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Abstract

Traditionally, the functional analysis of gene expression data has used pathway and
network enrichment algorithms. These methods are usually gene rather than
transcript centric and hence fall short to unravel functional roles associated to
posttranscriptional regulatory mechanisms such as Alternative Splicing (AS) and
Alternative PolyAdenylation (APA), jointly referred here as Alternative Transcript
Processing (AItTP). Moreover, short-read RNA-seq has serious limitations to resolve
full-length transcripts, further complicating the study of isoform expression. Recent
advances in long-read sequencing open exciting opportunities for studying isoform
biology and function. However, there are no established bioinformatics methods for
the functional analysis of isoform-resolved transcriptomics data to fully leverage
these technological advances. Here we present a novel framework for Functional Iso-
Transcriptomics analysis (FIT). This framework uses a rich isoform-level annotation
database of functional domains, motifs and sites —both coding and non-coding- and
introduces novel analysis methods to interrogate different aspects of the functional
relevance of isoform complexity. The Functional Diversity Analysis (FDA) evaluates the
variability at the inclusion/exclusion of functional domains across annotated
transcripts of the same gene. Parameters can be set to evaluate if AltTP partially or
fully disrupts functional elements. FDA is a measure of the potential of a multiple
isoform transcriptome to have a functional impact. By combining these functional
labels with expression data, the Differential Analysis Module evaluates the relative
contribution of transcriptional (i.e. gene level) and post-transcriptional (i.e.
transcript/protein levels) regulation on the biology of the system. Measures of

isoform relevance such as Minor Isoform Filtering, Isoform Switching Events and Total
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Isoform Usage Change contribute to restricting analysis to biologically meaningful
changes. Finally, novel methods for Differential Feature Inclusion, Co-Feature
Inclusion, and the combination of UTR-lengthening with Alternative Polyadenylation
analyses carefully dissects the contextual regulation of functional elements resulting
from differential isoforms usage. These methods are implemented in the software
tappAS, a user-friendly Java application that brings FIT to the hands of non-expert
bioinformaticians supporting several model and non-model species. tappAS
complements statistical analyses with powerful browsing tools and highly informative

gene/transcript/CDS graphs.

We applied tappAS to the analysis of two mouse Neural Precursor Cells (NPCs) and
Oligodendrocyte Precursor Cells (OPCs) whose transcriptome was defined by PacBio
and quantified by Illumina. Using FDA we confirmed the high potential of AItTP
regulation in our system, in which 90% of multi-isoform genes presented variation in
functional features at the transcript or protein level. The Differential Analysis module
revealed a high interplay between transcriptional and AItTP regulation in neural
development, mainly controlled by differential expression, but where AItTP acts the
main driver of important neural development biological mechanisms such as vesicle
trafficking, signal transduction and RNA processing. The DFI analysis revealed that,
globally, AItTP increased the availability of functional features in differentiated neural
cells. DFIl also showed that AItTP is a mechanism for altering gene function by
changing cellular localization and binding properties of proteins, via the differential
inclusion of NLS, transmembrane domains or DNA binding motifs, for example. Some

of these findings were experimentally validated by others and us.
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In summary, we propose a novel framework for the functional analysis of
transcriptomes at isoform resolution. We anticipate the tappAS tool will be an
important resource for the adoption of the Functional Iso-Transcriptomics analysis by

functional genomics community.
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Introduction

One of the most exciting aspects of transcriptome biology is the contextual
adaptability of eukaryotic transcriptomes and proteomes by Alternative Splicing (AS),
Alternative PolyAdenylation (APA), and Alternative Transcription Start Sites (ATSS)
mechanisms, jointly referred to as Alternative Transcript Processing (AItTP). These
three processes determine which transcripts (aka, isoforms) are produced for a given
gene. Alternate transcripts may differ in structure and in function, as well as in cell

specificity, and within cell spatio-temporal deployment.

The study of AItTP has experimentally been addressed either via molecular
characterization of the functionality of specific isoforms from single genes'?, or by
computationally approaches aiming to find global patterns and infer their potential
biological significance in silico**. Computational AItTP analysis has focused on the
study of processing events, namely exon spiking, intron retention, alternative
transcript start (TSS) and termination sites (TTS), nonsense-mediated decay (NMD)
and changes in the inclusion/exclusion levels of different exons®®. In parallel,
molecular studies have been conducted to understand the mechanisms behind the
dynamic changes in event patterns, identifying a large number of RNA binding
proteins as regulators of AItTP?' In response to the recognition of the biological
importance of AItTP, bioinformatics tools have been developed to analyze the
structural and regulatory aspects of AItTP events and have contributed to the
description and understanding of AltTP (reviewed in'").

While some discrepancy exist on the actual functional role of transcript isoform

diversity'®'. AItTP has been proven to be implicated in differentiation'®?, tissue
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identity?'??, development'?3, stress response® and disease®*%. Beyond these well
known effects, several studies have shown enrichment of spliced exons in disordered
regions mediating new protein interactions®® and remodeling of protein-protein
interaction in a tissue-specific manner®®3’. In other work, AS was shown to regulate
domains leading to the rewiring of PPl networks in cancer®. Similarly, APA has been
postulated as a mechanism to escape microRNA regulation by shortening 3" UTR

33,34

regions®>>", alternative TSS are believed to regulate the inclusion of Upstream Open

Reading Frames (UORFs) that control translational rates*®=’ and NMD has been

proposed to regulate gene expression in cancer and neural systems®3°,

Traditionally, computational approaches such as enrichment and network analysis

40-43 and

have been used to study the functional aspects of transcriptional changes
these have been instrumental for the characterization of transcriptome biology.
However, these methods operate at the gene level and are not adapted to study the
functional readout of AItTP. Much of the work done to answer transcriptome-wide
questions on the functional role of AItTP has involved ad hoc computational pipelines
applied to specific biological systems or address only particular types of events*,
Recently, Exon Ontology*® was proposed as a resource to study functional enrichment
of exon sets based on their annotation with protein functional domains. Using this
tool, authors were able to show different molecular functionalities directly associated
to changes in exon inclusion levels between epithelial and mesenchymal cells.
However, this analysis does not reveal how transcripts combine exons to provide

distinct functional elements, nor addresses the analysis of regulatory signals at

alternative UTRs. In general, the field lacks computational tools tailored to the study
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of the functional aspects of isoform expression regulation, limiting advances in our

understanding of the functional impact of AItTP.

One important reason behind the lack of functional perspective in splicing-dedicated
bioinformatics tools is the inability of RNAseq to correctly capture isoform
expression®'. Recently, third generation sequencing technologies have demonstrated

their power in detecting full-length transcript®*™¢

and identifying expressed isoforms.
Options for quantification are found in the combination with short-reads> or the
utilization of the newest high throughput instruments. As more scientists engage in
expression studies that use these new platforms with the goal of identifying
differences between conditions in isoform usage, there is a growing need of tools to

easily and quickly interpret isoform differences in the context of their potential

functional impact.

Here we present a novel computational framework for the study AItTP from a
functional perspective, introducing the Functional Iso-Transcriptomics (FIT) analysis
approach. This framework uses a rich isoform-level annotation database of functional
domains, motifs and sites —both coding and non-coding-, that are mined by novel
analysis methods that interrogate different aspects of the functional load associated
to isoform complexity and expression regulation. These methods are implemented in
the software tappAS (http://tappas.org), a user-friendly Java application that brings
FIT to the hands of transcriptome scientists by supporting several model and non-
model species. tappAS complements statistical analyses with powerful browsing tools

and highly informative gene/transcript/CDS graphs. As a proof of principle, we
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applied tappAS to the analysis of two mouse neural cell types, Neural Precursor Cells
(NPCs) and Oligodendrocyte Precursor Cells (OPCs), whose transcriptome was
defined by PacBio and quantified by lllumina®’. tappAS easily recapitulates a great
deal of the existing knowledge on AItTP function, as well as provide new functional
insights. We anticipate that the tappAS framework will be widely applied in a variety
of fields, and that its user-friendliness will promote the adoption of the FIT approach

by researchers with different levels of computational skills.
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Results
tappAS is a comprehensive tool to investigate potential functional
consequences of AItTP
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predominant to a minor position in at least one
time-point/condition.

DPA: a polyA site changes its usage levels from a
predominant to a minor position in at least one
time-point/condition.

Feature Favored Condition: C 2 Feature Favored Time Points: T,,T.

Conditions/time points where inclusion of a given
feature, in DFI analysis, or distal polyA site usage, in
the case of DPA, are promoted.

Feature-favoured
condition

Pair-wise Analysis

Time Couse Analysis
Expression

=1 8

N “ >

Isoform Usage C1  Isoform Usage C2

Measures the magnitude (%) of the redistribution . = =
Total change of expression between isoforms of a gene across all Z‘ ST B T S | <08
pairs of conditions/time-points.

Table 1: Main analyses and metrics of tappAS.

tappAS analyses use a species-specific gff3-like file containing isoform-level,
positionally-resolved, annotation features (see Methods). These labels describe
functional motifs, domains and sites both at the CDS and the UTRs of transcripts, and
are generated via the integration species-available databases and sequence-based
prediction tools that gather functional and structural data. For our mouse example,
20 functional categories were retrieved (Supplementary Table 1). tappAS joins
transcript-level expression data with this extensive annotation database and a wide
array of traditional and novel analysis algorithms (Table 1) to create a comprehensive

framework for the study of the functional impact of AItTP.

tappAS analysis can be divided into three Modules, each one targeting a different
aspect in the study of AItTP biology (Figure 1). Module | includes Functional Diversity
Analysis (FDA), which evaluates the functional regulatory potential of AITP by
interrogating the varying status of individual features across isoforms of the same

gene (Figure 1). This includes analysis by gene (assessing the varying status of

11
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individual genes for each functional feature category) and by feature ID (assessing
the number of genes for which a particular feature is differentially present across
isoforms). Depending on the feature, varying status is evaluated by genomic position
(positional approach) or by presence/absence (presence approach) (Table 1,
Methods). Module Il can be used to understand the relative contribution of
transcriptional and post-transcriptional regulation in the system under study by
comparing Differential Isoform Usage (DIU, transcript level) or Differential Coding
sequence Usage (DCU, protein level) with Differential Gene Expression (DGE) results,
and by performing subsequent enrichment analyses. Finally, Module Il includes
methods to assess the context-dependent differential inclusion of annotated
functional elements: Differential Feature Inclusion (DFI) of coding and non-coding
elements, Differential PolyAdenylation (DPA) and 3'UTR lengthening analysis (3UL).
Furthermore, a subsequent co-Differential Feature Inclusion (co-DFl) analysis can
detect sets of features that are coordinately included. DPA and 3'UTR lengthening
analyses can be combined to study which genes are regulated via alternative
polyadenylation (APA) and 3'UTR length. Importantly, any of the tappAS outputs

t58

described above can be coupled to Functional Enrichmen and Gene-Set

Enrichment®®

analyses based on any of the functional categories included in tappAS
annotation. Finally, tappAS’ displays all annotated features as gene, transcript and
protein graphical maps enabling for a visual evaluation of isoforms and their

functional components. For more details on the methodology behind these analyses,

see Online Methods.
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Figure 1: Overview of tappAS modules for Functional Iso-Transcriptomics Analysis. Module 1
contains a novel qualitative approach to evaluate functional diversity of alternative isoforms. Module 2
implements Differential Expression and Differential Isoform Usage analyses to discriminate AItTP (post-
transcriptional) from transcriptional regulation mechanisms. Module 3 includes newly-developed
approaches to measure the functional impact of AItTP as changes in the inclusion of functional features,

polyA site usage and UTR length.
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Functional Diversity Analysis

One fundamental question about AItTP is how post-transcriptional regulation
imprints functional complexity to transcriptomes. The potential of AItTP mechanisms
to regulate gene function largely depends on whether transcript isoforms contain
variation in their functional elements. In this case, modifications in their expression
levels can effectively modulate functional changes. Applied to our murine neural
transcriptomes, tappAS FD analysis identified ~70% of 2,341 multi-isoform genes that
varied in the predicted proteins (Figure 2A, CDS variability). Variability at 3" and 5’
UTR lengths occurred in ~ 60% of the genes (Figure 2A). The vast majority (78%) of
UTR-varying genes also had CDS variation, suggesting that protein diversity may be
coupled to RNA regulatory diversity. To illustrate, Figure 2C shows an example of a
gene detected by tappAS as Alternative PolyAdenylation (APA), 5'UTR, 3'UTR and

CDS-varying.

Nonsense-mediated decay (NMD) had the highest variation rate among transcript-
level features, 95% (Figure 2B). Moreover, nearly all genes with NMD transcripts
expressed protein-coding counterparts, indicating that NMD-targeted isoforms are
co-expressed with functional isoforms in our neural system, likely regulating their
abundance®3°%° UTR-motif annotated genes showed a presence/absence varying
rate of 55% and 90% for 3" and 5" UTR motifs, respectively (Figure 2B), and GU-rich
elements (GREs) were the most significantly varying 3'UTR motif types
(Supplementary Table 2). GREs have been associated to the stabilization of mRNAs®'
and also have been reported as targets of RNA-binding proteins (RBPs) such as

CELFs®. Among the set of 160 genes with differential inclusion of GRE elements in
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our neural system, tappAS identified splicing regulators such as Rbm4
(Supplementary Figure 1A), involved in neurogenesis of the mouse embryonic brain®,
and Tcf12 (Supplementary Figure 1B), known to play an important role in the control

of proliferating neural stem cells and progenitor cells during neurogenesis®.

FDA also identified la large number of miRNAs. An enrichment test was used to rank
miRNAs that we more frequently varying at 3'UTRs (Supplementary Table 3).
Interestingly, the top-five most significantly varying miRNAs include miR-335-3p,
known to associate with oligodendrocyte differentiation®, and mir-590-3p, which
responds to retinoic acid and is strongly associated to proliferation and
differentiation processes®. Since our NPCs and OPCs constitute differentiating
primary cells, these results point towards a potential isoform-specific layer of
expression regulation in neural differentiation via gain and loss of miRNA binding

sites due to AItTP.

Regarding presence/absence FD analysis of protein-level features, signal peptides
have the highest varying rate, followed by compositional bias regions and post-
translational modifications (PTMs) (Figure 2B). However, most features involving
functional variability within coding sequences are best studied via the FD positional
approach (Table 1, Figure 2A), which reports cases where a functional feature is
partially disrupted, suggesting functional modulation changes. Hence, considering
positional variation, Intrinsically Disordered regions (IDRs) and PFAM domains
present the highest rates of differential inclusion in multi-isoform genes annotated

for these feature categories (~78% and ~70%, respectively; Figure 2A) when
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compared to presence/absence variation (Figure 2B). IDRs have been reported to be

frequently present in transcript regions affected by AItTP?%678,

To understand which PFAM domain types have higher positional than presence
varying rates, we interrogated this category at the ID level. Figure 2D shows the top-
15 PFAM domains ranked by varying rate in our data, using both the positional and
presence approaches. We observe that zinc fingers and KRAB-box domains tend to
be totally contained in AS exons, as varying rates using the presence and positional
approaches are only slightly different. Hence, domain skipping in these cases will
result in elimination from the protein, while Kinase and RNA binding domains stand
out at the positional FD analysis, indicating that AltTP mechanisms tend to partially

disrupt these domains, possibly causing partial loss/change of function.

In summary, tappAS’ FD analysis successfully catalogues the transcriptome’s potential
for AltTP-mediated functional diversity and, in our mouse neural system, reveals that
~90% of multi-isoform genes have protein or transcript-level functional features that

vary across isoforms.
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Figure 2: Functional Diversity Analysis (FDA) results. A) FDA results summary using the positional
approach. The % of multi-isoform genes with the annotated feature in which at least one isoform is
varying is shown. The numbers above the bars indicate the total no. of varying genes for that category.
B) FDA results summary using the presence/absence approach. C) tappAS graphical representation of
the transcript-level annotation for the Dbt gene, where 5'UTR, CDS and 3'UTR/Alternative
polyadenylation variation can be observed. D) Comparison of position vs presence/absence approach
FDA results for the ID-level analysis of variation in PFAM domains. Top-15 domain families ranked by

total number of varying genes shown.

Multi-layered Analysis of Alternative Transcript Processing

Transcriptional and post-transcriptional (AltTP) regulation are regulatory mechanisms
that either control total expression levels or differences in the relative isoform
proportions, both contributing to regulate gene function. tappAS’ Differential Module

(Figure 1) is designed to dissect and compare these two regulatory layers.
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Figure 3A shows the intersection of differential analysis results for our neural dataset.
tappAS identified 1,205 genes differentially expressed between NPCs and OPCs
(FDR<0.05, FC>1.5), while only 291 of them were also regulated by AItTP
mechanisms, as revealed by DIU analysis (FDR<0.05). Interestingly, although these
results showed that most DE multi-isoform genes were regulated exclusively at the
transcriptional level, a group of 247 genes were solely affected by AItTP, meaning
that ~50% of DIU genes underwent a redistribution of expression among their
isoforms with no significant change in gene-level expression (example in Figure 3B).
This suggests independent AItTP and gene expression regulatory mechanisms
operating in our neural system. However, when a filter on isoform low relative
abundance was applied (<10% of total gene expression), 110 genes lost DIU status,
revealing that a fraction of DIU calls is composed by transcripts that barely contribute
to total gene expression, and might not be functionally relevant (Supplementary
Figure 2A). After DCU analysis (Table 1, FDR<0.05), we identified a group of 135
genes where differential usage of isoforms did not involve changes in coding
sequence usage (see examples in Supplementary Figure 2B, comprehensive results in
Supplementary Table 4). Finally, among 279 genes detected by both DIU and DCU
analyses after filtering (and therefore significantly affected by AItTP), a relevant 35%
undergo a major isoform switch (see Methods), (Table 1) between NPCs and OPCs
(Figure 3A), meaning that a significant fraction of isoform usage differences between
both cell types have the potential for a strong functional impact. In order to identify
the most significantly AltTP-regulated candidates, we used joint evaluation of total
usage change (Table 1, Online Methods), which constitutes a quantitative measure of

DIU (i.e. the degree of isoform usage change for a given gene across conditions),
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together with the identification of isoform switching events (Figure 3C). Specifically,
most genes with isoform switching have total change >20%. Hence, switching can be
used as criteria to prioritize candidates where AItTP has potentially higher impact on

the functionality of the gene and are more interesting for experimental validation.

To evaluate the potential functional impact of AItTP relative to gene expression
regulation, tappAS includes Functional Enrichment algorithms operating on all
available functional databases and sets of differential features. For example, Gene
Ontology-based Multi-Dimensional Gene Set Enrichment Analysis® of genes ranked
by DE and DIU p-value is effective to directly compare enriched functions controlled
by either mechanism. Figure 3D shows the top 25 enriched GO terms in this analysis.
In this tappAS representation we readily appreciate that transcriptional regulation
dominates in some important functions required for differentiation, as shown by
preferential enrichment in cell cycle, spindle and chromosome-related terms. DE-
regulation is also the main driver of some processes related to oligodendrocyte
function, such lipid metabolism, likely related to myelination (Figure 3D). On the
contrary, preferential regulation by AItTP is present for core of terms related to
vesicle transport, in line with the known role of vesicle trafficking for polarity

establishment and myelination’®7

, and with previous reports of splicing regulation of
vesicle transport”, also during differentiation processes’. A second group of terms
related to signalling and cell communication also appears highly regulated by DIU,
which together suggest high importance of AItTP in the response to extracellular

signals, as recently reported”. This is particularly relevant to our system given that

external stimuli are known to be involved in development’® and require activation of
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signaling pathways for an integrated differentiation response. In addition, the strong
DIU regulation of terms such as neuron projection (Supplementary Figure 3), plasma
membrane and cell periphery (Figure 3D) is in agreement with the established role of
cell polarity and shape for NSC differentiation towards oligodendrocytes and the
successful establishment of the myelin sheath™. Moreover, analysis of neural specific
terms revealed that, while the regulatory terms (involving neuron survival and
neurogenesis regulation) are mainly DE-regulated, the underlying differentiation
processes (neurogenesis and neuron differentiation-related processes) predominantly
involve DIU genes (Supplementary Figure 3). This suggests a transcriptional control of
differentiation regulators that trigger differentiation processes that are in turn mostly
AItTP-mediated. These results therefore point towards a strong interplay between
gene expression and AltTP regulation, where the synergies between both, as well as
each individual effects, are the ultimate drivers of biological processes that are key to

neural development.

Finally, to deepen into the cellular functionalities solely regulated by AltTP, we used
tappAS to calculate enrichment of DIU and DCU genes using the set of DE genes as
background. As well as targets of several RNA binding proteins, we found significant
enrichment of processes involved in 3-end mRNA processing, RNA binding and
mRNA splicing (Figure 3D), pointing towards a high degree of self-regulation of the
post-transcriptional machinery in our system. Indeed, genes from several splicing
regulator families, such as Ser/Arg-rich splicing factors (Srsf5, Srsf10), Muscleblind-like
proteins (Mbnl1, Mbnl2) and RNA-binding motif proteins (Rbm5, Rmb7) undergo

significant differential isoform/protein usage in our system (Supplementary Figure 4,
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Supplementary Figure 6A). Additionally, the analysis indicated enrichment of DCU
genes for cellular components and processes associated to neural development, such
as neurite/axon outgrowth (growth cone, FDR=0.002; site of polarized growth,
FDR=0.001)(Figure 3E), showing that the analysis of protein isoform changes may
reveal interesting processes that remain hidden when solely looking at transcript
usage. Moreover, significant enrichment was found for NLSs (FDR=0.02), indicating
that differential coding sequence usage may change the subcellular localization of
the resulting protein, and several PTMs (Phosphoserine, FDR=0.02;
Phosphothreonine, FDR=0.02; Acetyl-Lysine, FDR=0.05), suggesting that AItTP may

be related to post-translational modulation of protein function.

In conclusion, combining tappAS Differential and Enrichment modules allows
disentangling the contribution of transcriptional and post-transcriptional regulation
to transcriptome changes. In our proof of concept experimental system, both
mechanisms affect to shared and specific processes jointly shaping the cell type

differences.
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Figure 3: Combined analysis of differential gene expression and AItTP in tappAS. A) UpSet plot

showing intersections of DE vs DIU (left) and DIU vs DCU results, with and without minor isoform

filtering. Horizontal bars correspond to the total set of genes detected as significantly DE or DIU. Matrix
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points indicate the evaluated intersection, and vertical bars indicate their size. Legends detail the
biological importance of each intersecting set of genes. B) From left to right, gene, transcript and
protein-level expression charts for the Rbm7 gene in our system, and tappAS graphical representation of
its protein-level annotation. While there are no changes in gene expression level (not DE), the gene
presents both differential isoform and coding sequence usage. C) Total usage change (i.e. expression
redistribution between isoforms) vs log-transformed values of gene expression fold change between cell
types. Genes with a major isoform switch are represented in orange. Labels are assigned to genes with
the highest total usage change, indicating also whether they undergo major isoform switching. D) Multi-
Dimensional Gene Set Enrichment Analysis of genes ranked by DE and DIU p.value. Nodes correspond to
GO-terms obtained by selecting the top-25 terms ranked by significance in the DE enrichment and the
top-25 terms ranked by significance in the DIU enrichment. Pie chart area represents DE and DIU
regulation, and corresponds to relative -log10(p-value). E) and F) Functional Enrichment of DIU (E) and
DCU (F) genes (Fisher’s Exact Test, with Benjamini-Hochberg multiple testing correction, minor isoform
filtering: proportion < 10%) using DE genes as background. Dot color indicates the functional category

of the feature, while dot size indicates significance.

Feature-level Analysis of AItTP and Differential Isoform Usage

To investigate how functional features are included/excluded due to differential
usage of isoforms and AItTP, we applied tappAS' Differential Feature Inclusion (DFI)
analysis. Differentially included features between NPC and OPC were identified in 526
genes, including ~83% of previously detected DIU genes, indicating that our
framework recapitulates post-transcriptional regulation with changes in the
functional properties of transcripts and proteins. Features positive for DFI were found
distributed along all considered categories (Figure 4A), although a significant relative
enrichment was found for uORFs (Fisher's exact test (FET) p-value=5.25e-121), RNA
binding protein (RBP) binding sites (FET p-value=2.46e-07), compositional bias

regions (FET p-value=4.06e-03) and IDRs (FET p-value 5.02e-03). Gene level DFI also
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indicated IDRs and 5'UTR elements (particularly uORFs) as significantly differentially

included (Figure 4B).

Moreover, we found feature gain to be more frequent in OPCs when compared to
NPCs (Figure 4C), which can be interpreted as AItTP promoting the incorporation of
functional properties as cells differentiate. For example, we observed OPC-specific
inclusion of signal peptides (Binomial test, probability of success = 0.5, BiTest FDR =
2.10e-02), as well as of miRNA binding sites (BiTest FDR = 3.85e-08), uORFs (BiTest
FDR = 5.85e-31) and RBP binding sites (BiTest FDR = 4.09e-04), which may indicate a
3" UTR lengthening trend in OPCs vs NPCs. Remarkably, when comparing (absolute)
differences in feature inclusion rates between the two cell types, we found them to
amount no more than 20% for most categories, suggesting that in our system AItTP
acts as mechanism for the functional fine-tuning of gene products. Nevertheless, we
found significant differences in feature total change (AFl, see Methods) across
functional categories, being coiled regions and IDRs the protein domains with the
highest change in inclusion levels between cell types (Figure 4D, Mann-Whitney test,

disordered FDR = 3.63e-07, coiled FDR= 5.43e-06).
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features according to the cell type in which the inclusion of the feature is favored. Categories enriched in
cell type specific inclusion were captured using a Binomial test with probability = 0.5 and Benjamini-
Hochberg multiple-testing correction. D) Differences in inclusion levels for each feature category across
cell types measured by feature total change (AFI). Differential distribution across categories tested with
the non-parametric Kruskal test. Significance scale: (***) p < 0.001; (**) p < 0.01; (*) p < 0.05. E) Top 15
co-DFI associations ranked by total genes with both features marked as DFI. Bar color indicates the
number of genes where features are co-included in the same conditions (co-inclusion) or in opposite
conditions/groups (mutual exclusion). F) Summary of features found to be significantly DFI using

different comparison strategies.

In total, 526 genes were significant for DFI analysis, and many of these differentially
included features related to binding properties and cellular localization. For example,
we found a significant number of genes with isoforms differentially including Nuclear
Localization Signals (n = 89), possibly regulating their switch between nucleus and
cytosol as cell differentiate. This is the case of the Ctnnd1 gene encoding p120, a
well-known component of the B-catenin signaling pathway, an important process in
the differentiation of NPCs to OPCs’""®, tappAS predicted that Ctnnd1 possesses an
NLS motif in two of its alternative transcripts that appears due to exclusion of exon
10 (Figure 5A). We found Ctnnd1 NLS-containing isoforms to be strongly
downregulated in NPCs, while an isoform switching event leads to a significant
increase in their expression levels in OPCs. Western blot analysis of Ctnnd1 confirmed
a localization change in OPCs and the increase of nuclear levels of the protein, while a
cytoplasmic retention was observed in NPCs (Figure 5D). Similarly, tappAS found
differential expression for the NLS of RBP Mbnl1, an important neural splicing factor.

tappAS analysis indicates that nuclear MBNL1 isoforms are significantly favored in
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NPCs with respect to OPCs (DIU p-value = 0.0018; Supplementary Figures 5A-C), and
Western blot analyses confirmed these observations (Supplementary Figure 5D).
Finally, tappAS also detected examples of DFI affecting binding properties. Isoforms
of DNA-binding protein Mbd1 showed differential inclusion of a non-constitutive zinc
finger domain (Supplementary Figure 6A), favored as differentiation progresses
(Supplementary Figure 6B), and further examination suggests a potential dual
mechanism that involves both differential inclusion of exon 11 in OPCs and global
upregulation of Mbd1 gene expression (Supplementary Figure 6C). In agreement,
post-transcriptional processing of Mbd1 regulating the inclusion of exon 11 zinc
finger domain was recently found to be an important determinant of cell lineage in

NPCs™.
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Figure 5: tappAS analysis results and experimental validation ARRTP processing of Ctnnd1. A)

Protein-level visualization of tappAS functional annotation for Ctnnd1. Exclusion of an exon causes an

NLS motif to appear in the sequence. B) Gene, transcript and CDS-level expression of Ctnnd1. The gene

is significant for both DIU and DCU, with major isoform switching of the nuclear isoforms (yellow and

red) in OPCs. C) DFI analysis results for the NLS motif in Ctnnd7. NLS inclusion is favored in OPCs. D)

Western blot analysis of Ctnnd1 in the nuclear and cytosolic fractions of NPCs and OPCs. An increase of

the nuclear expression of the protein is observed in OPCs due to differential inclusion of the NLS, while

cytosolic expression remains constant.
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Another interesting functionality of tappAS is the ability to investigate the
coordinated inclusion of functional features, by co-DFl analysis (Figure 4E). Results
revealed associations between NLS and phosphoserine residues (examples in
Supplementary Figure 7A and 7B) and C2H2-type zinc finger domains (examples in
Supplementary Figures 7C and 7D). Indeed, post-translational masking of NLS is a
known mechanism to prevent nuclear import®®®’. Interestingly, IDRs are also strongly
co-included with phosphoserine residues, confirming their described role in the
allocation of PTMs, as well as their clear association to alternatively-spliced regions

(examples in Supplementary Figure 7A and 7B).

Differential Polyadenylation

Alternative polyadenylation and differences at UTR lengths are involved in the
regulation of mMRNA stability, sub-cellular location, RNA protein binding and
translation efficiency®*®. To assess the contribution of AltTP to these processes,
tappAS implements Differential PolyAdenylation (DPA) and 3'UTR Lengthening (3UL)

analyses (Table 1).

Applied to our experimental system, tappAS found that 17% of genes with polyA site
variation across isoforms were positive for DPA (134 out of 1527, FDR < 0.001),
among which ~31% (32 genes) switched their major polyA site between cell types
(Figure 6A). A 56% of genes favored distal polyA site usage (DPAU) in OPCs and a
significant trend towards 3 UTR lengthening was present for OPCs (Figure 6B,
Wilcoxon signed rank test, p-value = 2.267e-05). These results are consistent with our

enrichment analysis (Figure 4C). Moreover, 51 genes undergoing APA regulation also
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had differential inclusion of miRNA binding motifs, with ~64% of DFI miRNA sites
being included in OPCs. tappAS functional annotation indicated that an important
number of these genes were involved in RNA processes, including Papola, Tardbp
and Tdrd3, a transcriptional activator in the nucleus that is also involved in the
formation of stress granules and the regulation of mRNA translation in the
cytoplasm®. Tdrd3 undergoes Coding Region APA, resulting in OPC upregulated
forms with simultaneous inclusion of miRNAs binding sites and AU-Rich elements
(ARE) at the 3'UTR (Figure 6C) and disruption of a phosphotyrosine site and an exon-
junction (EJC) interacting region (Figure 6C) at the coding region. This pattern of

functional regulation poses new hypothesis for the Tdrd3 regulation by AItTP.
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Figure 6: DPA results. A) Heatmap displaying DPAU levels associated to genes that are significantly
DPA (FDR < 0.05) for each cell type. B) Boxplots showing the distribution of the difference in expression-

weighted 3" and 5" UTR lengths (UTRw) in OPCs vs NPCs. C) tappAS visualization of transcript-level
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annotation for the Tdrd3 gene, where Codign Region -APA induced inclusion of several miRNA binding
sites as well as an AU-rich element can be observed. D) Tdrd3 protein-level annotation, EJC binding

motif variation region is squared.

Discussion

In this work we present a novel analysis framework, implemented in the tappAS
software, for the comprehensive functional analysis of isoform-resolved
transcriptomes, referred here as Functional Iso-Transcriptomics (FIT). tappAS includes
approaches for the analysis of the variability in functional sites at genes with multiple
expressed transcripts, as well as methods to evaluate the functional impact of the
context-dependent expression of alternative isoforms, and in particular to dissect
which functional elements change as a consequence of differential isoform usage.
We combine new analytical concepts such as FDA, DFl and U3L with more established
enrichment methods to create a powerful analytical framework. This is a timely
development at a moment when long-read technologies are becoming increasingly
accessible, providing more accurate measurements of full-length transcripts and
hence of isoform expression. However, we should highlight that tappAS is agnostic
to the source of transcript models and therefore can also leverage other recently
proposed strategies to improve accuracy at transcript calls such as the combination
of ChIP-seq and RNA-seq data® and the pre-filtering of reference isoforms based on
Event Analysis®. Given the pace of technology, we expect that full transcript
resolution and quantification will be possible in the near future. While many methods

t5—8

to statistically evaluate isoform expression differences do exist’™, a tool specifically

tailored to extract the functional readout of these isoform differences was missing,
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and hence tappAS comes to fill an important bioinformatics gap for the study of

AItTP biology.

tappAS is designed to be a flexible framework for functional analysis of isoforms, that
uses an annotation file and many options for data analysis. At present tappAS
includes pre-computed gff3 files for human, mouse, fly, arabidopsis and maize. In this
work we illustrate the tool with the characterization of isoform differences between
two mouse neural cell types. We show that tappAS recapitulates much of the existing
knowledge about this neural system, as well as of functional aspects of splicing and
UTR regulation. Moreover, we show that the tappAS framework is able to propose
novel functional hypothesis that can be experimentally validated, such as the
alternative inclusion of NLS in proteins regulated by splicing. However, the illustrating
analysis, although comprehensive, does not cover all the tappAS potentiality. Options
for specifying specific sets of genes or combining multiple functional layers are
available, creating endless possibilities to interrogate the data. Video tutorials at the
tappAS web site (tappas.org) showcase additional functionalities of this tool. Also, as
gff3 can be directly uploaded by the user, additional data could be incorporate to
allow for new questions. For example, at present, no Protein-Protein interaction data
or conservation scores are included in the tappAS files. Users with confident
annotations at these layers can update gff3 files and easily use the tappAS framework
to pose questions regarding their association with isoforms and interactions with
other functional layers. Similarly, as the tool is not limited by organism, but only by
the current availability of annotation, other species not yet supported in the

application will benefit from tappAS as functional information becomes available.
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Supplementary Figure 1: tappAS visualization of functional feature variation across isoforms. A)
The Rbm4 gene presents transcript-level variation in the inclusion of a GU-rich element (GRE) in the
3'UTR due to an exon-skipping event. B) Transcript-level variation in one of the isoforms of the Tcf12
gene, which includes a 3'UTR region enriched in GREs due to an alternative Transcription Termination

Site.
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Supplementary Figure 2: DE and DIU analysis results. A) Two examples of genes (Acot77 and Arl8)
detected as false positives for Differential Isoform Usage after minor isoform filtering (% expression <
0.1), i.e. where removal of the minor isoform leads to no DIU status. Filtered isoforms are indicated by
arrows. B) Expression charts and tappAS visualization of annotated functional features at the transcript
(left) and protein (right) levels for the Mynn gene, where Differential Isoform Usage and major isoform

switching imply no Differential Coding sequence Usage.
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Supplementary Figure 3. A) Clustering of GO term enrichment results for DE genes. Clusters are
generated according to the similarities of significantly enriched GO terms. The color-coded legend
indicates global process labels assigned after inspection of the different GO terms integrating each
cluster. Important functions enriched in DE genes, i.e. affected by Differential Expression due to
phenotypic differences between NSC and Oligodendrocytes, include ion/calcium homeostasis, cell
motility and lipid metabolism. Circle size indicates enrichment Fisher Exact Test adjusted p-value. B)
Relative functional relevance between DE and DIU regulation obtained in Multi-Dimensional Gene Set
Enrichment Analysis of DE and DIU genes, representation of neural-related terms. Nodes correspond to
GO-terms obtained by selecting the top-10 terms ranked by significance in the DE enrichment and the
top-10 terms ranked by significance in the DIU enrichment (from a list of all neural-related GO-terms).

Pie chart area represents DE and DIU regulation, and corresponds to relative -log10(p-value).
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Supplementary Figure 4: Splicing factors regulated by DIU. Transcript, gene and protein expression
levels providing evidence of DIU status and self-regulation of the AKTP machinery: A) Srsf5, B) Srsf10, C)
Mbnl2, D) Rbm5, E) Rbm7. DIU and/or DCU (indicated only when significantly different from DIU results)

significance corresponds to multiple testing adjusted Q-Values.
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Supplementary Figure 5: Mbnl1 AItTP results. A) Gene, transcript and CDS expression for Mbnl1. The
gene is positive for DIU both at the transcript and protein level. B) tappAS visualization of Mbnl1
functional annotation. Differential inclusion of an NLS signal is detected by tappAS comprehensive
annotation. C) DFI results for Mbnl1 NLS signal. The feature is significantly differentially included, and
favoured in NPCs. D) Western blot analysis of MbnlT in cytosolic and nuclear fractions of NPCs and
OPCs. Together with a general increase in Mbnl1 expression in OPCs (INPUT), an increase in protein

levels in the cytoplasm is observed, likely due to exclusion of the NLS signal (Cytosolic fraction).
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Supplementary Figure 6: potential AItTP regulation of Mbd1 in DNA binding properties. A)

Protein-level functional features annotated in tappAS. Highlighted area indicates differential inclusion of

a third CXXC zinc finger domain to the coding region. B) DFI results for the CXXC zinc finger domain in

the Mbd1 gene. Inclusion of the domain, together with a general upregulation of Mbd1, are observed. C)

Gene, transcript and CDS-level expression of Mbd1. The gene presents DE, DIU and DCU status.
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Supplementary Figure 7: co-DFl results examples. A) Variation in the inclusion of protein-level
functional elements in the Rbm39 gene, which presents co-DFI status for an Intrinsically Disordered
Region (IDR, DISORDER), several phosphoserine residues (PTM) and a Nuclear Localization Signal (NLS,
MOTIF). B) Protein-level functional elements in the Papola gene, which presents co-DFl status for an IDR
(DISORDER), several phosphoserine residues and two NLS (MOTIF). C) Protein visualization of he Zfp64
gene, which presents co-DFI status of several C2H2-type zinc finger domains (PF13912, PF00096 and
PF13909) and NLS motifs. D) The Zpf354b gene presents co-DFl status of a C2H2-type zinc finger

domain (PF00096) and an NLS motif.
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No. feature

No. isoforms

Annotation level Source Category occurrences annotated
ScanForMotifs PAS 8511 5750 (48%)
ScanForMotifs 3'UTR motifs 11797 5325 (44%)
UTRscan/UTRsite 5'UTR motifs 325 315 (3%)
Transcript UTRscan/UTRsite uORF 7444 3045 (25%)
11970 isoforms .
7167 genes RepeatMasker Repeat regions 19269 7245 (61%)
MlRWaIk/m|Rb§se +in-| 3'UTR mlﬁNA binding 106392 9474 (79%)
house scripts sites
clipDB + in-house | o\ binding sites (RBPs) 47821 7279 (61%)
scripts
. Nonsense-Mediated o
In-house scripts Decay (NMD) 329 329 (3%)
PFAM-HMMER3 Domains 20973 9608 (89%)
COILS + UniprotKB Coiled coil 6669 2856 (26%)
TMHMM + UniprotkKB | Transmembrane regions 12543 2061 (19%)
SignalP Signal peptides 824 824 (8%)
MOBIDB Disordered regions 11256 5626 (52%)
Protein ot
10813 coding isoforms CNLLJS .mappKeBr ¥ N“CS'.ear LIOC?\I'LZ;“O” 7599 4297 (40%)
7167 genes niprot ignals (NLS)
. Post-Translational o
PSP + UniprotKB Modifications (PTM) 100804 8506 (79%)
UniprotKB Compositional bias 2260 1480 (14%)
UniprotKB Motif 6579 2897 (27%)
UniprotKB Intramembrane 159 62 (0.6%)
UniprotKB Active site 1770 1168 (11%)
UniprotKB Binding 12790 3339 (31%)

Supplementary Table 1: summary of annotation results for the mouse transcriptome of NPC and OPC

primary cells. Number of features at the transcript and protein levels annotated are indicated, together

with their database of origin and the percentage of isoforms in the transcriptome that contain them.
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3’ UTR motif p-value Adj.p-value No. vari(:/n)g genes
o
GU-rich
Destabilization 0.0024 0.05 197 (69.4%)
Element
GU-Rich Element o
(GRE) 0.0281 0.33 243 (66.2%)
tRNA-like structure 0.079 0.53 279 (64.7%)
Brd-Box 0,088 0.53 189 (65.4%)
Dinucleotide Repeat 0.283 1 32 (66.6%)

Supplementary table 2: ID-level FDA results for UTR motifs, top 5 ranked by adjusted p-value.

Significance assessed via Fisher’s Exact Test with Bonferroni-Hochberg multiple-testing correction.

miRNA p-value Adj.p-value No. var{;::)g genes
mmu-miR-335-3p 9e-4 0.46 61 (62.2%)
mmu-miR-590-3p 0.0059 0.77 83 (56.8%)
mmu-miR-880-3p 0.0071 0.77 21 (70%)
mmu-miR-7b-3p 0.0101 0.77 43 (60.5%)
Mmu-miR-223-3p 0.0145 0.77 35 (61.4%)

Supplementary table 3: ID-level FDA results for miRNA binding motifs, top-5 ranked by adjusted p-

value. Significance assessed via Fisher's Exact Test with Bonferroni-Hochberg multiple-testing correction.
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Methods

Retrieving isoform-resolved functional annotation features

tappAS uses a gff3 like file with transcript structural and functional data. To produce
this file for our mouse data (Supplementary Table 1) we use available databases and
state-of-the-art prediction algorithms. Features are gathered through two
mechanisms: positional transfer from functional databases and de novo prediction by
state-of-the-art algorithms for sequence-based function prediction. All functional
labels annotated at the isoform resolution are positionally described via their exact

localization within protein/RNA molecules.

RNA-level annotations included: cis-acting UTR regulatory elements and Upstream
Open Reading Frames (UORFs) predicted by UTRscan®; repeat regions and low-
complexity elements predicted by repeatMasker®®; and miRNA binding sites collected
from mirwalk2.0%°. A minimum seed length of 7bp and a p-value threshold of 0.05
were set as requirements to call miRNA binding sites. We filtered the site list by the
number of sources reporting the association, requiring that miRNA binding sites to
be predicted by a minimum of 5 methods, among which Targetscan®, miRanda®', and
mirWalk® are required. mirWalk provides transcript coordinate information to locate
miRNA binding sites. High confidence miRNAs can be identified using the
experimental evidence information in miRBase®. In our example there were 511
miRNAs with annotated binding sites and experimental evidence. Binding sites for
RNA-binding proteins (RBPs) can be annotated by collecting genomic crosslinking

immunoprecipitation (CLIP) data from CLIPdb® and mapping sites to isoforms. RNA
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binding sites can be transferred by user defined levels of stringency. For our

example, we required prediction by at least two algorithms in CLIPdb.

At the protein level, Pfam domains are mapped with InterProScan®, transmembrane
regions predicted with TMHMM?®, signal peptides obtained by SignalP 4.0%, coiled-
coil regions predicted by COILSY, single and bipartite Nuclar Localization signals
mapped by cNLS mapper®® (score > 6) and disordered regions obtained by MobiDB
Lite®, which derives consensus IDR predictions by combining 8 different predictors.
We predicted isoforms containing a premature termination codon (PTC) -potentially

190 that indicates

leading to nonsense-mediated decay (NMD)- using the 50-NT rule
that a termination codon situated more than 50-55 nt upstream of an exon-exon

junction is generally a PTC.

In addition to sequence-based prediction methods, some protein-centric databases
contain a detailed annotation of protein features. However, these are generally
biased towards the annotation of the best-documented isoform, hindering the study
of the functional diversity of alternative isoforms. To correct this, we map canonical
isoform annotations to query isoform sequences, novel or known, following an
isoform-aware positional transfer strategy. We obtained the information on protein
functional features by parsing UniprotKB™' and PhosphoSitePlus'® databases. In
both cases we deal with the disparities between databases when defining gene
models and ensure the ORF and genomic position conservation between public and
query sequences during feature transference. As a result, we retrieved an extensive

set of post-translational modification (PTM) sites with experimental evidence from
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PhosphoSitePlus, and a diverse catalogue of functional sequence features from

UniprotKB.

tappAS contains precomputed gff3 files with isoform functional data for mouse,
human, Arabidopsis, fly and maize. Specific details can be found in Supplementary

Table 1.

Visualization engine of positional functional annotation at isoform resolution

The tappAS visualization engine is designed to display isoform variability in a user-
friendly manner, and constitutes one of the most useful features of the application.
Using the visualization power of the Java engine, tappAS displays the whole
catalogue of isoform-resolved annotation features and their position using a
distinctive icon on both transcript and protein isoform structure maps. Maps include
UTR/CDS areas, polyA sites, splice junction and exon information, and functional
features, creating a graphical representation that greatly facilitates the study and

comparison of isoform diversity.

Functional Diversity (FD) Analysis
Isoforms vary in structural and functional features among isoforms of the same gene.
FD identifies and measures the nature of the variability in a qualitative manner. For

every annotated feature, all pairwise comparisons between transcript isoforms from
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the same gene are performed and a gene is labelled as varying if at least one isoform
pair has variability in a feature, either in its annotated genomic position(s) (Positional
Varying) or in the presence/absence of the annotated feature (Presence Varying).

Functional Diversity can be assessed by gene or by feature ID.

Gene-Level Diversity

The Gene-Level Diversity analysis evaluates genes as a function of the structural,
functional and regulatory feature categories that are modulated by AItTP. Depending
on the feature category and its relationship to the functional properties of a
transcript or protein, Functional Diversity is evaluated using a Positional Varying

strategy or a Presence Varying strategy.

The Positional Varying approach compares features by genomic position, i.e. by
mapping features to genomic coordinates and classifying them as varying if
coordinates are not equivalent between gene isoforms. Position disagreement is
annotated when >9bp, that is, 3 amino acids, allowing for variability in prediction. In
contrast, Presence Varying includes only presence/absence of annotation. For
instance, NMD transcript status is is, based differences in the transcript level NMD
label. In contrast, transcript attributes such as UTR length, CDS and polyA site
positions, are examples of features where positional evaluation is meaningful.
However, a third group of features (such as Pfam domains or transmembrane
regions) can be affected by AItTP via both complete and partial disruption of the

feature. In these and similar cases, both strategies can be used, and provide
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complementary insight on AItTP in the potential regulation of the functional or

regulatory feature.

For structural features evaluated by Positional Varying, some special considerations
are required. In order to detect alternative polyadenylation (APA) events, polyA sites
are identified as the last genomic position of transcript isoforms and evaluated in a
pairwise manner by computing the polyA distance between each pairwise
combination of isoforms expressed by a given gene. mRNA cleavage is not an exact
process and can occur within a small window of positions'®. To take cleavage
variability into account, tappAS’ FD analysis labels a pair of isoforms as APA when
there is @ minimum X bp genomic distance (default value 100) between polyA sites.
UTR length is computed for each isoform for subsequent pairwise comparison
between coding isoforms from the same gene. Pairs of isoforms with 3'/5" UTR
differences above a user-specified cutoff (75 bp by default) are labelled as 3'/5" UTR
length varying, respectively. Finally, CDS variability is determined by comparing CDSs
both at the sequence and genomic coordinate levels. Non-coding isoforms are

discarded from CDS diversity analysis.

Feature-Level Diversity

The Feature-Level Diversity analysis identifies specific functional and regulatory
elements (i.e. by feature ID instead of source/functional category) varying across
isoforms from the same gene. Feature-Level Diversity Analysis counts the number of
genes for which a given feature ID is flagged as varying in the gene level analysis. The

diversity status of each ID can be evaluated via Positional, Presence Varying or both.
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The significance level of every feature global variation across genes is evaluated using

5

Fisher's Exact Test'™, and then corrected using the Benjamini-Hochberg'® method

for multiple testing correction.

Differential Feature Inclusion (DFI) analysis

DFl applies the concept of exon inclusion analysis to functional features. DFI is only
applied to features labelled as varying —either by position or as present/absent-
across each gene's isoforms, as only these have the potential to be significantly
regulated. For a given gene and functional element, the null hypothesis that
transcripts containing the feature have equivalent expression to transcripts not
containing the feature is tested for each gene. Expression values of the isoforms
containing the feature, and isoforms where the feature is not present are calculated

from the data.

The feature inclusion rate is the ratio between the sum of expression of all feature-
including isoforms and the total expression of the gene (i.e. sum of expression of

isoforms including and excluding the feature) for each condition studied:

Elncgg

Flgy =
8 ™ Elncy, + EExcy,

where Elnc is the aggregated expression value for feature-including isoforms and
EExc is the aggregated expression value for feature-excluding isoforms for gene g

and positional feature f.
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Differential inclusion of functional features is then tested using generalized linear

6

models adapting DEXSeg® and maSigPro'® methods, for case-control and time-

course experimental designs, respectively. For each feature f and gene g:

h(}.lfg) = BO+ Bleg+ BZ ng + 83 ng + B4 Cfg ng + BS Cfg ng + 86 ng ng + B7 Cfg ng ng

where h is the link function of the GLM, pg=E(yr) is the expected aggregated
expression level, Cg is the binary variable that identifies each of the two experimental
conditions, T¢q is the time point, and Fg is the binary variable that identifies the variant

(Feature-Excluding or Feature-Including).

Each gene and feature are individually modeled. For each model, the significance of
the condition-variant or condition-variant-time interactions is evaluated, depending
on the experimental design considered. When multiple functional annotation
categories are analyzed (domains, UTR motifs, disordered regions, etc.), each of them
is tested independently. P-values are corrected by FDR and significance is set to 0.05

by default.

Co differential feature inclusion analysis (Co-DFI)

Co-DFI analysis evaluates how frequently two features are simultaneously DFI for the
same gene in the same condition, while mutual exclusion evaluates how often two
features are simultaneously DFI for the same gene in the different condition. Co-DFI

is computed for each pair of features detected as DFl in at least 5 genes.
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Defining a library of polyA sites
tappAS uses a polyA site database is created by extracting the genomic coordinate of

107

the last position of each transcript isoform. Unlike recently developed tools™’, polyA
sites in terminal exons with different 5’ start sites are also considered to allow the
analysis of Alternative PolyAdenylation sites affecting either Coding (CR-APAs) or

UTR- (UTR-APAs) events. Non-coding isoforms as well as NMD-predicted variants are

discarded.

Next, a series of filtering and collapsing steps are performed in order to define the
proximal (pPA) and distal polyA (dPA) site for each gene. First, independent cleavage
sites are defined by merging polyA sites located within a 75 bp window. To avoid the
definition of a minor polyA site as a distal or proximal site, a filtered based on relative
polyA site expression levels is applied and only polyA sites accumulating at least 10%
(default threshold) of total gene expression in at least one condition are considered.
In the case of genes with more than two polyA sites, we perform a final merge of

unlabelled sites by assigning them to the nearest proximal or distal site.

Differential Polyadenylation Analysis (DPA)

Using the defined polyA site library, tappAS computes the per-gene and per-sample
dPA and pPA site expression levels by collapsing the expression levels of the set of
transcript isoforms that contain either the dPA or de pPA. The same GLM model used
for DFI is applied to capture significant condition-variant interactions. The relative

distal polyA site usage (DPAU) is implemented by calculating the relative expression
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of the sum of all isoforms containing the distal site over the total polyA site
expression level of the gene:

E
DPAU = dpA

Egpa + Eppa
where EdPA and EpPA to the expression levels of the variants defined as distal and

proximal polyA sites.

Detecting lengthening and shortening of 3" UTRs

For isoforms with identical CDS end positions but different polyA (UTR-APAs)
distal/proximal polyA site usage directly associates with UTR lengthening/shortening
events. However, when changes in polyA site position imply changes in the CDS (CR-
APAs), it is impossible to directly infer the relationship between the polyA site and 3’
UTR length. Since DPA analysis assesses polyA site regulation independently of the
coding sequence, tappAS introduces a specific 3 UTR lengthening/shortening
analysis by computing an isoform usage-weighted mean UTR length for each

condition:

i Ui UTRg
n UTRyg

UTR,, =

where U is the relative usage of isoform i in gene g and UTR its associated 3’ UTR

length.

UTRs from highly expressed isoforms will contribute in a higher proportion to the
final UTR mean length. The weighted UTRs is a measure of the actual extent of UTR
length changes across conditions. Statistical differences are tested by using a

Wilcoxon rank-sum test of the weighed UTR values.
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tappAS software

tappAS (http://tappas.org) is a Java GUI application that provides a broad analytical
framework including a range of functions that, collectively and in combination allow
the study of different structural and functional aspects associated to isoform usage.
Statistical methods are implemented in R and are run by tappAS using the Rscript
environment. See http://tappas.org for a comprehensive list of R package

dependencies, as well as other software and hardware requirements.

tappAS uses a gff3-like file containing functional annotations at the isoform level, as
described above. Structural information, including annotation of UTRs, CDS and
introns, together with gene, protein and transcript reference IDs for each transcript
sequence are also represented in the this gff3-like file. Currently, annotation files for
Human (ENSEMBL and RefSeq databases), Mouse (ENSEMBL and RefSeq databases),
Drosophila, Arabidopsis and Maize are available in the tappAS application. Users can

optionally input their gff3 files.

tappAS works as a compendium of independent projects, each of them created using
two inputs: a transcript expression matrix and an experimental design file, that can
either be a case-control or a time-course experiment. Being a GUI application, tappAS
also provides a rich set of interactive features via the JavaFX platform, including
customizable data tables, complex sorting and filtering options, data and figure

export, context-sensitive help pages, data drill-down and display customization.
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tappAS is designed an open framework and accepts user-defined gene lists as input

for analysis.

While tappAS accepts a transcript-expression file, it uses the structural annotation
included in the gff3 to estimate the expression of genes, as the sum of their transcript
expression, and CDSs, as the sum of transcripts having the same ORF. Differential

expression analyses can be then run at each of these aggregation levels.

The application includes the analysis methods described above and implements
existing tools when appropriate, including NOISeq'® and maSigPro'® for differential
gene expression; DEXseq® and Iso-maSigPro'® for differential isoform usage. These
two methods assess DIU by fitting generalized linear models (GLMs) and testing the
significance of the isoform-condition interaction coefficient, as proposed in'"™.
Implemented enrichment methods are GOSeq®® (Functional Enrichment) GOglm®
(Gene Set Enrichment) and mdgsa® for multi-dimensional GSE. These enrichment
tools can be easily applied to the results of any of the statistical methods included in
tappAS. Finally, tappAS implements extant complementary functionalities (i.e. low-

count expression filtering, TMM normalization, PCA, clustering methods) that enable

the pre-processing and flexible exploration of data and results.

Complementary metrics for isoform analysis

tappAS incorporates complementary analysis features and metrics specially

conceived for a better assessment of the functional implications of AltTP.
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a) Major and minor isoforms

In tappAS, the major isoform of a gene is defined as the isoform with the highest
mean expression across all conditions of the study, while other isoforms of the gene
are labelled minor forms. Such definition is operational in the context of tappAS
analysis and does not assume functional relevance or expression levels in other

experimental settings.

b) Isoform prefiltering
Genes in mammalian transcriptomes usually express multiple of isoforms. However,
frequently only one or few of them accumulate the major proportion of gene

expression’"

while remaining isoforms, although detected, have low expression
levels. Although tappAS allows for low expression filtering upon data upload, still
isoforms may remain that are relatively minor for their gene expression level. When
the minor isoforms have small expression changes between conditions, but these
occur in the opposite direction to the predominant isoforms, significant isoform-
condition coefficients may appear at GLM models. To avoid the detection of DIU
genes because of the 'flat' behaviour of minor isoforms, an isoform filtering step can
be applied before statistical modeling. Two filtering approaches are implemented in
tappAS. One considers the proportion of a gene’s expression represented by each
isoform and filters those that do not reach a minimum expression rate (10% by
default), while the other calculates the fold-change of the minor isoforms versus the

major to remove those below a specified fold-change (FC) threshold (default FC=2).

Users can use which filtering option to apply
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c) Total usage change

Total usage change in DIU analysis

The Fold Change is a measure magnitude in of differential expression that cannot be
easily applied to DIU analysis, where multiples isoforms are tested in a single model.
Instead, we propose a new metric, total usage change to quantify the magnitude of
change for DIU genes. Total usage change measures the amount of redistribution (as
%) in expression levels across different conditions for isoforms of the same gene.
Because absolute gene expression levels may be different across conditions, total
change values are always represented as a function of the gene expression FC.

We define isoform usage as the relative expression of isoform i in gene g. Then, total

usage change can be defined as:

IsoformUsageC1  IsoformUsageC2
n — ——t—

Eq; Ey;
D) T Iy P
Zi=1 E1ig Zi:l Ezig

i=1

where Ej is the expression value for isoform i and gene g.

Defining total usage change for feature analyses

When performing DFI and DPA analyses, expression values are collapsed to obtain
feature inclusion (Fl) and distal polyadenylation site usage (DPAU) levels. In this case,
total change is re-defined as the redistribution (as %) of FI (AFl) or DPAU (ADPAU)
levels across every pair of conditions considered. Note that both metrics are also

dependent on absolute expression.
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d) Defining switching events

Switching events are defined in order to identify Differential Feature Inclusion,
Differential Polyadenylation and Differential Isoform Usage events that imply a strong
change and prioritize candidates for further analysis.

A major isoform switching event occurs when the major isoform of gene the becomes
minor at one particular condition. In multiple time-course series major isoforms are
defined for each experimental group and so is the major isoform switch. Feature

switching (in DFI) and distal polyA usage switching (in DPA) are similarly defined.

Favored conditions
In DPA and DFI analyses, switching information is complemented by information of
the favored condition, i.e. the experimental condition where the inclusion of the

feature is promoted.

Experimental setup in murine neural cells

As proof-of-concept of our analysis framework, we used the data in Tardaguila et al*’.
Briefly, two different cell types: Neural Precursor Cells (NPC) and Oligodendrocyte
Progenitor Cells (OPCs) had expressed transcriptomes estimated using PacBio Iso-

Seq sequencing and curated by SQANTI’

, resulting in 11,970 transcripts coded by
7,167 genes. We computed isoform expression levels with RNA-seq using RSEM''2

following ENCODE guidelines

Validation of events with potential functional impact

Western Blot
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We validated AltTP-mediated localization changes via differential inclusion of Nuclear
Localization Signals (Ctnnd1, Mbnl1) using nucleus-cytoplasm fractioning and
western blot analyses. Total protein fraction was extracted from cell cultures using
lysis buffer containing 50 mM Tris-HCl, pH 7.5,150 mM NaCl, 0.02% NaN3, 0.1 SDS,
1% NP40, 1T mM EDTA, 2 mg/mL leupeptin, 2 mg/mL aprotinin, T mM PMSF, 1x
Protease Inhibitor Cocktail (Roche Diagnostics, San Diego, CA, USA). The cytoplasmic
and nuclear protein fractions were extracted with lysis buffer containing HEPES 10
mM pH 7.9, KCI 10 mM, EDTA 1 mM, EGTA 1 mM, DTT 1 mM, B-glycerophospate 10
mM and 1x Protease Inhibitor Cocktail (Roche Diagnostics, San Diego, CA, USA).
IGEPAL (CA-630) 0.4% was then added and samples were vigorously vortexed and
centrifuged at 12000g at 4°C for 5 minutes. The supernatant (cytoplasmic fraction)
was recovered, and the remaining pellets were incubated in lysis buffer containing 10
mM TRIS pH 7.4, NaCl 400 mM, IGEPAL (CA-630) 0.5%, EDTA 1 mM, EGTA 1 mM,DTT
1 mM, B-glycerophospate 10 mM and 1x Protease Inhibitor Cocktail (Roche
Diagnostics, San Diego, CA, USA) to recover nuclear protein extracts (nuclear
fraction). The protein concentrations of the supernatant were determined via
bicinchoninic acid technique (Pierce® BCA protein assay; Thermo Fisher Scientific)
and stored at -80C. Equal protein amounts were loaded, separated in 10% SDS-PAGE
and transferred into a PVDF membrane. The membrane was blocked with 5% milk in
TBS with 0.1% Tween-20 for Th at room temperature and incubated at 4 °C overnight
with the following primary antibody solutions (4% milk, 0,5% Tween-TBS): Anti p120
(Ctnnd1) 1:2000 (Millipore 05-1567, clone 15D2); Anti Mbnl1 1:100 (DSHB-
MB2a(3b4)); Anti Ac H3 1:1000 (Millipore 06-599); Anti tubulin coupled HRP (Thermo

MA5-16308-HRP). Membranes were incubated for 1Th at room temperature with the
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following secondary antibody dilutions (4% milk, 0,5% Tween-TBS): Anti mouse HRP
(Life A16072) 1:10000; Anti rabbit HRP (Thermo 31460) 1:10000. Signal detection was
performed with an enhanced chemiluminescence kit (ECL Plus Western blotting
detection reagent from GE Healthcare, Piscataway Township, NJ, USA) and bands

were detected using Alliance Q9 Advanced (Uvitec Cambridge Inc).
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