

1

2

3 Y-chromosome haplotypes drive variation in size and age at maturity in male
4 Chinook salmon

5

6

7

8 Garrett J. McKinney^{1a*}, James E Seeb^{1b}, Carita E. Pascal^{1c}, Daniel E. Schindler^{1d}, Sara E. Gilk-Baumer^{2e},
9 Lisa W. Seeb^{1f}

10

11

12

13

14 ¹ School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020,
15 Seattle WA 98195-5020, USA.

16 ² Alaska Department of Fish and Game, 333 Raspberry Road, Anchorage, AK, 99518, USA

17 ***Corresponding author:** Garrett J. McKinney (email: gjmckinn@uw.edu, phone: 1-765-430-3272).
18 Current address: NOAA National Marine Fisheries Service, Northwest Fisheries Science Center, 2725
19 Montlake Blvd E, Seattle, WA 98112

20 Emails: ^a gjmckinn@uw.edu; ^b jseeb@uw.edu; ^c cpascal@uw.edu; ^d deschind@uw.edu;
21 ^e sara.gilk@alaska.gov ; ^f lseeb@uw.edu

22

23 Keywords: Chinook salmon, Y chromosome, haplotypes

24

25 **ABSTRACT**

26

27 Variation in size and age at maturity is an important component of life history in salmon that is influenced
28 both by environmental and genetic factors. Large size confers a direct reproductive advantage through
29 increased fecundity and egg quality in females, while larger males gain a reproductive advantage by
30 monopolizing access to females. In addition, variation in size and age at maturity in males can be
31 associated with different reproductive strategies; younger smaller males may gain reproductive success by
32 sneaking in among mating pairs. In both sexes there is a trade-off between older age and increased
33 reproductive success and increased risk of mortality by delaying reproduction. We used RADseq data for
34 21 populations of Alaska Chinook salmon (*Oncorhynchus tshawytscha*) and identified four Y-
35 chromosome haplotypes that showed regional and population-specific variation in frequency. These
36 haplotypes exhibited associations with size at maturity in multiple populations suggesting that the lack of
37 recombination between X and Y-chromosomes have allowed Y-chromosome haplotypes to capture
38 different alleles that influence size at maturity. Ultimately, conservation of life history diversity in
39 Chinook salmon may require conservation of Y-chromosome haplotype diversity.

40

41 Introduction

42 Variation in life history within populations is common across taxa and is often associated with
43 alternative strategies for increasing fitness. This includes partial migration, where some individuals of a
44 population migrate while others remain resident (Chapman et al. 2011), reproductive morphs that exhibit
45 different mating strategies or sexually selected traits (Shuster 1989, Johnston et al. 2013, Küpper et al.
46 2015), age and size at maturity (Gibbons et al. 1981), and even length of life-span such as annual vs
47 perennial plants (Hall et al. 2006). While life history variation is often assumed to be under the influence
48 of many genes of small effect, examples of a simpler genetic basis of life history variation are
49 increasingly being found, such as single genes that influence age at maturity and sexually selected traits
50 (Johnston et al. 2013, Barson et al. 2015) and chromosome inversions contributing to annual versus
51 perennial life history and variation in migration (Pearse et al. 2014, Twyford and Friedman 2015). The
52 mechanism underlying variation in life history has important implications for how life history diversity is
53 maintained under different selective regimes.

54 Variation in life history strategies is exhibited by many salmon species with size and age at
55 maturity being an important component of this variation. In females, large body size confers a direct
56 reproductive advantage through increased fecundity and egg quality (Healey and Heard 1984). In
57 contrast, variation in size and age at maturity in males can be associated with different reproductive
58 strategies that exhibit frequency dependent fitness. For example, older larger males gain reproductive
59 success by monopolizing access to females while younger smaller males gain reproductive success by
60 sneaking in among mating pairs (Healey and Heard 1984, Berejikian et al. 2010). For both sexes, there is
61 a trade-off to delayed maturation where increased reproductive success is tempered by an increased risk
62 of mortality before reproduction. The optimal age at maturity for a population should represent the
63 balance between reproductive benefits and mortality costs of delayed maturation (Healey 1986), and
64 forces that change these costs or benefits could result in shifts in age composition. Nonetheless,
65 considerable diversity in age at maturation is maintained within many populations, presumably as a bet-
66 hedging strategy to spread risks over the life-cycle of these fish.

67 Age at maturity in salmon is generally thought to be a threshold trait that is dependent either upon
68 reaching a minimum size at age or upon growth rate at key periods (Healey 1991, Thorpe 2007).
69 Environmental factors that influence growth rate have been shown to influence age at maturity in multiple
70 salmon species. In the wild, studies show correlations between ocean conditions such as temperature and
71 productivity and patterns of age at maturity (Otero et al. 2012, Siegel et al. 2017). In experimental

72 settings, age at maturity was manipulated through changing temperature (Heath et al. 1994, Harstad et al.
73 2018) or food ration (Rowe and Thorpe 1990, Larsen et al. 2006).

74 In addition to environmental effects, multiple lines of evidence show a genetic component to age
75 at maturity. Age at maturity is highly heritable in multiple salmon species (Gjerde 1984, Gall et al. 1988,
76 Hankin et al. 1993, Heath et al. 1994), and Quantitative Trait Locus (QTL) and Genome-Wide
77 Association (GWAS) studies identified genomic regions associated with variation in age at maturity
78 (Barson et al. 2015, Kodama et al. 2018, Micheletti and Narum 2018, Waters et al. 2018). Studies also
79 demonstrated that offspring of alternative male phenotypes exhibit different growth rates (Garant et al.
80 2002, Berejikian et al. 2011). In Atlantic salmon (*Salmo salar*), individuals with different life histories
81 exhibit differing maturation thresholds that are genetically based (Aubin Horth and Dodson 2004).
82 Despite these findings, the genetic basis of maturation age in most salmonids remains poorly understood.

83 One complicating factor is that the genetic architecture underlying variation in age at maturity
84 appears to vary among salmonid species and even among populations within a species. In Atlantic
85 salmon, age at maturity is strongly influenced by a single gene (VGLL3) (Ayllon et al. 2015, Barson et al.
86 2015). This gene exhibits sex-dependent dominance which facilitates sexually antagonistic selection
87 (Barson et al. 2015). While this gene explained 39% of the phenotypic variability in European Atlantic
88 salmon, studies in North American Atlantic salmon and in Pacific salmon have not found a similar
89 association (Micheletti and Narum 2018, Boulding et al. 2019).

90 Chinook salmon (*Oncorhynchus tshawytscha*) are the largest of the Pacific salmon and follow
91 various life history strategies spending 0 to 2 years in fresh water and 1 to 4 or more years in the ocean
92 (Riddell et al. 2018). Male Chinook salmon exhibit significant variation in size and age at maturity
93 (Healey 1991) that is linked to differential reproductive tactics and is likely controlled by both
94 environmental and genetic components (i.e. sneaker vs. dominant males, Berejikian et al. 2010, Young et
95 al. 2013). Historically, males predominantly matured at age four or older; however, many populations
96 throughout North America recently experienced marked declines in size and age at maturity (Lewis et al.
97 2015, Ohlberger et al. 2018). Explanations for decreased age at maturity have focused on the impacts of
98 fisheries induced evolution or changing environmental conditions (Hard et al. 2008, Kendall et al. 2014,
99 Siegel et al. 2017) though this explanation is not particularly consistent with the data (Ohlberger et al.
100 2018). While the genetic control of age at maturity in Chinook salmon is still poorly understood, past
101 studies offer clues to genomic regions that may be associated with maturation age. In particular, Heath et
102 al. (2002) identified a strong sex-linked component to age at maturity in Chinook salmon, suggesting the
103 influence of genes on the Y-chromosome.

104 The X and Y chromosomes in most salmonid species are morphologically undifferentiated
105 (Davidson et al. 2009), and available sequence data suggests that the primary difference between sex
106 chromosomes is an insertion containing the sex-determining gene (SDY, Yano et al. 2013). Despite a
107 lack of large-scale differentiation, the X- and Y-chromosomes could show sequence divergence due to
108 sex-specific patterns of recombination. Recombination in females takes place along the full length of the
109 chromosome while recombination in males is strongly localized to telomeric regions (Lien et al. 2011),
110 restricting recombination between the X- and Y-chromosomes. Reduced recombination between sex
111 chromosomes is supported by a 33Mb signal of sex association observed in Atlantic salmon (Kijas et al.
112 2018). In addition to facilitating divergence between sex chromosomes, sex-specific recombination could
113 lead to the formation of different Y-chromosome haplotypes and the capture of adaptive genetic variants.

114 We identified four Y-chromosome haplotypes in Chinook salmon from Alaska that showed
115 regional and population-specific variation in frequency. These haplotypes showed associations with size
116 at maturity in multiple populations suggesting that the lack of recombination between X and Y-
117 chromosomes has allowed Y-chromosome haplotypes to capture different genetic variants influencing
118 size and age at maturity.

119

120 Materials and Methods

121 RAD Y-chromosome Haplotypes

122 We used existing RADseq data to examine patterns of genetic variation in the sex chromosome.
123 RADseq data for 21 populations of Alaska Chinook salmon were obtained from previous studies (Larson
124 et al. 2014, Dann et al. 2018, McKinney et al. 2018, McKinney et al. In Revision). RADseq data from
125 Larson et al. (2014) and McKinney et al. (2018) are available in NCBI SRA accessions SRP034950 and
126 SRP129894; raw data from Dann et al. (2018) and McKinney et al. (In Revision) are available from those
127 authors upon request. Locations of populations ranged from Cook Inlet to the Upper Yukon River and
128 include a total of 1,082 samples (Table 1). RADseq data were processed with Stacks V1.7 (Catchen et al.
129 2011, Catchen et al. 2013) using default settings with the following exceptions: process_radtags (-c -r -q
130 -filter_illumina -t 94), ustacks (-m 2 -M 2, --model_type bounded --bound_high 0.05), cstacks (-n 2). The
131 catalog of variation from McKinney et al. (In Revision) was used for consistent locus names among this
132 and previous studies. A total of six individuals per population from Cook Inlet were added to this catalog
133 to allow for additional allelic variation.

134 Paralogs are common in salmonid genomes due to an ancestral whole-genome duplication
135 (Allendorf and Thorgaard 1984) but cannot be reliably genotyped in typical RADseq studies because of
136 insufficient read depth (McKinney et al. 2018). Paralogs were identified using *HDplot* (McKinney et al.
137 2017) and removed from further analysis. Loci with more than 10% missing data and a minor allele
138 frequency (MAF) < 0.05 were also removed from analysis. Finally, loci were aligned to the Chinook
139 salmon genome (Christensen et al. 2018) using Bowtie2 (Langmead and Salzberg 2012) to determine
140 genomic position; only loci that aligned to the sex chromosome (Ots17, Phillips et al. 2013) were retained
141 for analysis.

142 Patterns of variation on the sex chromosome were visualized using principal component analysis
143 (PCA). Clusters of samples on the PCA were identified visually; markers that differentiated clusters of
144 samples were identified by estimating F_{ST} per marker between clusters using Genepop (Rousset 2008).
145 Markers that differentiated clusters showed high linkage disequilibrium (LD) within clusters, suggesting
146 inhibited recombination and exhibited genotype patterns consistent with Y-chromosome haplotypes. Full
147 details are available in supplemental materials and methods (File S1).

148 Markers that differentiated clusters and appeared to be diagnostic for Y-chromosome haplotypes
149 were made into an amplicon panel (GT-seq , Campbell et al. 2015) for expanded sampling. Markers that
150 were unlikely to amplify single genomic regions were filtered prior to primer design following the
151 methods of McKinney et al. (In Revision). Primers were designed using batch primer3 (You et al. 2008),
152 and genome sequences were used to extend the original RAD sequence for primer design where
153 necessary.

154 **Expanded sampling**

155 Additional samples ranging from Alaska to California were genotyped using the GT-seq panel to
156 establish the geographic distribution of the haplotypes. In addition to the Y-haplotype markers, this panel
157 included the sex identification marker Ots_sexy3-1 (Hess et al. 2016a) to confirm that Y-chromosome
158 haplotypes were present only in male fish. A total of 1,341 samples from 27 populations were genotyped
159 (Table 1). Samples were sequenced on a HiSeq 4000, and data were processed and genotyped using GT-
160 score (McKinney et al. In Revision) available at <https://github.com/gjmckinney/GTscore>.

161 **Y-chromosome haplotype analyses**

162 Y-chromosome haplotype assignments were combined for GT-seq and RADseq samples to
163 characterize the distribution and frequency of Y-chromosome haplotypes. Haplotypes were assigned to
164 each sample based on multi-locus genotype patterns (File S1). Data for length and age at maturity were
165 obtained from Alaska Department of Fish and Game (ADFG) for populations in Alaska and compared

166 with Y-chromosome haplotype data to determine if there were relationships between Y-chromosome
167 haplotype and length and age at maturity. Significance of associations between Y-chromosome
168 haplotypes and length were assessed using a Tukey test while significance of associations between Y-
169 chromosome haplotypes and age at maturity were assessed using a chi-square test. There are multiple
170 methods of reporting age in salmon (Koo 1962); we report freshwater and ocean age for each individual
171 using European notation, so an individual with an age of 1.3 would have spent 1 year growing in
172 freshwater after emergence followed by 3 years in the ocean for a total age of 5 years.

173 Results

174 RADseq Y-haplotype discovery

175 Analysis of the Y-chromosome showed multiple patterns consistent with Y-chromosome
176 haplotype blocks. Individuals resolved into multiple distinct clusters when PCA was done on the sex
177 chromosome (Figure S1-S3). Samples showed clustering by region (Cook Inlet vs Western Alaska) and
178 also clustering by sex with multiple clusters of male samples (Figure S4). Some putative females were
179 present in male clusters and vice versa; however, individuals had been visually sexed based on external
180 features which is known to have variable accuracy (Lozorie and McIntosh 2014). Ranking loci by F_{ST}
181 and examining genotype patterns revealed a set of 50 SNPs with $F_{ST} > 0.15$ that differentiated clusters
182 (Table S2.1). A general pattern was observed for loci with high F_{ST} among clusters; within each region
183 one cluster contained samples that were homozygous for a single allele for all high F_{ST} loci while the
184 other clusters showed a pattern of high to fixed heterozygosity for different sets of high F_{ST} loci. In Cook
185 Inlet, the homozygous cluster contained phenotypic females while heterozygous clusters contained
186 phenotypic males (Figure S4). A total of four different patterns of fixed heterozygosity were observed
187 throughout Yukon River, Western Alaska, and Cook Inlet populations suggesting the presence of
188 conserved Y-chromosome haplotype blocks throughout western and southcentral Alaska (Figures 1, S5,
189 S6). Within Alaska, Y-chromosome haplotypes showed regional variation in frequency with the AK Y1
190 haplotype being most frequent in Western Alaska and the AK Y3 haplotype the most frequent in Cook
191 Inlet (Figure 2).

192 GT-seq Y-chromosome haplotype expanded sampling

193 A GT-seq panel was developed to genotype Y-chromosome haplotype markers for a set of
194 samples representing the North American range of Chinook salmon. A total of 23 of the 50 RAD loci
195 passed filtering criteria prior to primer design; of these 14 RAD loci were successfully converted to GT-
196 seq assays (Table S1, Table S2.2). Genotyping of the expanded sample set confirmed that Y-
197 chromosome haplotypes were sex-specific; 200 (81%) of the genetic males from Alaska were assigned a

198 Y-chromosome haplotype and no genetic females had genotype patterns consistent with the Y-
199 chromosome haplotype blocks (Table S2.2). Males that were not assigned Y-chromosome haplotypes
200 were concentrated in Southeast Alaska; 40 of the 46 unassigned males were from the Little Port Walter
201 and Pullen Creek populations. Only 16% of males could be assigned a haplotype in Little Port Walter
202 and a single male from Pullen Creek could be assigned a haplotype. Excluding these two populations
203 results in 97% haplotype assignment of male Chinook salmon in Alaska. For the remaining six
204 unassigned males, four were ambiguous for AK Y2 vs AK Y3 haplotypes and two were homozygous for
205 all Y-chromosome haplotype markers. Distribution of Y-chromosome haplotypes varied regionally: Y-
206 chromosome haplotype blocks identified in Alaska were not found in Chinook salmon outside of Western
207 and Southcentral Alaska and had only a rare occurrence in Southeast Alaska.

208 **Size and Age at Maturity**

209 Size at maturity data were available for eight of the populations in this study; four populations
210 were genotyped using RADseq data, three were genotyped using GT-seq data, and one was genotyped
211 using both RADseq and GT-seq. Populations were grouped by region (Yukon River, Western Alaska,
212 and Cook Inlet) for visualization. Boxplots of size at maturity for each Y-chromosome haplotype showed
213 a consistent relationship throughout western and southcentral Alaska. The AK Y1 and AK Y2 haplotypes
214 had the smallest individuals, the AK Y3 haplotype was associated with intermediate sized fish, and the
215 AK Y4 haplotype was associated with the largest individuals in each region (Figure 3). In the Yukon
216 River, individuals with the AK Y4 haplotype were significantly larger ($p<0.05$) than fish with the AK Y1
217 or AK Y2 haplotype, in Western Alaska, the fish with the AK Y3 haplotype were significantly larger fish
218 than the AK Y1 haplotype, and in Cook Inlet, size differences between the AK Y1, AK Y3, and AK Y4
219 haplotypes were statistically significant ($p<0.05$) (Figure 3). Despite a tendency for differences in size
220 distributions, the length of fish with the AK Y1 haplotype was not significantly different than the AK Y3
221 haplotype in the Yukon River, and the AK Y4 haplotype was not significantly different than other
222 haplotypes in Western Alaska. This is likely due to low samples size for these haplotypes.

223 Age at maturity data were available for the Lower Yukon Test Fishery. Histograms of age at
224 maturity for each Y-chromosome haplotype revealed that the AK Y3 haplotype had approximately three
225 times as many 1.3 fish as 1.4 fish while the Y4 haplotype had nearly even proportions of 1.3 and 1.4 fish
226 (Figure 4). While suggestive, this result was not significant, possibly due to the low samples size both of
227 age 1.4 fish and of fish with the AK Y4 haplotype. Boxplots of size at age showed that fish with the AK
228 Y4 haplotype were larger for age 1.3 and 1.4 than fish with the AK Y3 haplotype. Results were
229 statistically significant for age 1.3 fish but not age 1.4, possibly due to low sample size. The smallest fish

230 had the AK Y1 and AK Y2 haplotypes; however, only a single fish had both size and age data for these
231 haplotypes.

232 Discussion

233 Size and age at maturity are ecologically and evolutionarily important traits in Chinook salmon.
234 Numerous studies have examined ongoing declines in age at maturity; however, it has been difficult to
235 disentangle the interactions of environmental and genetic causes of this decline. Size and age associated
236 markers and genes have previously been identified in genetic studies of Chinook salmon (Micheletti and
237 Narum 2018, Waters et al. 2018); however, results were not consistent across populations, and no markers
238 were located on the sex chromosome. We show that a conserved set of Y-chromosome haplotypes is
239 associated with variation in size and age at maturity in Chinook salmon across Western and Southcentral
240 Alaska. This observation opens a new line of research into the genetics of age at maturity in salmonids.

241 Range-wide distribution of haplotypes

242 Chinook salmon are represented by multiple genetically distinct lineages throughout the species
243 range (Waples et al. 2004, Beacham et al. 2006, Moran et al. 2012). These lineages often show little gene
244 flow among them due to differences in geographic range or spawn timing, and this isolation may result in
245 different sets of Y-chromosome haplotypes and patterns of recombination across lineages. The Y-
246 chromosome haplotypes we identified through extended linkage disequilibrium were consistently
247 observed throughout Chinook salmon populations from the Upper Yukon River south to Little Port
248 Walter in Southeast Alaska. The occurrences become rarer in Southeast Alaska, and no individuals south
249 of Southeast Alaska could be assigned haplotypes suggesting that the haplotypes identified within Alaska
250 are regionally restricted. This corresponds with observed breakpoints between Chinook salmon lineages
251 near Cape Fairweather (Templin et al. 2011) which is approximately 200 miles northwest of Little Port
252 Walter and 100 miles west of Pullen Creek. It is likely that other haplotype blocks and genomic regions
253 of low recombination exist outside of Alaska; this could be determined by examining reduced-
254 representation or whole-genome sequence data from additional populations.

255 Populations throughout Alaska showed variation in haplotype frequency which may be
256 ecologically significant given the association between haplotypes and size and age at maturity.
257 Populations from Western Alaska and the Lower Yukon River had a greater proportion of the AK Y1 and
258 AK Y2 haplotypes which were associated with smaller fish. Populations in the Upper Yukon River and
259 Cook Inlet were primarily composed of AK Y3 and AK Y4 haplotypes which were associated with larger
260 fish. While we did not have enough samples with size data to characterize size distributions within
261 region, this finding is consistent with a long-term analysis of Chinook salmon returns by Lewis et al.

262 (2015) who reported smaller fish on average in Kuskokwim and Nushagak river populations from
263 Western Alaska relative to Yukon River and Cook Inlet populations. In addition, the Cook Inlet
264 populations sampled in this study are adjacent to the Kenai River which has historically produced large
265 Chinook salmon (Lewis et al. 2015, Schoen et al. 2017). The relationship between size and haplotype also
266 varied by region, with the Yukon River having the smallest difference in sizes between haplotypes and
267 Cook Inlet having the largest difference in sizes (Figure 3). Taken together, these results suggest that
268 differing frequencies of Y-chromosome haplotypes may contribute to regional variation in size of
269 Chinook salmon, and that the effect of haplotype on size can vary between regions, potentially due to
270 other genetic influence or different environmental conditions.

271 Importance of Y-haplotypes for life history diversity

272 Male Chinook salmon exhibit life history diversity related to maturation age with dominant males
273 successfully spawning by monopolizing access to females and jacks obtaining reproductive success by
274 sneaking in among mating pairs. This diversity has been eroding as the proportion of dominant (age 4+)
275 males declines and jacks (3 years or younger) increase in frequency (Ohlberger et al. 2018). The alternate
276 life histories of male Chinook salmon exhibit frequency dependent fitness which in theory should exhibit
277 stable proportions; however, this assumes populations are at equilibrium. Male sockeye salmon
278 (*Oncorhynchus nerka*) exhibit similar frequency dependent life history variation but persistent
279 demographic variation occurs as a result of strong selection events coupled with variation in recruitment
280 (DeFilippo et al. 2019). If jacks are produced by specific Y-chromosome haplotypes, then fishing
281 practices that increase the proportion of jacks may result in demographic shifts and loss of age diversity
282 that are difficult to recover. The markers we developed can be used to characterize historic (i.e., from
283 archived samples) and current Y-chromosome haplotype diversity in Alaska Chinook salmon to
284 determine if demographic shifts correspond with shifts in frequencies of Y-chromosome haplotypes.
285 Ultimately, conservation of life history diversity in Chinook salmon may require conservation of Y-
286 chromosome haplotype diversity.

287 Hypotheses of population structure and delineation of management units using genetic data are
288 typically based on genome-wide analyses consistent with the assumption that major life history traits are
289 controlled by many genes with small effects. Waples and Lindley (2018) recently commented on the
290 new challenges facing existing conservation frameworks when associations are identified between one or
291 a very few genes and key life history traits. Their comment was prompted by the recent identification of
292 SNPs from a GREB1L gene that explain a large proportion of the variation associated with adult
293 migration time in steelhead (*O. mykiss*) and Chinook salmon (Hess et al. 2016b, Prince et al. 2017).
294 Conservation of the Y-chromosome haplotype shares similar challenges to the GREB1L situation.

295 Waples and Lindley (2018) pose a series of key questions to help provide an informed basis for decisions
296 or management actions. Among other key questions, they argue that a full understanding of the
297 distribution of the variation in space and time is needed and that investigations into the genes and
298 mechanisms responsible for the life history variation should be initiated. In the case of the Y-haplotypes,
299 additional questions exist such as: whether the specific allelic variants at these SNP loci are important or
300 is the strong linkage disequilibrium among loci a signal from other adaptive genes in these regions; do
301 haplotype blocks exhibit consistent phenotypes in different environments and with different genetic
302 backgrounds; and if haplotype blocks are found in other regions of the Chinook salmon range do they
303 function in a similar manner to those suggested by the results of this study.

304 Conclusion

305 We identified Y-chromosome haplotypes that are associated with size, and likely age, at maturity
306 in Chinook salmon throughout Alaska. These haplotypes were restricted to northern Alaska Chinook
307 salmon where the most diversity in age-at-maturity exists, and likely represent a subset of the total
308 diversity across the species range. Interestingly, this region holds the most stable populations of Chinook
309 salmon in the Northeast Pacific (Griffiths et al. 2014), possibly due to the bet-hedging benefits of
310 diversity in age at maturity. It is possible that each Chinook salmon lineage has a specific set of
311 haplotypes and relationships between haplotypes and size/age at maturity may differ by lineage. The
312 discovery of Y-chromosome haplotypes and their potential effect on life history variation in Chinook
313 salmon may help understand the causes and consequences of the recent declines in size and age of adult
314 Chinook salmon, trends that are most pronounced in the region with the highest haplotype diversity.
315 Ongoing efforts to understand the causes of these declines point to a size-specific mortality filter on
316 maturing fish, but also requires an unknown evolutionary basis (Ohlberger et al. In Review). The results
317 presented here point to such a mechanism for the genetic control of changes in size-at-age and age-at-
318 maturity in Chinook salmon, as future changes in environmental conditions and selective fishing will lead
319 to further demographic responses in this economically and ecologically important species

320 Acknowledgements

321 We would like to thank Chris Habicht, Bill Templin, Wes Larson, and Todd Seamons for helpful
322 discussions and support for this research. This research was partially funded by North Pacific Research
323 Board grant 1724-000, AKSSF grants 44812, 44913 and 44914, and Pacific States Marine Fisheries
324 Commission grant # 16-108G to Alaska Department of Fish and Game. GJM was partially supported by
325 a National Research Council postdoctoral fellowship. The statements, findings, and conclusions are those

326 of the authors and do not necessarily reflect the views of the NOAA, the U.S. Department of Commerce,
327 or the ADFG.

328 **Data Accessibility**

329 GT-seq data is available in NCBI SRA XXXXXXXXXXXX.

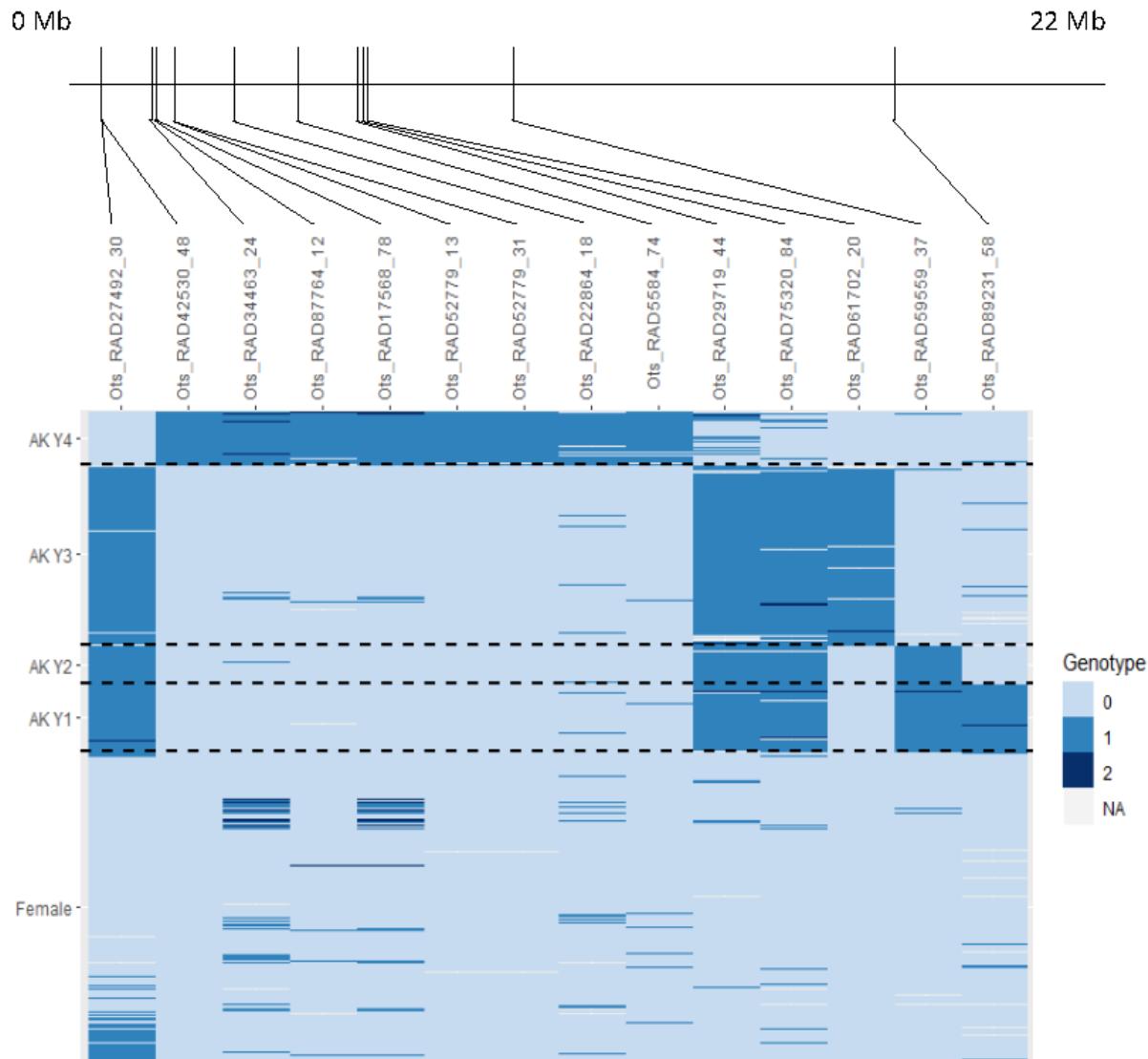
330 **Supporting Information**

331 **File S1:** Supplementary materials, methods, and results for identification and characterization of Y-
332 chromosome haplotypes.

333 **Table S1:** Primer and probe sequence for GT-seq loci that were used for expanded genotyping of Y-
334 chromosome haplotypes.

335 **Table S2.1:** F_{ST} , F_{IS} , and allele frequencies for RAD loci associated with differentiation between clusters
336 in RADseq data.

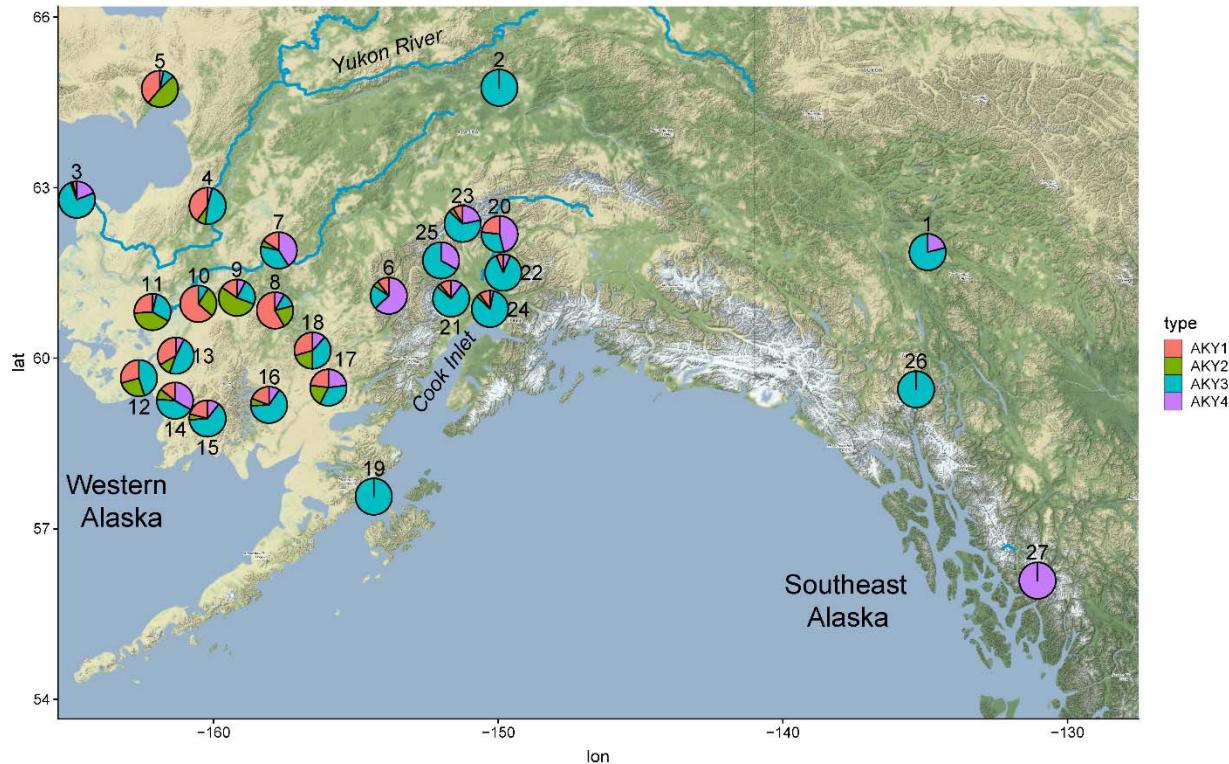
337 **Table S2.2:** Genotypes for loci successfully developed into GT-seq. Genotypes are included for all
338 samples, RADseq and GT-seq.


339 Tables and Figures

340 Table 1. Populations used for Y-chromosome haplotype identification. RADseq samples were used for
 341 haplotype discovery while GT-seq samples were used to confirm that haplotypes were male-specific and
 342 to examine the geographic distribution of haplotypes. For populations with both RADseq and GT-seq
 343 samples, samples sizes for RADseq are given first. Frequency of Y-chromosome haplotypes are given for
 344 populations in Alaska; Y-chromosome haplotypes could not be assigned outside of Alaska.

Map Number	Population	Data Type	Region	Lat	Lon	N	AK Y1	AK Y2	AK Y3	AK Y4
1	Big Salmon River	RADseq	Yukon River	61.87	-134.92	49	0.00	0.00	0.79	0.21
2	Kantishna River	GT-seq	Yukon River	64.76	-149.97	48	0.00	0.00	1.00	0.00
3	Lower Yukon Test Fishery	GT-seq	Yukon River	62.79	-164.81	95	0.04	0.02	0.75	0.19
4	Anvik River	RADseq	Yukon River	62.68	-160.21	56	0.40	0.08	0.48	0.04
5	Tubutulik River	RADseq	Western Alaska	64.74	-161.89	56	0.39	0.48	0.10	0.03
6	Necons River	RADseq	Western Alaska	61.10	-153.85	47	0.11	0.05	0.21	0.63
7	George River	RADseq/GT-seq	Western Alaska	61.90	-157.71	48/47	0.16	0.05	0.38	0.41
8	Kogrukluuk River	RADseq	Western Alaska	60.84	-157.85	59	0.58	0.21	0.13	0.08
9	Aniak River	RADseq	Western Alaska	61.06	-159.18	47	0.15	0.54	0.23	0.08
10	Kisaralik River	RADseq	Western Alaska	60.86	-161.24	48	0.64	0.27	0.09	0.00
11	Kwethluk River	RADseq	Western Alaska	60.81	-161.45	47	0.26	0.41	0.30	0.04
12	Kanektok River	RADseq/GT-seq	Western Alaska	59.75	-161.93	48/47	0.29	0.25	0.45	0.00
13	Arolik River	RADseq	Western Alaska	59.69	-161.88	48	0.33	0.11	0.48	0.07
14	Goodnews River	RADseq	Western Alaska	59.25	-161.36	47	0.14	0.10	0.43	0.33
15	Togiak River	RADseq	Western Alaska	59.09	-160.37	48	0.21	0.05	0.63	0.11
16	Iowithla River	RADseq	Western Alaska	59.18	-158.06	48	0.19	0.06	0.65	0.10
17	Stuyahok River	RADseq	Western Alaska	59.68	-156.17	48	0.23	0.19	0.35	0.23
18	Koktuli River	RADseq	Western Alaska	59.94	-156.43	56	0.29	0.21	0.38	0.12
19	Karluk River	GT-seq	Western Alaska	57.57	-154.38	48	0.00	0.00	1.00	0.00
20	Montana Creek	GT-seq	Southcentral Alaska	62.18	-149.95	48	0.23	0.00	0.31	0.46
21	Chuitna River	RADseq	Southcentral Alaska	61.20	-151.66	57	0.10	0.03	0.76	0.10
22	Sucker Creek	RADseq	Southcentral Alaska	61.51	-150.83	57	0.06	0.00	0.88	0.06
23	Talachulitna River	RADseq	Southcentral Alaska	61.62	-151.15	57	0.09	0.04	0.65	0.22
24	Theodore Creek	RADseq	Southcentral Alaska	61.49	-151.09	56	0.10	0.03	0.84	0.03
25	Coal Creek	RADseq	Southcentral Alaska	61.62	-151.76	55	0.00	0.00	0.67	0.33
26	Pullen Creek*	GT-seq	Southeast Alaska	59.45	-135.32	48	0.00	0.00	1.00	0.00
27	Little Port Walter-Unuk River stock**	GT-seq	Southeast Alaska	56.09	-131.06	48	0.00	0.00	0.00	1.00
-	Harrison River	GT-seq	British Columbia	49.28	-121.92	48	NA	NA	NA	NA
-	Big Qualicum Hatchery	GT-seq	British Columbia	49.40	-124.62	48	NA	NA	NA	NA
-	Kitwanga River	GT-seq	British Columbia	55.10	-128.09	48	NA	NA	NA	NA
-	Kitsumkalum River	GT-seq	British Columbia	54.52	-128.66	48	NA	NA	NA	NA
-	Morice River	GT-seq	British Columbia	54.41	-126.75	48	NA	NA	NA	NA
-	Rapid River Hatchery	GT-seq	Idaho	45.35	-116.40	48	NA	NA	NA	NA
-	McCall Fish Hatchery South Fork Salmon River	GT-seq	Idaho	44.67	-115.71	48	NA	NA	NA	NA
-	Marblemount Fish Hatchery	GT-seq	Washington	48.52	-121.42	48	NA	NA	NA	NA
-	Soos Creek Hatchery	GT-seq	Washington	47.31	-122.16	48	NA	NA	NA	NA
-	Columbia River at Wells Hatchery	GT-seq	Washington	47.95	-119.87	48	NA	NA	NA	NA
-	Quinault Lake Pens	GT-seq	Washington	47.47	-123.89	48	NA	NA	NA	NA
-	Lyons Ferry Hatchery	GT-seq	Washington	46.59	-118.22	48	NA	NA	NA	NA
-	Wenatchee River at Tumwater Dam	GT-seq	Washington	47.61	-120.72	48	NA	NA	NA	NA
-	Spring Creek Hatchery	GT-seq	Washington	45.73	-121.55	48	NA	NA	NA	NA
-	Rock Creek, Umpqua River	GT-seq	Oregon	43.34	-123.00	48	NA	NA	NA	NA
-	Cole River Hatchery, Rogue River	GT-seq	Oregon	42.66	-122.69	48	NA	NA	NA	NA
-	Cedar Creek Hatchery	GT-seq	Oregon	45.22	-123.84	48	NA	NA	NA	NA
-	McKenzie Hatchery	GT-seq	Oregon	44.11	-122.68	48	NA	NA	NA	NA
-	Coleman National Fish Hatchery	GT-seq	California	40.40	-122.14	48	NA	NA	NA	NA

345 *Only one male from Pullen Creek was assigned a Y-chromosome haplotype. **Only four out of 20 males from Little Port Walter Unuk River
 346 Stock were assigned a Y-chromosome haplotype.


347 Figure 1. Plot of genotype patterns for loci successfully developed into GT-seq assays for Y-
348 chromosome haplotype identification. The position of each marker along the Y-chromosome is shown by
349 vertical lines. The heatmap shows individual genotypes color-coded for homozygous (0), heterozygous
350 (1) and alternate homozygous (2). Samples are grouped by assigned haplotype on the Y-axis, with each
351 row representing an individual fish. This plot includes samples genotyped with RADseq and with GT-
352 seq. The AK Y1, AK Y2, and AK Y3 haplotypes share a common set of core markers up to ~6Mb but
353 vary in markers with extended linkage. The AK Y4 haplotype is fixed for alternate alleles for a unique
354 set of markers. Females exhibit two distinct genotype patterns for these SNPs, either nearly fixed
355 homozygosity for most markers or the presence of all three possible genotypes.

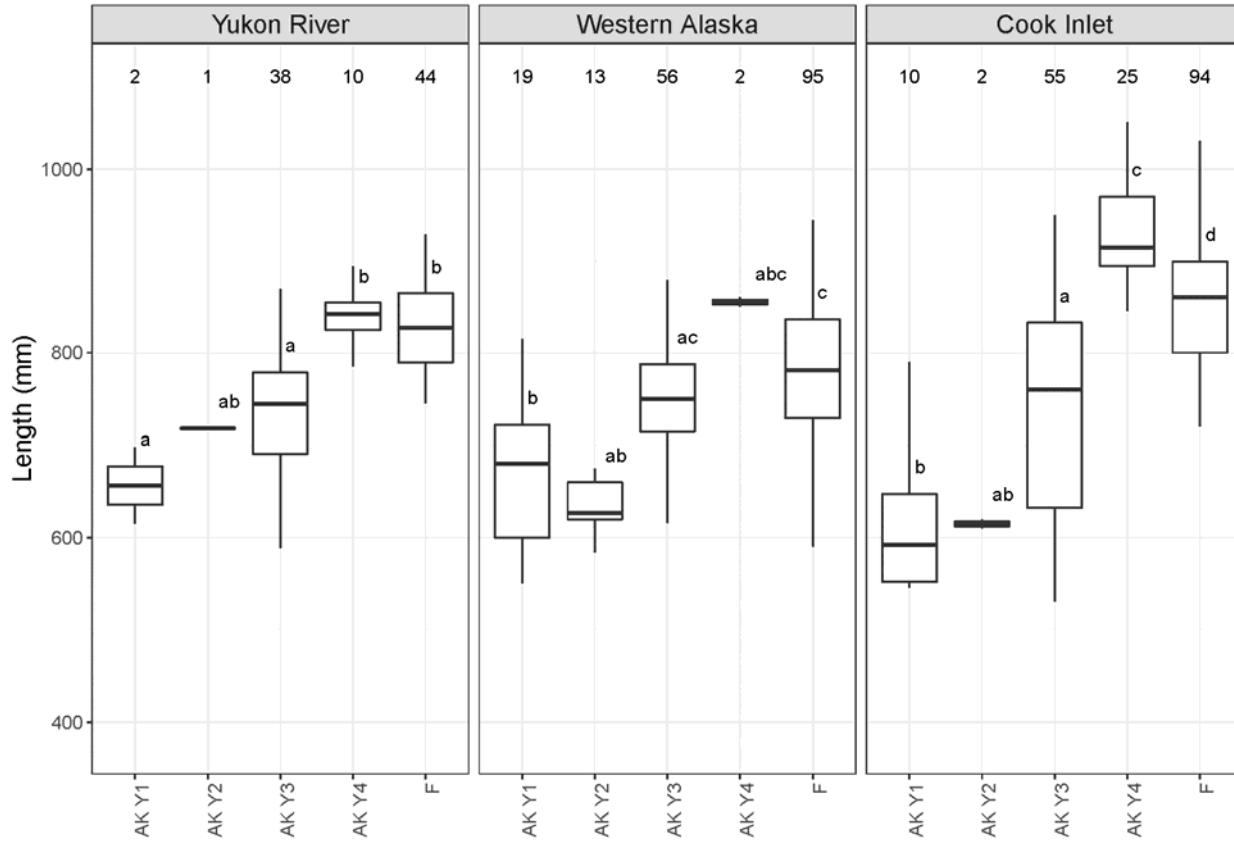
356
357

358 Figure 2. Frequency of Y-chromosome haplotypes throughout Alaska. Locations of populations are
359 approximate to prevent overlap of pie charts. Population names are given in Table 1. Note that the
360 location for the Lower Yukon Test Fishery (population 3) indicates where fish were caught on their return
361 to the Yukon River and that these samples may represent fish from throughout the Yukon River.

362

363

364

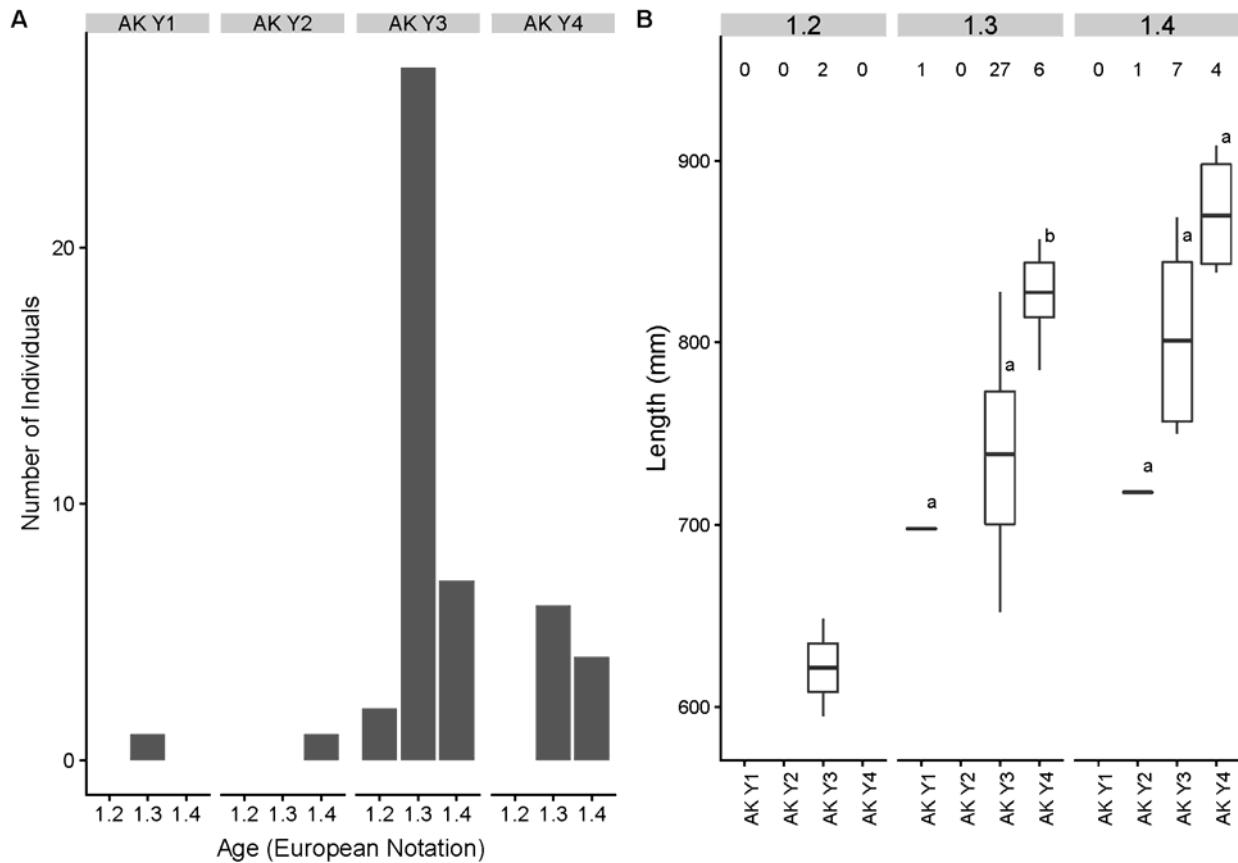

365

366

367

368 Figure 3. Distribution of size at maturity for each Y-chromosome haplotype for Alaska Chinook salmon.
369 Female (F) size at maturity is included for comparison. Samples sizes for each haplotype are given above
370 the boxplots. Within each region, Y-chromosome haplotypes with statistically different lengths are
371 represented by different letters. Haplotypes with two letters (i.e., ab) do not have statistically different
372 size distributions from haplotypes with a or b.

373


374

375

376 Figure 4. Distribution of A) age at maturity and B) size at age for each Y-chromosome haplotype in the
377 Yukon River. Within each age class, Y-chromosome haplotypes with statistically different lengths are
378 represented by different letters. Sample sizes for each haplotype are given above the boxplots.

379

380

381

382 References

383 Allendorf, F. W., and G. H. Thorgaard. 1984. Tetraploidy and the evolution of salmonid fishes. Pages 1-
384 53 in B. Turner, editor. *Evolutionary Genetics of Fishes*. Plenum Publishing Corporation.

385 Aubin Horth, N., and J. J. Dodson. 2004. Influence of Individual Body Size and Variable Thresholds on
386 the Incidence of a Sneaker Male Reproductive Tactic in Atlantic Salmon. *Evolution* **58**:136-144.

387 Ayllon, F., E. Kjaerner-Semb, T. Furmanek, V. Wennevik, M. F. Solberg, G. Dahle, G. L. Taranger, K.
388 A. Glover, M. S. Almen, C. J. Rubin, R. B. Edvardsen, and A. Wargelius. 2015. The *vgl13* Locus
389 Controls Age at Maturity in Wild and Domesticated Atlantic Salmon (*Salmo salar L.*) Males.
390 *PLoS Genet* **11**:e1005628.

391 Barson, N. J., T. Aykanat, K. Hindar, M. Baranski, G. H. Bolstad, P. Fiske, C. Jacq, A. J. Jensen, S. E.
392 Johnston, S. Karlsson, M. Kent, T. Moen, E. Niemela, T. Nome, T. F. Naesje, P. Orell, A.
393 Romakkaniemi, H. Saegrov, K. Urdal, J. Erkinaro, S. Lien, and C. R. Primmer. 2015. Sex-
394 dependent dominance at a single locus maintains variation in age at maturity in salmon. *Nature*
395 **528**:405-408.

396 Beacham, T. D., K. L. Jonsen, J. Supernault, M. Wetklo, L. Deng, and N. Varnavskaya. 2006. Pacific rim
397 population structure of Chinook salmon as determined from microsatellite analysis. *Transactions of the American Fisheries Society* **135**:1604-1621.

399 Berejikian, B. A., D. M. Van Doornik, and J. J. Atkins. 2011. Alternative Male Reproductive Phenotypes
400 Affect Offspring Growth Rates in Chinook Salmon. *Transactions of the American Fisheries Society*
401 **140**:1206-1212.

402 Berejikian, B. A., D. M. Van Doornik, R. C. Endicott, T. L. Hoffnagle, E. P. Tezak, M. E. Moore, and J.
403 Atkins. 2010. Mating success of alternative male phenotypes and evidence for frequency-
404 dependent selection in Chinook salmon, *Oncorhynchus tshawytscha*. *Canadian Journal of Fisheries and Aquatic Sciences* **67**:1933-1941.

406 Boulding, E. G., K. P. Ang, J. A. K. Elliott, F. Powell, and L. R. Schaeffer. 2019. Differences in genetic
407 architecture between continents at a major locus previously associated with sea age at sexual
408 maturity in European Atlantic salmon. *Aquaculture* **500**:670-678.

409 Campbell, N. R., S. A. Harmon, and S. R. Narum. 2015. Genotyping-in-Thousands by sequencing (GT-
410 seq): a cost effective SNP genotyping method based on custom amplicon sequencing. *Mol Ecol Resour*
411 **15**:855-867.

412 Catchen, J., P. A. Hohenlohe, S. Bassham, A. Amores, and W. A. Cresko. 2013. Stacks: an analysis tool
413 set for population genomics. *Mol Ecol* **22**:3124-3140.

414 Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko, and J. H. Postlethwait. 2011. Stacks: building and
415 genotyping Loci de novo from short-read sequences. *G3 (Bethesda)* **1**:171-182.

416 Chapman, B. B., C. Brönmark, J.-Å. Nilsson, and L.-A. Hansson. 2011. The ecology and evolution of
417 partial migration. *Oikos* **120**:1764-1775.

418 Christensen, K. A., J. S. Leong, D. Sakhraei, C. A. Biagi, D. R. Minkley, R. E. Withler, E. B. Rondeau,
419 B. F. Koop, and R. H. Devlin. 2018. Chinook salmon (*Oncorhynchus tshawytscha*) genome and
420 transcriptome. *PLoS One* **13**:e0195461.

421 Dann, T. H., C. Habicht, W. D. Templin, L. W. Seeb, G. J. McKinney, and J. S. Seeb. 2018. Identification
422 of genetic markers useful for mixed stock analysis of Chinook salmon in Cook Inlet, Alaska.
423 Alaska Department of Fish and Game, Division of Commercial Fisheries, Anchorage.

424 Davidson, W. S., T. K. Huang, K. Fujiki, K. R. von Schalburg, and B. F. Koop. 2009. The Sex
425 Determining Loci and Sex Chromosomes in the Family Salmonidae. *Sexual Development* **3**:78-
426 87.

427 DeFilippo, L. B., D. E. Schindler, J. Ohlberger, K. L. Schaberg, M. B. Foster, D. Ruhl, and A. E. Punt.
428 2019. Recruitment variation disrupts the stability of alternative life histories in an exploited
429 salmon population. *Evol Appl* **12**:214-229.

430 Gall, G. A. E., J. Baltodano, and N. Huang. 1988. Heritability of age at spawning for rainbow trout.
431 *Aquaculture* **68**:93-120.

432 Garant, D., P.-M. Fontaine, S. P. Good, J. J. Dodson, and L. Bernatchez. 2002. The influence of male
433 parental identity on growth and survival of offspring in Atlantic salmon (*Salmo salar*).
434 *Evolutionary Ecology Research* **4**:537-549.

435 Gibbons, J. W., R. D. Semlitsch, J. L. Greene, and J. P. Schubauer. 1981. Variation in Age and Size at
436 Maturity of the Slider Turtle (*Pseudemys scripta*). *The American Naturalist* **117**:841-845.

437 Gjerde, B. 1984. Response to individual selection for age at sexual maturity in Atlantic salmon.
438 *Aquaculture* **38**:229-240.

439 Griffiths, J. R., D. E. Schindler, J. B. Armstrong, M. D. Scheuerell, D. C. Whited, R. A. Clark, R.
440 Hilborn, C. A. Holt, S. T. Lindley, J. A. Stanford, and E. C. Volk. 2014. Performance of salmon
441 fishery portfolios across western North America. *Journal of Applied Ecology* **51**:1554-1563.

442 Hall, M. C., C. J. Basten, and J. H. Willis. 2006. Pleiotropic quantitative trait loci contribute to population
443 divergence in traits associated with life-history variation in *Mimulus guttatus*. *Genetics* **172**:1829-
444 1844.

445 Hankin, D. G., J. W. Nicholas, and T. W. Downey. 1993. Evidence for inheritance of age of maturity in
446 Chinook salmon (*Oncorhynchus tshawytscha*). *Canadian Journal of Fisheries and Aquatic
447 Sciences* **50**:347-358.

448 Hard, J. J., M. R. Gross, M. Heino, R. Hilborn, R. G. Kope, R. Law, and J. D. Reynolds. 2008.
449 Evolutionary consequences of fishing and their implications for salmon. *Evolutionary
450 Applications* **1**:388-408.

451 Harstad, D. L., D. A. Larsen, J. Miller, I. Adams, D. K. Spangenberg, S. Nance, L. Rohrbach, J. G.
452 Murauskas, and B. R. Beckman. 2018. Winter-Rearing Temperature Affects Growth Profiles,
453 Age of Maturation, and Smolt-to-Adult Returns for Yearling Summer Chinook Salmon in the
454 Upper Columbia River Basin. *North American Journal of Fisheries Management* **38**:867-885.

455 Healey, M. C. 1986. Optimum size and age at maturity in pacific salmon and effects of size-selective
456 fisheries. *Can. Pec. Publ. Fish. Aquat. Sci.* **89**:39-52.

457 Healey, M. C. 1991. Life history of chinook salmon (*Oncorhynchus tshawytscha*). Pages 311-393 in L.
458 Margolis and C. Groot, editors. *Pacific salmon life histories*. UBC Press, Vancouver, B.C.

459 Healey, M. C., and W. R. Heard. 1984. Inter- and Intra-Population Variation in the Fecundity of Chinook
460 Salmon (*Oncorhynchus tshawytscha*) and its Relevance to Life History Theory. *Canadian Journal
461 of Fisheries and Aquatic Sciences* **41**:476-483.

462 Heath, D. D., R. H. Devlin, J. W. Heath, and G. K. Iwama. 1994. Genetic, environmental and interaction
463 effects on the incidence of jacking in *Oncorhynchus tshawytscha* (Chinook salmon). *Heredity
464 (Edinb)* **72**:146-154.

465 Heath, D. D., L. Rankin, C. A. Bryden, J. W. Heath, and J. M. Shrimpton. 2002. Heritability and Y-
466 chromosome influence in the jack male life history of chinook salmon (*Oncorhynchus
467 tshawytscha*). *Heredity (Edinb)* **89**:311.

468 Hess, J. E., N. R. Campbell, A. P. Matala, D. J. Hasselman, and S. P. Narum. 2016a. Genetic assessment
469 of Columbia River stocks, 4/1/2014-3/31/2105 annual report, 2008-907-00. CRITFC. Available
470 from <http://www.critfc.org/wp-content/uploads/2016/04/16-03.pdf>.

471 Hess, J. E., J. S. Zendt, A. R. Matala, and S. R. Narum. 2016b. Genetic basis of adult migration timing in
472 anadromous steelhead discovered through multivariate association testing. *Proc Biol Sci* **283**.

473 Johnston, S. E., J. Gratten, C. Berenos, J. G. Pilkington, T. H. Clutton-Brock, J. M. Pemberton, and J.
474 Slate. 2013. Life history trade-offs at a single locus maintain sexually selected genetic variation.
475 *Nature* **502**:93-95.

476 Kendall, N. W., U. Dieckmann, M. Heino, A. E. Punt, and T. P. Quinn. 2014. Evolution of age and length
477 at maturation of Alaskan salmon under size-selective harvest. *Evolutionary Applications* **7**:313-
478 322.

479 Kijas, J., S. McWilliam, M. Naval Sanchez, P. Kube, H. King, B. Evans, T. Nome, S. Lien, and K.
480 Verbyla. 2018. Evolution of Sex Determination Loci in Atlantic Salmon. *Scientific Reports*
481 **8**:5664.

482 Kodama, M., J. J. Hard, and K. A. Naish. 2018. Mapping of quantitative trait loci for temporal growth
483 and age at maturity in coho salmon: Evidence for genotype-by-sex interactions. *Marine Genomics*
484 **38**:33-44.

485 Koo, T. S. Y. 1962. Age determination in salmon. Pages 37-48 in T. S. Y. Koo, editor. *Studies of Alaska*
486 *red salmon*. University of Washington Press,, Seattle.

487 Küpper, C., M. Stocks, J. E. Risso, N. dos Remedios, L. L. Farrell, S. B. McRae, T. C. Morgan, N.
488 Karlionova, P. Pinchuk, Y. I. Verkuil, A. S. Kitaysky, J. C. Wingfield, T. Piersma, K. Zeng, J.
489 Slate, M. Blaxter, D. B. Lank, and T. Burke. 2015. A supergene determines highly divergent male
490 reproductive morphs in the ruff. *Nature Genetics* **48**:79.

491 Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**:357-
492 359.

493 Larsen, D. A., B. R. Beckman, C. R. Strom, P. J. Parkins, K. A. Cooper, D. E. Fast, and W. W. Dickhoff.
494 2006. Growth Modulation Alters the Incidence of Early Male Maturation and Physiological
495 Development of Hatchery-Reared Spring Chinook Salmon: A Comparison with Wild Fish.
496 *Transactions of the American Fisheries Society* **135**:1017-1032.

497 Larson, W. A., L. W. Seeb, M. V. Everett, R. K. Waples, W. D. Templin, and J. E. Seeb. 2014.
498 Genotyping by sequencing resolves shallow population structure to inform conservation of
499 Chinook salmon (*Oncorhynchus tshawytscha*). *Evol Appl* **7**:355-369.

500 Lewis, B., W. S. Grant, R. E. Brenner, and T. Hamazaki. 2015. Changes in Size and Age of Chinook
501 Salmon *Oncorhynchus tshawytscha* Returning to Alaska. *PLoS One* **10**:e0130184-e0130184.

502 Lien, S., L. Gidskehaug, T. Moen, B. J. Hayes, P. R. Berg, W. S. Davidson, S. W. Omholt, and M. P.
503 Kent. 2011. A dense SNP-based linkage map for Atlantic salmon (*Salmo salar*) reveals extended
504 chromosome homeologies and striking differences in sex-specific recombination patterns. *BMC*
505 *Genomics* **12**:615.

506 Lozorie, J. D., and B. C. McIntosh. 2014. Sonar esimation of salmon passage in the Yukon River near
507 Pilot Station, 2012. Alaska Department of Fish and Game.

508 McKinney, G. J., C. E. Pascal, W. D. Templin, S. E. Gilk-Baumer, T. H. Dann, L. W. Seeb, and J. E.
509 Seeb. In Revision. Dense SNP panels resolve closely related Chinook salmon populations. In
510 Revision.

511 McKinney, G. J., R. K. Waples, C. E. Pascal, L. W. Seeb, and J. E. Seeb. 2018. Resolving allele dosage in
512 duplicated loci using genotyping-by-sequencing data: A path forward for population genetic
513 analysis. *Mol Ecol Resour* **18**:570-579.

514 McKinney, G. J., R. K. Waples, L. W. Seeb, and J. E. Seeb. 2017. Paralogs are revealed by proportion of
515 heterozygotes and deviations in read ratios in genotyping-by-sequencing data from natural
516 populations. *Mol Ecol Resour* **17**:656-669.

517 Micheletti, S. J., and S. R. Narum. 2018. Utility of pooled sequencing for association mapping in
518 nonmodel organisms. *Mol Ecol Resour* **18**:825-837.

519 Moran, P., D. J. Teel, M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M. Blankenship, J. R. Candy, J.
520 C. Garza, J. E. Hess, S. R. Narum, L. W. Seeb, W. D. Templin, C. G. Wallace, and C. T. Smith.
521 2012. Divergent life-history races do not represent Chinook salmon coast-wide: the importance of
522 scale in Quaternary biogeography. *Canadian Journal of Fisheries and Aquatic Sciences* **70**:415-
523 435.

524 Ohlberger, J., D. E. Schindler, E. J. Ward, T. E. Walsworth, and T. E. Essington. In Review. Resurgence
525 of an apex marine predator and the decline in prey body size.

526 Ohlberger, J., E. J. Ward, D. E. Schindler, and B. Lewis. 2018. Demographic changes in Chinook salmon
527 across the Northeast Pacific Ocean. *Fish and Fisheries* **19**:533-546.

528 Otero, J., A. J. Jensen, J. H. L'Abee-Lund, N. C. Stenseth, G. O. Storvik, and L. A. Vollestad. 2012.
529 Contemporary ocean warming and freshwater conditions are related to later sea age at maturity in
530 Atlantic salmon spawning in Norwegian rivers. *Ecol Evol* **2**:2192-2203.

531 Pearse, D. E., M. R. Miller, A. Abadia-Cardoso, and J. C. Garza. 2014. Rapid parallel evolution of
532 standing variation in a single, complex, genomic region is associated with life history in
533 steelhead/rainbow trout. *Proc Biol Sci* **281**:20140012.

534 Phillips, R. B., L. K. Park, and K. A. Naish. 2013. Assignment of Chinook salmon (*Oncorhynchus*
535 *tshawytscha*) linkage groups to specific chromosomes reveals a karyotype with multiple
536 rearrangements of the chromosome arms of rainbow trout (*Oncorhynchus mykiss*). *G3* (Bethesda,
537 Md.) **3**:2289-2295.

538 Prince, D. J., S. M. O'Rourke, T. Q. Thompson, O. A. Ali, H. S. Lyman, I. K. Saglam, T. J. Hotaling, A.
539 P. Spidle, and M. R. Miller. 2017. The evolutionary basis of premature migration in Pacific
540 salmon highlights the utility of genomics for informing conservation. *Sci Adv* **3**:e1603198.

541 Riddell, B. R., R. D. Brodeur, A. V. Bugaev, P. Moran, J. M. Murphy, J. A. Orsi, M. trudel, L. A.
542 Weitkamp, B. K. Wells, and A. C. Wertheimer. 2018. Ocean ecology of Chinook Salmon. Pages
543 55-696 in R. J. Beamish, editor. *The ocean ecology of Pacific salmon and trout*. American
544 Fisheries Society, Bethesda, Maryland.

545 Rousset, F. 2008. Genepop'007: A complete re-implementation of the Genepop software for Windows
546 and Linux. *Mol Ecol Resour* **8**:103-106.

547 Rowe, D., and J. E. Thorpe. 1990. Suppression of maturation in male Atlantic salmon parr (*Salmon salar*
548 *L.*) by reduction in feeding and growth during spring months. *Aquaculture* **86**:291-313.

549 Schoen, E. R., M. S. Wipfli, E. J. Trammell, D. J. Rinella, A. L. Floyd, J. Grunblatt, M. D. McCarthy, B.
550 E. Meyer, J. M. Morton, J. E. Powell, A. Prakash, M. N. Reimer, S. L. Stuefer, H. Toniolo, B. M.
551 Wells, and F. D. W. Witmer. 2017. Future of Pacific Salmon in the Face of Environmental
552 Change: Lessons from One of the World's Remaining Productive Salmon Regions. *Fisheries*
553 **42**:538-553.

554 Shuster, S. M. 1989. Male alternative reproductive strategies in a marine isopod crustacean (*paracerceis*
555 *sculpta*): The use of genetic markers to measure differences in fertilization success among alpha-,
556 beta-, and gamma-males. *Evolution* **43**:1683-1698.

557 Siegel, J. E., M. V. McPhee, and M. D. Adkison. 2017. Evidence that marine temperatures influence
558 growth and maturation of Western Alaskan Chinook salmon. *Marine and Coastal Fisheries* **9**:441-
559 456.

560 Templin, W. D., J. E. Seeb, J. R. Jasper, A. W. Barclay, and L. W. Seeb. 2011. Genetic differentiation of
561 Alaska Chinook salmon: the missing link for migratory studies. *Mol Ecol Resour* **11 Suppl**
562 **1**:226-246.

563 Thorpe, J. E. 2007. Maturation responses of salmonids to changing developmental opportunities. *Marine
564 Ecology Progress Series* **335**:285-288.

565 Twyford, A. D., and J. Friedman. 2015. Adaptive divergence in the monkey flower *Mimulus guttatus* is
566 maintained by a chromosomal inversion. *Evolution* **69**:1476-1486.

567 Waples, R. S., and S. T. Lindley. 2018. Genomics and conservation units: The genetic basis of adult
568 migration timing in Pacific salmonids. *Evolutionary Applications* **11**:1518-1526.

569 Waples, R. S., D. J. Teel, J. M. Myers, and A. R. Marshall. 2004. Life-history divergence in Chinook
570 salmon: Historic contingency and parallel evolution. *Evolution* **58**:386-403.

571 Waters, C. D., J. J. Hard, M. S. O. Brieuc, D. E. Fast, K. I. Warheit, C. M. Knudsen, W. J. Bosch, and K.
572 A. Naish. 2018. Genomewide association analyses of fitness traits in captive-reared Chinook
573 salmon: Applications in evaluating conservation strategies. *Evol Appl* **11**:853-868.

574 Yano, A., B. Nicol, E. Jouanno, E. Quillet, A. Fostier, R. Guyomard, and Y. Guiguen. 2013. The sexually
575 dimorphic on the Y-chromosome gene (sdY) is a conserved male-specific Y-chromosome
576 sequence in many salmonids. *Evolutionary applications* **6**:486-496.

577 You, F. M., N. Huo, Y. Q. Gu, M. C. Luo, Y. Ma, D. Hane, G. R. Lazo, J. Dvorak, and O. D. Anderson.
578 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design.
579 *BMC Bioinformatics* **9**:253.

580 Young, B., D. V. Conti, and M. D. Dean. 2013. Sneaker “jack” males outcompete dominant “hooknose”
581 males under sperm competition in Chinook salmon (*Oncorhynchus tshawytscha*). *Ecology and*
582 *Evolution* 3:4987-4997.

583