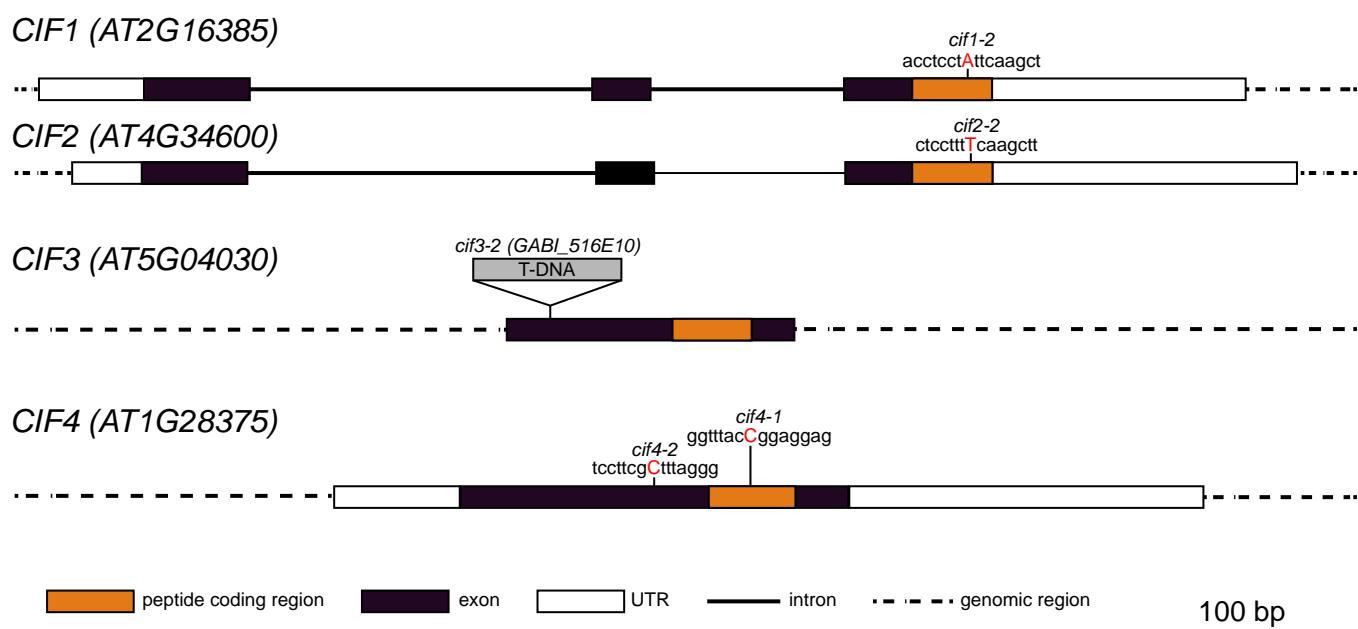


Fig. S6. Two hydroxylprolines in CIF2 play no major roles in GSO1/SGN3 binding. (A) Details of the interaction between hydroxyproline residues of CF2^{Hyp69, 71} (yellow, in bonds representation) and the SGN3 ectodomain (blue ribbon diagram). Hydrogen bonds are depicted as dotted lines (in magenta), a 2F_c-F_c omit electron density map contoured at 1.5 σ is shown alongside (gray mesh). (B) Quantitative analyses of number of holes in Casparyan strip domains per 100 μm in *cif1 cif2* double mutants treated with CIF peptide-variants (n=12 for each condition). Different letters indicate statistically significant differences ($p < 0.05$, one-way ANOVA and Tukey test) (C) GCI assays of hydroxyprolined CIF variants versus SGN3 wild type ectodomain. Sensorsgrams are shown with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown alongside (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant).


A

CIF1(AT2G16385)	63 - DYGNNSFSPRLER--PPFKLIPN -	83
XP_006298822.2(Capsella rubella)	64 - DYGYNRFAPRLER--PPFKLIPN -	84
XP_020252307.1(Asparagus officinalis)	65 - DYGNYDFPSLAK--PPFKLIPN -	85
XP_002313779.1(Populus trichocarpa)	74 - DYGNYDFPAPALVR--PPFKLIPN -	94
KRH20797.1(Glycine max)	47 - DYGRYDFPSLSK--PPFKLIPN -	67
XP_003573075.1(Brachypodium distachyon)	72 - DYGSYDFPSMKEK--PHFKLIPN -	92
XP_014493411.1(Vigna radiata)	72 - DYGRYDFPSLSK--PPFKLIPN -	92
XP_006423371.1(Citrus clementina)	69 - DYGRYDFPAPALVK--PPFKLIPN -	89
XP_004230978.1(Solanum lycopersicum)	64 - DYGRYDFPAPALSK--PPFKLIPN -	84
XP_025791581.1(Panicum hallii)	78 - DYGIYDFPSMDK--PHFKLIPN -	93
XP_015649760(Oryza sativa)	74 - DYGTYDFPTPTMAK--PHAKEIPN -	94
CIF2(AT4G34600)	63 - DYGHSSFPKLV--PPFKLIPN -	83
XP_022546197.1(Brassica napus)	60 - DYGHFSETPRLVR--PPFKLIPN -	80
XP_006284859.1(Capsella rubella)	62 - DYGQYTFPKFVR--PPFKLIPN -	82
XP_023770428.1(Lactuca sativa)	72 - DYGRPDFAPTFVK--PPFKLIPN -	92
XP_024968111.1(Cynara cardunculus)	76 - DYGRPDFAPTFVK--PPFKLIPN -	96
CIF3(AT5G04030)	45 - DYGSWSETPKIPR--RSPAPIPH -	65
XP_006398862.1(Eutrema salsugineum)	54 - DYGSWSETPKVPR--GSPAPIPH -	74
XP_006398862.1(Arabidopsis lyrata)	45 - DYGSWSETPKIRR--GSPAPIPH -	65
XP_006286755.1(Capsella rubella)	52 - DYGSWTPSPRVGR--SSLTPIPH -	72
CIF4(AT1G28375)	67 - DYGFWNFSPVYGGGFYPGPVPH -	89
XP_002890773.1(Arabidopsis lyrata)	68 - DYGFWNFSPVYGGGFYPGPVPH -	90
XP_006415664.1(Eutrema salsugineum)	68 - DYGFWNFSPVYGGGFYPGPVPH -	90
XP_006306343.2(Capsella rubella)	69 - DYGFWNFSPVYGGGFYPGPVPH -	91
XP_013655381.1(Brassica napus)	67 - DYGFWNFSPVYGGGFYPGPVPH -	89
XP_018465743.1(Raphanus sativus)	67 - DYGFWNFSPVYGGGFYPGPVPH -	89

B

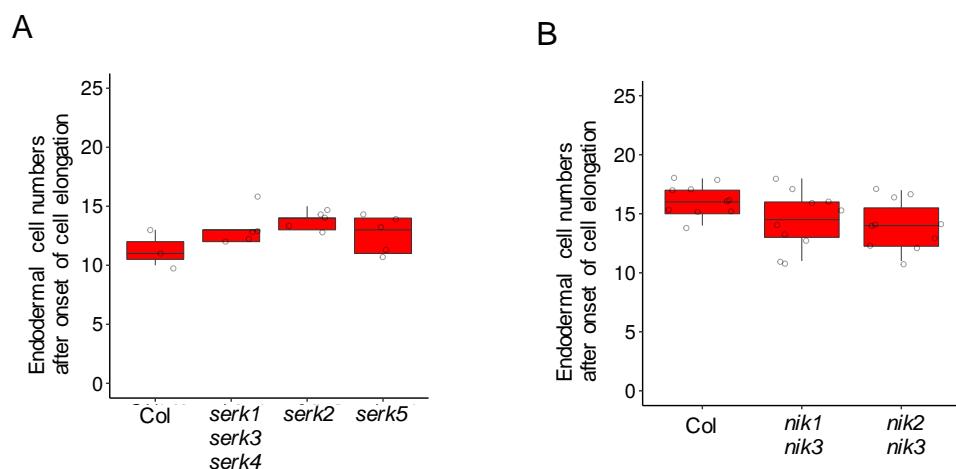
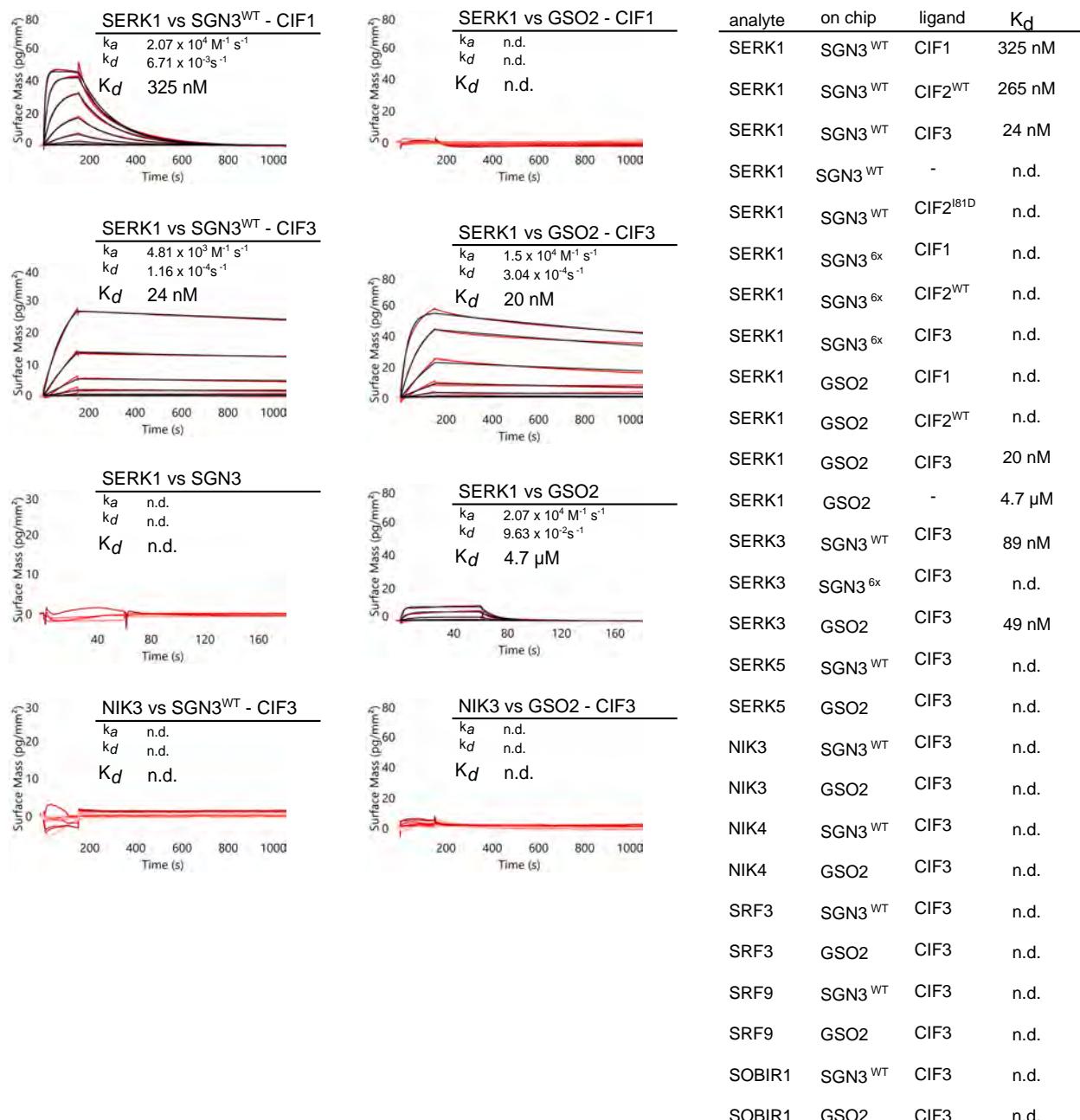


Fig. S7. CIF3 and CIF4 orthologs are present in other plant species. (A) Multiple sequence alignment of CIF1-4 from *Arabidopsis thaliana* and their putative orthologs from other plant species. Sequences were obtained from NCBI (<https://www.ncbi.nlm.nih.gov/>) and aligned with the program T-coffee (version 12.0) (50). The conserved sulfated tyrosine is highlighted in red, hydroxyprolines in yellow, the conserved isoleucine in orange, and the C-terminal asparagine or histidine residue in blue. (B) Phylogenetic tree of CIF peptides prepared with the program BIONJ (51).


Fig. S8. Overview of the CIF mutant alleles used in this study.

Schematic models of the CIF genes and their mutant alleles. Single base pair insertion points (indicated by red uppercase letters) are shown together with their neighboring sequences. The T-DNA (gray box) insertion point is indicated in CIF3 locus.

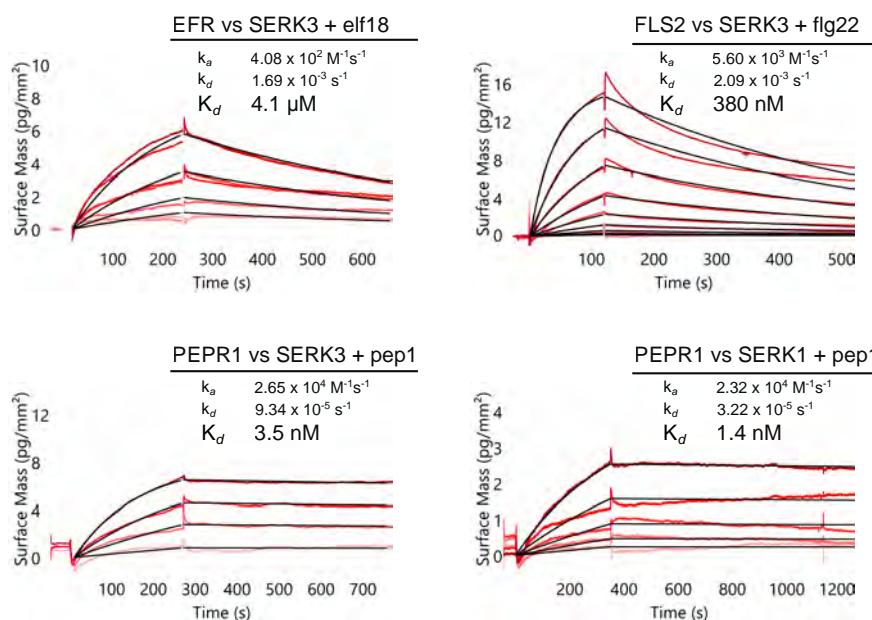


Fig. S9. A number of *serk* and *nik* co-receptor loss-of-function mutants display no apparent Casparyan strip defects.

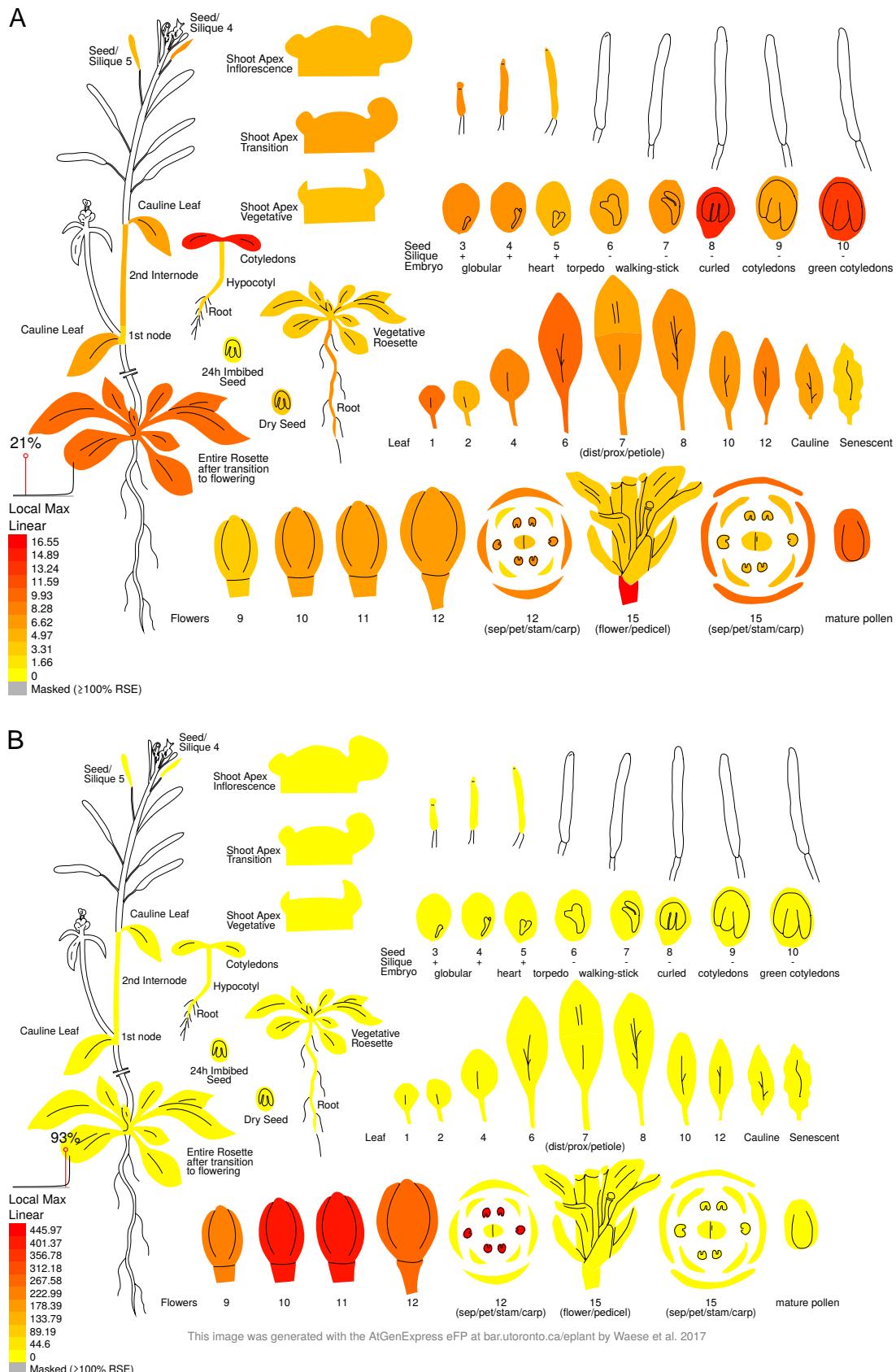

PI penetration assay with several *serk* and *nik* single and/or multiple mutants. Barrier functions were scored by counting the cell numbers until PI became impermeable to the steles.

Fig. S10. GSO1/SGN3 and GSO2 bind SERK1 and 3 co-receptor kinases in the presence of CIF peptides. GCI assays of co-receptor candidates versus GSO1/SGN3 and GSO2 ectodomains in the presence of CIF peptides. Sensorsograms are shown with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant; n.d., no detectable binding).

Fig. S11. The LRR-RKs EFR, FLS2, PEPR1 bind SERKs with very different binding affinities and -kinetics. GCI assays of SERK co-receptors versus different, known LRR-RKs in the presence of their cognate peptide ligands. Sensorgrams are shown with raw data in red and their respective fits in black. Table summaries of kinetic parameters are shown (k_a , association rate constant; k_d , dissociation rate constant; K_d , dissociation constant).

Fig. S12 Expression analysis suggests putative functions for CIF3 and CIF4 outside Casparyan strip formation / embryo development. Expression-pattern images of CIF3 (A) and CIF4 (B) were generated with the AtGenExpress eFP (<https://bar.utoronto.ca/eplant/>, (52)) using the publicly available microarray data (53, 54). CIF3 appears to be expressed at embryo stage and in cotyledons, while CIF4 shows strong expression in early stage flowers and in stamens.