

1 **Blood meal analysis of tsetse flies (*Glossina pallidipes*:**
2 ***Glossinidae*) reveals a reduction in host fidelity when**
3 **feeding on domestic compared to wild hosts**

4

5 Manun Channumsin^{1, 2*}, Marc Ciosi^{3, 4}, Dan Masiga⁴, Harriet Auty⁵, C. Michael
6 Turner^{6,7} and Barbara K. Mable¹

7 *Correspondence: manun_wo@rmutto.ac.th

8 ¹ Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM),
9 Graham Kerr Building, University of Glasgow, University Place, Glasgow G12 8QQ,
10 UK

11 ² Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok,
12 Chonburi, 20110, Thailand

13 ³ Institute of Molecular, Cell and Systems Biology (MCSB), University of Glasgow,
14 University Place, Glasgow G12 8QQ, UK

15 ⁴ International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772,
16 00100 Nairobi, Kenya

17 ⁵ Future Farming Systems, Epidemiology Research Unit, Scotland's Rural College,
18 Inverness, IV2 5NA, UK

19 ⁶ Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building,
20 University of Glasgow, University Place, Glasgow G12 0PT, UK

21 ⁷ The Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK

22

23

24

25 **Abstract**

26 **Background**

27 Both male and female tsetse flies, haematophagous insects, transmit trypanosomes
28 between hosts and are the cyclical vectors for Human African Trypanosomiasis
29 (HAT) and Animal African Trypanosomiasis (AAT). Trypanosomes responsible for
30 AAT can be transmitted by tsetse between wild animals and livestock. However, the
31 degree of connectivity between the sylvatic and domestic cycles is unknown. The
32 objectives of this study were to investigate patterns of host feeding in relationship to
33 trypanosome prevalence among Kenyan populations of *G. pallidipes* at the livestock-
34 wildlife interface.

35 **Methodology/Principal Findings**

36 Sources of blood meals of *Glossina pallidipes* were identified by polymerase chain
37 reaction amplification and sequencing of the mitochondrial cytochrome b gene and
38 compared with previous characterization of trypanosome prevalence from the same
39 flies. In the Nguruman region in southern Kenya, the majority (98%) of the 148 flies
40 for which dominant hosts could be resolved fed on single host species and only a
41 single fly had fed on a domestic host; intriguingly this was the only fly confirmed to
42 have fed on cattle. In contrast, in the Shimba Hills region (South Coast), multiple
43 host feeding was more common: 42% inside a fenced wildlife protected area, where
44 35% of dominant hosts were domestic animals or humans, compared with 62% from
45 traps set along the border to an adjacent village, which was dominated by domestic
46 hosts (77%). Across sites, 44% of flies tested positive for trypanosomes (28/50
47 domestic hosts; 78/193 wild hosts). Multiple Correspondence Analysis revealed
48 strong correlations between feeding pattern, host type and site but these were
49 resolved along a different dimension than trypanosome status.

50 **Conclusions/Significance**

51 Our results suggest that host fidelity when feeding on wild hosts in *G. pallidipes*
52 could reduce risk of transmission of trypanosomes to domestic hosts in interface
53 areas and emphasise the importance of considering vector behaviour when
54 designing management interventions.

55

56 **Author Summary**

57 Tsetse flies are the main vectors transmitting trypanosomes, which cause disease in
58 both humans and animals. Since tsetse flies feed on a wide range of vertebrate
59 hosts, there is the potential for transmission between wild and domestic animals in
60 regions where their ranges overlap. In this study, we used molecular methods to
61 determine the hosts fed on by tsetse flies sampled from three sites in Kenya at the
62 wildlife-livestock interface. In areas where wildlife dominated, tsetse tended to feed
63 on single host species, whereas in areas with more domesticated animals, they
64 tended to feed on multiple hosts. These results suggest either that tsetse flies get
65 interrupted more while feeding on domestic hosts or that they prefer to feed on
66 wildlife and so switch hosts more often when feeding on less desirable hosts. Using
67 data from a previous study on the same samples, we found that trypanosome
68 prevalence was not correlated with the type or number of hosts fed on. These
69 results have important implications for understanding the risk of transmission
70 between wildlife and livestock in regions bordering protected areas but the high host
71 fidelity for wild hosts suggests that tsetse feeding preferences could reduce risks of
72 disease transmission to livestock.

73

74 **Introduction**

75 In sub-Saharan Africa, changes in land use increase encroachment of domestic
76 livestock into areas that are primarily managed to conserve wildlife. This increases
77 risks that livestock will be exposed to a wider range of parasites, with potentially
78 important consequences for disease burden and control. Wildlife can represent
79 'reservoir communities' (Haydon *et al.* 2002; Viana *et al.* 2014) for multi-host
80 pathogens that could spill-over into domesticated animals, who could show more
81 severe clinical disease, given limited opportunity for host-pathogen coevolution in
82 novel hosts. This could be particularly true for vector-mediated transmission, where,
83 even if fences are used to reduce contact between domestic and wild hosts,
84 movement of the vectors could still facilitate parasite sharing across interface areas.

85 Analysis of blood meals provides a powerful tool for assessing whether
86 haematophagous insects cross-feed on different types of hosts (Nyingilili *et al.* 2016;
87 Omondi *et al.* 2015; Snow *et al.* 1988). Although this approach has typically focused
88 on vectors of particular pathogens, it has also been proposed that blood-sucking flies
89 that do not themselves transmit the focal parasites could be used as "flying syringes"
90 to investigate blood-borne pathogen diversity (Bitome-Essono *et al.* 2017; Hoffmann
91 *et al.* 2016). Rather surprisingly, blood meals have not been used to investigate the
92 intraspecific genetic diversity of the hosts, which could be used to infer patterns of
93 connectivity to feed into epidemiological models.

94 One particularly complex system where this could be important to understand is
95 trypanosome-mediated diseases transmitted by tsetse flies in East Africa. Although
96 there are multiple species of tsetse flies that can transmit multiple species of
97 trypanosomes, *Glossina pallidipes* is the most economically and medically important

98 species in Kenya (England & Baldry 1972b), because it transmits both the animal
99 (Animal African Trypanosomiasis, AAT) and human (Human African
100 Trypanosomiasis, HAT) disease-causing species. Wild animals have been reported
101 as reservoir hosts both for AAT (Anderson *et al.* 2011b; OIE 2013) and HAT (Geigy
102 *et al.* 1973a; Geigy *et al.* 1971; Welburn *et al.* 2001; Welburn *et al.* 2005) but the
103 extent of risk posed to domesticated animals has been hard to assess, partly due to
104 the difficulty of directly screening wildlife for the presence of trypanosomes (but see
105 (Geigy & Kauffman.M 1973; Geigy *et al.* 1973b; Heisch *et al.* 1958)).
106 Tsetse flies are generalist feeders on a wide variety of vertebrate host species
107 (Weitz 1963), including: dogs (Eloy & Lucheis 2009; Lisulo *et al.* 2014); cats
108 (Clausen *et al.* 1998; Maudlin *et al.* 2004); horses (Maudlin *et al.* 2004); chickens
109 (Clausen *et al.* 1998); ruminants (Clausen *et al.* 1998; Maudlin *et al.* 2004; Nyawira
110 2009; Turner 1987); antelopes (Turner 1987); elephants (Muturi *et al.* 2011b;
111 Nyawira 2009); warthogs (Nyawira 2009); and reptiles (Turner 1987). There is thus
112 high potential for vector-mediated connection between parasite sylvatic and
113 domestic cycles in wildlife-livestock interface areas. However, the frequency with
114 which tsetse vectors cross-feed on different types of hosts where they occur
115 sympatrically has not been clearly established and so the relative risks of increased
116 trypanosome infections in livestock living near wildlife remains a critical gap in
117 knowledge (Auty *et al.* 2016b). Although three trypanosome species are traditionally
118 associated with the disease in livestock (*T. brucei*, *T. congolense*, and *T. vivax*), a
119 higher diversity has been identified in wildlife (Auty *et al.* 2012), which could
120 potentially increase risks of disease if transmission from wildlife to domesticated
121 animals and humans is common.
122 Complex interactions among trypanosomes, vertebrate hosts and tsetse flies likely
123 increase the difficulty of controlling and eradicating trypanosomes but few studies

124 have attempted to combine investigation of host-feeding patterns in relation to
125 trypanosome infection with intrinsic factors of tsetse flies distributed in different
126 regions. Identification of hosts through blood meal analyses is a highly useful tool
127 that has been used to predict host preferences and feeding behaviours across a
128 wide range of vectors (Gariepy *et al.* 2012; Haouas *et al.* 2007; Kent 2009). A
129 commonly used approach has been to use polymerase chain reaction (PCR)-based
130 techniques to amplify and sequence host DNA from blood meal contents in the guts
131 of fed flies. This has largely been based on mitochondrial genes due to their high
132 copy number and the extensive databases available due to their use as universal
133 markers for DNA barcoding (Hebert *et al.* 2003; Lah *et al.* 2012; Pradhan *et al.*
134 2015). For example, Muturi *et al.* (Muturi *et al.* 2011b) surveyed blood meals of *G.*
135 *swynnertoni* from Tanzania and *G. pallidipes* from Kenya and Uganda using primers
136 targeting the mitochondrial cytochrome b (cytB) and cytochrome oxidase I (COI)
137 genes. African elephants, African buffalo, warthogs, lizards, giraffes, spotted hyenas
138 baboons and Nile Monitor lizards were identified as sources of blood contained in
139 tsetse abdomens. However, this was not compared to the relative availability of
140 hosts to determine whether there were biases in host preferences. In the Serengeti
141 ecosystem in Tanzania, which holds a high number and wide range of wild animals,
142 a thorough investigation of blood meal composition in tsetse flies based on
143 sequencing of the cytB gene compared to surveys of host density revealed strong
144 preferences for particular hosts, which varied by species of fly (*G. swynnertoni* vs *G.*
145 *pallidipes* (Auty *et al.* 2016a). This clearly demonstrated the value of relating feeding
146 patterns to host densities but also the usefulness of using DNA sequencing to
147 identify the range of diversity of hosts present. However, trypanosome prevalence
148 was not quantified in that study and no domestic hosts were identified in the blood

149 meals; so, relative host preferences for wildlife compared to livestock could not be
150 determined.

151 The relative risks of transmission between host types could depend not only on
152 differences in the feeding behaviours of flies but also on their relative susceptibility to
153 different species of trypanosomes. Since both sexes of tsetse flies feed on blood
154 meals, they are both at risk of exposure to trypanosomes from infected vertebrate
155 hosts after they emerge from their puparium (Jackson 1946). Relative prevalence
156 and transmissibility could also vary by sex, age or species of fly. For example, higher
157 prevalence of trypanosomes in females could be due to their longer lifespan
158 compared to males (Nash 1936), which could increase both the number of hosts that
159 they feed on and the length of time that they harbour trypanosomes. However, the
160 consequences for transmission could also vary by species of trypanosomes. (e.g
161 Peacock *et al.* (2012)). Moreover, host feeding activity could be influenced by
162 tsetse-specific factors. For example, old females are thought to be less active than
163 younger ones, especially those in their first three weeks of their life (Jackson 1946).
164 However, differences between sexes and age groups can also differ by species of
165 tsetse (Moloo *et al.* 1992) (Wamwiri *et al.* 2013) so it is important to assess feeding
166 behaviours separately for each species.

167 Furthermore, the availability of preferred and nonpreferred hosts could alter feeding
168 patterns in a way that could affect the risk of transmission, even within species of
169 tsetse. For example, the feeding-interval time for *G. pallidipes* is approximately two
170 days but that of males has been found to be longer than that for females (Turner
171 1987) and times can extend to three days in mature tsetse flies seeking their
172 preferred hosts (Bouyer *et al.* 2007). More frequent feeding might occur if flies are
173 disrupted while feeding or if they abandon a host that they perceive to be unsuitable.

174 The dominance of nonpreferred hosts in a particular geographic area could thus
175 result in more frequent host switching and so increased rates of multiple feeding and
176 potentially higher exposure to a diverse range of parasites. In East Africa, *G.*
177 *pallidipes* is widespread and has been demonstrated to feed on a wide range of
178 hosts, including bovines (Clausen *et al.* 1998; England & Baldry 1972a; Muturi *et al.*
179 2011b; Okoth *et al.* 2007; Turner 1987), suids (Bett *et al.* 2008; Okoth *et al.* 2007),
180 elephants (Muturi *et al.* 2011b; Nyawira 2009), antelopes (Allsopp *et al.* 1972b) and
181 cattle (Muturi *et al.* 2011b). Warthogs, bushbuck and African buffalo have been
182 suggested as the preferred hosts (Boakye *et al.* 1999; Clausen *et al.* 1998;
183 Langridge *et al.* 1963; Leak 1998; Muturi *et al.* 2011b; Nyawira 2009; Okoth *et al.*
184 2007) but this varies by geographic region (Auty *et al.* 2016a; Farikou *et al.* 2010;
185 Muturi *et al.* 2011b; Snow *et al.* 1988; Spath 2000) and relative preference for
186 domestic and wild hosts has not been specifically assessed. Disease control
187 measures might need to be specifically targeted to the particular communities of
188 tsetse flies, vertebrate hosts and trypanosome species present in a particular region
189 (Auty *et al.* 2016b). However, what are lacking are comparisons between
190 trypanosome prevalence in geographic regions that differ in community composition
191 of potential hosts, particularly at wildlife-livestock interface areas.

192 In a previous study, we established that the prevalence of trypanosomes in two
193 regions of Kenya (Nguruman and the Shimba Hills) showed complex relationships
194 with geographic location, tsetse specific factors (age, sex and fly species), species of
195 trypanosome and the presence of an endosymbiont, *Sodalis glossinidius*
196 (Channumsin *et al.* 2018). Here we focus on one of the four species of tsetse found
197 in these regions (*G. pallidipes*) to investigate how blood feeding behavior of flies and
198 host availability affect the potential for cross-transmission of parasites between wild
199 and domestic hosts. Specifically, we aimed to determine whether: 1) tsetse flies

200 sampled from wildlife-livestock interface areas feed on both domestic and wild hosts;
201 2) the number of different host species fed on by individual flies varies by site or host
202 type; 3) trypanosome prevalence varies by host type or species. We hypothesise
203 that the type of hosts recently fed on would be associated with trypanosome status:
204 specifically, that tsetse fly populations where multiple-host feeding is more frequent
205 would show a higher prevalence of trypanosomes. We also used the blood meal
206 data to examine mtDNA haplotype diversity for the most commonly fed on hosts, in
207 the context of previous blood meal analyses from Kenya and the bordering Serengeti
208 ecosystem in Tanzania (Auty *et al.* 2016a; Muturi *et al.* 2011a).

209 **Methods**

210 **Sampling and tsetse fly characterisation**

211 The *G. pallidipes* samples used in this study for host blood meal analysis were the
212 same as those described in Channumsin *et al.* (2018), where details of the sampling
213 strategy are provided (but see Supplementary Table 1 for locations of the traps).
214 Tsetse flies were collected from three sites that differ in anticipated levels of
215 abundance of livestock and wildlife. Two sites were sampled in the Shimba Hills
216 National Reserve (Kwale County, in the coastal region of Kenya), which is a
217 relatively small (250 km²) protected area separated from surrounding agricultural
218 areas by a wildlife fence. There is extensive habitat for tsetse flies, including on the
219 park boundaries. Buffalo Ridge and Zungu Luka (approximately 20 km apart), have
220 different types of vegetation and levels of human activity. Buffalo Ridge is in a
221 fenced wildlife protected area in the middle of a thicket forest, where many tourists
222 visit all year, while Zungu Luka has a woodland type of vegetation, and is located on
223 the border of the park close to an inhabited rural area. In contrast, the Nguruman
224 region contains lowland woodland patches surrounded by open savannah; habitats

225 which have been found to host a large number of *G. pallidipes* and *G. longipennis*
226 (Brightwell *et al.* 1997). The sampling site (Mukinyo) is at the border of the
227 Olkiramatian group ranch, which is a wildlife conservancy where the distribution of
228 domestic and wild tsetse host overlap because there are no fences.

229 Characteristics of the flies and presence of trypanosomes were taken from
230 Channumsin *et al.* (2018). Whole flies were preserved in 95% ethanol and stored at -
231 80°C. Sex and species of flies were determined based on morphological characters,
232 and age was based on a wing fray score (Jackson 1946). Presence of
233 trypanosomes was determined using general primers targeting the ITS-1 region of
234 the rDNA array (CF: 5' CCGGAAGTTACCGATATTG 3' and BR: 5'
235 TTGCTGCGTTCTTCAACGAA 3'; (Njiru *et al.* 2005)) that allow identification of
236 trypanosome species based on size of amplicons. For blood meal analyses in this
237 study, we used DNA extracted from abdomen samples from the *G. pallidipes* (N =
238 577) samples described in Channumsin *et al.* (2018).

239 **Identification of type and number of hosts from *G.*
240 *pallidipes* blood meals**

241 Although two sets of primers were tested for efficiency and reliability of amplification
242 of vertebrate hosts from tsetse fly blood meals we selected primers developed by
243 Kocher *et al.*, (1989) targeting a 359 bp fragment of the mitochondrial gene
244 cytochrome B (cytb) gene in mammals (Cb1: 5'
245 CCATCCAACATCTCAGCATGATGAAA 3' and Cb2: 5'
246 GCCCCTCAGAATGATATTGTCCTCA 3'), for comparison with Auty *et al.* (2016a)
247 and because they showed more reliable amplification in a pilot study
248 (Wongserepipatana 2016) than primers targeting the mitochondrial cytochrome C
249 oxygenase 1 (CO1) gene (VF1d-t1 and VR1d-t1) (Ivanova *et al.* 2007). PCR cycling

250 was carried out in 25 μ l reaction mixtures containing: 1X Invitrogen PCR buffer; 0.2
251 mM dNTP mixture; 1.5 mM MgCl₂ (Thermo Scientific); 0.5 μ M of each primer; 1 unit
252 of *Taq* DNA polymerase (Invitrogen Inc, Carlsbad, CA., U.S.A.); and 2 μ l tsetse
253 abdomen DNA template. Samples were pre-heated at 94°C for 5 min, denatured at
254 94°C for 30 sec, annealed at 55°C for 45 sec, then extended at 72°C for 30 sec, with
255 35 cycles of the amplification and a final extension at 72°C for 10 min (Muturi *et al.*
256 2011b). PCR products were visualised using 1.5% UltraPureTM Agarose gels
257 (Invitrogen, Paisley) with 2% Ethidium Bromide (Invitrogen, Paisley) in 1X TBE buffer
258 (108 g of Tris Base, 55 g of Boric acid and 40 ml of 0.5 M EDTA). Results were
259 visualised and analysed by a gel documentation system (UVIpro Platinum, UVITEC,
260 Cambridge, UK or GeneDoc, BioRad Inc, UK).

261 The feeding status of tsetse flies was classified as follows: flies showing cytb
262 amplicons of the expected size (359 bp) were classified as “fed” and negative
263 amplifications as “unfed”, with sequencing of the cytb fragment used to identify host
264 species fed on. Since “unfed” would include false negatives for PCR amplification,
265 analyses were only conducted based on the “fed” products. PCR products at \geq 20
266 ng/15 μ l were cleaned using ExoSAP-IT PCR Clean-up Kits (GE Healthcare). In
267 cases where the yield of PCR products was lower than this threshold, multiple PCR
268 products were concentrated and QIAquick Gel Extraction Kits (Qiagen Inc, Paisley,
269 UK) were applied to extract the PCR products from agarose gels. All purified
270 samples were sent for Sanger sequencing in both forward and reverse directions,
271 using the Sequencing Service at the University of Dundee.

272 Chromatogram sequences were corrected and aligned using the Sequencher
273 software program, version 5.3 (Gene Codes Corporation, Ann Arbor, MI USA). The
274 Basic Local Alignment Tool for somewhat similar sequences (BLASTn) (Altschul *et*

275 *al.* 1990), was used to identify the closest matching sequences in the GenBank
276 database to determine the host identity of each consensus sequence.
277 Chromatographs with only single peaks based on direct sequences were classified
278 as “single host feeding”. Sequences that showed more than one clear peak at
279 multiple positions were classified as “multiple host feeding”. While the difficulty of
280 resolving the phase of mutations precluded identification of all hosts from direct
281 sequencing of multiple-peak products, the dominant host was determined based on
282 BLASTn analysis of the most prominent peaks. Multiple-peak sequences that clearly
283 showed the presence of more than one host species but for which a dominant
284 sequence was not resolved, were considered as “multiple feeding” but were
285 excluded from statistical analyses.

286 A subset of samples was rechecked to confirm host-feeding patterns by cloning
287 using TOPO®-TA Cloning Kits (Invitrogen, UK), with at least six plasmids of each
288 sample sent for sequencing, after purifying using QIAprep Spin Miniprep Kits
289 (Qiagen Inc, Paisley, UK). Ten samples whose chromatographs showed double or
290 triple peaks at single positions in the direct sequences were cloned to confirm that
291 multiple peaks were due to feeding on multiple host species rather than poor quality
292 sequences (five from Buffalo Ridge; three from Zungu Luka; two from Mukinyo). An
293 additional seven samples that appeared to have fed on single hosts but with
294 ambiguous peaks were also cloned (five from Buffalo Ridge and two from Zungu
295 Luka).

296 Dominant hosts resolved were classified as “wild” or “domestic” (the latter including
297 humans, livestock and companion animals). For all unambiguous direct and cloned
298 sequences, separate alignments were made for each host species identified through
299 BLASTn, using Sequencher version 5.3 (Gene Codes Corporation, Ann Arbor, MI

300 USA). Sequences were exported to Se-Al version 2.0 (Rambaut 1996) to manually
301 align and prune sequences to the same length and DNAsp version 5.0 (Librado &
302 Rozas 2009) was used to resolve variants into unique haplotypes within host
303 species. For sequences identified as human, samples were compared to the Asian
304 variant sequenced from the main investigator; any sequences matching those were
305 considered as possible contaminants and so were excluded from further analyses.

306 Statistical Analyses

307 Generalised linear models (as implemented in R version 3.3.2 (Team 2016) were
308 used to test whether feeding behaviour of the flies (single vs multiple hosts) was
309 influenced by site, type of host (domestic vs wild), tsetse-specific traits (sex, age) or
310 the presence of trypanosomes. The full model included interactions between type of
311 host with site, sex and age of the flies, as well as interactions between site with
312 tsetse specific factors and trypanosome presence. Feeding behaviour was modelled
313 as a binary response variable, using the logit link function. Model selection was
314 performed using likelihood ratio tests to find the minimum model that best explained
315 the data. The same approach was used to test whether the presence of
316 trypanosomes was explained by feeding behaviour, host type, site, or tsetse-specific
317 factors, including all pairwise interactions and a three-way interaction between sex,
318 age and site, based on conclusions from the previous study (Channumsin *et al.*
319 2018). Model fit was assessed using pseudo R^2 (as implemented in the R package,
320 BaylorEdPsych (Beaujean 2012)). Given the wide range of hosts that the flies feed
321 on, the influence of particular host species on trypanosome prevalence was
322 considered only qualitatively.

323

324 Given the complexities of possible associations between variables (Channumsin *et*
325 *al.* 2018), multivariate analyses were applied to visualise graphic correlations of
326 trypanosome status with tsetse intrinsic factors and feeding patterns for the *G.*
327 *pallidipes* samples for which feeding patterns and dominant host species could be
328 assigned. Multiple Correspondence Analysis (MCA), as implemented in the
329 FactoMineR package (version 1.30 (Le *et al.* 2008)) was used, considering the
330 categorical variables: site, presence or absence of *Trypanosoma spp*, sex, age,
331 feeding pattern (single vs multiple) and dominant host type (domestic vs wild).
332 Variation along pairs of principal component axes was visualised using “ggplot2()”
333 (Ginestet 2011) in R (Team 2016).

334

335 **Host species diversity**

336 To assess how intraspecific variation among the hosts identified in our study related
337 to that found in previous cytb-based tsetse fly blood meal analysis surveys in eastern
338 Africa we downloaded and aligned popset sequences from: 1) a study comparing
339 wild host usage in the Nguruman region of Kenya (where Mukino is located) and
340 the Serengeti National Park in Tanzania (Muturi *et al.* 2011b); and 2) a survey
341 conducted in the Serengeti that had also quantified wild host usage in relation to
342 host density (Auty *et al.* 2016a). We selected these studies because they had
343 sequences available for all flies screened using the same cytb primer set that we
344 used, rather than just unique host haplotypes found; although Muturi *et al.* (2011)
345 had also surveyed a site in Uganda, only domestic cattle were identified as hosts at
346 that site. We used DNAsp version 5.0 (Librado & Rozas 2009) to collapse the
347 alignment into unique haplotypes and to compute the relative frequency of each in
348 the various geographic locations represented in the three studies. Minimum

349 spanning networks were then plotted using PopArt (Leigh & Bryant 2015), to indicate
350 relative frequencies across the sampling sites.

351

352 **Results**

353 **Identification of type and number of hosts from *G.* 354 *pallidipes* blood meals**

355 From 573 *G. pallidipes*, 128 flies showed no evidence of a recent blood meal based
356 on lack of amplification products following screening with the Cb1 and Cb2
357 primers; although these were classified as “unfed”, the possibility that some
358 represented failure of the PCR meant that they were excluded from analyses
359 (Table 1). The remaining 445 flies showed amplified products of the expected size,
360 which were sequenced and used to classify feeding status (Table 1; Supplementary
361 Table 2). Among these “fed” flies, chromatograms of 198 samples were not of
362 sufficient quality to reliably determine the source of the blood meals (these were
363 classified as “unidentified”), but the proportion of samples for which hosts could
364 be reliably identified varied by site (Table 1). For 197 of the 247 samples for which
365 dominant hosts could be resolved to species, a single amplification product was
366 apparent in the chromatographs; these were classified as having recently fed on a
367 single host. Cloning of seven of these samples confirmed amplification of DNA
368 from only a single host species (Supplementary Table 2). The chromatographs for
369 the other 50 samples clearly showed multiple peaks that could be confidently
370 attributed to feeding on multiple hosts rather than poor sequence quality. The
371 dominant host could be identified to species for these 50 samples. Cloning of 10
372 of these cytb PCR products confirmed the amplification of DNA from more than
373 one host, with up to four different host species identified in single flies
374 (Supplementary Table 3).

375 There was no apparent detection bias in relation to age of the flies in being able
376 to resolve blood meals, with the relative proportions of flies with unidentified
377 hosts, or having fed on single or multiple hosts similar across age categories
378 (Supplementary Figure 1) and roughly in proportion to the number flies sampled in
379 a particular age category (Figure 1; Supplementary Table 4).

380 Most sequences obtained from human hosts among the samples screened were
381 similar to cytb sequences identified from tsetse blood meals in the Serengeti,
382 Tanzania (type 2) or Zambia (type 3) (Supplementary Table 6). However, three
383 samples with evidence of only a single host matched an Asian haplotype from
384 Taiwan (type 1: one from each of the three sites), which is the ethnic origin of the
385 primary researcher; these were excluded from analyses because they were
386 suspected contaminants.

387 There was extensive variation among sites in both the degree of multiple feeding
388 and host types (Table 1; Figure 1). The two sites from the Shimba Hills (Buffalo
389 Ridge and Zungu Luka) showed a higher proportion of flies that appear to have fed
390 on multiple hosts than the site from Nguruman (Mukinyo): 41.8% from Buffalo
391 Ridge; 61.5% from Zungu Luka, compared with 2.0% from Mukinyo. However, this
392 appeared to be influenced by the type of host. At Mukinyo, only a single fly fed
393 recently on a domestic host (identified as single feeding on cattle) and only 3/149
394 flies with dominant wild hosts identified had fed on more than one host species
395 (confirmed by cloning for two of the individuals; Supplementary Table 3). In
396 contrast, 77% of dominant hosts were identified as domestic for Zungu Luka and
397 23/30 of these had fed on multiple host species, compared with only 1/9 of the
398 flies for which dominant sequences were identified as wild hosts. All three
399 multiple feeding flies cloned from this site had fed on humans, with one also

400 having fed on both domestic (goat, mouse) and wild (antelope) hosts, one having
401 also fed on a single wild host (bushbuck) and another on a domestic host (chicken)
402 (Supplementary Table 3). The site in the middle of the fenced wildlife protected
403 area close to this site (Buffalo Ridge) showed a much higher proportion of flies
404 that had fed on wild hosts (65.5%) but most individuals with a dominant domestic
405 host had fed on multiple species (18/19 for domestic hosts, compared with 5/36
406 for wild hosts). Cloning revealed that all five of the individuals classified as
407 multiple feeding screened had fed on humans and at least one other domestic
408 animal; four of the individuals had also fed on a wild host (Supplementary Table
409 3).

410 Using the type of feeding behaviour (single vs multiple hosts) as a binary response
411 variable, the final model selected by maximum likelihood included a significant
412 interaction between host type (domestic vs wild) and age of the flies (LRT: $\chi^2 = 8.9$,
413 df = 8, $p = 0.012$), as well as a significant effect of site (LRT: $\chi^2 = 13.7$, df = 8, $p =$
414 0.001). There was no effect of sex of the flies (LRT: $\chi^2 = 0.01$, df = 9, $p = 0.995$), or
415 presence of trypanosomes (LRT: $\chi^2 = 3.56$, df = 9, $p = 0.172$). Pseudo R² indicated
416 that the model explained a substantial amount of the variation (McFadden's = 0.63;
417 count = 0.93). Although the number of individuals was small, at all three sites, only
418 juvenile flies fed multiple times when they had access to wild hosts, whereas young
419 flies fed multiple times more often than the other age classes when exposed to
420 domestic hosts (Figure 1). There were fewer old flies than the other age classes at
421 all sites but they were at highest frequency at Mukinyo, where they fed singly on wild
422 hosts; only a single juvenile had fed recently on a domestic host.

423 Host composition varied across sites (Table 2), with buffalo dominating in the two
424 wildlife protected areas (Buffalo Ridge and Mukinyo) and humans predominating in

425 the site bordering the SHNR (Zungu Luka), where no buffalo were detected
426 (Supplementary Figure 2). Mukinyo had a wider range of wild hosts than Buffalo
427 Ridge but elephants, antelope and warthog were found at both sites. Buffalo
428 Ridge also shared most of the same domestic host species as Zungu Luka,
429 demonstrating that flies moved across the fenced interface to feed. Only a single
430 fly (from Mukinyo) was confirmed to have fed on domestic cattle.

431

432 **Prevalence of *Trypanosoma* spp. in relation to *G.***
433 ***pallidipes* feeding patterns**

434 Across sites, 44% (n = 107) of the flies for which hosts could be identified to species
435 tested positive for any trypanosome species, with 56% associated with dominant
436 domestic hosts and 40% with wild (Table 1). Of the three most abundant host
437 species, flies that had fed on humans and elephants had the highest prevalence of
438 trypanosomes (51.8% and 51.4%, respectively), followed by buffalo (38.5%). Of flies
439 feeding on multiple hosts, 58% tested positive for trypanosomes, compared to 40%
440 that had fed on single hosts, but this was influenced by the higher rate of infection in
441 Zungu Luka (61.5%), where single feeding was rare, compared to Buffalo Ridge
442 (36%) and Mukinyo (42%). Coinfections between more than one species of
443 trypanosomes occurred in 7.2% of flies (n = 18), including four with domestic hosts
444 dominant but all of which had fed on multiple host species (two from Buffalo Ridge
445 and two from Zungu Luka) (Supplementary Table 5). The remainder of flies with
446 coinfections showed patterns of single feeding on buffalo (three from Buffalo Ridge
447 and seven from Mukinyo) or elephants (four from Mukinyo)

448 As found in our previous study (Channumsin *et al.* 2018), generalised linear models
449 using trypanosome presence as a response variable were not very informative,
450 possibly due to lack of orthogonality between explanatory variables related to tsetse
451 specific factors and site of study. Initial model selection using LRTs retained
452 interactions between fly sex and age, fly age and site, as well as an individual fixed
453 effect of host feeding pattern (single vs multiple). However, final LRTs to test the
454 significance of the variables included in the final model resulted in a significant effect
455 only of host feeding pattern (LRT: $\chi^2 = 5.08$, df = 2, p = 0.02), with flies that had
456 recently fed on more than one host being more likely to test positive for
457 trypanosomes than those that had fed on only a single host. However, testing the fit
458 of the two models using pseudo- R^2 indicated that only a small amount of the
459 variation in trypanosome presence was explained by either model (more complex
460 model: McFadden's = 0.08; count = 0.65; minimal model: McFadden's = 0.11; count
461 = 0.65).

462 For this reason, multivariate ordination analyses were used to visualise associations
463 between variables. Based on MCA analyses, strong correlations among site of *G.*
464 *pallidipes* collection, host feeding pattern and type of host were apparent in
465 dimension 1 (Table 3; Figure 2). Trypanosome status was resolved primarily along
466 dimension 2, showing a positive association with juvenile male flies, while
467 trypanosome negative flies tended to be found in young female flies.

468 *Trypanosoma vivax* was the predominant species identified in all populations
469 sampled (59 individuals as a single infection and 16 in coinfections with other
470 species of trypanosomes) and occurred in association with all hosts, except for the
471 two hyaena samples and the single cattle sample (Supplementary Table 5).
472 *Trypanosoma congolense* was also found at all sites (18 as a single infection and 13

473 in coinfections) and in many different host species. *Trypanosoma brucei* spp. was
474 present in seven single and six coinfections and was only found in flies that recently
475 fed on buffalo, elephants and humans.

476 Host species diversity

477 In addition to identifying just the species of host from the blood meals, intraspecific
478 variation in mtDNA haplotypes within wild host species was found in our samples
479 (Figure 3; Supplementary Table 6). Comparing intraspecific variation to other studies
480 (Supplementary Table 7), diversity across the three Kenyan sample sites in our
481 study was lower than that in the Serengeti samples obtained by Auty et al. (2016)
482 and Muturi et al. (2011), except for elephants, for which all three haplotypes found
483 amongst our samples were found in other populations (Figure 3a). Buffalo (Figure
484 3b) had 16 haplotypes (7 of which were also found in our study), but most were
485 differentiated by single nucleotide substitutions. Giraffes had five haplotypes but
486 only one of the two most frequent in the Serengeti was found at the Kenyan sites
487 (Figure 3c). The BLAST analysis revealed that there is not a very comprehensive
488 database of antelope species available in GenBank and so not all of the haplotypes
489 we identified could be identified to species (Figure 3d): three haplotypes were at
490 least 98% similar to bushbuck (*Tragelaphus scriptus*), and one to Lesser Kudu (99%
491 to *Tragelaphus imberbis*) but the other two divergent haplotypes were not similar to
492 any named species in the database (Supplementary Table 6). Three haplotypes
493 were at least 98% similar to bushbuck; one was 99% similar to lesser Kudu and two
494 were highly divergent and showed <95% similarity to bushbuck. However, the latter
495 two were found in single clones, in flies that had fed on at least one other host.
496 Warthogs showed particularly high haplotype diversity in the Serengeti, but only 3
497 haplotypes were found at our sites (Figure 3e). Excluding sequences that were

498 identical to the sequence obtained from the main investigator (of Asian origin), three
499 other human haplotypes were found, one of which was also found in the Serengeti
500 (Figure 3f). A single haplotype was found for hyaenas (*Crocuta crocuta*); although
501 this species was identified as the dominant host only for two flies from Mukinyo, the
502 same haplotype was found in the Serengeti.

503 Single haplotypes were found for all of the domestic hosts except humans: mouse
504 (*Mus musculus*), chickens (*Gallus gallus*), goat (*Capra hircus*) and cattle (*Bos*
505 *taurus*). For cattle, Muturi et al. (2011) found the same haplotype as in our sample
506 from Mukinyo, along with two that differed by one bp substitution each in samples
507 from Uganda. Auty et al. (2016) did not find any domestic hosts in their Serengeti
508 sampling.

509

510 **Discussion**

511 Our results suggest that blood meal analysis of tsetse flies provides a useful tool for
512 assessing the potential for cross-species transmission of parasites between
513 domestic and wild hosts in interface areas between human settlements and wildlife
514 protected areas. Although host preferences were not specifically assessed in our
515 study, rates of host switching appeared to be higher on flies that had fed on
516 domestic hosts compared to wild hosts. While feeding on multiple hosts could
517 increase transmission of parasites between host species, the high host fidelity of
518 flies feeding on wild hosts could reduce risk of transmission from wildlife to livestock
519 or humans. Site-specific differences and age distribution of the flies also may have
520 influenced the feeding patterns in different types of host. As in our previous study
521 (Channumsin et al. 2018), MCA suggested that prevalence of trypanosomes was
522 associated more with geographic location than with intrinsic tsetse factors but

523 feeding patterns and type of host also explained some of the variance. Together,
524 these results suggest that differences in host communities in different regions could
525 influence the risk of transmission between vectors and hosts in complex ways.
526 Haplotype networks comparing cytb variation within host species that tsetse had fed
527 on from Kenya and Tanzania indicated the potential to use intraspecific variation in
528 mammals to infer patterns of host movement and connectivity, if more variable
529 genetic markers were used. The value of blood-feeding arthropods as “flying
530 syringes” (Bitome-Essono *et al.* 2017) could thus have added value for noninvasive
531 sampling of wild animals for conservation genetics purposes and to infer connectivity
532 among hosts that could inform epidemiological models, rather than just identifying
533 hosts and pathogens to species.

534

535 Feeding patterns of *G. pallidipes*: Type of hosts

536 We identified the dominant hosts for 46% of the *G. pallidipes* samples screened
537 (56% of the samples that showed positive amplification products), which is
538 comparable or higher than previous studies using the same primers (Auty *et al.*
539 2016a; Bitome-Essono *et al.* 2017). We found extensive variation among the species
540 fed on in two different geographic areas. In the Shimba Hills, where a fenced wildlife
541 protected area is located within a few km of human settlements, flies fed on both
542 domestic and wild hosts, with blood meals from both host types detectable within
543 individual flies. In contrast, in the Nguruman region, which is within 70 km of one of
544 the highest density wildlife populations in the region (the Seregenti National Park in
545 Tanzania), only a single fly was identified that had fed on a domestic host. This is
546 consistent with Muturi *et al.* (2011a), who also did not identify domestic hosts in their

547 survey of the Nguruman region, despite finding predominantly cattle at a site
548 surveyed in Uganda. Snow *et al.* (1988) suggested that, even though flies in areas
549 dominated by cattle fed readily on these domestic hosts, a positive correlation
550 between the number of wild herbivores and the abundance of *G. pallidipes*
551 suggested that feeding success was poor on local livestock (based on a low density
552 of flies where cattle were numerous). This could help to explain decreased density
553 of tsetse traversing from wildlife-protected areas through to livestock dominated
554 areas in interface areas (Lord *et al.* 2018).

555 Surprisingly, no domestic cattle were detected in our study from the Shimba Hills,
556 despite the proximity to farms with mixed herds of cattle, sheep and goats (Njenga *et*
557 *al.* 2011). However, domestic hosts were also not identified in the Shimba Hills
558 region in a previous study based on host detection using haemagglutinin assays
559 (Snow *et al.* 1988). This could indicate that flies avoid livestock when more
560 favourable hosts are present. However, there also could be seasonal differences, as
561 trypanosome prevalence in cattle was high (33.9%) in Kwale County, in a previous
562 study that also found *G. pallidipes* at high abundance (Mbabin *et al.* 2013). At
563 Mukinyo a single individual fed on domestic cattle but there was a very low
564 proportion of flies that fed on multiple hosts (2%) and a predominance of buffalo
565 (71%) among the samples where the dominant host could be identified. Although our
566 blood meal analysis cannot predict host preferences, it is possible that buffalo are
567 abundant hosts that are easy to feed on and so flies could learn to return to the
568 same host species (Bouyer *et al.* 2007).

569 Our finding of African buffalo as the main hosts of *G. pallidipes* in Nguruman and
570 Buffalo Ridge supports previous reports that ruminants are attractive to adult *G.*
571 *pallidipes*, *G. fuscipes* and *G. brevipalpis* (Allsopp *et al.* 1972a; Harraca *et al.* 2009).
572 However, host selection has been found to vary extensively by population

573 (Supplementary Table 8). Differences across studies could be due to differences in
574 methodology but also could be due to microhabitat differences (Spath 2000), such
575 as seasonal variation in host availability, the vegetation type or cover at particular
576 sites, or particular environmental conditions in different years, which affects overlap
577 of habitat and activities between tsetse flies and hosts (Allsopp *et al.* 1972a; Clausen
578 *et al.* 1998). It is interesting that no buffalo were detected at Zungu Luka, despite its
579 close proximity to Buffalo Ridge, where buffalo were the most frequent host. This
580 could suggest that flies feeding in human settlements move into the park to feed on
581 wildlife but once feeding on their preferred wildlife, they do not move out into the
582 human-settled regions or that flies do not move very far. Our results cannot confirm
583 host preferences because we do not have robust data on host availability (Auty *et al.*
584 2016a) but the directionality of movements of flies in interface areas would be
585 interesting to assess. Preferences for different wild host species in tsetse flies do
586 not necessarily reflect host densities in large wildlife protected areas (Allsopp *et al.*
587 1972a; Auty *et al.* 2016a), and variation in host preference of domestic hosts has
588 been found in the absence of wildlife (England & Baldry 1972b). However, specific
589 choice tests between domestic and wild hosts could reveal important information
590 about preferences that could inform control interventions, as has been done for
591 malaria-carrying mosquitos (Lyimo & Ferguson 2009). Nevertheless, the finding of
592 flies collected in the same traps feeding on both wild and domestic hosts
593 emphasizes the high potential for cross- feeding between these host types when
594 they occur sympatrically.

595 It is more difficult to interpret patterns of feeding on humans because of the potential
596 for biting during setting traps or sampling or contamination during DNA extractions or
597 PCR amplifications (England & Baldry 1972b). Humans have been suggested as
598 inappropriate hosts because they camouflage their odours, apply chemical

599 repellents, and react strongly to tsetse bites, which could result in unsuccessful
600 feeding (Baylis 1996; Baylis & Nambiro 1993; Hargrove 1976) that would lead to
601 host switching. Hargrove (1976) found that the presence of humans not only
602 repelled tsetse flies but also inhibited the landing response to approach other
603 potential hosts nearby. The relatively high proportion of blood meals containing
604 human DNA was thus not expected. Most of the mtDNA haplotypes we identified
605 from human samples were consistent with those expected regionally and one
606 haplotype was shared with those found from the Serengeti (Figure 3); we also did
607 not find evidence of feeding on humans in Mukino. However, we cannot completely
608 rule out biases leading to an apparently high rate of human feeding.

609

610 Feeding patterns of *G. pallidipes*: Number of hosts

611 We found that the propensity for feeding on single compared to more than one host
612 species was determined by an interaction between age of the flies and site, as well
613 as the type of host fed on, with more multiple feeding involving domestic hosts,
614 which could further reflect a preference for feeding on wildlife. Cloning and
615 sequencing revealed that flies feeding on domestic hosts had fed on up to four
616 different host species and confirmed that single feeding was more common in flies
617 feeding on wildlife. Theoretically, the number of clones could be used to predict
618 which host was last fed on, but this would also depend on the rate of feeding of the
619 fly (e.g. if they were interrupted and switched hosts very rapidly, more than one
620 blood meal might have a similar DNA concentration) and lack of bias in PCR
621 amplifications. There also could be behavioural differences that could result in
622 detection biases: 1) flies might feed more thoroughly on their preferred hosts,

623 increasing the blood meal volume from that host; 2) flies might feed multiple times on
624 the same host species occurring at high local densities; or 3) hosts might differ in
625 effective defense mechanisms, resulting in low blood meal volumes due to
626 interrupted feeding (Torr *et al.* 2001). If feeding on an initial host is interrupted or too
627 low quality (“unsuccessful”), flies might switch hosts. Unsuccessful feeding of tsetse
628 flies on cattle have been attributed to host defense (69%) and competition with other
629 biting insects (31%) (Schofield & Torr 2002). Wild animals might react less to tsetse
630 flies feeding and/or be surrounded by less other biting insects than domesticated
631 animals. Nevertheless, our results suggest higher host fidelity when feeding on wild,
632 compared to domestic, hosts.

633

634 **Prevalence of *Trypanosoma* spp.**

635 There was not a clear association between prevalence of trypanosomes, type of host
636 or host-feeding patterns in the tsetse flies. However, the lack of an association is
637 consistent with the MCA, which suggested a stronger correlation among feeding
638 pattern, host type and site than trypanosome status, sex and age of tsetse flies. We
639 hypothesised that feeding on multiple hosts could increase risk of trypanosome
640 infection in flies but that was not apparent in the MCA (Figure 2), possibly due to the
641 much stronger effects of site on feeding patterns and type of hosts. Bouyer *et al.*,
642 (2007) suggested that repeated feeding on the same host species was likely to
643 increase risk of trypanosome transmission within species, but to decrease risk
644 between species. Leak (1998) suggested that trypanosome infection might influence
645 feeding success and feeding behaviour of the flies. For example, high numbers of *T.*
646 *congolense*, which attach to the cuticle of the proboscis, could interrupt feeding and
647 result in more frequent probing. Alternatively, nutritional status of the flies could
648 affect their relative susceptibility to trypanosome establishment (Kubi *et al.* 2006).

649 Thus, an association between the frequency of feeding and trypanosome infection
650 status should be further studied in laboratory experiments to test whether
651 trypanosome infection causes a feeding pattern change or differences in feeding
652 patterns promote trypanosome infection.

653 There are also could be differences in the susceptibility of different host species to
654 trypanosomes, regardless of the feeding rate by tsetse. Although African buffalo
655 were the most frequent dominant hosts detected, a larger proportion of flies that had
656 fed on African elephants were trypanosome positive. This could support previous
657 suggestions that African buffalo might be resistant to trypanosome infection
658 (Grootenhuis *et al.* 1990; Olubayo *et al.* 1996). Other studies have reported an
659 association between trypanosome infections and particular species of wild animals
660 (Anderson *et al.* 2011a; Snow *et al.* 1988). Nevertheless, our results do not suggest
661 an increased prevalence of trypanosomes in communities where both domestic and
662 wild hosts are fed on that would suggest increased risks in livestock interface
663 regions.

664

665

666

667 Diversity of host species

668 Comparison of mtDNA haplotype diversity in the most frequent hosts with published
669 studies suggested higher diversity in African buffalo and warthogs than in elephants
670 and giraffes. However, this comparison highlights some limitations of blood meal

671 analyses based on using only a single genetic marker. We found that a higher
672 proportion of hosts could be resolved from Mukinyo than the other areas, possibly
673 due to the dominance of wild hosts. However, there is also potential that biases in
674 PCR amplification could have influenced this pattern. In the Shimba Hills, although
675 goats were identified from flies sampled from both sites, there were also additional
676 samples that matched goats in BLAST analyses that were not included in the
677 analysis because it was difficult to determine whether the sequences represented
678 multiple feeding or just poor sequence quality. Both in the sequences from Auty *et al.*
679 (2016) and our sequences, warthog tended to include more ambiguous base calls
680 than the other hosts, which might have inflated diversity estimates. Previous studies
681 comparing the relative reliability of cytb and COI mtDNA (e.g. (Muturi *et al.* 2011a)
682 have found that neither alone amplifies products from all potential host types
683 present. Differences in amplification biases and sequence quality between host type
684 sequences could thus bias the interpretation of single vs multiple feeding and the
685 propensity for feeding on domestic vs wild hosts.

686

687 Moreover, blood meal analyses rely on completeness of reference databases. We
688 found several cytb haplotypes that were closest to antelope in BLAST but the
689 similarity was too low to resolve to species (93%); this lack of reference sequences
690 could have lead to underestimates of host usage in previous blood meal analyses.
691 We took a conservative approach to host identification by basing analyses only on
692 the dominant host species identified in each fly, but this could represent either the
693 most recent blood meal or the hosts on which most efficient feeding occurred. There
694 has been a recent shift towards using next generation sequencing approaches for
695 amplicon based host identification (Hoffmann *et al.* 2016; Reeves *et al.* 2018) that
696 would allow consideration of relative read numbers for hosts in mixed samples; while

697 this could provide more powerful information on feeding behaviour of
698 haemotophagous insects the same issues with availability of reference databases
699 and amplification biases still need to be overcome. Non-PCR based assays such as
700 high resolution melting point analysis (Farikou *et al.* 2010; Omondi *et al.* 2015) or
701 NGS alternatives such as hybrid sequence capture (Barrow *et al.* 2019; Metsky *et al.*
702 2019) might thus provide a more comprehensive assessment of feeding patterns
703 and range of hosts fed on.

704

705 **Conclusions**

706 Identification of the hosts that *G. pallidipes* fed on based on direct PCR sequencing
707 revealed evidence for both use of a wide range of hosts and multiple feeding bouts
708 by individual flies. However, in wildlife dominated areas, there was a much stronger
709 tendency for flies to feed on single host species compared to a site on the edge of a
710 conservation area, where domestic hosts were more common and flies fed on up to
711 four different detectable host species. If this indicates that domestic animals are not
712 preferred hosts, this could have important implications for understanding risk of
713 transmission of trypanosomes between wildlife and livestock. Our results also
714 highlight the potential to use blood meals not only to characterize pathogen diversity
715 in relation to host usage but also to quantify genetic variation among hosts and
716 patterns of population genetic structure that could inform epidemiological models of
717 transmission risk between different geographic areas or types of hosts.

718 **Data Availability**

719 Sequences have been deposited to Genbank, with accession numbers MN148732-
720 MN148768 (Supplementary Table 9).

721 Acknowledgments

722 This work was funded by the Wellcome Trust (grant number: 093692) to the
723 University of Glasgow and a Phd scholarship from the Thailand government to MCh.
724 We thank Elizabeth Kilbride for assistance with laboratory work. The authors are
725 grateful to the Kenya Wildlife Service for permission to perform this study in
726 protected areas. Esther Waweru and James Kabii provided technical and
727 administrative assistance at *icipe*. James Kabii, Moses Tanju, Loya Suleyman, John
728 Andoke and his team (*icipe*) provided invaluable expertise and help for the trapping
729 of tsetse.

730

731 References

732 Allsopp R, Baldry DAT, Rodrigues C (1972a) Influence of Game Animals on
733 Distribution and Feeding Habits of *Glossina-Pallidipes* in Lambwe Valley.
734 *Bulletin of the World Health Organization* 47, 795-809.

735 Allsopp R, Baldry DAT, Rodrigues C (1972b) The influence of game animals on the
736 distribution and feeding habits of *Glossina pallidipes* in the Lambwe Valley.
737 *Bulletin of the World Health Organization* 47, 795-809.

738 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment
739 Search Tool. *Journal of Molecular Biology* 215, 403-410.

740 Anderson NE, Mubanga J, Fevre EM, et al. (2011a) Characterisation of the wildlife
741 reservoir community for human and animal trypanosomiasis in the Luangwa
742 Valley, Zambia. *PLoS neglected tropical diseases* 5, e1211.

743 Anderson NE, Mubanga J, Fevre EM, et al. (2011b) Characterisation of the Wildlife
744 Reservoir Community for Human and Animal Trypanosomiasis in the
745 Luangwa Valley, Zambia. *PLoS Neglected Tropical Diseases* 5.

746 Auty H, Anderson NE, Picozzi K, et al. (2012) Trypanosome diversity in wildlife
747 species from the serengeti and Luangwa Valley ecosystems. *PLoS Negl Trop
748 Dis* 6, e1828.

749 Auty H, Cleaveland S, Malele I, et al. (2016a) Quantifying heterogeneity in host-
750 vector contact: tsetse (*Glossina swynnertoni* and *G. pallidipes*) host choice
751 in Serengeti National Park, Tanzania. *PloS one* 11, e0161291.

752 Auty H, Morrison LJ, Torr SJ, Lord J (2016b) Transmission dynamics of Rhodesian
753 sleeping sickness at the interface of wildlife and livestock areas. *Trends in
754 Parasitology* 32, 608-621.

755 Barrow LN, Allen JM, Huang X, Bensch S, Witt CC (2019) Genomic sequence
756 capture of haemosporidian parasites: Methods and prospects for enhanced
757 study of host-parasite evolution. *Molecular Ecology Resources* 19, 400-410.

758 Baylis M (1996) Effect of defensive behaviour by cattle on the feeding success and
759 nutritional state of the tsetse fly, *Glossina pallidipes* (Diptera: *Glossinidae*).
760 *Bulletin of Entomological Research* 86, 329-336.

761 Baylis M, Nambiro CO (1993) The effect of cattle infection by *Trypanosoma
762 congoense* on the attraction, and feeding success, of the tsetse fly *Glossina
763 pallidipes*. *Parasitology* 106 (Pt 4), 357-361.

764 Beaujean A (2012) BaylorEdPsych: R package for Baylor University educational
765 psychology quantitative courses. R package version 5.0.

766 Bett B, Irungu P, Nyamwaro SO, *et al.* (2008) Estimation of tsetse challenge and its
767 relationship with trypanosomosis incidence in cattle kept under pastoral
768 production systems in Kenya. *Veterinary Parasitology* **155**, 287-298.

769 Bitome-Essono PY, Ollomo B, Arnathau C, *et al.* (2017) Tracking zoonotic
770 pathogens using bloodsucking flies as 'flying syringes'. *Elife* **6**.

771 Boakye DA, Tang J, P. T, Merriweather A, Unnasch TR (1999) Identification of
772 bloodmeals in haematophagous Diptera by cytochrome B heteroduplex
773 analysis. *Medical and Veterinary Entomology* **13**, 282-287.

774 Bouyer J, Pruvot M, Bengaly Z, Guerin PM, Lancelot R (2007) Learning influences
775 host choice in tsetse. *Biology Letters* **3**, 113-116.

776 Brightwell R, Dransfield RD, Stevenson P, Williams B (1997) Changes over twelve
777 years in populations of *Glossina pallidipes* and *Glossina longipennis*
778 (Diptera: *Glossinidae*) subject to varying trapping pressure at Nguruman,
779 south-west Kenya. *Bulletin of Entomological Research* **87**, 349-370.

780 Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK (2018) Sodalis glossinidius
781 presence in wild tsetse is only associated with presence of trypanosomes in
782 complex interactions with other tsetse-specific factors. *BMC Microbiology*
783 **18**, 163.

784 Clausen PH, Adeyemi I, Bauer B, *et al.* (1998) Host preferences of tsetse (Diptera:
785 *Glossinidae*) based on bloodmeal identifications. *Medical and Veterinary
786 Entomology* **12**, 169-180.

787 Eloy L, Lucheis S (2009) Canine trypanosomiasis: etiology of infection and
788 implications for public health. *Journal of Venomous Animals and Toxins
789 including Tropical Diseases* **15**, 589-611.

790 England EC, Baldry DAT (1972a) The hosts and trypanosome infection rates of
791 *Glossina pallidipes* in the Lambwe and Roo valleys. *Bulletin of the World
792 Health Organization* **47**, 785-788.

793 England EC, Baldry DAT (1972b) Observations on relative attractiveness to *Glossina
794 pallidipes* of different animal baits, a tsetse Trap, and a fly-round patrol.
795 *Bulletin of the World Health Organization* **47**, 789-793.

796 Farikou O, Njiokou F, Simo G, *et al.* (2010) Tsetse fly blood meal modification and
797 trypanosome identification in two sleeping sickness foci in the forest of
798 southern Cameroon. *Acta Tropica* **116**, 81-88.

799 Gariepy TD, Lindsay R, Ogden N, Gregory TR (2012) Identifying the last supper:
800 utility of the DNA barcode library for bloodmeal identification in ticks.
801 *Molecular Ecology Resources* **12**, 646-652.

802 Geigy R, Kauffman.M (1973) Sleeping sickness survey in the Serengeti area
803 (Tanzania) 1971: I. Examination of large mammals for trypanosomes. . *Acta
804 Tropica* **30**, 12-23.

805 Geigy R, Kauffman.M, Jenni L (1973a) Wild Mammals as Reservoirs for Rhodesian
806 Sleeping Sickness in Serengeti, 1970-71. *Transactions of the Royal Society of
807 Tropical Medicine and Hygiene* **67**, 284-286.

808 Geigy R, Kauffman.M, Mayende JSP, Mwambu PM, Onyango RJ (1973b) Isolation of
809 Trypanosoma (Trypanozoon) rhodesiense from game and domestic animals
810 in Musoma District, Tanzania. *Acta Tropica* **30**, 50-56.

811 Geigy R, Mwambu PM, Kauffman.M (1971) Sleeping sickness survey in Musoma
812 District, Tanzania. IV. Examination of wild mammals as a potential reservoir
813 for *T. rhodesiense*. *Acta Tropica* **28**, 211-220.

814 Ginestet C (2011) ggplot2: Elegant Graphics for Data Analysis. *Journal of the Royal
815 Statistical Society Series a-Statistics in Society* **174**, 245-245.

816 Grootenhuis JG, Dwinger RH, Dolan RB, Moloo SK, Murray M (1990) Susceptibility of
817 African buffalo and Boran cattle to *Trypanosoma congolense* transmitted by
818 *Glossina morsitans centralis*. *Veterinary Parasitology* **35**, 219-231.

819 Haouas N, Pesson B, Boudabous R, *et al.* (2007) Development of a molecular tool
820 for the identification of leishmania reservoir hosts by blood meal analysis in
821 the insect vectors. *American Journal of Tropical Medicine and Hygiene* **77**,
822 1054-1059.

823 Hargrove JW (1976) The effect of human presence on the behaviour of tsetse
824 (*Glossina spp.*) (Diptera, *Glossinidae*) near a stationary ox. *Bulletin of*
825 *Entomological Research* **66**, 173-178.

826 Harraca V, Syed Z, Guerin PM (2009) Olfactory and behavioural responses of tsetse
827 flies, *Glossina spp.*, to rumen metabolites. *Journal of Comparative*
828 *Physiology A* **195**, 815-824.

829 Haydon DT, Cleaveland S, Taylor LH, Laurenson MK (2002) Identifying Reservoirs of
830 Infection: A Conceptual and Practical Challenge. *Emerging Infectious*
831 *Diseases* **8**, 1468-1473.

832 Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications
833 through DNA barcodes. *Proceedings of the Royal Society of London Series B-*
834 *Biological Sciences* **270**, 313-321.

835 Heisch RB, McMahon JP, Mansonbahr PEC (1958) The Isolation of *Trypanosoma*
836 *Rhodesiense* from a Bushbuck. *British Medical Journal* **2**, 1203-1204.

837 Hoffmann C, Stockhausen M, Merkel K, Calvignac-Spencer S, Leendertz FH (2016)
838 Assessing the feasibility of fly based surveillance of wildlife infectious
839 diseases. *Scientific Reports* **6**, 37952.

840 Ivanova NV, zemlak TS, Hanner rH, Hebert PDN (2007) Universal primer cocktails
841 for fish DNA barcoding. *Molecular Ecology Notes* **7**, 544-548.

842 Jackson CHN (1946) An artificially isolated generation of tsetse flies (Diptera).
843 *Bulletin of Entomological Research* **37**, 291-299.

844 Kent RJ (2009) Molecular methods for arthropod bloodmeal identification and
845 applications to ecological and vector-borne disease studies. *Molecular*
846 *Ecology Resources* **9**, 4-18.

847 Kocher TD, Thomas WK, Meyer A, *et al.* (1989) Dynamics of mitochondrial DNA
848 evolution in animals: amplification and sequencing with conserved primers.
849 *Proceedings of the National Academy of Sciences of the United States of*
850 *America* **86**, 6196-6200.

851 Kubi C, Van den Abbeele J, De Deken R, *et al.* (2006) The effect of starvation on
852 the susceptibility of teneral and non-teneral tsetse flies to trypanosome
853 infection. *Medical and Veterinary Entomology* **20**, 388-392.

854 Lah EFC, Ahamad M, Haron MS, Ming HT (2012) Establishment of a molecular tool
855 for blood meal identification in Malaysia. *Asian Pacific Journal of Tropical*
856 *Biomedicine* **2**, 223-227.

857 Langridge WP, Kernaghan RJ, Glover PE (1963) A review of recent knowledge of
858 the ecology of the main vectors of trypanosomiasis. *Bulletin of the World*
859 *Health Organization* **28**, 671-701.

860 Le S, Josse J, Husson F (2008) FactoMineR: An R package for multivariate analysis.
861 *Journal of Statistical Software* **25**, 1-18.

862 Leak SGA (1998) Tsetse biology and ecology. In: *The role in the epidemiology and*
863 *control of trypanosomiasis*. CABI Publishing, London.

864 Leigh JW, Bryant D (2015) POPART: full-feature software for haplotype network
865 construction. *Methods in Ecology and Evolution* **6**, 1110-1116.

866 Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA
867 polymorphism data. *Bioinformatics* **25**, 1451-1452.

868 Lisulo M, Sugimoto C, Kajino K, *et al.* (2014) Determination of the prevalence of
869 African trypanosome species in indigenous dogs of Mambwe district, eastern
870 Zambia, by loop-mediated isothermal amplification. *Parasites & vectors* 7,
871 19.

872 Lord JS, Torr SJ, Auty HK, *et al.* (2018) Geostatistical models using remotely-
873 sensed data predict savanna tsetse decline across the interface between
874 protected and unprotected areas in Serengeti, Tanzania. *Journal of Applied
875 Ecology* 55, 1997-2007.

876 Lyimo IN, Ferguson HM (2009) Ecological and evolutionary determinants of host
877 species choice in mosquito vectors. *Trends in Parasitology* 25, 189-196.

878 Maudlin I, Holmes PH, Miles MA (2004) *The trypanosomiases* CABI Publishing,
879 Wallingford, UK.

880 Mbahin N, Affognon H, Andoke J, *et al.* (2013) Parasitological prevalence of bovine
881 trypanosomiasis in Kubo Division of Kwale Country of Coastal: baseline
882 survey *American Journal of Animal and Veterinary Sciences* 8, 28-36.

883 Metsky HC, Siddle KJ, Gladden-Young A, *et al.* (2019) Capturing sequence diversity
884 in metagenomes with comprehensive and scalable probe design. *Nature
885 Biotechnology* 37, 160-+.

886 Moloo SK, Sabwa CL, Kabata JM (1992) Vector competence of *Glossina pallidipes*
887 and *G. morsitans centralis* for *Trypanosoma vivax*, *T. congolense* and *T. b.
888 brucei*. *Acta Tropica* 51, 271-280.

889 Muturi CN, Ouma JO, Malele, II, *et al.* (2011a) Tracking the feeding patterns of
890 tsetse flies (*Glossina* genus) by analysis of bloodmeals using mitochondrial
891 cytochromes genes. *PLoS one* 6, e17284.

892 Muturi CN, Ouma JO, Malele II, *et al.* (2011b) Tracking the feeding patterns of
893 tsetse flies (*Glossina* genus) by analysis of bloodmeals using mitochondrial
894 cytochromes genes. *PLoS one* 6, e17284.

895 Nash TAM (1936) The relationship between the maximum temperature and the
896 seasonal longevity of *Glossina submorsitans*, Newst., and *G. tachinoides*,
897 Westw., in Northern Nigeria. *Bulletin of Entomological Research* 27, 273-
898 279.

899 Njenga SM, Mwandawiro CS, Muniu E, *et al.* (2011) Adult population as potential
900 reservoir of NTD infections in rural villages of Kwale district, Coastal Kenya:
901 implications for preventive chemotherapy interventions policy. *Parasites &
902 vectors* 4, 1-6.

903 Njiru ZK, Constantine CC, Guya S, *et al.* (2005) The use of ITS1 rDNA PCR in
904 detecting pathogenic African trypanosomes. *Parasitology Research* 95, 186-
905 192.

906 Nyawira NC (2009) *Analysis of tsetse fly (Diptera: Glossinidae) blood meals using
907 mitochondrial cytochrome genes for vertebrate host identification*, Ugerton
908 University.

909 Nyingilili HS, Malele I, Nkwengulila G (2016) Diversity of Blood Meal Hosts in
910 *Glossina Pallidipes* and Its Role in the Epidemiology of Trypanosomiasis at a
911 Localized Area in Serengeti National Park. *Imperial Journal of
912 Interdisciplinary Research* 2, 1694-1698.

913 OIE (2013) Trypanosomosis (tsetse-transmitted).

914 Okoth SO, Kokwaro ED, Kirugu JM, Murila GA (2007) *Glossina pallidipes* and host
915 interactions: implications of host preference on transmission Risk of
916 Rhodesian Sleeping Sickness in Kenya. *Trends in Applied Sciences Research*
917 2, 386-394.

918 Olubayo RO, Moloo SK, Naessens J (1996) Comparative parasite development in
919 African buffalo and N'Dama cattle infected with either *Trypanosoma*

920 *congolense* or *T. vivax*. *Bulletin of Animal Health and Production in Africa*
921 44, 23-32.

922 Omondi D, Masiga DK, Ajamma YU, *et al.* (2015) Unraveling host-vector-arbovirus
923 Interactions by two-gene high resolution melting mosquito bloodmeal
924 analysis in a Kenyan wildlife-livestock Interface. *PLoS one* 10, e0134375-
925 e0134375.

926 Peacock L, Ferris V, Bailey M, Gibson W (2012) The influence of sex and fly species
927 on the development of trypanosomes in tsetse Flies. *PLoS neglected tropical*
928 *diseases* 6, e1515.

929 Pradhan V, Kamble Y, Ladniya V, Mogul M (2015) A overview of species
930 identification by DNA barcoding. *International Journal of Current*
931 *Microbiology and Applied Sciences* 4, 127-140.

932 Rambaut A (1996) Se-Al: Sequence Alignment Editor. Department of Zoology,
933 University of Oxford, Oxford, UK.

934 Reeves L, Gillett-Kaufman J, Kawahara A, Kaufman P (2018) Barcoding blood
935 meals: New vertebrate-specific primer sets for assigning taxonomic
936 identities to host DNA from mosquito blood meals. *PLoS Neglected Tropical*
937 *Disease* 12, e0006767.

938 Schofield S, Torr SJ (2002) A comparison of the feeding behaviour of tsetse and
939 stable flies. *Medical and Veterinary Entomology* 16, 177-185.

940 Snow WF, Tarimo SA, Staak C, Butler L (1988) The feeding-habits of the Tsetse,
941 *Glossina pallidipes* Austen on the South Kenya Coast, in the context of its
942 host range and trypanosome infection-rates in other parts of East-Africa.
943 *Acta Tropica* 45, 339-349.

944 Spath J (2000) Feeding patterns of three sympatric tsetse species (*Glossina* spp.)
945 (Diptera : *Glossinidae*) in the preforest zone of Cote d'Ivoire. *Acta Tropica*
946 75, 109-118.

947 Team RC (2016) R: A language and environment for statistical computing. . R
948 Foundation for Statistical Computing, Vienna, Austria.

949 Torr SJ, Wilson PJ, Schofield S, *et al.* (2001) Application of DNA markers to
950 identify the individual-specific hosts of tsetse feeding on cattle. *Medical Vet*
951 *Entomology* 15, 78 - 86.

952 Turner DA (1987) The population ecology of *Glossina pallidipes* Austen (Diptera:
953 *Glossinidae*) in the Lambwe Valley, Kenya. I. Feeding behaviour and activity
954 patterns. *Bulletin of Entomological Research* 77, 317-333.

955 Viana M, Mancy R, Biek R, *et al.* (2014) Assembling evidence for identifying
956 reservoirs of infection. *Trends in Ecology & Evolution* 29, 270-279.

957 Wamwiri FN, Alam U, Thande PC, *et al.* (2013) *Wolbachia, Sodalis* and
958 trypanosome co-infections in natural populations of *Glossina austeni* and
959 *Glossina pallidipes*. *Parasites & vectors* 6, 232.

960 Weitz B (1963) The feeding habits of *Glossina*. *Bulletin of World Health*
961 *Organization* 28, 711-729.

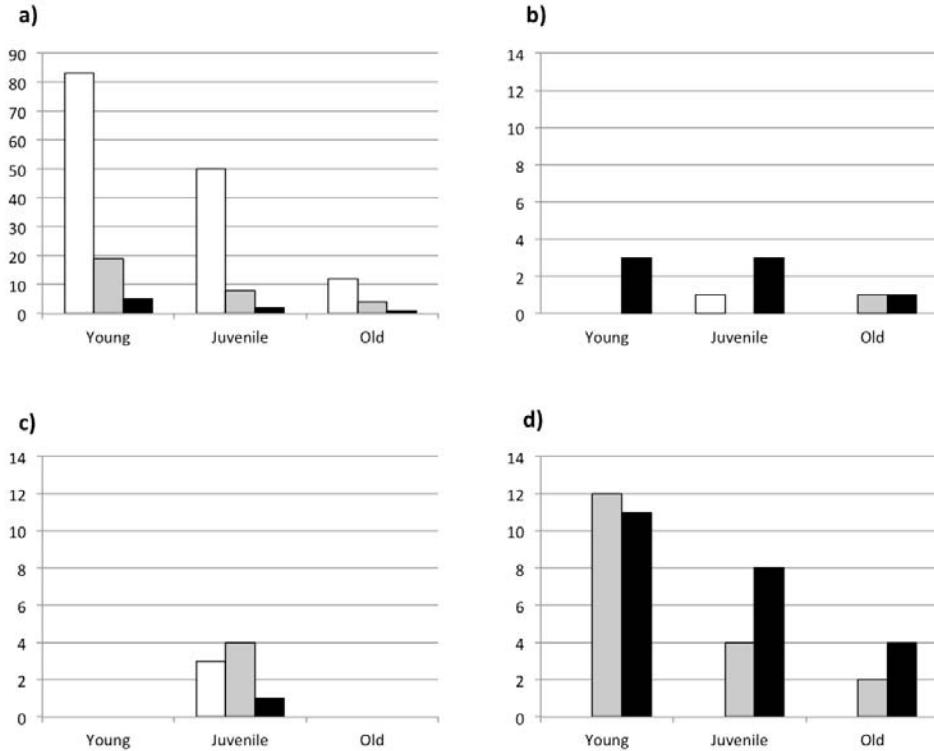
962 Welburn SC, Picozzi K, Fevre EM, *et al.* (2001) Identification of human-infective
963 trypanosomes in animal reservoir of sleeping sickness in Uganda by means of
964 serum-resistance-associated (SRA) gene. *Lancet* 358, 2017-2019.

965 Welburn SC, Picozzi K, Kaare M, *et al.* (2005) Control options for human sleeping
966 sickness in relation to the animal reservoir of disease. *Conservation and*
967 *Development Interventions at the Wildlife/Livestock Interface*, 55-61.

968 Wongseripatana M (2016) *Prevalence and associations of Trypanosoma spp. and*
969 *Sodalis glossinidius with intrinsic factors of tsetse flies*, University of
970 Glasgow.

Table 1. Summary of blood meal analysis results based on direct sequencing. Cytb negative samples were classified as “unfed flies” but were not considered in the analyses since they could represent lack of amplification rather than lack of feeding. Single host feeding refers to cases where the cytb sequence had only single chromatograph peaks. Multiple host feeding were samples for which cytb was amplified but the sequences showed multiple peaks but the dominant sequence could be identified to species. Flies showing strongly amplified cytb PCR products but for which the number or type of host species could not be confirmed due to poor sequencing quality are labelled as “not identified”. The number of flies that tested positive for the presence of trypanosomes is indicated in parentheses. The final column shows the percent of samples for which dominant hosts could be identified for each population, with the % of those testing positive for trypanosomes in parentheses. The human samples that were potential contaminants were excluded but none tested positive for trypanosomes.

Site	Single Feeding		Multiple Feeding		Not identified	Total Fed	“Unfed”	Total Screened	% Identified
	Domestic	Wild	Domestic	Wild					
Zungu Luka	7 (3)	8 (5)	23 (15)	1 (1)	60 (31)	99 (55)	29 (22)	128 (77)	31 (62)
Buffalo Ridge	1 (1)	31 (8)	18 (8)	5 (3)	62 (23)	118 (43)	33 (10)	150 (53)	37 (36)
Mukinyo	1(1)	146 (60)	0	3 (2)	76 (22)	226 (85)	66 (20)	292 (105)	51 (42)


Table 2. Dominant host species resolved from blood meal analysis *G. pallidipes* sampled from the Shimba Hills (Buffalo Ridge and Zungu Luka) and the Nguruman region of Kenya, based on direct sequencing of cytb. Homozygous amplicons were classified as “single” feeding whereas sequences with multiple peaks were classified as having fed on “multiple” hosts. The dominant host was identified based on BLASTn. The relative abundance of the various host species is expressed as the total % of sequences for which the dominant host could be identified within that site. Species are ordered by relative abundance of wild and domestic hosts.

Site	Buffalo Ridge			Zungu Luka			Mukinyo		
	Host	Single	Multiple	Total %	Single	Multiple	Total %	Single	Multiple
Buffalo	25	3	50.9	0	0	0.0	105	2	71.3
Elephant	2	1	5.5	1	1	5.1	29	1	20.0
Antelope	2	1	5.5	6	0	15.4	1	0	0.7
Warthog	2	0	3.6	1	0	2.6	5	0	3.3
Giraffe	0	0	0.0	0	0	0.0	4	0	2.7
Hyaena	0	0	0.0	0	0	0.0	2	0	1.3
Human ^a	1	9	18.2	6	11	43.6	0	0	0.0
Goat	0	7	12.7	1	7	20.5	0	0	0.0
Mouse	0	2	3.6	0	4	10.3	0	0	0.0
Chicken	0	0	0.0	0	1	2.6	0	0	0.0
Cattle	0	0	0.0	0	0	0.0	1	0	0.7
Total	32	23		14	25		147	3	

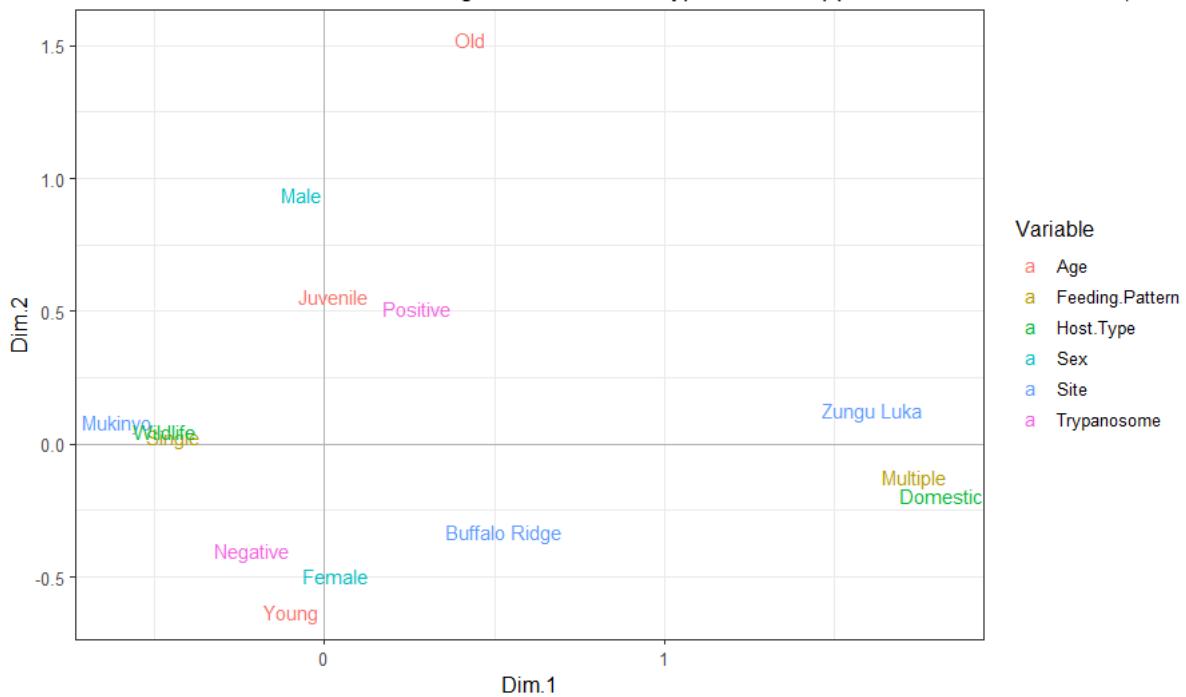

^a Excluding potential contaminants

Table 3. Adjusted eta squared of the combination of variables in dimensions 1-3 in the MCA analysis, showing the variation explained for trypanosome status (positive or negative), Site (Mukinyo, Buffalo Ridge or Zungu Luka), Feeding pattern (single or multiple), Sex (male or female), Age (young, juvenile or old) and Host type (wildlife or domestic).

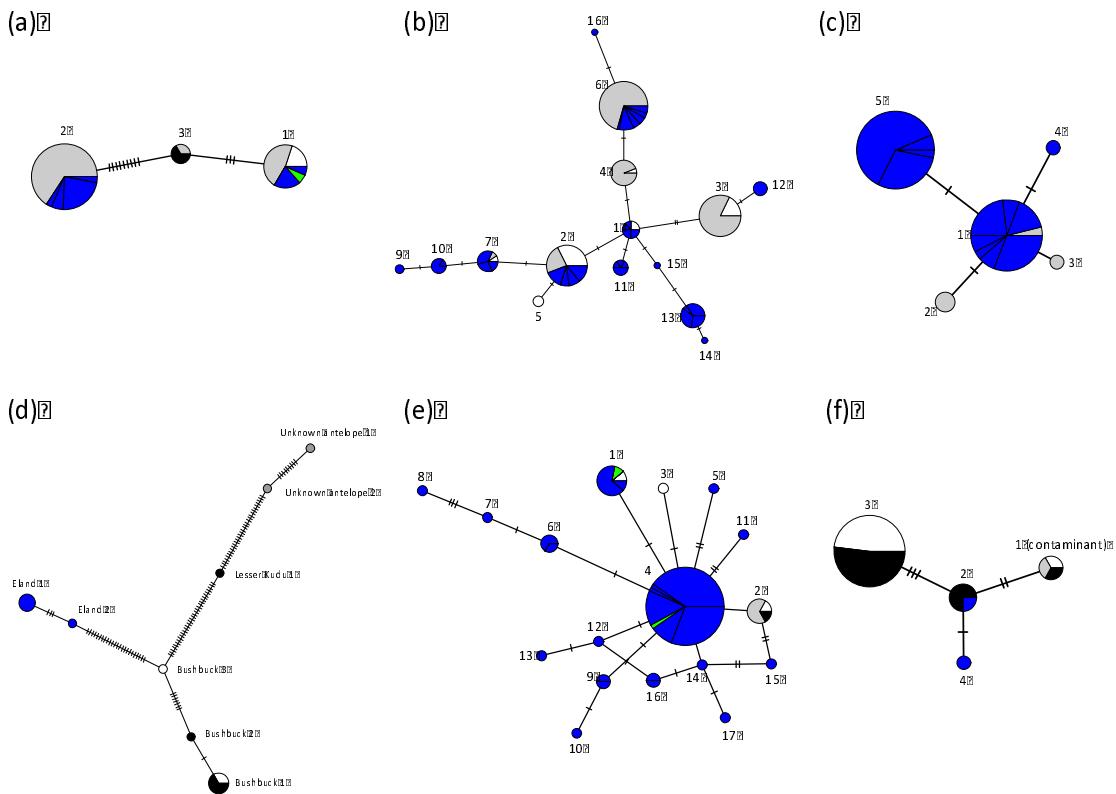

Variables	Dimension 1	Dimension 2	Dimension 3
Trypanosome status	0.059	0.203	0.206
Site	0.712	0.031	0.564
Feeding pattern	0.776	0.004	0.004
Sex	0.002	0.466	0.161
Age	0.024	0.565	0.200
Host Type	0.853	0.010	0.000

Figure 1. Distribution of flies across sites in relation to age, feeding behaviour and type of hosts fed on, showing flies feeding on: a) single wild hosts; b) single domestic hosts; c) multiple hosts with a wild host dominant; d) multiple hosts with a domestic host dominant. Flies were divided into young, juvenile and old age categories based on wing fray scores. Flies from all age classes at Mukinyo (white bars) fed predominantly on single wild host species (note the resulting larger scale for graph a), whereas feeding on a mixture of domestic and wild hosts was more common at the Shimba Hills sites, Buffalo Ridge (grey) and Zungu Luka (black). Note that only juvenile flies fed multiple times when a wild host was dominant.

Figure 2. Multiple Correspondence Analysis (MCA), showing associations of dimension 1 (Dim 1; 30.3 % of the variance) and 2 (Dim 2; 16.0% of the variance) in relation to age category (young, juvenile, old), feeding pattern (single or multiple), host type (domestic or wildlife), sex (male or female), site (Buffalo Ridge, Zungu Luka or Mukinyo), and *Trypanosoma spp.* status (positive or negative). This figure clearly shows the strong association between feeding pattern and host type, driven by the differences in fly behaviour at Mukinyo compared to Zungu Luka resolved along dimension 1. Trypanosome status was not explained by variation along dimension 1 but was more related to age and gender of the flies resolved along dimension 2.

Figure 3. Minimum spanning networks indicating intraspecific diversity and relative frequency of haplotypes between populations from this study, combined with previous blood meal analyses in Kenya and Tanzania. Intraspecific variation for: a) elephants; b) buffalo; c) giraffes; d) antelope; e) warthogs; f) humans. Note that human type 1 matched the ethnic origin of the main investigator (Asian); samples with this haplotype were considered as contaminants and excluded from analyses. The two antelope sequences labelled “unknown” were found only in single clones, with a more dominant host predominating, and had no close match using BLASTn. Circle sizes are proportional to the frequency of each haplotype (see Supplementary Table 7 for values); notches on branches indicate the number of nucleotide substitutions separating haplotypes; colours represent the population of origin (white = Buffalo Ridge; grey = Mukinyo; black = Zungu Luka; blue = Serengeti (from Auty et al. 2016; Muturi et al. 2011); green = Nguruman (from Muturi et al. 2011)).

