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Abstract

The presence of interictal epileptiform discharges on electroencephalography (EEG) may indicate
increased epileptic seizure risk and on invasive EEG are the signature of the irritative zone. In highly
epileptogenic lesions — such as cortical tubers in tuberous sclerosis — these discharges can be
recorded with intracranial stereotactic EEG as part of the evaluation for epilepsy surgery. Yet the
network mechanisms that underwrite the generation and spread of these discharges remain poorly
understood, limiting their current diagnostic use.

Here, we investigate the dynamics of interictal epileptiform discharges using a combination of
guantitative analysis of invasive EEG recordings and mesoscale neural mass modelling of cortical
dynamics. We first characterise spatially organised local dynamics of discharges recorded from 36
separate tubers in 8 patients with tuberous sclerosis. We characterise these dynamics with a set of
competing explanatory network models using dynamic causal modelling. Bayesian model comparison
of plausible network architectures suggests that the recurrent coupling between neuronal populations
within — and adjacent to — the tuber core explains the travelling wave dynamics observed in these
patient recordings.

Our results — based on interictal activity — unify competing theories about the pathological
organisation of epileptic foci and surrounding cortex in patients with tuberous sclerosis. Coupled
oscillator dynamics have previously been used to describe ictal activity, where fast travelling ictal
discharges are commonly observed within the recruited seizure network. The interictal data analysed
here add the insight that this functional architecture is already established in the interictal state. This
links observations of interictal EEG abnormalities directly to pathological network coupling in epilepsy,
with possible implications for epilepsy surgery approaches in tuberous sclerosis.

Significance Statement

Interictal epileptiform discharges (IEDs) are clinically important markers of an epileptic brain. Here we
link local IED spread to network coupling through a combination of clinical recordings in paediatric
patients with tuberous sclerosis complex, quantitative EEG analysis of interictal discharges spread,
and Bayesian inference on coupled neural mass model parameters. We show that the kinds of
interictal discharges seen in our patients require recurrent local network coupling extending beyond
the putative seizure focus and that in fact only those recurrent coupled networks can support seizure-
like and interictal dynamics when run in simulation. Our findings provide a novel integrated
perspective on emergent epileptic dynamics in human patients.
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1 Introduction

Patients with epilepsy experience recurrent seizures caused by abnormal, hypersynchronous brain
activity (Fisher et al., 2005). Most patients achieve seizure control with anti-epileptic drugs (AEDs),
but approximately one third continue to have seizures despite treatment (Berg and Rychlik, 2015). For
these patients, neurosurgical removal of the putative epileptogenic zone has emerged as an
efficacious treatment (Rosenow and Liiders, 2001; Duncan et al., 2016). Some patients have seizures
after surgery, suggesting that their epilepsy did not arise from focal abnormal activity alone. In fact,
epilepsy is now considered a network disorder with emergent dynamics in an abnormally coupled
network (Da Silva et al., 2012).

Tuberous sclerosis complex (TSC) is a genetic multisystem disorder, and a leading cause of epilepsy
and autism (Osborne et al., 1991). TSC is associated with lesions in many organs including brain,
heart, skin, kidneys, and lungs (Curatolo et al., 2008). Intracranial lesions are predominantly cortical
tubers, which are highly epileptogenic and characterised by aberrant neuronal coupling in both tuber
and surrounding tissue (perituberal cortex) (Ruppe et al., 2014). Tuber core, perituberal cortex, or
both have been purported as possible seizure onset zones in patients with TSC (Major et al., 2009;
Ma et al., 2012; Kannan et al., 2016). Identifying the local network mechanisms underlying seizures in
these patients is a topic under active debate (Gupta, 2017) with implications for surgical treatment,
the outcomes of which are currently still variable (Fallah et al., 2015).

Epilepsy surgery in patients with TSC usually involves intracranial EEG (IEEG) evaluation of seizure
networks (Bollo et al., 2008), as scalp EEG and imaging alone can be poorly predictive of outcomes
(Fallah et al., 2013). Recording iEEG from stereotactically implanted depth electrodes (SEEG) allows
sampling from multiple candidate tubers, but the widespread abnormalities, varied seizure
propagation pathways, and spatial sampling limitations make evaluating recordings challenging.
Extensive resection of the candidate tubers and surrounding cortex are commonly performed even
after detailed investigation (Wang et al., 2014). Thus, improved understanding of tuber-related
epileptogenicity may help develop more restrictive resections with better surgical outcomes.

The seizure onset zone — the target of neurosurgical intervention — is defined by the ictal activity.
Interictal epileptiform discharges (IEDs) can provide complementary localising information (Staley and
Dudek, 2006; Murakami et al., 2016), indicate dynamic changes in seizure risk (Baud et al., 2018) and
are associated with synaptic connectivity changes potentially contributing to epileptogenesis (Staley
et al., 2005). IEDs with the same features are seen across widely spaced electrodes with latencies of
tens of milliseconds, suggesting rapid propagation to distant cerebral structures (Emerson et al.,
1995; Alarcon et al., 1997; Wendling et al., 2012)

This propagation speed is in stark contrast to epileptic seizures themselves — ictal recruitment often
takes several seconds. Yet the same network supports slow ictal, and fast interictal propagation
(Proix et al., 2018). Spatiotemporal dynamics of IEDs may thus reveal additional insights into the
functional organisation of cortical areas involved in seizure generation and spread (Bettus et al.,
2008).
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Here, we quantify and model the dynamics of individual IEDs, to infer a neurobiologically plausible
connectivity structure. We identify systematic IED phase delays between neighbouring SEEG
channels. We then fit network architectures that recapitulate two possible propagation modes: (i)
propagation along recurrent coupled oscillators and (ii) propagation of pulses in an excitable network
(Muller et al., 2018; Proix et al., 2018). We hypothesised that the fast spread of interictal discharges
may reveal existing recurrent coupling in local epileptogenic networks, which can ultimately support
both ictal and interictal discharges.

To compare different explanatory networks, we use Dynamic Causal Modelling (DCM), a framework
that allows quantitative comparison of candidate explanatory models (Kiebel et al., 2008; Moran et al.,
2008, 2011) using neural mass models of neuronal population dynamics (e.g. the canonical
microcircuit (Bastos et al., 2012) used here). Recent advances in the efficient estimation across large
model spaces (Friston et al., 2018) furthermore allow us to compare model architectures at the level

of individual tubers.
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2 Materials and Methods

2.1 Patient identification and research ethics

We retrospectively considered all patients admitted to Great Ormond Street Hospital for Children
between January 2016 and June 2018 and included them if they (i) had a diagnosis of TSC, and (i)
underwent presurgical evaluation with SEEG recording for pharmacoresistant epilepsy. All eight
patients had focal seizures, and active focal epilepsy with onset in infancy or early childhood. Patient
details are summarised in Table 1. The retrospective use of anonymised clinical data was approved
by the UK Health Regulary Authority (HRA, IRAS ID 229772) and the Great Ormond Street Hospital /
UCL Great Ormond Street Institute of Child Health Joint Research Office (Project ID 17NPO05).

Table 1: Patient details

] Age at epilepsy Age at SEEG Number of SEEG
Patient

onset (y) recording (y) Electrodes

TS 01 1.50 8 6
TS 02 0.50 5 8
TS 03 1.50 5 16
TS 04 1.00 5 9
TS_05 0.06 11 12
TS _06 0.33 10
TS 07 0.67 12
TS 08 0.22 8 7

2.2 Intracranial EEG acquisition, selection and pre-processing

2.2.1 SEEG recording

SEEG electrodes were placed based on multidisciplinary SEEG planning involving neurologists,
neurophysiologists and neurosurgeons according to clinical need, informed by presurgical imaging,
seizure semiology, and ictal and interictal scalp EEG. DIXI medical SEEG depth electrodes were
inserted under stereotactic guidance using the Neuromate Renishaw robot system (programmed with
patient specific pre-operative imaging) into various structures, including multiple tubers in each child
(Sharma et al., 2019). Most electrodes had one or more contacts in the tuber core, with additional
contacts superficial, and/or deep to the core (i.e., in superficial grey matter, and deep white matter
respectively, Figure 1A). SEEG was recorded continuously for up to 5 days in order to capture
seizures for clinical interpretation. All SEEG recordings were recorded using a Natus NeuroWorks
system at a sampling rate of 1kHz, with a white matter contact remote from regions involved in the
generation of seizures used for reference. Quantitative analysis of phase delays was performed on

bipolar montage.

2.2.2 Classification of SEEG contact position
Pre-implantation MRI FLAIR, T1l and T2-weighted images (WI) were co-registered with post-
implantation CT to visually determine the position of SEEG contacts in relation to cortical tubers,
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perituberal grey, and white matter. In young children, tubers appear hypointense on the T1-WI image
and hyperintense on T2-WI and FLAIR images (Grajkowska et al., 2010). Although in some patients,
generalised brain volume loss was observed, most affected gyri were enlarged with blurring of the
grey-white junction (Jurkiewicz et al.,, 2006; Weisenfeld et al.,, 2013). Individual contacts were
classified in terms of their position to the tuber core on an integer scale centred around O (tuber core
position) by consensus of two raters (MT, ST), including a neurosurgeon with clinical expertise in

visual identification of TSC features on imaging.
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Figure 1 — Dynamic causal modelling. (A) Intracranial interictal recordings were acquired with stereotactically implanted
depth electrodes (SEEG), and visually classified in terms of their relation to the tuber core. (B) Dynamic causal modelling
allows the testing of network models of dynamics that generate iEEG responses to endogenous fluctuations or spikes. We
inverted such models to best explain interictal epileptiform discharges. (C) Each node, or ‘source’ in the model comprises
coupled neural mass models of 4 populations, organised into two oscillator pairs (superficial pyramidal cells and spiny stellate
cells; deep pyramidal cells and inhibitory interneurons).

2.2.3 Time series extraction

A total of 15 min of 60-second segments of interictal extra-operative SEEG recordings were selected
randomly from the entire recording using a MATLAB implemented random number generator
(MATLAB) — segments containing visible artefact, or clinically labelled seizure activity were excluded.
Band pass filter (0.5-120Hz, zero phase) and notch filter (50Hz) were applied for visual inspection on
the clinical Natus Database system. The signal was re-montaged to bipolar montages between
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adjacent contacts on the same SEEG electrode and exported in EDF+ format for further processing

using custom MATLAB code available online (https://github.com/roschkoenig/Travelling_Spikes).

2.2.4 Spike detection

A custom spike detection algorithm (adapted from SPKDT v1.0.4, (Barkmeier et al., 2012)) was run to
identify individual interictal epileptiform discharges. Criteria for spike detection were: (i) peak
amplitude >4 standard deviations from the mean, (ii) ascending and descending absolute slope
values of >7uV/ms, (iii) total width of spike < 20ms. We then grouped spikes recorded from different
contacts of the same SEEG electrode and detected groups of spikes that co-occurred within 200ms of
each other in time across channels on the same SEEG electrode. Only spike groups with at least 2

spikes within this time window were considered for further analysis.

2.3 Sensor space analysis
In the first instance, we analysed data features of the recorded SEEG signal to determine whether the
spatiotemporal distribution of interictal spikes was consistent with a travelling-wave spread and tested

these using Bayesian statistical criteria.

2.3.1 Delay estimation

We estimated the temporal delay between clusters of spikes spanning several channels of the same
SEEG electrode, by calculating cross correlation between the signal, and estimating the phase-delay
between neighbouring channels. This was performed in two frequency bands, aiming to identify phase
delays separately for low (<13Hz) and high (13-120Hz) frequency components of the interictal

epileptiform discharge.

2.3.1 Bayesian statistics on spatiotemporal spike distribution patterns

To identify the spatiotemporal organisation of interictal discharges, we compared different explanatory
models linking the relative time of spike detection to the position of the channel in relation to the tuber
core. We proposed three different possible (linear) models that could explain spatiotemporal
organisation (where t is time, and p is position relative to the tuber, with deep white matter
represented by the most negative value, the core position represented by zero, and overlying grey
matter represented by positive values):

Uniform: If there is no spatiotemporal pattern, time of detection should be independent of channel

position, modelled through a simple constant function:

Depth to Surface: If interictal discharges spread through the cortical tuber along the grey-white matter
axis, we would expect a linear relationship between channel position and time of spike detection as

follows:
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t=ax*p+b

Core to Periphery: This model encodes a spread of interictal discharges between core and

surrounding tissue through a relationship of absolute distance from core, and time of detection:

t=ax|pl+b

We fit each of these simple linear models to the spike groups detected in the earlier steps and
compared models using the Bayesian Information Criterion (BIC) for each of these models. Unlike
some other criteria, BIC penalises for additional parameters (i.e. added complexity). Lower BIC values
imply either fewer explanatory variables, better fit or both (Schwarz, 1978), and the model with the
lowest BIC has the best explanatory power for the observed data under Bayesian constraints. The
Bayes factor between competing models can be approximated by the difference in BIC as follows:

2log,.(B1y) ~2(ABIC); where a value of >10 is considered very strong evidence (Jones et al., 2001).

2.4 Dynamic causal modelling

2.4.1 DCM framework

Macroscopic neuronal dynamics as measured by iEEG can be generated by mesoscale neural mass
models that describe the average behaviour of neuronal populations and their coupling, as pioneered
by Wilson & Cowan (Wilson and Cowan, 1973). Here, we use the dynamic causal modelling (DCM)
(Friston et al., 2003) to compare different models of local network coupling underlying the dynamics of
interictal discharges. We use the canonical microcircuit model (Bastos et al., 2012), which is widely
used in DCM, including work in epilepsy and other neurological abnormalities (Auksztulewicz and
Friston, 2015; Bastos et al., 2015; Litvak et al., 2015; Papadopoulou et al., 2015; Pinotsis et al.,
2017). This model comprises four coupled neural masses, organised in two excitatory/inhibitory
oscillator pairs, and parameterised by coupling strength parameters and time constants.

DCM assumes that the activity in one source is evoked by the activity in another (David and Friston,
2003), and DCM for EEG uses the above mentioned neural mass model to explain the source activity,
and causal interactions (Garrido et al., 2008). Rather than estimating source activity at isolated points
in time, it models source activity over time, accounting for the interacting inhibitory and excitatory
populations of neurons. DCM uses variational Bayesian model inversions to infer the parameters that
best explain the source activity and provides a free energy approximation to the model evidence. This
can be used for Bayesian model comparison (c.f., the use of BIC above). To identify the architecture
of local perituberal networks, we constructed multi-region DCMs, with each region containing a full
canonical microcircuit and located along a deep white matter — tuber core — perituberal grey matter
(depth to surface) axis. We compared their model evidence (and accompanying connectivity
estimates) as outlined below. In order to accommodate the diversity of possible IED for each tuber
included, we performed k-means clustering on the loading of the principal components that accounted

for at least 90% of the overall variance of IED multichannel time series for each tuber, identifying
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clusters of IEDs with shared similar morphologies. We then selected the IEDs closest to the centroids
of each cluster as representative and included these episodes in the modelling. These data were
inverted in a time window of -100ms to 250ms around the peak of the first spike detection with a
temporal Hanning window, using a Gaussian impulse input function at Oms with 16ms SD (to model

an endogenous discharge event).

2.4.2 Model Specification
We specified our candidate network models of local coupling along two main dimensions:

1. Recurrent vs outward only coupling: Previous mathematical models of travelling wave

propagation and ictal wave propagation suggested different modes of wave propagation
(Ermentrout and Kleinfeld, 2001; Smith et al., 2016; Muller et al., 2018): (i) Travelling waves
propagating through excitable neural media. Here, the wave originates at a single oscillator
(i.e., a pacemaker), directly exciting the neighbouring regions of the cortex through a
progression of increasing time delays. (i) Message passing along a recurrently coupled
network. Crucially in this model architecture, all local oscillators are potential sources for
rhythmic outputs.

2. Superficial, core, or deep source: In the neural mass formulation, an impulse will trigger the

subsequent spread of activity. Here, we model this as Gaussian input into key positions of the
network established above — specifically the perituberal gray (most superficial superficial), the

tuber core itself (core), or the deep white matter (deepest) nodes.

This gives us a model space of 2*3 = 6 models which we compared using a (variational) free energy

bound on Bayesian model evidence (see below).

2.4.3 Bayesian model reduction and model comparison

DCM, through variational Bayesian inference (specifically, Variational Laplace), allows estimation of
posterior densities over model parameters, given the data. Model inversion also provides a free
energy bound on log model evidence (i.e. F = —Inp(y|m)). This free energy can be efficiently
approximated for nested (i.e., reduced) models whose parameters are subsets of parameters of a
parent (i.e., full) model, by running the full model inversion once — followed by Bayesian model
reduction (Friston et al., 2018). The difference in free energy values between competing models
corresponds to the logarithm of the corresponding Bayes factor (Baele et al., 2013; Lin and Yin,
2015), which we use here for model comparison. For group level comparison, we used a random
effects Bayesian analysis (Penny et al., 2010), accounting for potential individual differences in
network architecture between tubers, which we will report as exceedance probability of the competing

models.

2.4.4 Simulations
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Finally, we took a representative example of a full network fitted in the previous step, and simulated
changes in intrinsic excitability, to simulate possible transitions into ictal dynamics (Papadopoulou et
al., 2015). Here, the DCM is used in ‘simulation mode’, meaning that instead of inferring parameter
values from given data, we simulated data based on fluctuations about empirically determined model
parameters (i.e., synaptic connectivity and related time constants). We repeated these simulations
with models that did, and did not contain recurrent coupling between neighbouring nodes, to illustrate

the relationship between model topology and ensuing dynamics.
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3 Results
3.1 Interictal discharges form travelling waves between tuber core and periphery
Spatially coordinated phase delays (Figure 2) between spikes on different channels that belong to the

same electrode suggest that these interictal discharges behave like a travelling wave.

A Interictal discharge propagation in relation to tuber core
Proposed propagation models Group level model comparison (BIC)

uniform

low frequencies high frequency
components components

time of peak discharge amplilude

Bayesian information criterion (BIC)

=
T
¥
o
o
a

surfa core depth
Location in relation 1o tuber core spike propagation spike propagation
maodels models
B Example data
Single interictal discharge example SEEG electrode average
TmVv
| 15 EBO C
Eg0
£
N #30
&=
w_m &
] S B
-——‘WF-_‘-\'___——_-_ surface core depth
5 S e i
Al =10.8ms
O
@
@

1mV
| 10ms

Figure 2 - Phase delays follow a tuber core to periphery gradient. (A) Three linear models were used to identify possible
relationships between phase delays and spatial location of SEEG contacts. These explain the relationship either as uniform (no
relationship), depth to surface, or core to periphery local spread of putative IED travelling waves. Model comparison identifies
the core to periphery organisation of IEDs as the most likely model (with the lowest BIC value). (B) Travelling wave dynamics
can also be identified at the level of individual IEDs, as shown in the core to periphery organisation of temporal differences
between spike peak timings in the bottom panel. For the same electrode, the average phase shift between detected groups of
IEDs is shown for individual SEEG contacts against their spatial location in relation to the tuber core (shaded area illustrates
standard error around the mean).
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We used the Bayesian information criterion — on a set of simple linear models — to identify the
spatiotemporal dynamics of individual interictal discharges. The linear models characterise the
relationship between relative phase delay and SEEG contact position as either (i) uniform; i.e. no
relationship between timing of spike detection and SEEG contact position, (ii) depth to surface; i.e.
there is a gradient of delays between the deepest, and the most superficial contact of the SEEG
electrode, and (iii) core to periphery; i.e. there is a gradient of delays between contacts closest to the
tuber core, and contacts peripheral to this (Fig 2A). Models were estimated separately for low (1-
13Hz), and fast (13-120Hz) frequency components to account for potential propagation differences
between fast and slow components of the interictal epileptiform discharges.

The winning model at the group level (i.e., the one with the lowest BIC value) is the depth to surface
model for both frequency bands considered (Figure 2A). The BIC difference is >800, greatly
exceeding the commonly considered ‘significance’ threshold of ABIC > 10 (Jones et al., 2001). This
characterises IEDs as waves travelling between the tuber core and its periphery. This travel can also
be identified on the level of individual spikes, and on electrode-wide averages (Figure 2B). There was
no statistical relationship between propagation patterns at the individual SEEG electrodes and their

clinically reported involvement in clinical seizure onset (X* (1, N = 38) = 1.59, p=0.207).

3.2 Interictal discharges are supported by recurrently coupled local networks

Using Dynamic causal modelling, we compared how plausible local network architectures explain the
observed spatiotemporal dynamics of the IEDs. We organised the model space along two main
dimensions: (1) the origin of the IED, modelled here as input into one of three network nodes, and (2)
two coupling schemes between neighbouring nodes in the network (Figure 3A). A full model was fitted
to a clustering-based selection of up to 3 IEDs per included tuber. The parameters and free energy of
the full 3 * 2 = 6 model space were then estimated using Bayesian model reduction. The models were
compared at the group level using a random effects analysis based on the model- and subject-
specific free energy estimates of the model evidence. This provides an estimate of the exceedance
probability that allows for comparison of explanatory models reported here (Figure 3B).

The winning model featured a triggering impulse at the tuber core, with recurrent forward/backward
coupling to its neighbouring nodes. This further supports the observation that travelling wave
dynamics organise around a core-periphery gradient, but adds the insight that recurrent coupling is
required to support the observed IED spread. The winning model explained an average of 58% of the
variance for each electrode, with large amplitude, lower frequency wave forms generally captured
better (representative examples shown in Figure 3C).
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Figure 3 — Recurrent coupling in local networks supports IED. (A) Six candidate networks we used to explain IED spread
around the tuber — 3 sets of forward coupled, or recurrently coupled networks, each with either superficial, core, or deep origin
of the IED. (B) Bayesian model comparison shows that recurrent coupling is necessary to explain IED dynamics, and that
across the group spread from the tuber core was the most likely local network architecture. (C) The final winning model
captured an average of ~60% of the variance of single spike dynamics across patients, with some representative model fits
shown here. (D) In an additional set of models, we explored whether within-electrode differences in individual IEDs can be
explained by a subset of models. However, there was strong evidence for a contribution of forward, backward and intrinsic
connectivity to observed within-electrode variability in IEDs.

We further explored whether within-electrode differences in IEDs can be explained by changes in just
a few key connections, by comparing different reductions of the winning model architecture. However,
to explain the diversity of IEDs observed patients, reciprocal extrinsic connections, and recurrent self-
connections were all required (Fig 3D)

3.3 Only recurrently coupled network support both IED- and seizure-like dynamics in silico

The network models fitted in the previous step provide us with fully specified generative models,
allowing for simulations under different parameter values. Here, we systematically varied the intrinsic
excitability (i.e. gain) parameters of neuronal populations for a fully parameterised model from the
previous step, both in the recurrent coupling, and the recurrent only coupling network architectures
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(Fig 4). These simulations reveal that while fast frequency rhythms akin to ictal discharges can be
produced by both recurrent, and forward only network architecture, the IED-like dynamics only
emerge in the recurrently coupled network.

A Effects of onset node gain changes in recurrently coupled networks c Comparison between models
forward recurrent

aewsa aulpseq wouy abueys uomgyu MsuLgul [eo)]

Figure 4 — Only networks with recurrent coupling support IED- and seizure-like dynamics (A) Using a network fitted to
patient data as template, we simulate changes in local intrinsic gain of the IED onset node (here the tuber core). Increases in
gain allow for fast oscillations akin to seizure-onset rhythms to emerge. (B) Using a model without recurrent coupling
reproduces the fast frequency ictal-like discharges, but not the high amplitude synchronous IED-like discharges. (C) The direct
comparison between these simulated time series shows the large amplitude difference at low intrinsic gain values.
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4 Discussion (1377w)

For this study, we used quantitative analysis and computational modelling to investigate the
spatiotemporal dynamics and local network constraints of IEDs in patients undergoing evaluation for
epilepsy surgery. We provide three key insights that contribute to current debates in the field: (1)
Through quantitative analysis, we identify tuber cores as the spatial source of interictal discharges; (2)
With dynamic causal modelling, we show that locally recurrent coupling is necessary to explain the
travelling wave dynamics of IEDs; and (3) using simulations we can link these insights on the network
constraints to the spatiotemporal dynamics of seizures.

4.1 Interictal discharges in tuberous sclerosis spread from the tuber core

This study confirms previous EEG findings that interictal epileptiform discharges (IEDs) form travelling
waves and propagate through the cerebral cortex (Emerson et al., 1995; Alarcon et al., 1997).
Furthermore, the phase delays of IEDs (in ‘sensor space’, i.e. in the SEEG time series) are organised
spatially in relation to the tuber core (Fig 2). This insight was further supported by model comparison
of different network origins of the interictal discharge impulse, i.e. in ‘source space’. The model with
IEDs starting from the core provides the overall best explanation of the observed dynamics (Fig 3).

In addition to further characterising IEDs generally, the findings also add to the previous literature on
ictogenesis of lesions and surrounding grey matter in patients with TSC specifically. Histologically,
tuber cores show dysmorphic neurons and balloon cells, which are also found in other epileptogenic
lesions such as focal cortical dysplasia type llb (André et al., 2007). However, dyslamination and
cellular dysplasia are also reported to affect the perituberal cortex (Ruppe et al., 2014), providing a
possible pathophysiological role for the peritubular cortex in ictogenesis. There has been conflicting
evidence from iEEG and corollary investigations suggesting that seizures may either emerge from the
core of the tuber (Mohamed et al., 2012; Kannan et al., 2016), or the surrounding cortex (with the
tuber core themselves eventually becoming electrographically silent (Major et al., 2009; Ma et al.,
2012).

We provide corroborating evidence that IEDs recapitulate a core-to-periphery organisation of
abnormal brain dynamics, even outside of seizures. As in many cases of IEDs in patients with focal
epilepsy, the relationship between IEDs and ictal dynamics at the individual level is nontrivial: We
observed some variability in the direction of IED travel for individual tubers (cf. Fig 3B — where models
4 and 6 had small but identifiable exceedance probabilities), but the direction of local IED spread
around individual tubers was not strongly associated with clinical labelling as to whether a given tuber
was involved at seizure onset.

To integrate the insights on local IED spread further into a model of local networks surrounding
epileptogenic lesions, we used dynamic causal modelling. This allowed us to generate and compare
biophysically plausible network models — enabling us to identify the network constraints underlying the
observed IED spread.
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4.2 Recurrent local coupling is necessary for IED dynamics

We used DCM to test competing mechanistic accounts of the propagation of IEDs along several
contacts of the SEEG recording. Instead of exploring all the possible models, DCM tests specific
models of connectivity and by selecting one, can provide evidence in favour of that model in
comparison to plausible alternatives (Kiebel et al., 2008). The networks we examined here were
motivated by two complementary imperatives: (a) To explore the onset and propagation of the IEDs in
relation to the tuber anatomy, testing whether these evolve in line with previous reports of the ictal
waves originating from the tuber core (Kannan et al., 2016); and (b) to identify the organisational
principles of networks that support the local spread of IEDs. Phase delays in networks (i.e. travelling
waves) can emerge from a number of different architectures (Ermentrout and Kleinfeld, 2001) of
which two — forward coupling, vs recurrent coupling — were modelled here.

Within this model space we found evidence for (a) a privileged role of the tuber core as the origin of
IEDs, and (b) locally recurrent coupling in the network architecture. This recurrent coupling confers
coupled oscillatory dynamics on distributed responses, allowing for arbitrarily fast phase delays of
travelling waves to emerge (unlike e.g., the forward-only coupled network). This offers a novel
perspective on the functional organisation of the local ictogenic network surrounding the tuber core:
Whilst the tubers (particularly in our paediatric sample) are apparently the origin of abnormal activity,
it is their close, recurrent integration with surrounding cortex that allows for IED dynamics to emerge.
A strongly recurrently coupled network like this may itself support emergent dynamics such as
seizures, even if a possible initial ‘pacemaker’ is eventually removed (e.g. through eventual

calcification of the tuber core, or focal neurosurgical lesioning).

4.3 Coupled-oscillator dynamics support both ictal- and IED dynamics

The models derived from the DCM analysis are not only descriptions of the observed data, but fully
generative models, constrained by empirical observations. This means that through simulations, we
can explore unobserved parameter combinations, and identify how different parameters generate
neuronal dynamics. Here, we used a DCM — with empirically optimised parameters — to reproduce (in
silico) a transition from IED dynamics to fast oscillation onset rhythm, akin to seizure onset-like
dynamics (Fig 4). We directly compared the effects of increasing intrinsic gain in the network nodes in
the context of a network with recurrent coupling and an architecture with forward only coupling. These
simulations suggest that only the recurrent coupling architecture can support both near synchronous,
large amplitude, low frequency IED like discharges, as well as the high frequency rhythms that
characterise seizure-onset dynamics. Crucially, the forward only coupling network did not generate
IED like dynamics but was still able to generate the fast seizure-like rhythms.

This simulation illustrates the fact that two dynamical regimes can emerge in a single seizure: whilst
the ictal wave front is often characterised by fast frequency rhythms — that slowly recruit more cortical
areas over time — ictal spikes later in an established seizure can propagate at near synchronous
speeds in the areas of cortex that have already been recruited (Smith et al., 2016; Schevon et al.,
2019). These different types of propagation mechanisms can be described in different models, such
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as propagation in excitable media (ictal onset), or coupled oscillator dynamics (for ictal spike and
wave discharges).

Recent computational modelling work has shown that variations in slowly evolving states within a
single heterogeneously coupled network of neural masses can support both types of dynamics by
transitioning through different types of dynamical regimes during a modelled seizure (Proix et al.,
2018). The work presented here suggests — in addition — that the network architecture that supports
these dynamics is already in place during IEDs. Furthermore, these mechanisms can be inferred
through DCM and explored through simulation, combining the strength of computational modelling as
in the previous study, with the constraints of empirical data recorded directly from patients.

4.4 Implications

Our study used TSC as an interesting test case to explore the local network constraints of interictal
dynamics, because patients share an underlying aetiology, often have multiple lesions that can be
recorded from during the same iEEG recording, and there are important clinical questions in relation
to the involvement of perituberal cortex in ictogenesis that remain to be addressed. However, this
study was not designed to address the predictive values of our derived measures in terms of clinical
outcomes, as this would need to be addressed with a larger patient cohort with heterogeneous, and
long-term recorded outcomes.

It is important to note that patients with tuberous sclerosis have constant growth of new tubers and
maturation (calcification) of already existing tubers (Curatolo et al., 2008; Grajkowska et al., 2010),
meaning that not previously ictogenic tubers can become ictogenic over time, and that new tubers can
form — leading to new epileptic foci. Thus improving our surgical approaches to limit excess morbidity
is essential, as patients with TSC may undergo several epilepsy surgeries during their lifetime (Bollo
et al., 2008; Fallah et al., 2015).

Although our results specifically address patients with TSC, other pharmaco-resistant epilepsies are
associated with pathologies in the same molecular (NTOR) pathway (e.g. focal cortical dysplasia type
2) and share histological features, therefore our results may also be applicable to that group of
patients (Meng et al., 2013; Liu et al., 2014; Marsan and Baulac, 2018).
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