

A common polymorphism in the druggable ion channel *PIEZ01* is associated with protection from severe malaria

Christian N. Nguetse¹, Natasha Purington², Bikash Shakya¹, Emily R. Ebel³, Peter G. Kremsner^{4,5}, Thirumalaisamy P. Velavan^{4,6,7}, and Elizabeth S. Egan^{1*}

¹ Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305

² Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA 94305

³Department of Biology, Stanford University, Stanford, CA 94305

⁴ Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany

⁵ Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Lambaréné, Gabon.

⁶Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam

⁷ Duy Tan University, Da Nang, Vietnam

Running title: *PIEZ01* polymorphism and severe malaria in African children

Keywords: malaria, *PIEZ01*, Africans, genetic association study

***Corresponding author**

Elizabeth S. Egan, M.D., Ph.D.

Stanford University School of Medicine

300 Pasteur Drive, H307-A

Stanford, CA 94305

Phone: +1-650-498-6953

Fax: +1-650-725-8040

Email: eegan@stanford.edu

1 **Abstract**

2 Malaria caused by the Apicomplexan parasite *Plasmodium falciparum* has served as a strong
3 evolutionary force throughout human history, selecting for red blood cell polymorphisms that
4 confer innate protection against severe disease. Recently, gain-of-function mutations in the
5 mechanosensitive ion channel *PIEZ01* were shown to ameliorate *Plasmodium* parasite growth,
6 blood-brain barrier dysfunction, and mortality in a mouse model of malaria. In humans, the gain-
7 of-function allele *PIEZ01* E756del is highly prevalent and enriched in Africans, raising the
8 possibility that it is under positive selection due to malaria. Here we used a case-control study
9 design to test for an association between *PIEZ01* E756del and malaria severity among children
10 in Gabon. We found that the E756del variant is strongly associated with protection against severe
11 malaria in heterozygotes, independent of the protection conferred by the sickle cell trait
12 (hemoglobin AS). *In vitro* experiments using donor red blood cells failed to find an effect of
13 E756del on parasite growth, suggesting this variant confers a mild channel defect and/or that its
14 protective effect may be mediated by other tissue types *in vivo*. Nonetheless, we show that Yoda1,
15 a small molecule agonist of *PIEZ01*, has potent antimalarial activity in both E756del and wild-
16 type red blood cells. Our findings demonstrate that *PIEZ01* is an important innate determinant of
17 malaria susceptibility in humans and holds potential as druggable host target for malaria control.

18

19 **Introduction**

20 Malaria infection due to *Plasmodium falciparum* is a major cause of childhood morbidity
21 and mortality in endemic countries. The symptoms of the disease start when the parasite invades
22 and replicates in red blood cells. Upon infection, there are three possible clinical outcomes that
23 are influenced by the host, parasite, and environmental factors: uncomplicated malaria, severe
24 malaria, or asymptomatic parasitemia. The development of asymptomatic parasitemia is largely
25 influenced by adaptive immunity that results from repeated exposures, whereas it is estimated
26 that ~25% of the clinical variation in malaria severity can be explained by innate genetic factors

27 that act additively (MACKINNON *et al.* 2005). A variety of studies have shown that one of the
28 strongest protective factors is heterozygosity for the hemoglobin S allele (HbAS), which leads to
29 impaired parasite proliferation at low oxygen tension (PASVOL *et al.* 1978; JALLOW *et al.* 2009;
30 TIMMANN *et al.* 2012; MALARIA GENOMIC EPIDEMIOLOGY *et al.* 2015; ARCHER *et al.* 2018). Many
31 other candidate susceptibility loci reside in genes encoding membrane or structural proteins of
32 the red blood cell (NGUETSE AND EGAN 2019). However, associations between established
33 candidate loci and malaria severity explain only a fraction of the variance in clinical outcome,
34 suggesting additional susceptibility factors have yet to be discovered (NDILA *et al.* 2018).

35 The mechanosensitive ion channel PIEZO1 was recently identified as a new candidate
36 susceptibility factor for severe malaria (MA *et al.* 2018). PIEZO1 acts as a nonselective cation
37 channel in a variety of tissues and has established roles in sensing blood flow through the
38 vasculature, cell migration and differentiation, and red blood cell volume control (LI *et al.* 2014;
39 PATHAK *et al.* 2014; RANADE *et al.* 2014; CAHALAN *et al.* 2015; WANG *et al.* 2016). Gain-of-function
40 (GOF) mutations in *PIEZO1* underlie hereditary xerocytosis, a disorder characterized by red blood
41 cell dehydration, reduced osmotic fragility and mild hemolytic anemia (ARCHER *et al.* 2014;
42 GLOGOWSKA *et al.* 2017). Previous work has shown that *P. falciparum* parasites replicate poorly
43 in severely dehydrated red blood cells, including those from patients with hereditary xerocytosis
44 (TIFFERT *et al.* 2005). The demonstration that expression of a *PIEZO1*GOF allele in mice modeled
45 the RBC abnormalities observed in hereditary xerocytosis, inhibited proliferation of *Plasmodium*
46 *berghei* ANKA parasites, and protected the mice from cerebral malaria provided some *in vivo*
47 evidence that GOF mutations in *PIEZO1* may influence susceptibility to severe malaria (MA *et al.*
48 2018).

49 Using a comparative genomics approach, a common *PIEZO1* polymorphism was
50 identified in healthy individuals of African descent that may be under positive selection and act as
51 a gain-of-function allele (MA *et al.* 2018). The mutation, E756del (rs572934641), is a 3 nucleotide
52 deletion in a coding region of the gene that includes ~60 bp of short tandem repeats. *PIEZO1*

53 E756del was classified as a gain-of-function mutant based on studies in HEK cells, where it
54 displayed a prolonged inactivation time constant after mechanical stimulation as compared to
55 wild-type PIEZO1. Results from *in vitro* assays using the human malaria parasite *P. falciparum*
56 suggested that parasite growth was impaired in RBCs from E756del heterozygotes as compared
57 to wild-type RBCs (MA *et al.* 2018). Together, these findings raise the intriguing possibility that
58 the *PIEZO1* E756del allele may be protective against severe malaria in humans.

59 Here, we screened a large case-control study group from Gabon for the *PIEZO1* E756del
60 mutation and assessed its impact on the risk of severe malaria. We found that E756del was
61 associated with protection from severe malaria in heterozygotes, suggesting that natural genetic
62 variation in *PIEZO1* is an innate determinant of malaria susceptibility in humans. This association
63 was independent of hemoglobin AS, which appears to have an epistatic interaction with *PIEZO1*
64 E756del. While wild-type and E756del red blood cells supported the intracellular growth of *P.*
65 *falciparum* equally well, we found that chemical upregulation of *PIEZO1* inhibited *P. falciparum*
66 replication. *PIEZO1* is a druggable ion channel that may be under selective pressure to protect
67 against severe malaria, suggesting that it holds potential as a target for a novel, host-directed
68 therapy for this ancient disease.

69

70 **Methods**

71 *Genetic Association study design and participants*

72 Using a case-control approach, we assembled 542 samples from children aged 4-140
73 months that had been obtained in three previously published studies conducted in Lambaréne
74 and Libreville, Gabon (KUN *et al.* 1998; KALMBACH *et al.* 2006; KREMSNER *et al.* 2009). After
75 excluding samples for missing parameters, the analytic cohort consisted of 446 samples, of which
76 193 were controls with mild malaria and 253 were cases with severe malaria. All cases presented
77 with microscopically confirmed *P. falciparum* parasitemia, signs and symptoms of severe malaria
78 and no evidence of other severe diseases. Severe malaria was defined as severe anemia

79 (hemoglobin <50 g/l) and/or hyperparasitemia (>250,000 parasites/ μ l, corresponding to >10% infected
80 erythrocytes), a Blantyre coma score \leq 2 and/or other facultative signs of severe malaria such as
81 cerebral malaria, convulsions, hypoglycemia, and respiratory distress. The control group was those
82 with mild malaria coming from the same geographical area as the cases. Mild malaria was defined
83 as parasitemia 1000–50,000/ μ l on admission, no schizontemia, circulating leukocytes containing
84 malarial pigment <50/ μ l, not homozygous for hemoglobin S, hemoglobin >80 g/l, platelets >50/nl,
85 leukocytes <12/nl, lactate <3 mmol/l, and blood glucose >50 mg/dl. Written informed consent for
86 each child was provided by the parents/guardians before enrollment.

87

88 *Mutation screening*

89 *PIEZ01* exon 17 was amplified by PCR using the following primers: 5'-
90 CAGGCAGGATGCAGTGAGTG-3' (forward) and 5'-GGACATGGCACAGCAGACTG-3'
91 (reverse). Amplification reactions were performed in one batch in the same laboratory. The
92 thermal conditions were an initial denaturation (95°C, 3 min) followed by 35 cycles of 95°C for 30
93 s, 65°C for 30 s and 72°C for 1 min. The PCR was completed with a final extension step of 72°C
94 for 5 min. PCR products were visualized through electrophoresis on a 1·2% agarose gel stained
95 with SYBR Safe DNA Gel Stain (Thermo Fisher Scientific, Waltham, MA, USA). Subsequently,
96 the PCR products were purified with QIAquick PCR purification kit (Qiagen, Hilden, Germany)
97 and directly used as templates for DNA sequencing (Quintara Biosciences, San Francisco, CA,
98 USA). Mutations were identified by aligning the sequences with the *PIEZ01* reference sequence
99 (NG_042229.1) using the Geneious 10.2.3 software (Auckland, New Zealand) and visually
100 reconfirmed from their electropherograms. All samples were also genotyped for the HbS
101 polymorphism (rs334) in the *HBB* gene (NG_059281.1). Briefly, we amplified exon 1 of the *HBB*
102 gene using the primer pairs: 5'-AGTCAGGGCAGAGCCATCTA-3' (forward) and 5'-
103 GTCTCCACATGCCAGTTTC-3' (reverse). The PCR conditions were: initial denaturation (95°C,
104 3 min) followed by 35 cycles of 95°C for 30 s, 64°C for 30 s and 72°C for 1 min. The amplification

105 was completed with a final extension step of 72°C for 5 min. The sequencing and variant detection
106 were performed as described above.

107

108 *Statistical analysis*

109 Participants with HbSS or HbSC hemoglobin genotypes were excluded from all analyses
110 due to the severity of their underlying hematologic diseases. Additionally, all primary analyses
111 were conducted only on participants without missing observations. Deviation from Hardy-
112 Weinberg equilibrium was assessed using Chi-square analysis. Descriptive statistics were
113 generated to evaluate the distributions of key characteristics by malaria severity status. The
114 Wilcoxon rank sum test and Fisher's exact test were used to determine if there were significant
115 differences in malaria severity status in continuous and categorical characteristics, respectively.

116 The primary outcome was an indicator for whether a patient had mild or severe malaria.

117 A main effects logistic regression model was fit to malaria severity status as a function of *PIEZ01*
118 E756del genotype (normal [WT/WT=reference level], heterozygous [WT/DEL], and homozygous
119 [DEL/DEL]), hemoglobin S genotype (normal HbAA, sickle cell trait HbAS), age in months, sex,
120 and the study from which the participant information was extracted. Odds ratios (ORs) and 95%
121 confidence intervals (CIs) were extracted from the logistic regression model. The estimated
122 probability of severe malaria was extracted from the model for each participant and pairwise
123 comparisons between the *PIEZ01* E756del variants and between hemoglobin S genotypes were
124 presented. P-values for the pairwise differences in *PIEZ01* E756del were calculated from Tukey's
125 HSD (honestly significant difference) post hoc test. The Hosmer-Lemeshow goodness of fit was
126 used to evaluate model fit using 10 bins.

127 In order to assess whether HbAS confounds the association between *PIEZ01* E756del
128 and malaria severity status, an additional model was fit to malaria severity status as a function of
129 *PIEZ01* E756del, HbAS, age, sex, study, and an interaction term between HbAS and *PIEZ01*
130 E756del. Due to convergence issues based on small sample size, a Bayesian logistic regression

131 model was used (GELMAN ANDREW AND YU-SUNG SU 2018). Similar methods to those used in the
132 main effects model were implemented. Unadjusted logistic models were also fit to assess the
133 association between seven additional *PIEZ01* polymorphisms near E756del and severe malaria.

134 Classification trees (CART) were implemented to determine whether a synergistic effect
135 of any *PIEZ01* polymorphisms existed in order to predict malaria severity status. CART is a tree-
136 based learning technique for classifying observations, which yields a decision rule by partitioning
137 the data into subsets based on variables entered into the algorithm through the minimization of
138 an error function. Two trees were grown to a maximum depth of 3 levels and minimal node size
139 of 4 using the ctree function in the party package in R (HOTHORN *et al.* 2006), and included the
140 following features, respectively: 1) all identified *PIEZ01* mutations, HbAS, age, and sex; 2) all
141 identified *PIEZ01* mutations excluding *PIEZ01* E756del, HbAS, age, and sex. To ensure the
142 validity of these models, we conducted a 5 times repeated 10-fold cross-validation (CV) for both
143 CARTs. The CV area under the curve (AUC) and 95% CIs were reported for each tree (KOHAVI
144 1995). Spearman's rank correlation test was also used in order to assess the genetic association
145 (linkage) between *PIEZ01* E756del and the other *PIEZ01* mutations.

146 As a sensitivity analysis, missing values in age and sex were imputed by chained
147 equations with predictive mean matching in order to assess the robustness of the two *PIEZ01*
148 E756del logistic regression results (VAN BUUREN AND GROOTHUIS-OUDSHOORN 2011).

149 A p-value < 0.05 was considered statistically significant. All analyses were conducted
150 using R software v3.5.2 (DEVELOPMENT CORE TEAM 2013).

151

152 *Blood sample collection and genotyping for in vitro parasite growth assays*

153 Subjects who self-identified as African or African-American were recruited to donate blood
154 at the Stanford Clinical Translational Research Unit. All participants and/or their parents gave
155 informed consent according to a protocol approved by the Stanford University IRB (#40479).
156 Whole blood samples were drawn into CPDA tubes and processed within 48 hours to remove

157 serum and separate the buffy coat and red blood cells. Red blood cells were washed and stored
158 in RPMI-1640 medium (Sigma) supplemented with 25 mM HEPES, 50 mg/L hypoxanthine, 2.42
159 mM sodium bicarbonate media at 4°C for up to 48 hours, and then cryopreserved in human AB+
160 serum and glycerol at -80°C. Genomic DNA was isolated from buffy coats using a DNeasy Blood
161 and Tissue Kit (Qiagen). *PIEZ01* exon 17 was amplified by PCR of genomic DNA using the
162 primers described above and Q5 polymerase in the following reaction conditions: 98°C for 30
163 seconds initial denaturation followed by 35 cycles of 98°C for 10 seconds, 70°C for 20 seconds,
164 and 72°C for 20 seconds, followed by a 2 minute final extension at 72°C. PCR products were
165 visualized on an agarose gel and sent for Sanger sequencing at Elim Bio (Hayward, CA). The
166 *PIEZ01* E756 genotypes were manually determined from chromatograms examined using
167 FinchTV software (Geospiza Inc). All genotypes were assessed by two independent researchers.
168

169 *P. falciparum* culture and growth assays

170 *P. falciparum* strain 3D7 is a laboratory-adapted strain that was obtained from the Walter
171 and Eliza Hall Institute (Melbourne, Australia) and was routinely cultured in human erythrocytes
172 obtained from the Stanford Blood Center at 2% hematocrit in RPMI-1640 supplemented with 25
173 mM HEPES, 50 mg/L hypoxanthine, 2.42 mM sodium bicarbonate and 4.31 mg/ml Albumax
174 (Invitrogen) at 37°C in 5% CO₂ and 1% O₂. Parasite growth assays were initially performed using
175 fresh erythrocytes and then repeated after cryopreservation and thawing. Schizont-stage
176 parasites were isolated using a MACS magnet (Miltenyi) and added at 0.5% initial parasitemia to
177 previously cryopreserved wild-type or E756del heterozygous erythrocytes that had been washed
178 and resuspended in complete RPMI with bicarbonate and Albumax as above. Assays were
179 performed at 0.5% hematocrit in a volume of 100 µl per well in 96-well plates. For drug treatments,
180 erythrocytes were incubated in the indicated concentrations of Yoda-1 (Sigma) for three hours at
181 1% hematocrit and washed in complete RPMI three times before adding to assay plates.
182 Parasitemias were determined on day 0, day 1 (24 hours) and day 3 (72 hours) by staining with

183 SYBR Green 1 nucleic acid stain (Invitrogen, ThermoFisher Scientific, Eugene, OR, USA) at
184 1:2000 dilution in PBS/0.3% BSA for 20 minutes, followed by flow cytometry analysis on a
185 MACSQuant flow cytometer (Miltenyi).

186 For each genetic background (WT versus E756del heterozygote), assays were performed
187 in technical duplicates using seven biological replicates (N=7) from unrelated donors. The percent
188 parasitemia relative to control was determined for each biological replicate by normalizing the
189 parasitemia on day 3 at each drug concentration relative to that in the absence of drug. Then, the
190 mean of normalized day 3 parasitemia and S.E.M. was calculated for each genetic background
191 at each drug concentration. Dose response inhibition curves (log inhibitor vs response) were
192 generated in PRISM 8 Version 8.0.2 (159) and the top of the curves were constrained to equal
193 100 to calculate IC50 for Yoda-1. Log IC50 of the two curves were compared statistically using
194 the extra-sum-of-squares F test.

195

196 **Results**

197 *The PIEZO1 E756del variant is associated with protection from severe malaria*

198 To determine if the *PIEZO1* E756del allele influences malaria susceptibility, we collected
199 542 DNA samples from three well-characterized malaria study cohorts from Gabon (KUN *et al.*
200 1998; KALMBACH *et al.* 2006; KREMSNER *et al.* 2009). Out of the 542 samples, 8 were excluded
201 for HbSS or HbSC genotypes to minimize confounding effects of severe hematologic disease. A
202 further 88 were excluded due to missing values in sex (n=78) and failure to amplify *PIEZO1*
203 E756del (n=10). Therefore, our analytic cohort consisted of 446 samples. All samples were from
204 Gabonese children between the ages of 4-140 months; 193 (43%) participants had mild malaria
205 (controls) and 253 (57%) had severe malaria (cases). Cases of severe malaria had severe
206 anemia, hyperparasitemia, signs of cerebral malaria, hypoglycemia and/or respiratory distress in
207 addition to microscopically-confirmed parasitemia. Controls with mild malaria had parasitemia and

208 fever with absence of severe signs. Their baseline demographics are summarized in Table 1.
209 While cases and controls were similar in terms of sex (45% vs 46% male, respectively), those
210 with severe malaria on average were younger and had higher parasite densities. Differences by
211 study are also summarized (Table S1).

Table 1. Baseline demographics

Baseline characteristic	Overall (n=446)	Malaria status		P- value
		Mild (n=193)	Severe (n=253)	
Sex, n (%)				
Male	201 (45%)	88 (46%)	113 (45%)	0.92
Female	245 (55%)	105 (54%)	140 (55%)	
Age in months, median (range)	35 (4-140)	43 (8-140)	29 (4-133)	<0.001
Parasite density (parasite/ μ L) ¹ , median (range)	35,000 (20-1,544,880)	15,000 (588-434,074)	108,518 (20-1,544,880)	<0.001
Study, n (%)				
<i>Kremsner et al.</i>	195 (44%)	49 (25%)	146 (58%)	<0.001
<i>Kun et al.</i>	195 (44%)	98 (51%)	97 (38%)	
<i>Kalmbach et al.</i>	56 (12%)	46 (24%)	10 (4%)	

Continuous and categorical variables were compared across malaria status using the Wilcoxon rank sum test and Fisher's exact test, respectively. ¹n=44 excluded due to zero values.

212
213 The *PIEZ01* E756del variant was common among the study population, with a
214 heterozygote prevalence of 36% in controls and 23% in cases (minor allele frequency=0.19). The
215 variant was in Hardy-Weinberg equilibrium in the controls but not in the cases. We used a logistic
216 regression model to predict the probability of severe malaria as a function of *PIEZ01* genotype,
217 HbAS status, age, sex and study for each participant. The odds of severe malaria in those with
218 the heterozygous E756del genotype (WT/DEL) were half the odds of those with the homozygous
219 wild-type genotype (OR 0.50, 95% CI 0.31-0.81; p=0.005), suggesting that having one copy of
220 *PIEZ01* E756del is protective against severe disease (Table 2 and Table S2). Homozygous wild-
221 type subjects at E756 (WT/WT) had a significantly higher predicted probability of severe malaria
222 compared to E756del heterozygous (WT/DEL) individuals (median 67% vs. 46%, p=0.01) (Figure
223 1A). These results suggest that the E756del variant confers protection for heterozygotes even as

224 they age and develop increased adaptive immunity to malaria. In contrast, participants
225 homozygous mutant for E756del (DEL/DEL) had a high probability of severe malaria compared
226 to heterozygotes ($p=0.02$), suggesting that harboring two copies of this mutant allele negates the
227 protective effect observed in carriers (Figure 1A). While participants with the homozygous mutant
228 genotype (DEL/DEL) had over twice the odds of severe malaria compared to those who were
229 homozygous wild-type, this association was not statistically significant, likely due to the low overall
230 frequency of the DEL/DEL genotype (OR 2.26, 95% CI 0.82-6.94, $p=0.28$) (Table 2 and Figure
231 1A).

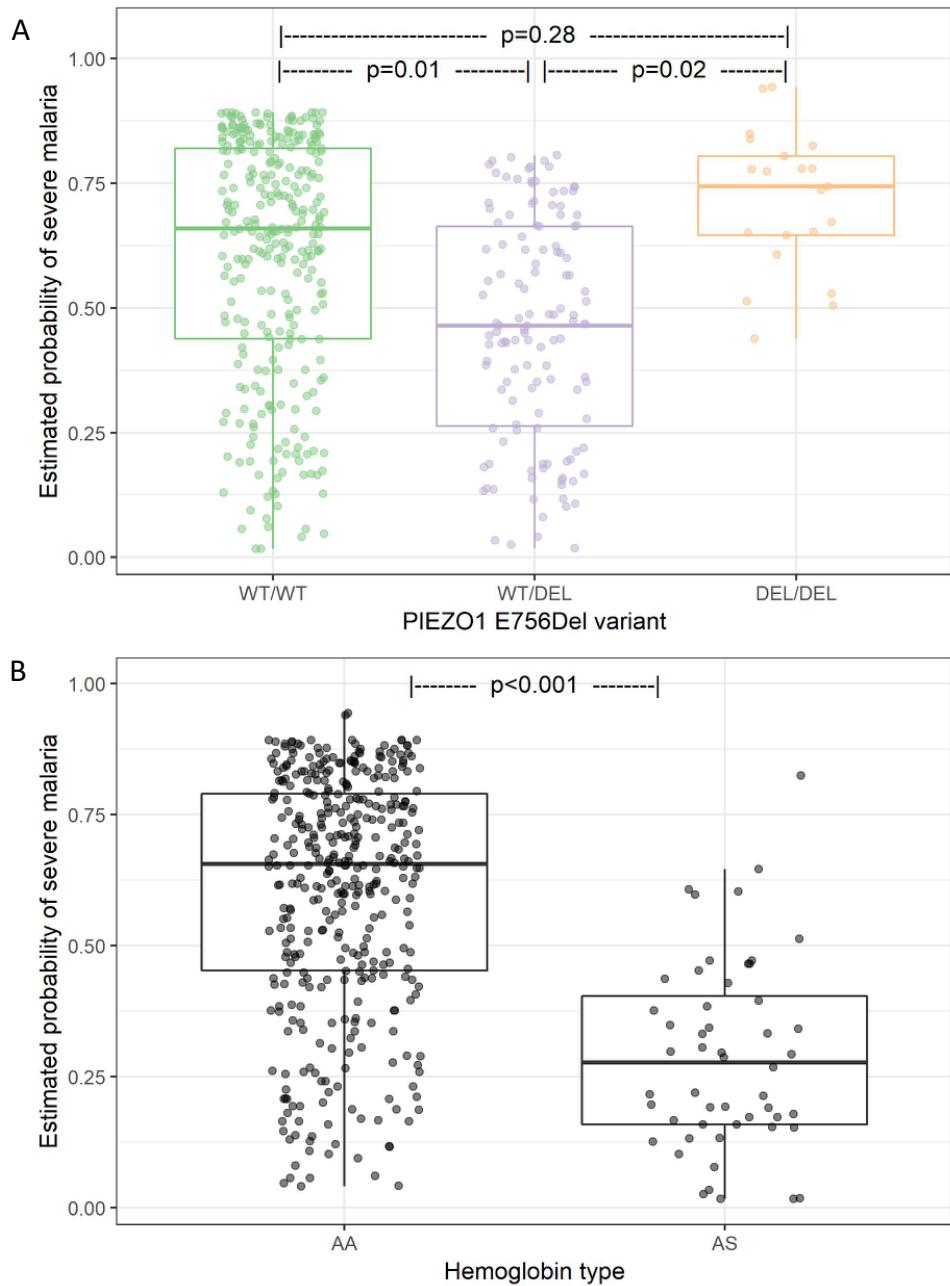

232

Table 2. Associations with malaria severity

Characteristic	Malaria status		Odds ratio (95% CI)
	Mild (n=193)	Severe (n=253)	
PIEZ01 E756Del			
WT/WT	118 (40%)	180 (60%)	reference
WT/DEL	69 (54%)	58 (46%)	0.50** (0.31, 0.81)
DEL/DEL	6 (29%)	15 (71%)	2.26 (0.82, 6.94)
Hemoglobin type			
AA	156 (40%)	238 (60%)	reference
AS	37 (71%)	15 (29%)	0.27*** (0.13, 0.52)
Age			0.98*** (0.97, 0.99)
Male	88 (44%)	113 (56%)	0.70 (0.45, 1.08)

Note: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. Percentages are out of the row totals. Model also adjusted for study in which the data was collected. The Hosmer-Lemeshow goodness of fit test suggested the model fit was appropriate ($X^2=11.91$, $p\text{-value}=0.16$).

233

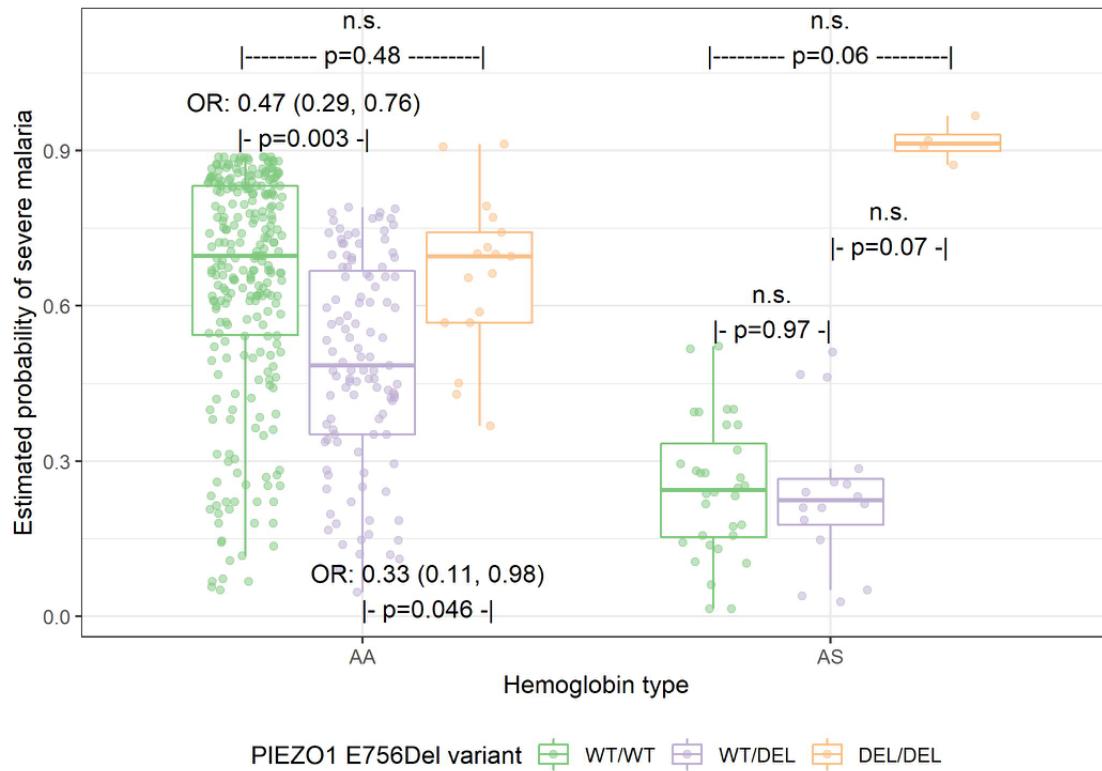
Figure 1. Association of malaria severity with *PIEZO1* and hemoglobin genotypes. Estimated probability of severe malaria extracted from the model presented in Table 2 by (A) *PIEZO1* E756 genotype and (B) hemoglobin beta genotype. P-values for pairwise differences in *PIEZO1* were calculated using Tukey's HSD post hoc test. Model adjusted for age, sex, and study.

234

235

236

237


238 *Association between HbAS and protection from severe malaria*

239 As expected, we also found that the sickle cell trait polymorphism (HbAS) was significantly
240 associated with mild malaria in our study population (HbAS vs HbAA, OR 0·27, 95% CI 0·13-0·52;
241 $p<0\cdot001$) (Table 2). Children with HbAS had a significantly lower predicted probability of severe
242 malaria compared to children with normal hemoglobin (HbAA) (28% vs 66%; $p<0\cdot001$) (Figure
243 1B), an effect approximately twice as strong as that of *PIEZ01* E756del in our study population.
244 This result is consistent with published literature on the protective effect of the sickle cell trait for
245 severe malaria (MANGANO *et al.* 2015; UYOGA *et al.* 2019).

246

247 *Interplay between PIEZ01 E756del and HbS on malaria severity*

248 Because of the high frequencies of both the *PIEZ01* E756del variant and HbAS in the
249 study population, we sought to assess whether HbAS confounds the association found for
250 E756del heterozygotes and malaria susceptibility by refitting the main effects model with the
251 addition of an interaction term for HbAS and E756del. For subjects with HbAA, the E756del
252 homozygous wild-type genotype (WT/WT) was associated with a significantly higher probability
253 of severe malaria compared to the E756 heterozygous genotype (WT/DEL) (OR 2·09, 95% CI
254 1·28-3·41; $p=0\cdot003$, Figure 2). In contrast, in subjects with HbAS, heterozygosity for E756del did
255 not alter susceptibility to severe malaria compared to E756 wild-type ($p=0\cdot97$, Figure 2 and Table
256 S3). These results suggest that the heterozygous *PIEZ01* E756del genotype reduces the risk of
257 severe malaria in individuals with normal hemoglobin, but that effect is masked by the strong
258 protective effect of HbAS in those with sickle cell trait.

Figure 2. Association between *PIEZ01* and malaria severity by hemoglobin type. n.s. = not statistically significant. A Bayesian logistic regression model was fit to malaria severity status as a function of hemoglobin type, *PIEZ01*, and their interaction. Overall interaction effect of $p=0.08$. P-values for pairwise differences between *PIEZ01* within each hemoglobin type were calculated using Tukey's HSD post hoc test. Model also adjusted for age, sex, and study. The Hosmer-Lemeshow goodness of fit test suggested the model fit was appropriate ($X^2=6.03$, p -value=0.64).

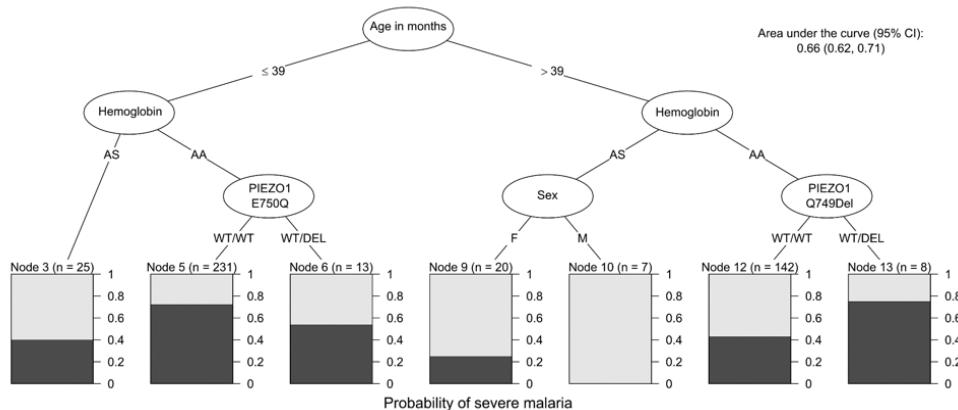
259

260 For subjects with HbAA, the odds of severe malaria in those with the E756del
261 heterozygous mutation (WT/DEL) were one third the odds of those with the homozygous mutation
262 (OR 0.33, 95% CI 0.11-0.98; $p=0.046$, Figure 2). While this association was also apparent within
263 individuals with HbAS, a difference in the risk of severe malaria failed to reach statistical
264 significance between the two mutations ($p=0.07$). This result may suggest that the homozygous
265 mutant E756del genotype alters RBC physiology in a way that abolishes the protective effect of
266 HbAS, and may act with it synergistically to generate an unfavorable environment for controlling
267 malaria infection. However, these results would need to be replicated in larger studies.

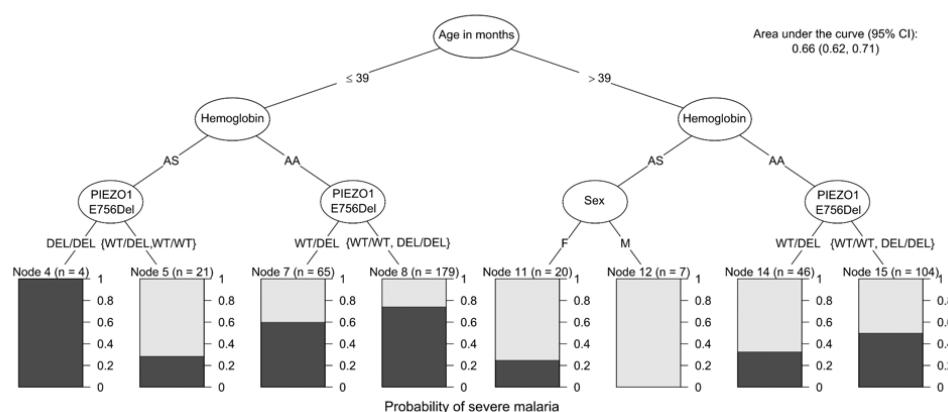
268 *Analysis of other proximal PIEZO1 polymorphisms*

269 In addition to E756del, we identified seven other single nucleotide polymorphisms and
270 insertion-deletions within the ~160 bp region we sequenced, which ranged in frequency from 0.4%
271 to 7.9% (Table S4). Even though these mutations are in close proximity to E756del, none of them
272 were significantly associated with severe malaria individually. To determine whether any of these
273 *PIEZO1* variants act synergistically with hemoglobin type, sex or age to influence malaria
274 susceptibility in the absence of E756del, we used classification trees (CART) (Figure 3A). For
275 subjects with HbAA, when E756del was excluded, heterozygosity for E750Q appeared protective
276 in younger children, whereas heterozygosity for Q749del was associated with an increased
277 probability of severe malaria in older children. However, correlation testing showed E750Q and
278 Q749del were significantly correlated with E756del, suggesting that these two variants may be
279 serving as a proxy for E756del in predicting malaria severity (results not shown). This hypothesis
280 is further strengthened when the E756del polymorphism is included in the analysis, as no other
281 *PIEZO1* variants were predictive of disease severity in the presence of E756del (Figure 3B).
282 Together, these results suggest that E756del is the causal variant in this region, and while two of
283 the polymorphisms appeared to predict malaria severity, these may be serving as surrogates for
284 E756del.

285


286

287

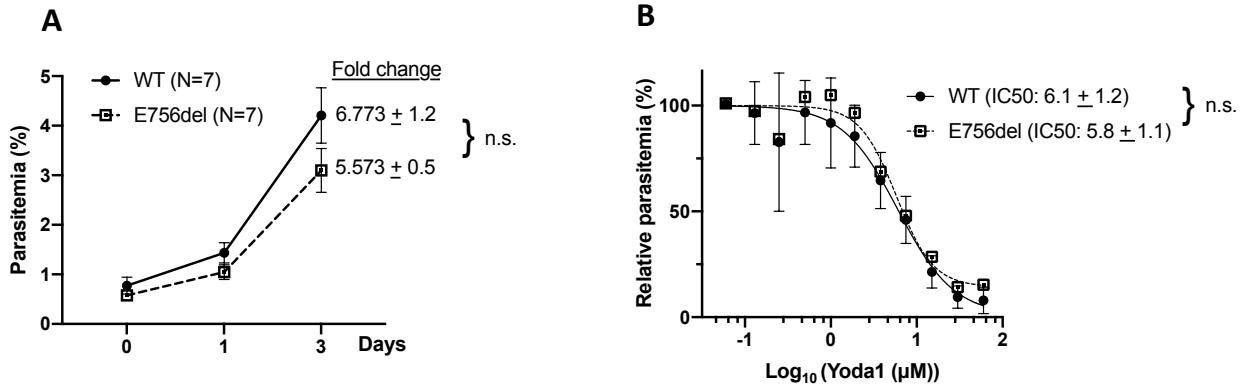

288

289

A

B

Figure 3. Classification trees predicting severe malaria with various possible predictors included. (A) Possible predictors: all *PIEZ01* variants except for E756Del, hemoglobin type, sex, and age. (B) Possible predictors: all *PIEZ01* variants, hemoglobin type, sex, and age. The higher the black bars, the higher the likelihood of severe malaria.


290

291 *Effect of PIEZ01 E756del on in vitro growth of *P. falciparum**

292 Previous work suggested that human red blood cells heterozygous for the *PIEZ01*
293 E756del mutation are less supportive of *P. falciparum* *in vitro* growth than wild-type red blood
294 cells (MA *et al.* 2018). To further investigate whether impaired intracellular growth could be a
295 mechanism by which E756del protects against severe malaria, we identified local donors of

296 African descent who are wild-type or heterozygous at *PIEZ01* E756del and used their red blood
297 cells in *P. falciparum* growth assays. To our surprise, we found that *P. falciparum* replicated
298 equally well in the wild-type versus E756del heterozygous erythrocyte samples ($p=0.37$, Figure
299 4A). Similar trends were observed when the cells were used freshly or after cryopreservation.
300 These results suggest that while the E756del mutation may confer gain-of-function kinetics (MA
301 *et al.* 2018), at least in heterozygous RBCs, the phenotype is not strong enough to impair
302 intracellular growth of *P. falciparum* *in vitro*.

303 To determine if chemical activation of the *PIEZ01* ion channel could inhibit intracellular
304 growth of *P. falciparum* in RBCs, we used the small synthetic molecule Yoda1, which was recently
305 identified as a specific agonist of both human and mouse *PIEZ01* (SYEDA *et al.* 2015). We
306 observed a dose-dependent effect on *P. falciparum* growth in both wild-type and E756del RBCs,
307 with an IC₅₀ of ~6 μ M (Figure 4B). This IC₅₀ concentration is similar to that required for Yoda1
308 to induce *PIEZ01*-specific Ca^{2+} responses in HEK cells or mouse RBCs (CAHALAN *et al.* 2015;
309 SYEDA *et al.* 2015). These results demonstrate that Yoda1 has antimalarial activity and point to a
310 critical role for erythrocyte *PIEZ01* in promoting the development of *P. falciparum* in red blood
311 cells. The observation that the antimalarial potency of Yoda1 is similar in the wild-type and
312 E756del genetic backgrounds provides additional evidence that the E756del mutation likely
313 confers only a mild gain-of-function phenotype in heterozygous RBCs.

Figure 4. *P. falciparum* growth is preserved in E756del erythrocytes but a small molecule agonist of PIEZO1 has antimalarial activity. (A) Growth curves for *P. falciparum* strain 3D7 in WT or *PIEZO1* E756del heterozygous erythrocytes. Each point represents mean raw parasitemia of N=7 donors for each genetic background, and error bars represent SEM. Each sample was run with two technical replicates. "Fold change" indicates the average fold difference (\pm SEM) in parasitemia on day 3 relative to day 0. n.s., not significant, p-value=0.3725. (B) *P. falciparum* strain 3D7 parasitemia as a function of Yoda1 concentration, as determined by flow cytometry after 3 days of drug treatment. The relative parasitemia was calculated for each biological replicate (N=7 for each genetic background) by normalizing the day 3 parasitemia at each drug concentration (two technical replicates) relative to the parasitemia in the absence of drug. Yoda1 IC₅₀ \pm SEM (μ M) for WT or E756del erythrocytes are shown in parenthesis. n.s., not significant, p-value=0.4639. SEM=Standard error of mean.

314

315

316 Discussion

317 In this work, we sought to determine the clinical relevance of a recent study demonstrating
318 a survival benefit for *Plasmodium*-infected mice carrying a *PIEZO1* gain-of-function allele (MA *et*
319 *al.* 2018). In the *PIEZO1GOF* mouse model, the RBCs were dehydrated, intracellular parasite
320 growth was impaired, and the animals were protected from developing cerebral malaria. We
321 assessed the human *PIEZO1* mutation E756del, which was identified as a gain-of-function allele
322 based on its prolonged inactivation time constant after mechanical stimulation in HEK cells (MA
323 *et al.* 2018). Using samples from Gabonese patients with severe or uncomplicated malaria, we
324 found that *PIEZO1* E756del is significantly associated with protection against severe malaria.
325 Children heterozygous for E756del had a significantly lower predicted probability of severe
326 malaria compared to those with wild-type *PIEZO1*, even when controlling for age, sex, and HbAS
327 status. As E756del is present at high frequencies in African populations (MA *et al.* 2018), these
328 results suggest that it may be a major determinant of innate resistance to severe malaria. Whether
329 this advantage is extended to all severe malaria sub-phenotypes remains to be investigated in
330 the context of a larger study.

331 Given the strong protective effect of *PIEZ01* E756del on severe malaria in our study, its
332 absence from GWAS candidate lists is particularly notable. The sensitivity of GWAS studies for
333 malaria in Africa are limited by several factors, including weak linkage disequilibrium and
334 population stratification (JALLOW *et al.* 2009), as well as technical limitations in assessing complex
335 or repetitive regions via microarrays or deep sequencing. The *PIEZ01* E756del mutation is a
336 three nucleotide deletion within a region of short tandem repeats, making it difficult to detect by
337 high-throughput methods. In our study, accurate genotyping of this locus required Sanger
338 sequencing and manual alignments. These studies on *PIEZ01* highlight the benefit of using a
339 combination of sequencing methods for the identification of host factors that may influence
340 susceptibility to malaria.

341 The finding that E756del is protective against severe malaria only in heterozygotes is
342 reminiscent of the protective effect of HbAS, where heterozygotes with sickle cell trait are
343 protected from malaria-related mortality but homozygotes with sickle cell disease are not (AMBE
344 *et al.* 2001; AIDOO *et al.* 2002; KOMBA *et al.* 2009). Although GOF mutations in *PIEZ01* are a
345 recognized cause of hereditary xerocytosis (GLOGOWSKA *et al.* 2017), to our knowledge the
346 E756del allele has not been implicated in any hematologic disease (MA *et al.* 2018). If E756del is
347 truly a GOF allele it seems likely that homozygous mutant cells would be dehydrated and display
348 altered permeability, predisposing to hemolytic anemia and severe symptoms upon infection with
349 *P. falciparum*. Given the high allele frequency of E756del in our Gabonese study population
350 (19%), understanding how homozygosity for this mutation affects *PIEZ01* channel function, RBC
351 hydration status and *in vitro* susceptibility to *P. falciparum* are important open questions.

352 We did not observe any influence of co-inheritance of HbAS and E756del heterozygosity
353 on malaria susceptibility, suggesting that having one E756del allele does not contribute any
354 additional effect to the already powerful protection conferred by HbAS. In contrast, subjects with
355 HbAS who are homozygous mutant for E756del had an extremely high predicted probability of
356 severe malaria. While this association was not statistically significant, it highlights the need for

357 further research on *PIEZ01* E756del, as it suggests that the protective effect of HbAS on malaria
358 can be subverted by structural or permeability abnormalities found in homozygous E756del RBCs.
359 Therefore, future studies would need to further validate these findings. A recent analysis of
360 associations between E756del and clinical parameters in sickle cell disease (SCD) patients
361 showed that the *PIEZ01* E756del variant was associated with increased RBC density and
362 dehydration in HbSS cells, providing an additional example of a potential phenotypic interplay
363 between these genes (ILBOUDO *et al.* 2018).

364 The hypothesis that *PIEZ01* may influence malaria susceptibility arose from the
365 observation that *P. falciparum* parasites grow poorly in dehydrated red blood cells and the
366 knowledge that hereditary xerocytosis, a disorder characterized by red blood cell dehydration, is
367 often caused by GOF mutations in *PIEZ01* (TIFFERT *et al.* 2005; ANDOLFO *et al.* 2013; ARCHER *et*
368 *al.* 2014). Although our results show that *PIEZ01* E756del is protective against severe malaria in
369 heterozygotes, the mechanism of protection is not yet known. In the mouse model, expression of
370 a *PIEZ01* GOF allele in the hematopoietic lineage was protective against cerebral malaria and
371 appeared to impair growth of *P. berghei* ANKA parasites, at least during the initial phase of
372 infection (MA *et al.* 2018). The same study suggested that *P. falciparum* growth was impaired in
373 human RBCs carrying an E756del allele (MA *et al.* 2018). However, in our experiments we did not
374 observe a significant *P. falciparum* growth defect in *PIEZ01* E756del heterozygous RBCs. *P.*
375 *falciparum* grew equally well in wild-type versus E756del-carrying RBCs, regardless of whether
376 the cells were fresh or had been previously cryopreserved. These results demonstrate that
377 heterozygosity for *PIEZ01* E756del does not in itself hinder *P. falciparum* invasion or growth in
378 red blood cells. While the reason for the discrepant findings is not clear, it is possible that time
379 from donation, processing variability and/or other technical issues confounded the conclusions of
380 the previous study.

381 Our studies indicate that while *P. falciparum* can grow normally in human RBCs carrying
382 a *PIEZ01* E756del allele, the *PIEZ01* agonist Yoda1 had potent antimalarial activity. Presumably

383 the changes in ionic permeability induced by Yoda1 create an inhospitable environment for normal
384 parasite development. Since the drug assay results demonstrate that strong activation of PIEZO1
385 in RBCs can inhibit *P. falciparum* growth, one explanation for the lack of a phenotype in untreated
386 E756del heterozygous RBCs could be that E756del confers only a mild channel defect. Indeed,
387 out of two candidates and one established *PIEZ01* GOF mutation tested, E756del displayed the
388 shortest channel inactivation time (MA *et al.* 2018). As the experiments measuring channel
389 kinetics were performed using ectopic expression in HEK cells, it is possible that the channel
390 phenotype of E756del in heterozygous RBCs is even more mild. This conclusion is further
391 supported by our findings showing that wild-type and E756del RBCs were equally sensitive to
392 Yoda1's antimalarial activity. Previous work in mice showed that Yoda1 is specific for PIEZO1, as
393 it induced cation permeability and cellular dehydration in wild-type but not PIEZO1-null mouse
394 RBCs (CAHALAN *et al.* 2015). Bioinformatic analyses aimed at identifying mechanosensitive
395 channels in pathogenic protozoa did not identify any homologues of *PIEZ01* in Apicomplexan
396 parasites, making it unlikely that Yoda1 could be acting on a parasite-encoded target (PROLE AND
397 TAYLOR 2013). In our experiments, we further minimized this possibility by pre-incubating the
398 RBCs in Yoda1 for several hours and then washing the cells extensively before infecting with
399 parasites.

400 Given that *in vitro* growth of *P. falciparum* in RBCs is unaffected by PIEZO1 E756del, how
401 might this common polymorphism protect from severe malaria? As with many life-threatening
402 systemic infections, the symptoms of severe malaria are in large part caused by the body's
403 extreme response to overwhelming infection by a microorganism. Additionally, the adhesive
404 properties of *P. falciparum*-infected RBCs enable them to sequester in the deep microvasculature
405 and adhere to uninfected RBCs, exacerbating organ dysfunction. As *PIEZ01* is expressed in
406 many tissues including the vascular endothelium and immune cells, it is possible that
407 dysregulation of its channel activity has effects on vascular tone, cell permeability and/or signaling
408 during malaria infection that are independent of any effects on RBCs. Alternatively, E756del may

409 alter *P. falciparum* virulence properties rather than intracellular growth, such as the ability of the
410 parasite to export cytoadherence proteins to the RBC plasma membrane. This type of mechanism
411 has previously been proposed to explain the malaria-protective nature of the hemoglobin C
412 mutation (FAIRHURST *et al.* 2005).

413 Our findings show a significant association between *PIEZ01* E756del and protection from
414 severe *P. falciparum* malaria. Together with the previous elegant mechanistic work on mouse
415 *PIEZ01* GOF mutations and *P. berghei* ANKA, these data firmly establish *PIEZ01* as an
416 important host susceptibility factor for malaria. Though the list of innate susceptibility determinants
417 for severe malaria includes a range of factors such as hemoglobin variants, enzymes, membrane
418 proteins and immune-related molecules (APINJOH *et al.* 2013; NGUETSE AND EGAN 2019), *PIEZ01*
419 is unique because of its potential to influence *P. falciparum* pathogenesis on multiple levels
420 (including its asexual replication in RBCs and ability to mediate cerebral malaria), and because it
421 is considered a druggable molecule (SYEDA *et al.* 2015). The demonstration that chemical
422 activation of RBC *PIEZ01* impairs *P. falciparum* growth *in vitro*, combined with the discovery that
423 the E756del allele is associated with protection from severe malaria in patients, suggests that
424 *PIEZ01* has potential as a compelling target for a host-directed therapy for malaria.

425

426

427 **Author contributions**

428 CNN, experimental design, acquisition, analysis and interpretation of data, and writing the
429 manuscript; NP, analysis and interpretation of data and editing the manuscript; BS, acquisition
430 and analysis of data and editing the manuscript; ERE, conception and experimental design,
431 sample acquisition, data analysis and interpretation and editing the manuscript; PGK, TPV,
432 sample acquisition, experimental design, and editing the manuscript; ESE, conception and
433 experimental design, analysis and interpretation of data, provision of resources and supervision,
434 and writing the manuscript. All authors read and approved the final manuscript.

435

436 **Declaration of interests**

437 We declare no competing interests.

438

439 **Acknowledgments**

440 We thank the staff of Albert Schweitzer Hospital in Lambaréne, and the Centre Hospitalier de
441 Libreville in Gabon for their assistance with samples and data collection; and the study patients
442 and their parents for consenting to participate in those studies. We thank Frans Kuypers, Ardem
443 Patapoutian, Elizabeth Winzeler, and members of the Boothroyd, Petrov, Yeh and Egan labs for
444 helpful discussions. We thank Carrie Lin, Nick Bondy and Tuya Yokoyama for technical
445 assistance. Local blood samples were drawn at the Stanford Clinical and Translational Research
446 Unit, which is supported by CTSA Grant # UL1 TR001085 CNN received support from the
447 Stanford Maternal and Child Health Research Institute, and ESE was funded through awards from
448 the Doris Duke Charitable Foundation (#2016098), NIH (DP2HL13718601), the Stanford Maternal
449 Child Health Research Institute, and is a Tashia and John Morgridge Endowed Faculty Scholar
450 in Pediatric Translational Medicine and a Baxter Faculty Scholar.

451

452 **References**

453 Aidoo, M., D. J. Terlouw, M. S. Kolczak, P. D. McElroy, F. O. ter Kuile *et al.*, 2002 Protective effects of the
454 sickle cell gene against malaria morbidity and mortality. *Lancet* 359: 1311-1312.

455 Ambe, J. P., J. O. Fatunde and O. O. Sodeinde, 2001 Associated morbidities in children with sickle-cell
456 anaemia presenting with severe anaemia in a malarious area. *Trop Doct* 31: 26-27.

457 Andolfo, I., S. L. Alper, L. De Franceschi, C. Auriemma, R. Russo *et al.*, 2013 Multiple clinical forms of
458 dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. *Blood* 121: 3925-3935,
459 S3921-3912.

460 Apinjoh, T. O., J. K. Anchang-Kimbi, C. Njua-Yafi, R. N. Mugri, A. N. Ngwai *et al.*, 2013 Association of
461 cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of
462 Cameroon. *PLoS One* 8: e81071.

463 Archer, N. M., N. Petersen, M. A. Clark, C. O. Buckee, L. M. Childs *et al.*, 2018 Resistance to *Plasmodium*
464 *falciparum* in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition. *Proc*
465 *Natl Acad Sci U S A* 115: 7350-7355.

466 Archer, N. M., B. E. Shmukler, I. Andolfo, D. H. Vandorpe, R. Gnanasambandam *et al.*, 2014 Hereditary
467 xerocytosis revisited. *Am J Hematol* 89: 1142-1146.

468 Cahalan, S. M., V. Lukacs, S. S. Ranade, S. Chien, M. Bandell *et al.*, 2015 Piezo1 links mechanical forces to
469 red blood cell volume. *Elife* 4.

470 Development Core Team, R., 2013 R Core Team. R A Language and Environment for Statistical Computing
471 2014, pp., Vienna, Austria.

472 Fairhurst, R. M., D. I. Baruch, N. J. Brittain, G. R. Oster, J. S. Wallach *et al.*, 2005 Abnormal display of
473 PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. *Nature* 435: 1117-
474 1121.

475 Gelman Andrew and Yu-Sung Su, 2018 Data Analysis Using Regression and Multilevel/Hierarchical Models,
476 pp. Functions to accompany A. Gelman and J. Hill, Data Analysis Using Regression and
477 Multilevel/Hierarchical Models, Cambridge University Press, 2007.

478 Glogowska, E., E. R. Schneider, Y. Maksimova, V. P. Schulz, K. Lezon-Geyda *et al.*, 2017 Novel mechanisms
479 of PIEZO1 dysfunction in hereditary xerocytosis. *Blood* 130: 1845-1856.

480 Hothorn, T., K. Hornik and A. Zeileis, 2006 Unbiased Recursive Partitioning: A Conditional Inference
481 Framework. *Journal of Computational and Graphical Statistics* 15: 651-674.

482 Ilboudo, Y., P. Bartolucci, M. E. Garrett, A. Ashley-Koch, M. Telen *et al.*, 2018 A common functional PIEZO1
483 deletion allele associates with red blood cell density in sickle cell disease patients. *Am J Hematol*
484 93: E362-E365.

485 Jallow, M., Y. Y. Teo, K. S. Small, K. A. Rockett, P. Deloukas *et al.*, 2009 Genome-wide and fine-resolution
486 association analysis of malaria in West Africa. *Nat Genet* 41: 657-665.

487 Kalmbach, Y., A. B. Boldt, R. Fendel, B. Mordmuller, P. G. Kremsner *et al.*, 2006 Increase in annexin V-
488 positive B cells expressing LILRB1/ILT2/CD85j in malaria. *Eur Cytokine Netw* 17: 175-180.

489 Kohavi, R., 1995 A study of cross-validation and bootstrap for accuracy estimation and model selection,
490 pp. 1137-1143 in *Proceedings of the 14th international joint conference on Artificial intelligence -*
491 *Volume 2*. Morgan Kaufmann Publishers Inc., Montreal, Quebec, Canada.

492 Komba, A. N., J. Makani, M. Sadarangani, T. Ajala-Agbo, J. A. Berkley *et al.*, 2009 Malaria as a cause of
493 morbidity and mortality in children with homozygous sickle cell disease on the coast of Kenya.
494 *Clin Infect Dis* 49: 216-222.

495 Kremsner, P. G., C. Valim, M. A. Missinou, C. Olola, S. Krishna *et al.*, 2009 Prognostic value of circulating
496 pigmented cells in African children with malaria. *J Infect Dis* 199: 142-150.

497 Kun, J. F., R. J. Schmidt-Ott, L. G. Lehman, B. Lell, D. Luckner *et al.*, 1998 Merozoite surface antigen 1 and
498 2 genotypes and rosetting of *Plasmodium falciparum* in severe and mild malaria in Lambarene,
499 Gabon. *Trans R Soc Trop Med Hyg* 92: 110-114.

500 Li, J., B. Hou, S. Tumova, K. Muraki, A. Bruns *et al.*, 2014 Piezo1 integration of vascular architecture with
501 physiological force. *Nature* 515: 279-282.

502 Ma, S., S. Cahalan, G. LaMonte, N. D. Grubaugh, W. Zeng *et al.*, 2018 Common PIEZO1 Allele in African
503 Populations Causes RBC Dehydration and Attenuates *Plasmodium* Infection. *Cell* 173: 443-455
504 e412.

505 Mackinnon, M. J., T. W. Mwangi, R. W. Snow, K. Marsh and T. N. Williams, 2005 Heritability of malaria in
506 Africa. *PLoS Med* 2: e340.

507 Malaria Genomic Epidemiology, N., G. Band, K. A. Rockett, C. C. Spencer and D. P. Kwiatkowski, 2015 A
508 novel locus of resistance to severe malaria in a region of ancient balancing selection. *Nature* 526:
509 253-257.

510 Mangano, V. D., Y. Kabore, E. C. Bougouma, F. Verra, N. Sepulveda *et al.*, 2015 Novel Insights Into the
511 Protective Role of Hemoglobin S and C Against *Plasmodium falciparum* Parasitemia. *J Infect Dis*
512 212: 626-634.

513 Ndila, C. M., S. Uyoga, A. W. Macharia, G. Nyutu, N. Peshu *et al.*, 2018 Human candidate gene
514 polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association
515 study. *Lancet Haematol* 5: e333-e345.

516 Nguetse, C. N., and E. S. Egan, 2019 Host Genetic Predisposition to Malaria, pp. 1-25 in *Encyclopedia of*
517 *Malaria*, edited by P. G. Kremsner and S. Krishna. Springer New York, New York, NY.

518 Pasvol, G., D. J. Weatherall and R. J. Wilson, 1978 Cellular mechanism for the protective effect of
519 haemoglobin S against *P. falciparum* malaria. *Nature* 274: 701-703.

520 Pathak, M. M., J. L. Nourse, T. Tran, J. Hwe, J. Arulmoli *et al.*, 2014 Stretch-activated ion channel Piezo1
521 directs lineage choice in human neural stem cells. *Proc Natl Acad Sci U S A* 111: 16148-16153.

522 Prole, D. L., and C. W. Taylor, 2013 Identification and analysis of putative homologues of mechanosensitive
523 channels in pathogenic protozoa. *PLoS One* 8: e66068.

524 Ranade, S. S., Z. Qiu, S. H. Woo, S. S. Hur, S. E. Murthy *et al.*, 2014 Piezo1, a mechanically activated ion
525 channel, is required for vascular development in mice. *Proc Natl Acad Sci U S A* 111: 10347-10352.

526 Syeda, R., J. Xu, A. E. Dubin, B. Coste, J. Mathur *et al.*, 2015 Chemical activation of the
527 mechanotransduction channel Piezo1. *Elife* 4.

528 Tiffert, T., V. L. Lew, H. Ginsburg, M. Krugliak, L. Croisille *et al.*, 2005 The hydration state of human red
529 blood cells and their susceptibility to invasion by *Plasmodium falciparum*. *Blood* 105: 4853-4860.

530 Timmann, C., T. Thye, M. Vens, J. Evans, J. May *et al.*, 2012 Genome-wide association study indicates two
531 novel resistance loci for severe malaria. *Nature* 489: 443-446.

532 Uyoga, S., A. W. Macharia, C. M. Ndila, G. Nyutu, M. Shebe *et al.*, 2019 The indirect health effects of
533 malaria estimated from health advantages of the sickle cell trait. *Nat Commun* 10: 856.

534 van Buuren, S., and K. Groothuis-Oudshoorn, 2011 mice: Multivariate Imputation by Chained Equations in
535 R. *Journal of Statistical Software* 45: 1-67.

536 Wang, S., R. Chennupati, H. Kaur, A. Iring, N. Wettschureck *et al.*, 2016 Endothelial cation channel PIEZO1
537 controls blood pressure by mediating flow-induced ATP release. *J Clin Invest* 126: 4527-4536.

538

539

540

541