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Abstract 

Traditionally, the functional analysis of gene expression data has used pathway and 

network enrichment algorithms. These methods are usually gene rather than 

transcript centric and hence fall short to unravel functional roles associated to 

posttranscriptional regulatory mechanisms such as Alternative Splicing (AS) and 

Alternative PolyAdenylation (APA), jointly referred here as Alternative Transcript 

Processing (AltTP). Moreover, short-read RNA-seq has serious limitations to resolve 

full-length transcripts, further complicating the study of isoform expression. Recent 

advances in long-read sequencing open exciting opportunities for studying isoform 

biology and function. However, there are no established bioinformatics methods for 

the functional analysis of isoform-resolved transcriptomics data to fully leverage 

these technological advances. Here we present a novel framework for Functional Iso-

Transcriptomics analysis (FIT). This framework uses a rich isoform-level annotation 

database of functional domains, motifs and sites –both coding and non-coding- and 

introduces novel analysis methods to interrogate different aspects of the functional 

relevance of isoform complexity. The Functional Diversity Analysis (FDA) evaluates the 

variability at the inclusion/exclusion of functional domains across annotated 

transcripts of the same gene. Parameters can be set to evaluate if AltTP partially or 

fully disrupts functional elements. FDA is a measure of the potential of a multiple 

isoform transcriptome to have a functional impact. By combining these functional 

labels with expression data, the Differential Analysis Module evaluates the relative 

contribution of transcriptional (i.e. gene level) and post-transcriptional (i.e. 

transcript/protein levels) regulation on the biology of the system. Measures of 

isoform relevance such as Minor Isoform Filtering, Isoform Switching Events and Total 
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Isoform Usage Change contribute to restricting analysis to biologically meaningful 

changes. Finally, novel methods for Differential Feature Inclusion, Co-Feature 

Inclusion, and the combination of UTR-lengthening with Alternative Polyadenylation 

analyses carefully dissects the contextual regulation of functional elements resulting 

from differential isoforms usage. These methods are implemented in the software 

tappAS, a user-friendly Java application that brings FIT to the hands of non-expert 

bioinformaticians supporting several model and non-model species. tappAS 

complements statistical analyses with powerful browsing tools and highly informative 

gene/transcript/CDS graphs. 

 

We applied tappAS to the analysis of two mouse Neural Precursor Cells (NPCs) and 

Oligodendrocyte Precursor Cells (OPCs) whose transcriptome was defined by PacBio 

and quantified by Illumina. Using FDA we confirmed the high potential of AltTP 

regulation in our system, in which 90% of multi-isoform genes presented variation in 

functional features at the transcript or protein level. The Differential Analysis module 

revealed a high interplay between transcriptional and AltTP regulation in neural 

development, mainly controlled by differential expression, but where AltTP acts the 

main driver of important neural development biological mechanisms such as vesicle 

trafficking, signal transduction and RNA processing. The DFI analysis revealed that, 

globally, AltTP increased the availability of functional features in differentiated neural 

cells. DFI also showed that AltTP is a mechanism for altering gene function by 

changing cellular localization and binding properties of proteins, via the differential 

inclusion of NLS, transmembrane domains or DNA binding motifs, for example. Some 

of these findings were experimentally validated by others and us. 
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In summary, we propose a novel framework for the functional analysis of 

transcriptomes at isoform resolution. We anticipate the tappAS tool will be an 

important resource for the adoption of the Functional Iso-Transcriptomics analysis by 

functional genomics community. 
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Introduction 

One of the most exciting aspects of transcriptome biology is the contextual 

adaptability of eukaryotic transcriptomes and proteomes by Alternative Splicing (AS), 

Alternative PolyAdenylation (APA), and Alternative Transcription Start Sites (ATSS) 

mechanisms, jointly referred to as Alternative Transcript Processing (AltTP). These 

three processes determine which transcripts (aka, isoforms) are produced for a given 

gene. Alternate transcripts may differ in structure and in function, as well as in cell 

specificity, and within cell spatio-temporal deployment. 

 

The study of AltTP has experimentally been addressed either via molecular 

characterization of the functionality of specific isoforms from single genes1,2⁠, or by 

computationally approaches aiming to find global patterns and infer their potential 

biological significance in silico3,4⁠. Computational AltTP analysis has focused on the 

study of processing events, namely exon spiking, intron retention, alternative 

transcript start (TSS) and termination sites (TTS), nonsense-mediated decay (NMD) 

and changes in the inclusion/exclusion levels of different exons5–8. In parallel, 

molecular studies have been conducted to understand the mechanisms behind the 

dynamic changes in event patterns, identifying a large number of RNA binding 

proteins as regulators of AltTP9–14⁠. In response to the recognition of the biological 

importance of AltTP, bioinformatics tools have been developed to analyze the 

structural and regulatory aspects of AltTP events and have contributed to the 

description and understanding of AltTP (reviewed  in15⁠). 

While some discrepancy exist on the actual functional role of transcript isoform 

diversity16,17. AltTP has been proven to be implicated in differentiation18–20⁠, tissue 
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identity21,22⁠, development13,23⁠, stress response24 and disease25–28⁠. Beyond these well 

known effects, several studies have shown enrichment of spliced exons in disordered 

regions mediating new protein interactions29 and remodeling of protein-protein 

interaction in a tissue-specific manner30,31⁠. In other work, AS was shown to regulate 

domains leading to the rewiring of PPI networks in cancer32⁠. Similarly, APA has been 

postulated as a mechanism to escape microRNA regulation by shortening 3’ UTR 

regions33,34⁠, alternative TSS are believed to regulate the inclusion of Upstream Open 

Reading Frames (uORFs) that control translational rates35–37⁠ and NMD has been 

proposed to regulate gene expression in cancer and neural systems38,39⁠.  

 

Traditionally, computational approaches such as enrichment and network analysis 

have been used to study the functional aspects of transcriptional changes40–43 and 

these have been instrumental for the characterization of transcriptome biology. 

However, these methods operate at the gene level and are not adapted to study the 

functional readout of AltTP. Much of the work done to answer transcriptome-wide 

questions on the functional role of AltTP has involved ad hoc computational pipelines 

applied to specific biological systems or address only particular types of events44–49. 

Recently, Exon Ontology50⁠ was proposed as a resource to study functional enrichment 

of exon sets based on their annotation with protein functional domains. Using this 

tool, authors were able to show different molecular functionalities directly associated 

to changes in exon inclusion levels between epithelial and mesenchymal cells. 

However, this analysis does not reveal how transcripts combine exons to provide 

distinct functional elements, nor addresses the analysis of regulatory signals at 

alternative UTRs. In general, the field lacks computational tools tailored to the study 
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of the functional aspects of isoform expression regulation, limiting advances in our 

understanding of the functional impact of AltTP. 

 

One important reason behind the lack of functional perspective in splicing-dedicated 

bioinformatics tools is the inability of RNAseq to correctly capture isoform 

expression51⁠. Recently, third generation sequencing technologies have demonstrated 

their power in detecting full-length transcript52–56⁠ and identifying expressed isoforms. 

Options for quantification are found in the combination with short-reads55⁠ or the 

utilization of the newest high throughput instruments. As more scientists engage in 

expression studies that use these new platforms with the goal of identifying 

differences between conditions in isoform usage, there is a growing need of tools to 

easily and quickly interpret isoform differences in the context of their potential 

functional impact. 

 

Here we present a novel computational framework for the study AltTP from a 

functional perspective, introducing the Functional Iso-Transcriptomics (FIT) analysis 

approach. This framework uses a rich isoform-level annotation database of functional 

domains, motifs and sites –both coding and non-coding-, that are mined by novel 

analysis methods that interrogate different aspects of the functional load associated 

to isoform complexity and expression regulation. These methods are implemented in 

the software tappAS (http://tappas.org), a user-friendly Java application that brings 

FIT to the hands of transcriptome scientists by supporting several model and non-

model species. tappAS complements statistical analyses with powerful browsing tools 

and highly informative gene/transcript/CDS graphs.  As a proof of principle, we 
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applied tappAS to the analysis of two mouse neural cell types, Neural Precursor Cells 

(NPCs) and Oligodendrocyte Precursor Cells (OPCs), whose transcriptome was 

defined by PacBio and quantified by Illumina57. tappAS easily recapitulates a great 

deal of the existing knowledge on AltTP function, as well as provide new functional 

insights. We anticipate that the tappAS framework will be widely applied in a variety 

of fields, and that its user-friendliness will promote the adoption of the FIT approach 

by researchers with different levels of computational skills. 
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Results 
 
tappAS is a comprehensive tool to investigate potential functional 

consequences of AltTP 

Functionality Description Illustration/formula 
Analyses 

Functional 
Diversity Analysis 
(FDA) 

Qualitative 
assessment of the 
functional 
potential of AltTP 
in a given system 
or dataset. 
Performed by 
feature ID, or by 
gene. 

Positional approach: for 
positional features that need 
to be evaluated by comparing 
genomics coordinates across 
isoforms (e.g. UTRs). 

 

Presence/absence approach: 
for non-positional features 
that need to be evaluated by 
presence/absence of 
annotation (e.g. NMD 
transcript status). 

 

Differential 
Expression (DE) 

Transcripts (DIE): computes DE of transcript 
expression (tappAS input values). 

 

Genes (DGE): aggregates transcript expression 
levels per gene to compute DE. 

CDS (DCE): aggregates transcript expression levels 
per CDS to compute DE. 

Differential 
Isoform Usage 
(DIU) 
 
 

Transcripts: test on the transcript:condition 
interaction per gene. 

 

CDS (Differential Coding region Usage, DCU): 
Aggregates transcript expression levels per CDS to 
test transcript:condition interaction per gene. 

Differential 
Feature Inclusion 
(DFI) 

For each functional 
feature in a gene, 
expression is collapsed 
to estimate the relative 
feature inclusion ratio 
with respect to absolute 
gen expression levels. A 
test is performed on the 
variant:condition 
interaction. 

Positional approach 

 

Presence/absence 
approach 

Combined approach 
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Co-DFI 

For each pair of 
functional features 
marked as DFI in more 
than 5 genes, count the 
number of genes where 
both are differentially 
included. 

Co-inclusion: No. of 
genes where the 
including and excluding 
variants are major in the 
same conditions. 

 

Mutual exclusion: No. of 
genes where the 
including and excluding 
variants are major in 
opposite conditions.  

Differential 
polyadenylation 
(DPA) 

For the distal (dPA) and proximal (pPA) polyA sites 
in a gene, expression is collapsed to sum 
expression of distal and proximal-expressing 
isoforms. A test is performed on the 
variant:condition interaction. 

 
3’UTR 
lengthening 
analysis 

Provides a relative isoform usage-weighted mean 
3’UTR length per time-point/condition.  

Metrics and pre-processing steps 

Feature Inclusion 
(FI) levels 

Ratio between the sum of expression of all isoforms 
containing a feature and the total feature of a gene, 
calculated for a given condition/time-point.  

Distal Poly-A Site 
Usage (DPAU) 

Ratio between the sum of expression of all isoforms 
containing the distal polyA site and the total polyA 
expression of a gene, calculate for a given 
condition/time-point. 

 

Minor isoform 
filtering 

Removes minor 
isoforms to avoid 
spurious (i.e. false-
positive) DFI and 
DIU results. 

By fold change:  
Removes from DIU/DCU 
transcript isoforms with 
more than a 2-fold (default) 
expression difference 
compared to the most 
expressed isoform. 

 

 
By relative expression:  
Removes DIU/DCU 
transcript isoforms that 
account for less than 10% 
(default) of the total gene 
expression. 

Switching event 

DIU: a gene changes its most expressed transcript 
isoform, i.e. the major isoform (the one with the 
highest overall mean expression) becomes minor in 
at least one time-point/condition. 
DFI: a feature changes its inclusion levels from a 
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predominant to a minor position in at least one 
time-point/condition. 
DPA: a polyA site changes its usage levels from a 
predominant to a minor position in at least one 
time-point/condition. 

Feature-favoured 
condition 

Conditions/time points where inclusion of a given 
feature, in DFI analysis, or distal polyA site usage, in 
the case of DPA, are promoted. 

 

Total change 
Measures the magnitude (%) of the redistribution 
of expression between isoforms of a gene across all 
pairs of conditions/time-points.  

Table 1: Main analyses and metrics of tappAS.  
 
 
tappAS analyses use a species-specific gff3-like file containing isoform-level, 

positionally-resolved, annotation features (see Methods). These labels describe 

functional motifs, domains and sites both at the CDS and the UTRs of transcripts, and 

are generated via the integration species-available databases and sequence-based 

prediction tools that gather functional and structural data. For our mouse example, 

20 functional categories were retrieved (Supplementary Table 1). tappAS joins 

transcript-level expression data with this extensive annotation database and a wide 

array of traditional and novel analysis algorithms (Table 1) to create a comprehensive 

framework for the study of the functional impact of AltTP.   

 

tappAS analysis can be divided into three Modules, each one targeting a different 

aspect in the study of AltTP biology (Figure 1). Module I includes Functional Diversity 

Analysis (FDA), which evaluates the functional regulatory potential of AltTP by 

interrogating the varying status of individual features across isoforms of the same 

gene (Figure 1). This includes analysis by gene (assessing the varying status of 
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individual genes for each functional feature category) and by feature ID (assessing 

the number of genes for which a particular feature is differentially present across 

isoforms). Depending on the feature, varying status is evaluated by genomic position 

(positional approach) or by presence/absence (presence approach) (Table 1, 

Methods). Module II can be used to understand the relative contribution of 

transcriptional and post-transcriptional regulation in the system under study by 

comparing Differential Isoform Usage (DIU, transcript level) or Differential Coding 

sequence Usage (DCU, protein level) with Differential Gene Expression (DGE) results, 

and by performing subsequent enrichment analyses. Finally, Module III includes 

methods to assess the context-dependent differential inclusion of annotated 

functional elements: Differential Feature Inclusion (DFI) of coding and non-coding 

elements, Differential PolyAdenylation (DPA) and 3’UTR lengthening analysis (3UL). 

Furthermore, a subsequent co-Differential Feature Inclusion (co-DFI) analysis can 

detect sets of features that are coordinately included. DPA and 3’UTR lengthening 

analyses can be combined to study which genes are regulated via alternative 

polyadenylation (APA) and 3’UTR length. Importantly, any of the tappAS outputs 

described above can be coupled to Functional Enrichment58 and Gene-Set 

Enrichment59 analyses based on any of the functional categories included in tappAS 

annotation. Finally, tappAS’ displays all annotated features as gene, transcript and 

protein graphical maps enabling for a visual evaluation of isoforms and their 

functional components. For more details on the methodology behind these analyses, 

see Online Methods. 
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Figure 1: Overview of tappAS modules for Functional Iso-Transcriptomics Analysis. Module 1 

contains a novel qualitative approach to evaluate functional diversity of alternative isoforms. Module 2 

implements Differential Expression and Differential Isoform Usage analyses to discriminate AltTP (post-

transcriptional) from transcriptional regulation mechanisms. Module 3 includes newly-developed 

approaches to measure the functional impact of AltTP as changes in the inclusion of functional features, 

polyA site usage and UTR length. 
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Functional Diversity Analysis 

One fundamental question about AltTP is how post-transcriptional regulation 

imprints functional complexity to transcriptomes. The potential of AltTP mechanisms 

to regulate gene function largely depends on whether transcript isoforms contain 

variation in their functional elements. In this case, modifications in their expression 

levels can effectively modulate functional changes. Applied to our murine neural 

transcriptomes, tappAS FD analysis identified ~70% of 2,341 multi-isoform genes that 

varied in the predicted proteins (Figure 2A, CDS variability). Variability at 3’ and 5’ 

UTR lengths occurred in ~ 60% of the genes (Figure 2A). The vast majority (78%) of 

UTR-varying genes also had CDS variation, suggesting that protein diversity may be 

coupled to RNA regulatory diversity. To illustrate, Figure 2C shows an example of a 

gene detected by tappAS as Alternative PolyAdenylation (APA), 5’UTR, 3’UTR and 

CDS-varying. 

 

Nonsense-mediated decay (NMD) had the highest variation rate among transcript-

level features, 95% (Figure 2B). Moreover, nearly all genes with NMD transcripts 

expressed protein-coding counterparts, indicating that NMD-targeted isoforms are 

co-expressed with functional isoforms in our neural system, likely regulating their 

abundance38,39,60⁠. UTR-motif annotated genes showed a presence/absence varying 

rate of 55% and 90% for 3’ and 5’ UTR motifs, respectively (Figure 2B), and GU-rich 

elements (GREs) were the most significantly varying 3’UTR motif types 

(Supplementary Table 2). GREs have been associated to the stabilization of mRNAs61 

and also have been reported as targets of RNA-binding proteins (RBPs) such as 

CELFs62⁠. Among the set of 160 genes with differential inclusion of GRE elements in 
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our neural system, tappAS identified splicing regulators such as Rbm4 

(Supplementary Figure 1A), involved in neurogenesis of the mouse embryonic brain63⁠, 

and Tcf12 (Supplementary Figure 1B), known to play an important role in the control 

of proliferating neural stem cells and progenitor cells during neurogenesis64⁠. 

 

FDA also identified la large number of miRNAs. An enrichment test was used to rank 

miRNAs that we more frequently varying at 3’UTRs (Supplementary Table 3). 

Interestingly, the top-five most significantly varying miRNAs include miR-335-3p, 

known to associate with oligodendrocyte differentiation65, and mir-590-3p, which 

responds to retinoic acid and is strongly associated to proliferation and 

differentiation processes66⁠. Since our NPCs and OPCs constitute differentiating 

primary cells, these results point towards a potential isoform-specific layer of 

expression regulation in neural differentiation via gain and loss of miRNA binding 

sites due to AltTP. 

 

Regarding presence/absence FD analysis of protein-level features, signal peptides 

have the highest varying rate, followed by compositional bias regions and post-

translational modifications (PTMs) (Figure 2B). However, most features involving 

functional variability within coding sequences are best studied via the FD positional 

approach (Table 1, Figure 2A), which reports cases where a functional feature is 

partially disrupted, suggesting functional modulation changes. Hence, considering 

positional variation, Intrinsically Disordered regions (IDRs) and PFAM domains 

present the highest rates of differential inclusion in multi-isoform genes annotated 

for these feature categories (~78% and ~70%, respectively; Figure 2A) when 
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compared to presence/absence variation (Figure 2B). IDRs have been reported to be 

frequently present in transcript regions affected by AltTP29,67,68⁠. 

 

To understand which PFAM domain types have higher positional than presence 

varying rates, we interrogated this category at the ID level. Figure 2D shows the top-

15 PFAM domains ranked by varying rate in our data, using both the positional and 

presence approaches. We observe that zinc fingers and KRAB-box domains tend to 

be totally contained in AS exons, as varying rates using the presence and positional 

approaches are only slightly different. Hence, domain skipping in these cases will 

result in elimination from the protein, while Kinase and RNA binding domains stand 

out at the positional FD analysis, indicating that AltTP mechanisms tend to partially 

disrupt these domains, possibly causing partial loss/change of function. 

 

In summary, tappAS’ FD analysis successfully catalogues the transcriptome’s potential 

for AltTP-mediated functional diversity and, in our mouse neural system, reveals that 

~90% of multi-isoform genes have protein or transcript-level functional features that 

vary across isoforms. 
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Figure 2: Functional Diversity Analysis (FDA) results. A) FDA results summary using the positional 

approach. The % of multi-isoform genes with the annotated feature in which at least one isoform is 

varying is shown. The numbers above the bars indicate the total no. of varying genes for that category. 

B) FDA results summary using the presence/absence approach. C) tappAS graphical representation of 

the transcript-level annotation for the Dbt gene, where 5’UTR, CDS and 3’UTR/Alternative 

polyadenylation variation can be observed. D) Comparison of position vs presence/absence approach 

FDA results for the ID-level analysis of variation in PFAM domains. Top-15 domain families ranked by 

total number of varying genes shown. 

 

Multi-layered Analysis of Alternative Transcript Processing 

Transcriptional and post-transcriptional (AltTP) regulation are regulatory mechanisms 

that either control total expression levels or differences in the relative isoform 

proportions, both contributing to regulate gene function. tappAS’ Differential Module 

(Figure 1) is designed to dissect and compare these two regulatory layers.   
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Figure 3A shows the intersection of differential analysis results for our neural dataset. 

tappAS identified 1,205 genes differentially expressed between NPCs and OPCs 

(FDR<0.05, FC>1.5), while only 291 of them were also regulated by AltTP 

mechanisms, as revealed by DIU analysis (FDR<0.05). Interestingly, although these 

results showed that most DE multi-isoform genes were regulated exclusively at the 

transcriptional level, a group of 247 genes were solely affected by AltTP, meaning 

that ~50% of DIU genes underwent a redistribution of expression among their 

isoforms with no significant change in gene-level expression (example in Figure 3B). 

This suggests independent AltTP and gene expression regulatory mechanisms 

operating in our neural system. However, when a filter on isoform low relative 

abundance was applied (<10% of total gene expression), 110 genes lost DIU status, 

revealing that a fraction of DIU calls is composed by transcripts that barely contribute 

to total gene expression, and might not be functionally relevant (Supplementary 

Figure 2A). After DCU analysis (Table 1, FDR<0.05), we identified a group of 135 

genes where differential usage of isoforms did not involve changes in coding 

sequence usage (see examples in Supplementary Figure 2B, comprehensive results in 

Supplementary Table 4). Finally, among 279 genes detected by both DIU and DCU 

analyses after filtering (and therefore significantly affected by AltTP), a relevant 35% 

undergo a major isoform switch (see Methods), (Table 1) between NPCs and OPCs 

(Figure 3A), meaning that a significant fraction of isoform usage differences between 

both cell types have the potential for a strong functional impact. In order to identify 

the most significantly AltTP-regulated candidates, we used joint evaluation of total 

usage change (Table 1, Online Methods), which constitutes a quantitative measure of 

DIU (i.e. the degree of isoform usage change for a given gene across conditions), 
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together with the identification of isoform switching events (Figure 3C). Specifically, 

most genes with isoform switching have total change >20%. Hence, switching can be 

used as criteria to prioritize candidates where AltTP has potentially higher impact on 

the functionality of the gene and are more interesting for experimental validation. 

 

To evaluate the potential functional impact of AltTP relative to gene expression 

regulation, tappAS includes Functional Enrichment algorithms operating on all 

available functional databases and sets of differential features. For example, Gene 

Ontology-based Multi-Dimensional Gene Set Enrichment Analysis69 of genes ranked 

by DE and DIU p-value is effective to directly compare enriched functions controlled 

by either mechanism.  Figure 3D shows the top 25 enriched GO terms in this analysis. 

In this tappAS representation we readily appreciate that transcriptional regulation 

dominates in some important functions required for differentiation, as shown by 

preferential enrichment in cell cycle, spindle and chromosome-related terms. DE-

regulation is also the main driver of some processes related to oligodendrocyte 

function, such lipid metabolism, likely related to myelination (Figure 3D). On the 

contrary, preferential regulation by AltTP is present for core of terms related to 

vesicle transport, in line with the known role of vesicle trafficking for polarity 

establishment and myelination70–72⁠, and with previous reports of splicing regulation of 

vesicle transport73, also during differentiation processes74. A second group of terms 

related to signalling and cell communication also appears highly regulated by DIU, 

which together suggest high importance of AltTP in the response to extracellular 

signals, as recently reported75⁠. This is particularly relevant to our system given that 

external stimuli are known to be involved in development76⁠ and require activation of 
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signaling pathways for an integrated differentiation response. In addition, the strong 

DIU regulation of terms such as neuron projection (Supplementary Figure 3), plasma 

membrane and cell periphery (Figure 3D) is in agreement with the established role of 

cell polarity and shape for NSC differentiation towards oligodendrocytes and the 

successful establishment of the myelin sheath70⁠.  Moreover, analysis of neural specific 

terms revealed that, while the regulatory terms (involving neuron survival and 

neurogenesis regulation) are mainly DE-regulated, the underlying differentiation 

processes (neurogenesis and neuron differentiation-related processes) predominantly 

involve DIU genes (Supplementary Figure 3). This suggests a transcriptional control of 

differentiation regulators that trigger differentiation processes that are in turn mostly 

AltTP-mediated. These results therefore point towards a strong interplay between 

gene expression and AltTP regulation, where the synergies between both, as well as 

each individual effects, are the ultimate drivers of biological processes that are key to 

neural development. 

 

Finally, to deepen into the cellular functionalities solely regulated by AltTP, we used 

tappAS to calculate enrichment of DIU and DCU genes using the set of DE genes as 

background. As well as targets of several RNA binding proteins, we found significant 

enrichment of processes involved in 3’-end mRNA processing, RNA binding and 

mRNA splicing (Figure 3D), pointing towards a high degree of self-regulation of the 

post-transcriptional machinery in our system. Indeed, genes from several splicing 

regulator families, such as Ser/Arg-rich splicing factors (Srsf5, Srsf10), Muscleblind-like 

proteins (Mbnl1, Mbnl2) and RNA-binding motif proteins (Rbm5, Rmb7) undergo 

significant differential isoform/protein usage in our system (Supplementary Figure 4, 
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Supplementary Figure 6A). Additionally, the analysis indicated enrichment of DCU 

genes for cellular components and processes associated to neural development, such 

as neurite/axon outgrowth (growth cone, FDR=0.002; site of polarized growth, 

FDR=0.001)(Figure 3E), showing that the analysis of protein isoform changes may 

reveal interesting processes that remain hidden when solely looking at transcript 

usage. Moreover, significant enrichment was found for NLSs (FDR=0.02), indicating 

that differential coding sequence usage may change the subcellular localization of 

the resulting protein, and several PTMs (Phosphoserine, FDR=0.02; 

Phosphothreonine, FDR=0.02; Acetyl-Lysine, FDR=0.05), suggesting that AltTP may 

be related to post-translational modulation of protein function. 

 

In conclusion, combining tappAS Differential and Enrichment modules allows 

disentangling the contribution of transcriptional and post-transcriptional regulation 

to transcriptome changes. In our proof of concept experimental system, both 

mechanisms affect to shared and specific processes jointly shaping the cell type 

differences. 
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Figure 3: Combined analysis of differential gene expression and AltTP in tappAS. A) UpSet plot 

showing intersections of DE vs DIU (left) and DIU vs DCU results, with and without minor isoform 

filtering. Horizontal bars correspond to the total set of genes detected as significantly DE or DIU. Matrix 
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points indicate the evaluated intersection, and vertical bars indicate their size. Legends detail the 

biological importance of each intersecting set of genes. B) From left to right, gene, transcript and 

protein-level expression charts for the Rbm7 gene in our system, and tappAS graphical representation of 

its protein-level annotation. While there are no changes in gene expression level (not DE), the gene 

presents both differential isoform and coding sequence usage. C) Total usage change (i.e. expression 

redistribution between isoforms) vs log-transformed values of gene expression fold change between cell 

types. Genes with a major isoform switch are represented in orange. Labels are assigned to genes with 

the highest total usage change, indicating also whether they undergo major isoform switching. D) Multi-

Dimensional Gene Set Enrichment Analysis of genes ranked by DE and DIU p.value. Nodes correspond to 

GO-terms obtained by selecting the top-25 terms ranked by significance in the DE enrichment and the 

top-25 terms ranked by significance in the DIU enrichment. Pie chart area represents DE and DIU 

regulation, and corresponds to relative -log10(p-value). E) and F) Functional Enrichment of DIU (E) and 

DCU (F) genes (Fisher´s Exact Test, with Benjamini-Hochberg multiple testing correction, minor isoform 

filtering: proportion < 10%) using DE genes as background. Dot color indicates the functional category 

of the feature, while dot size indicates significance. 

 

Feature-level Analysis of AltTP and Differential Isoform Usage 

To investigate how functional features are included/excluded due to differential 

usage of isoforms and AltTP, we applied tappAS’ Differential Feature Inclusion (DFI) 

analysis. Differentially included features between NPC and OPC were identified in 526 

genes, including ~83% of previously detected DIU genes, indicating that our 

framework recapitulates post-transcriptional regulation with changes in the 

functional properties of transcripts and proteins. Features positive for DFI were found 

distributed along all considered categories (Figure 4A), although a significant relative 

enrichment was found for uORFs (Fisher’s exact test (FET) p-value=5.25e-121), RNA 

binding protein (RBP) binding sites (FET p-value=2.46e-07), compositional bias 

regions (FET p-value=4.06e-03) and IDRs (FET p-value 5.02e-03). Gene level DFI also 
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indicated IDRs and 5’UTR elements (particularly uORFs) as significantly differentially 

included (Figure 4B). 

 

Moreover, we found feature gain to be more frequent in OPCs when compared to 

NPCs (Figure 4C), which can be interpreted as AltTP promoting the incorporation of 

functional properties as cells differentiate. For example, we observed OPC-specific 

inclusion of signal peptides (Binomial test, probability of success = 0.5, BiTest FDR = 

2.10e-02), as well as of miRNA binding sites (BiTest FDR = 3.85e-08), uORFs (BiTest 

FDR = 5.85e-31) and RBP binding sites (BiTest FDR = 4.09e-04), which may indicate a 

3’ UTR lengthening trend in OPCs vs NPCs. Remarkably, when comparing (absolute) 

differences in feature inclusion rates between the two cell types, we found them to 

amount no more than 20% for most categories, suggesting that in our system AltTP 

acts as mechanism for the functional fine-tuning of gene products. Nevertheless, we 

found significant differences in feature total change (FI, see Methods) across 

functional categories, being coiled regions and IDRs the protein domains with the 

highest change in inclusion levels between cell types (Figure 4D, Mann-Whitney test, 

disordered FDR = 3.63e-07, coiled FDR= 5.43e-06). 
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Figure 4: Summary of DFI results. A) Distribution (%) of features annotated in the transcriptome (dots) 

vs differentially included features revealed by the analysis (bars). The relative over-representation of DFI 

features in specific categories is evaluated by Fisher Exact tests and corrected for multiple testing using 

the Benjamini-Hochberg method. Significant categories are marked by asterisks (*). B) Distribution (%) of 

genes annotated for each feature category (dots) vs genes with differentially included features (bars). 

Significance (*): FET with Benjamini-Hochberg correction. C) Distribution (%) of differentially included 
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features according to the cell type in which the inclusion of the feature is favored. Categories enriched in 

cell type specific inclusion were captured using a Binomial test with probability = 0.5 and Benjamini-

Hochberg multiple-testing correction. D) Differences in inclusion levels for each feature category across 

cell types measured by feature total change (FI). Differential distribution across categories tested with 

the non-parametric Kruskal test. Significance scale: (***) p < 0.001; (**) p < 0.01; (*) p < 0.05. E) Top 15 

co-DFI associations ranked by total genes with both features marked as DFI. Bar color indicates the 

number of genes where features are co-included in the same conditions (co-inclusion) or in opposite 

conditions/groups (mutual exclusion). F) Summary of features found to be significantly DFI using 

different comparison strategies. 

 

In total, 526 genes were significant for DFI analysis, and many of these differentially 

included features related to binding properties and cellular localization. For example, 

we found a significant number of genes with isoforms differentially including Nuclear 

Localization Signals (n = 89), possibly regulating their switch between nucleus and 

cytosol as cell differentiate.  This is the case of the Ctnnd1 gene encoding p120, a 

well-known component of the ß-catenin signaling pathway, an important process in 

the differentiation of NPCs to OPCs77,78. tappAS predicted that Ctnnd1 possesses an 

NLS motif in two of its alternative transcripts that appears due to exclusion of exon 

10 (Figure 5A). We found Ctnnd1 NLS-containing isoforms to be strongly 

downregulated in NPCs, while an isoform switching event leads to a significant 

increase in their expression levels in OPCs. Western blot analysis of Ctnnd1 confirmed 

a localization change in OPCs and the increase of nuclear levels of the protein, while a 

cytoplasmic retention was observed in NPCs (Figure 5D). Similarly, tappAS found 

differential expression for the NLS of RBP Mbnl1, an important neural splicing factor. 

tappAS analysis indicates that nuclear MBNL1 isoforms are significantly favored in 
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NPCs with respect to OPCs (DIU p-value = 0.0018; Supplementary Figures 5A-C), and 

Western blot analyses confirmed these observations (Supplementary Figure 5D). 

Finally, tappAS also detected examples of DFI affecting binding properties. Isoforms 

of DNA-binding protein Mbd1 showed differential inclusion of a non-constitutive zinc 

finger domain (Supplementary Figure 6A), favored as differentiation progresses 

(Supplementary Figure 6B), and further examination suggests a potential dual 

mechanism that involves both differential inclusion of exon 11 in OPCs and global 

upregulation of Mbd1 gene expression (Supplementary Figure 6C). In agreement, 

post-transcriptional processing of Mbd1 regulating the inclusion of exon 11 zinc 

finger domain was recently found to be an important determinant of cell lineage in 

NPCs79⁠.  
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Figure 5: tappAS analysis results and experimental validation AltTP processing of Ctnnd1. A) 

Protein-level visualization of tappAS functional annotation for Ctnnd1. Exclusion of an exon causes an 

NLS motif to appear in the sequence. B) Gene, transcript and CDS-level expression of Ctnnd1. The gene 

is significant for both DIU and DCU, with major isoform switching of the nuclear isoforms (yellow and 

red) in OPCs. C) DFI analysis results for the NLS motif in Ctnnd1. NLS inclusion is favored in OPCs. D) 

Western blot analysis of Ctnnd1 in the nuclear and cytosolic fractions of NPCs and OPCs. An increase of 

the nuclear expression of the protein is observed in OPCs due to differential inclusion of the NLS, while 

cytosolic expression remains constant. 
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Another interesting functionality of tappAS is the ability to investigate the 

coordinated inclusion of functional features, by co-DFI analysis (Figure 4E). Results 

revealed associations between NLS and phosphoserine residues (examples in 

Supplementary Figure 7A and 7B) and C2H2-type zinc finger domains (examples in 

Supplementary Figures 7C and 7D). Indeed, post-translational masking of NLS is a 

known mechanism to prevent nuclear import80,81⁠. Interestingly, IDRs are also strongly 

co-included with phosphoserine residues, confirming their described role in the 

allocation of PTMs, as well as their clear association to alternatively-spliced regions 

(examples in Supplementary Figure 7A and 7B).  

 

Differential Polyadenylation 

Alternative polyadenylation and differences at UTR lengths are involved in the 

regulation of mRNA stability, sub-cellular location, RNA protein binding and 

translation efficiency82,83⁠. To assess the contribution of AltTP to these processes, 

tappAS implements Differential PolyAdenylation (DPA) and 3’UTR Lengthening (3UL) 

analyses (Table 1). 

 

Applied to our experimental system, tappAS found that 17% of genes with polyA site 

variation across isoforms were positive for DPA (134 out of 1527, FDR < 0.001), 

among which ~31% (32 genes) switched their major polyA site between cell types 

(Figure 6A). A 56% of genes favored distal polyA site usage (DPAU) in OPCs and a 

significant trend towards 3’ UTR lengthening was present for OPCs (Figure 6B, 

Wilcoxon signed rank test, p-value = 2.267e-05). These results are consistent with our 

enrichment analysis (Figure 4C). Moreover, 51 genes undergoing APA regulation also 
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had differential inclusion of miRNA binding motifs, with ~64% of DFI miRNA sites 

being included in OPCs. tappAS functional annotation indicated that an important 

number of these genes were involved in RNA processes, including Papola, Tardbp 

and Tdrd3, a transcriptional activator in the nucleus that is also involved in the 

formation of stress granules and the regulation of mRNA translation in the 

cytoplasm84. Tdrd3 undergoes Coding Region APA, resulting in OPC upregulated 

forms with simultaneous inclusion of miRNAs binding sites and AU-Rich elements 

(ARE) at the 3’UTR (Figure 6C) and disruption of a phosphotyrosine site and an exon-

junction (EJC) interacting region (Figure 6C) at the coding region. This pattern of 

functional regulation poses new hypothesis for the Tdrd3 regulation by AltTP.   

 

 

Figure 6: DPA results. A) Heatmap displaying DPAU levels associated to genes that are significantly 

DPA (FDR < 0.05) for each cell type. B) Boxplots showing the distribution of the difference in expression-

weighted 3’ and 5’ UTR lengths (UTRw) in OPCs vs NPCs. C) tappAS visualization of transcript-level 
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annotation for the Tdrd3 gene, where Codign Region -APA induced inclusion of several miRNA binding 

sites as well as an AU-rich element can be observed. D) Tdrd3 protein-level annotation, EJC binding 

motif variation region is squared. 

 

Discussion 

In this work we present a novel analysis framework, implemented in the tappAS 

software, for the comprehensive functional analysis of isoform-resolved 

transcriptomes, referred here as Functional Iso-Transcriptomics (FIT). tappAS includes 

approaches for the analysis of the variability in functional sites at genes with multiple 

expressed transcripts, as well as methods to evaluate the functional impact of the 

context-dependent expression of alternative isoforms, and in particular to dissect 

which functional elements change as a consequence of differential isoform usage.  

We combine new analytical concepts such as FDA, DFI and U3L with more established 

enrichment methods to create a powerful analytical framework.  This is a timely 

development at a moment when long-read technologies are becoming increasingly 

accessible, providing more accurate measurements of full-length transcripts and 

hence of isoform expression.  However, we should highlight that tappAS is agnostic 

to the source of transcript models and therefore can also leverage other recently 

proposed strategies to improve accuracy at transcript calls such as the combination 

of ChIP-seq and RNA-seq data85 and the pre-filtering of reference isoforms based on 

Event Analysis86. Given the pace of technology, we expect that full transcript 

resolution and quantification will be possible in the near future. While many methods 

to statistically evaluate isoform expression differences do exist5–8, a tool specifically 

tailored to extract the functional readout of these isoform differences was missing, 
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and hence tappAS comes to fill an important bioinformatics gap for the study of 

AltTP biology. 

 

tappAS is designed to be a flexible framework for functional analysis of isoforms, that 

uses an annotation file and many options for data analysis. At present tappAS 

includes pre-computed gff3 files for human, mouse, fly, arabidopsis and maize. In this 

work we illustrate the tool with the characterization of isoform differences between 

two mouse neural cell types. We show that tappAS recapitulates much of the existing 

knowledge about this neural system, as well as of functional aspects of splicing and 

UTR regulation. Moreover, we show that the tappAS framework is able to propose 

novel functional hypothesis that can be experimentally validated, such as the 

alternative inclusion of NLS in proteins regulated by splicing. However, the illustrating 

analysis, although comprehensive, does not cover all the tappAS potentiality. Options 

for specifying specific sets of genes or combining multiple functional layers are 

available, creating endless possibilities to interrogate the data. Video tutorials at the 

tappAS web site (tappas.org) showcase additional functionalities of this tool. Also, as 

gff3 can be directly uploaded by the user, additional data could be incorporate to 

allow for new questions. For example, at present, no Protein-Protein interaction data 

or conservation scores are included in the tappAS files. Users with confident 

annotations at these layers can update gff3 files and easily use the tappAS framework 

to pose questions regarding their association with isoforms and interactions with 

other functional layers. Similarly, as the tool is not limited by organism, but only by 

the current availability of annotation, other species not yet supported in the 

application will benefit from tappAS as functional information becomes available. 
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Supplementary material 

Supplementary Figure 1: tappAS visualization of functional feature variation across isoforms. A) 

The Rbm4 gene presents transcript-level variation in the inclusion of a GU-rich element (GRE) in the 

3’UTR due to an exon-skipping event. B) Transcript-level variation in one of the isoforms of the Tcf12 

gene, which includes a 3’UTR region enriched in GREs due to an alternative Transcription Termination 

Site.  
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Supplementary Figure 2: DE and DIU analysis results. A) Two examples of genes (Acot11 and Arl8) 

detected as false positives for Differential Isoform Usage after minor isoform filtering (% expression < 

0.1), i.e. where removal of the minor isoform leads to no DIU status. Filtered isoforms are indicated by 

arrows. B) Expression charts and tappAS visualization of annotated functional features at the transcript 

(left) and protein (right) levels for the Mynn gene, where Differential Isoform Usage and major isoform 

switching imply no Differential Coding sequence Usage. 
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Supplementary Figure 3. A) Clustering of GO term enrichment results for DE genes. Clusters are 

generated according to the similarities of significantly enriched GO terms. The color-coded legend 

indicates global process labels assigned after inspection of the different GO terms integrating each 

cluster. Important functions enriched in DE genes, i.e. affected by Differential Expression due to 

phenotypic differences between NSC and Oligodendrocytes, include ion/calcium homeostasis, cell 

motility and lipid metabolism. Circle size indicates enrichment Fisher Exact Test adjusted p-value. B) 

Relative functional relevance between DE and DIU regulation obtained in Multi-Dimensional Gene Set 

Enrichment Analysis of DE and DIU genes, representation of neural-related terms. Nodes correspond to 

GO-terms obtained by selecting the top-10 terms ranked by significance in the DE enrichment and the 

top-10 terms ranked by significance in the DIU enrichment (from a list of all neural-related GO-terms). 

Pie chart area represents DE and DIU regulation, and corresponds to relative -log10(p-value). 
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Supplementary Figure 4: Splicing factors regulated by DIU. Transcript, gene and protein expression 

levels providing evidence of DIU status and self-regulation of the AltTP machinery: A) Srsf5, B) Srsf10, C) 

Mbnl2, D) Rbm5, E) Rbm7. DIU and/or DCU (indicated only when significantly different from DIU results) 

significance corresponds to multiple testing adjusted Q-Values. 
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Supplementary Figure 5: Mbnl1 AltTP results. A) Gene, transcript and CDS expression for Mbnl1. The 

gene is positive for DIU both at the transcript and protein level. B) tappAS visualization of Mbnl1 

functional annotation. Differential inclusion of an NLS signal is detected by tappAS comprehensive 

annotation. C) DFI results for Mbnl1 NLS signal. The feature is significantly differentially included, and 

favoured in NPCs. D) Western blot analysis of Mbnl1 in cytosolic and nuclear fractions of NPCs and 

OPCs. Together with a general increase in Mbnl1 expression in OPCs (INPUT), an increase in protein 

levels in the cytoplasm is observed, likely due to exclusion of the NLS signal (Cytosolic fraction). 
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Supplementary Figure 6: potential AltTP regulation of Mbd1 in DNA binding properties. A) 

Protein-level functional features annotated in tappAS. Highlighted area indicates differential inclusion of 

a third CXXC zinc finger domain to the coding region. B) DFI results for the CXXC zinc finger domain in 

the Mbd1 gene. Inclusion of the domain, together with a general upregulation of Mbd1, are observed. C) 

Gene, transcript and CDS-level expression of Mbd1. The gene presents DE, DIU and DCU status. 
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Supplementary Figure 7: co-DFI results examples. A) Variation in the inclusion of protein-level 

functional elements in the Rbm39 gene, which presents co-DFI status for an Intrinsically Disordered 

Region (IDR, DISORDER), several phosphoserine residues (PTM) and a Nuclear Localization Signal (NLS, 

MOTIF). B) Protein-level functional elements in the Papola gene,  which presents co-DFI status for an IDR 

(DISORDER), several phosphoserine residues and two NLS (MOTIF). C) Protein visualization of he Zfp64 

gene, which presents co-DFI status of several C2H2-type zinc finger domains (PF13912, PF00096 and 

PF13909) and NLS motifs. D) The Zpf354b gene presents co-DFI status of a C2H2-type zinc finger 

domain (PF00096) and an NLS motif. 
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Annotation level Source Category No. feature 
occurrences 

No. isoforms 
annotated 

Transcript 
11970 isoforms 

7167 genes 

ScanForMotifs PAS 8511 5750 (48%) 

ScanForMotifs 3’UTR motifs 11797 5325 (44%) 

UTRscan/UTRsite 5’UTR motifs 325 315 (3%) 

UTRscan/UTRsite uORF 7444 3045 (25%) 

RepeatMasker Repeat regions 19269 7245 (61%) 

MiRWalk/miRbase + in-
house scripts 

3’UTR miRNA binding 
sites 106392 9474 (79%) 

clipDB + in-house 
scripts RNA-binding sites (RBPs) 47821 7279 (61%) 

Protein 
10813 coding isoforms 

7167 genes 

In-house scripts Nonsense-Mediated 
Decay (NMD) 329 329 (3%) 

PFAM-HMMER3 Domains 20973 9608 (89%) 

COILS + UniprotKB Coiled coil 6669 2856 (26%) 

TMHMM + UniprotKB Transmembrane regions 12543 2061 (19%) 

SignalP Signal peptides 824 824 (8%) 

MOBIDB Disordered regions 11256 5626 (52%) 

cNLS mapper + 
UniprotKB 

Nuclear Localization 
Signals (NLS) 7599 4297 (40%) 

PSP + UniprotKB Post-Translational 
Modifications (PTM) 100804 8506 (79%) 

UniprotKB Compositional bias 2260 1480 (14%) 

UniprotKB Motif 6579 2897 (27%) 

UniprotKB Intramembrane 159 62 (0.6%) 

UniprotKB Active site 1770 1168 (11%) 

UniprotKB Binding 12790 3339 (31%) 
Supplementary Table 1: summary of annotation results for the mouse transcriptome of NPC and OPC 

primary cells. Number of features at the transcript and protein levels annotated are indicated, together 

with their database of origin and the percentage of isoforms in the transcriptome that contain them. 
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3’ UTR motif p-value Adj.p-value 
No. varying genes 

(%) 

GU-rich 
Destabilization 

Element 
0.0024 0.05 197 (69.4%) 

GU-Rich Element 
(GRE) 0.0281 0.33 243 (66.2%) 

tRNA-like structure 0.079 0.53 279 (64.7%) 

Brd-Box 0,088 0.53 189 (65.4%) 

Dinucleotide Repeat 0.283 1 32 (66.6%) 

Supplementary table 2: ID-level FDA results for UTR motifs, top 5 ranked by adjusted p-value. 

Significance assessed via Fisher’s Exact Test with Bonferroni-Hochberg multiple-testing correction. 

 

miRNA p-value Adj.p-value 
No. varying genes 

(%) 

mmu-miR-335-3p 9e-4 0.46 61 (62.2%) 

mmu-miR-590-3p 0.0059 0.77 83 (56.8%) 

mmu-miR-880-3p 0.0071 0.77 21 (70%) 

mmu-miR-7b-3p 0.0101 0.77 43 (60.5%) 

Mmu-miR-223-3p 0.0145 0.77 35 (61.4%) 

Supplementary table 3: ID-level FDA results for miRNA binding motifs, top-5 ranked by adjusted p-

value. Significance assessed via Fisher’s Exact Test with Bonferroni-Hochberg multiple-testing correction.  
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Methods 

Retrieving isoform-resolved functional annotation features 

tappAS uses a gff3 like file with transcript structural and functional data. To produce 

this file for our mouse data (Supplementary Table 1) we use available databases and 

state-of-the-art prediction algorithms. Features are gathered through two 

mechanisms: positional transfer from functional databases and de novo prediction by 

state-of-the-art algorithms for sequence-based function prediction. All functional 

labels annotated at the isoform resolution are positionally described via their exact 

localization within protein/RNA molecules.  

 

RNA-level annotations included: cis-acting UTR regulatory elements and Upstream 

Open Reading Frames (uORFs) predicted by UTRscan87⁠; repeat regions and low-

complexity elements predicted by repeatMasker88⁠; and miRNA binding sites collected 

from mirWalk2.089⁠. A minimum seed length of 7bp and a p-value threshold of 0.05 

were set as requirements to call miRNA binding sites. We filtered the site list by the 

number of sources reporting the association, requiring that miRNA binding sites to 

be predicted by a minimum of 5 methods, among which Targetscan90⁠, miRanda91, and 

mirWalk89⁠ are required. mirWalk provides transcript coordinate information to locate 

miRNA binding sites. High confidence miRNAs can be identified using the 

experimental evidence information in miRBase92⁠. In our example there were 511 

miRNAs with annotated binding sites and experimental evidence. Binding sites for 

RNA-binding proteins (RBPs) can be annotated by collecting genomic crosslinking 

immunoprecipitation (CLIP) data from CLIPdb93 and mapping sites to isoforms. RNA 
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binding sites can be transferred by user defined levels of stringency.  For our 

example, we required prediction by at least two algorithms in CLIPdb. 

 

At the protein level, Pfam domains are mapped with InterProScan94⁠, transmembrane 

regions predicted with TMHMM95⁠, signal peptides obtained by SignalP 4.096⁠, coiled-

coil regions predicted by COILS97⁠, single and bipartite Nuclar Localization signals 

mapped by cNLS mapper98⁠ (score > 6) and disordered regions obtained by MobiDB 

Lite99⁠, which derives consensus IDR predictions by combining 8 different predictors. 

We predicted isoforms containing a premature termination codon (PTC) -potentially 

leading to nonsense-mediated decay (NMD)- using the 50-NT rule100⁠ that indicates 

that a termination codon situated more than 50-55 nt upstream of an exon-exon 

junction is generally a PTC. 

 

In addition to sequence-based prediction methods, some protein-centric databases 

contain a detailed annotation of protein features. However, these are generally 

biased towards the annotation of the best-documented isoform, hindering the study 

of the functional diversity of alternative isoforms. To correct this, we map canonical 

isoform annotations to query isoform sequences, novel or known, following an 

isoform-aware positional transfer strategy. We obtained the information on protein 

functional features by parsing UniprotKB101 and PhosphoSitePlus102 databases. In 

both cases we deal with the disparities between databases when defining gene 

models and ensure the ORF and genomic position conservation between public and 

query sequences during feature transference. As a result, we retrieved an extensive 

set of post-translational modification (PTM) sites with experimental evidence from 
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PhosphoSitePlus, and a diverse catalogue of functional sequence features from 

UniprotKB.  

 

tappAS contains precomputed gff3 files with isoform functional data for mouse, 

human, Arabidopsis, fly and maize. Specific details can be found in Supplementary 

Table 1. 

 

Visualization engine of positional functional annotation at isoform resolution 

The tappAS visualization engine is designed to display isoform variability in a user-

friendly manner, and constitutes one of the most useful features of the application. 

Using the visualization power of the Java engine, tappAS displays the whole 

catalogue of isoform-resolved annotation features and their position using a 

distinctive icon on both transcript and protein isoform structure maps. Maps include 

UTR/CDS areas, polyA sites, splice junction and exon information, and functional 

features, creating a graphical representation that greatly facilitates the study and 

comparison of isoform diversity. 

 

 

 

 

Functional Diversity (FD) Analysis  

Isoforms vary in structural and functional features among isoforms of the same gene. 

FD identifies and measures the nature of the variability in a qualitative manner. For 

every annotated feature, all pairwise comparisons between transcript isoforms from 
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the same gene are performed and a gene is labelled as varying if at least one isoform 

pair has variability in a feature, either in its annotated genomic position(s) (Positional 

Varying) or in the presence/absence of the annotated feature (Presence Varying). 

Functional Diversity can be assessed by gene or by feature ID. 

 

Gene-Level Diversity 

The Gene-Level Diversity analysis evaluates genes as a function of the structural, 

functional and regulatory feature categories that are modulated by AltTP. Depending 

on the feature category and its relationship to the functional properties of a 

transcript or protein, Functional Diversity is evaluated using a Positional Varying 

strategy or a Presence Varying strategy.  

 

The Positional Varying approach compares features by genomic position, i.e. by 

mapping features to genomic coordinates and classifying them as varying if 

coordinates are not equivalent between gene isoforms. Position disagreement is 

annotated when >9bp, that is, 3 amino acids, allowing for variability in prediction. In 

contrast, Presence Varying includes only presence/absence of annotation. For 

instance, NMD transcript status is is, based differences in the transcript level NMD 

label. In contrast, transcript attributes such as UTR length, CDS and polyA site 

positions, are examples of features where positional evaluation is meaningful. 

However, a third group of features (such as Pfam domains or transmembrane 

regions) can be affected by AltTP via both complete and partial disruption of the 

feature. In these and similar cases, both strategies can be used, and provide 
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complementary insight on AltTP in the potential regulation of the functional or 

regulatory feature. 

 

For structural features evaluated by Positional Varying, some special considerations 

are required. In order to detect alternative polyadenylation (APA) events, polyA sites 

are identified as the last genomic position of transcript isoforms and evaluated in a 

pairwise manner by computing the polyA distance between each pairwise 

combination of isoforms expressed by a given gene. mRNA cleavage is not an exact 

process and can occur within a small window of positions103. To take cleavage 

variability into account, tappAS’ FD analysis labels a pair of isoforms as APA when 

there is a minimum X bp genomic distance (default value 100) between polyA sites. 

UTR length is computed for each isoform for subsequent pairwise comparison 

between coding isoforms from the same gene. Pairs of isoforms with 3'/5' UTR 

differences above a user-specified cutoff (75 bp by default) are labelled as 3'/5' UTR 

length varying, respectively. Finally, CDS variability is determined by comparing CDSs 

both at the sequence and genomic coordinate levels. Non-coding isoforms are 

discarded from CDS diversity analysis. 

 

Feature-Level Diversity  

The Feature-Level Diversity analysis identifies specific functional and regulatory 

elements (i.e. by feature ID instead of source/functional category) varying across 

isoforms from the same gene. Feature-Level Diversity Analysis counts the number of 

genes for which a given feature ID is flagged as varying in the gene level analysis. The 

diversity status of each ID can be evaluated via Positional, Presence Varying or both. 
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The significance level of every feature global variation across genes is evaluated using 

Fisher’s Exact Test104, and then corrected using the Benjamini-Hochberg105 method 

for multiple testing correction. 

 

Differential Feature Inclusion (DFI) analysis  

DFI applies the concept of exon inclusion analysis to functional features. DFI is only 

applied to features labelled as varying –either by position or as present/absent- 

across each gene’s isoforms, as only these have the potential to be significantly 

regulated. For a given gene and functional element, the null hypothesis that 

transcripts containing the feature have equivalent expression to transcripts not 

containing the feature is tested for each gene. Expression values of the isoforms 

containing the feature, and isoforms where the feature is not present are calculated 

from the data.  

 

The feature inclusion rate is the ratio between the sum of expression of all feature-

including isoforms and the total expression of the gene (i.e. sum of expression of 

isoforms including and excluding the feature) for each condition studied: 

FI୤୥ =
EInc୤୥

EInc୤୥ + EExc୤୥
 

where EInc is the aggregated expression value for feature-including isoforms and 

EExc is the aggregated expression value for feature-excluding isoforms for gene g 

and positional feature f. 
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Differential inclusion of functional features is then tested using generalized linear 

models adapting DEXSeq6⁠ and maSigPro106⁠ methods, for case-control and time-

course experimental designs, respectively.  For each feature f and gene g:  

 

h(µfg) = β0+ β1Cfg+ β2 Tfg + β3 Ffg + β4 Cfg Ffg + β5 Cfg Tfg + β6 Ffg Tfg + β7 Cfg Ffg Tfg   

 

where h is the link function of the GLM,  µfg=E(yfg) is the expected aggregated 

expression level,  Cfg is the binary variable that identifies each of the two experimental 

conditions, Tfg is the time point, and Ffg is the binary variable that identifies the variant 

(Feature-Excluding or Feature-Including). 

 

Each gene and feature are individually modeled.  For each model, the significance of 

the condition-variant or condition-variant-time interactions is evaluated, depending 

on the experimental design considered. When multiple functional annotation 

categories are analyzed (domains, UTR motifs, disordered regions, etc.), each of them 

is tested independently. P-values are corrected by FDR and significance is set to 0.05 

by default.  

 

Co differential feature inclusion analysis (Co-DFI) 

Co-DFI analysis evaluates how frequently two features are simultaneously DFI for the 

same gene in the same condition, while mutual exclusion evaluates how often two 

features are simultaneously DFI for the same gene in the different condition.  Co-DFI 

is computed for each pair of features detected as DFI in at least 5 genes.  
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Defining a library of polyA sites  

tappAS uses a polyA site database is created by extracting the genomic coordinate of 

the last position of each transcript isoform. Unlike recently developed tools107, polyA 

sites in terminal exons with different 5’ start sites are also considered to allow the 

analysis of Alternative PolyAdenylation sites affecting either Coding (CR-APAs) or 

UTR- (UTR-APAs) events. Non-coding isoforms as well as NMD-predicted variants are 

discarded. 

 

Next, a series of filtering and collapsing steps are performed in order to define the 

proximal (pPA) and distal polyA (dPA) site for each gene. First, independent cleavage 

sites are defined by merging polyA sites located within a 75 bp window. To avoid the 

definition of a minor polyA site as a distal or proximal site, a filtered based on relative 

polyA site expression levels is applied and only polyA sites accumulating at least 10% 

(default threshold) of total gene expression in at least one condition are considered. 

In the case of genes with more than two polyA sites, we perform a final merge of 

unlabelled sites by assigning them to the nearest proximal or distal site. 

 

Differential Polyadenylation Analysis (DPA) 

Using the defined polyA site library, tappAS computes the per-gene and per-sample 

dPA and pPA site expression levels by collapsing the expression levels of the set of 

transcript isoforms that contain either the dPA or de pPA. The same GLM model used 

for DFI is applied to capture significant condition-variant interactions. The relative 

distal polyA site usage (DPAU) is implemented by calculating the relative expression 
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of the sum of all isoforms containing the distal site over the total polyA site 

expression level of the gene:  

DPAU =
Eୢ୔୅

Eୢ୔୅ + E୮୔୅
 

where EdPA and EpPA to the expression levels of the variants defined as distal and 

proximal polyA sites. 

 

Detecting lengthening and shortening of 3’ UTRs  

For isoforms with identical CDS end positions but different polyA (UTR-APAs) 

distal/proximal polyA site usage directly associates with UTR lengthening/shortening 

events.  However, when changes in polyA site position imply changes in the CDS (CR-

APAs), it is impossible to directly infer the relationship between the polyA site and 3’ 

UTR length. Since DPA analysis assesses polyA site regulation independently of the 

coding sequence, tappAS introduces a specific 3’ UTR lengthening/shortening 

analysis by computing an isoform usage-weighted mean UTR length for each 

condition: 

UTR୵ =
∑ U୧୥
୬
୧ୀଵ · UTR୧୥
∑ UTR୧୥
୬
୧ୀଵ

 

where U is the relative usage of isoform i in gene g and UTR its associated 3’ UTR 

length. 

 

UTRs from highly expressed isoforms will contribute in a higher proportion to the 

final UTR mean length. The weighted UTRs is a measure of the actual extent of UTR 

length changes across conditions. Statistical differences are tested by using a 

Wilcoxon rank-sum test of the weighed UTR values.  
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tappAS software 

tappAS (http://tappas.org) is a Java GUI application that provides a broad analytical 

framework including a range of functions that, collectively and in combination allow 

the study of different structural and functional aspects associated to isoform usage. 

Statistical methods are implemented in R and are run by tappAS using the Rscript 

environment. See http://tappas.org for a comprehensive list of R package 

dependencies, as well as other software and hardware requirements. 

 

tappAS uses a gff3-like file containing functional annotations at the isoform level, as 

described above. Structural information, including annotation of UTRs, CDS and 

introns, together with gene, protein and transcript reference IDs for each transcript 

sequence are also represented in the this gff3-like file.  Currently, annotation files for 

Human (ENSEMBL and RefSeq databases), Mouse (ENSEMBL and RefSeq databases), 

Drosophila, Arabidopsis and Maize are available in the tappAS application. Users can 

optionally input their gff3 files. 

 

tappAS works as a compendium of independent projects, each of them created using 

two inputs: a transcript expression matrix and an experimental design file, that can 

either be a case-control or a time-course experiment. Being a GUI application, tappAS 

also provides a rich set of interactive features via the JavaFX platform, including 

customizable data tables, complex sorting and filtering options, data and figure 

export, context-sensitive help pages, data drill-down and display customization. 
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tappAS is designed an open framework and accepts user-defined gene lists as input 

for analysis. 

 

While tappAS accepts a transcript-expression file, it uses the structural annotation 

included in the gff3 to estimate the expression of genes, as the sum of their transcript 

expression, and CDSs, as the sum of transcripts having the same ORF. Differential 

expression analyses can be then run at each of these aggregation levels.  

 

The application includes the analysis methods described above and implements 

existing tools when appropriate, including NOISeq108 and maSigPro106 for differential 

gene expression; DEXseq6 and Iso-maSigPro109⁠ for differential isoform usage. These 

two methods assess DIU by fitting generalized linear models (GLMs) and testing the 

significance of the isoform-condition interaction coefficient, as proposed in110. 

Implemented enrichment methods are GOSeq58 (Functional Enrichment) GOglm59 

(Gene Set Enrichment) and mdgsa69⁠ for multi-dimensional GSE. These enrichment 

tools can be easily applied to the results of any of the statistical methods included in 

tappAS. Finally, tappAS implements extant complementary functionalities (i.e. low-

count expression filtering, TMM normalization, PCA, clustering methods) that enable 

the pre-processing and flexible exploration of data and results. 

 

Complementary metrics for isoform analysis 

tappAS incorporates complementary analysis features and metrics specially 

conceived for a better assessment of the functional implications of AltTP. 
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a) Major and minor isoforms 

In tappAS, the major isoform of a gene is defined as the isoform with the highest 

mean expression across all conditions of the study, while other isoforms of the gene 

are labelled minor forms. Such definition is operational in the context of tappAS 

analysis and does not assume functional relevance or expression levels in other 

experimental settings. 

 

 

b) Isoform prefiltering 

Genes in mammalian transcriptomes usually express multiple of isoforms. However, 

frequently only one or few of them accumulate the major proportion of gene 

expression111⁠ while remaining isoforms, although detected, have low expression 

levels. Although tappAS allows for low expression filtering upon data upload, still 

isoforms may remain that are relatively minor for their gene expression level. When 

the minor isoforms have small expression changes between conditions, but these 

occur in the opposite direction to the predominant isoforms, significant isoform-

condition coefficients may appear at GLM models. To avoid the detection of DIU 

genes because of the 'flat' behaviour of minor isoforms, an isoform filtering step can 

be applied before statistical modeling. Two filtering approaches are implemented in 

tappAS. One considers the proportion of a gene’s expression represented by each 

isoform and filters those that do not reach a minimum expression rate (10% by 

default), while the other calculates the fold-change of the minor isoforms versus the 

major to remove those below a specified fold-change (FC) threshold (default FC=2). 

Users can use which filtering option to apply 
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c) Total usage change 

Total usage change in DIU analysis 

The Fold Change is a measure magnitude in of differential expression that cannot be 

easily applied to DIU analysis, where multiples isoforms are tested in a single model. 

Instead, we propose a new metric, total usage change to quantify the magnitude of 

change for DIU genes. Total usage change measures the amount of redistribution (as 

%) in expression levels across different conditions for isoforms of the same gene. 

Because absolute gene expression levels may be different across conditions, total 

change values are always represented as a function of the gene expression FC.  

We define isoform usage as the relative expression of isoform i in gene g. Then, total 

usage change can be defined as: 

෍ተተ
Eଵ୧୥

∑ Eଵ୧୥
୬
୧ୀଵ

ᇩᇭᇪᇭᇫ
୍ୱ୭୤୭୰୫୙ୱୟ୥ୣେଵ

−
Eଶ୧୥

∑ Eଶ୧୥
୬
୧ୀଵ

ᇩᇭᇭᇪᇭᇭᇫ
୍ୱ୭୤୭୰୫୙ୱୟ୥ୣେଶ

ተተ

୬

୧ୀଵ

× 0.5 

where Eig is the expression value for isoform i and gene g. 

 

Defining total usage change for feature analyses 

When performing DFI and DPA analyses, expression values are collapsed to obtain 

feature inclusion (FI) and distal polyadenylation site usage (DPAU) levels. In this case, 

total change is re-defined as the redistribution (as %) of FI (FI) or DPAU (DPAU) 

levels across every pair of conditions considered. Note that both metrics are also 

dependent on absolute expression. 
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d) Defining switching events 

Switching events are defined in order to identify Differential Feature Inclusion, 

Differential Polyadenylation and Differential Isoform Usage events that imply a strong 

change and prioritize candidates for further analysis. 

A major isoform switching event occurs when the major isoform of gene the becomes 

minor at one particular condition. In multiple time-course series major isoforms are 

defined for each experimental group and so is the major isoform switch.  Feature 

switching (in DFI) and distal polyA usage switching (in DPA) are similarly defined.  

 

Favored conditions 

In DPA and DFI analyses, switching information is complemented by information of 

the favored condition, i.e. the experimental condition where the inclusion of the 

feature is promoted. 

 

Experimental setup in murine neural cells 

As proof-of-concept of our analysis framework, we used the data in Tardaguila et al57⁠. 

Briefly, two different cell types: Neural Precursor Cells (NPC) and Oligodendrocyte 

Progenitor Cells (OPCs) had expressed transcriptomes estimated using PacBio Iso-

Seq sequencing and curated by SQANTI57⁠, resulting in 11,970 transcripts coded by 

7,167 genes. We computed isoform expression levels with RNA-seq using RSEM112⁠ 

following ENCODE guidelines 

 

Validation of events with potential functional impact 

Western Blot  
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We validated AltTP-mediated localization changes via differential inclusion of Nuclear 

Localization Signals (Ctnnd1, Mbnl1) using nucleus-cytoplasm fractioning and 

western blot analyses. Total protein fraction was extracted from cell cultures using 

lysis buffer containing 50 mM Tris-HCl, pH 7.5,150 mM NaCl, 0.02% NaN3, 0.1 SDS, 

1% NP40, 1 mM EDTA, 2 mg/mL leupeptin, 2 mg/mL aprotinin, 1 mM PMSF, 1x 

Protease Inhibitor Cocktail (Roche Diagnostics, San Diego, CA, USA). The cytoplasmic 

and nuclear protein fractions were extracted with lysis buffer containing HEPES 10 

mM pH 7.9, KCl 10 mM, EDTA 1 mM, EGTA 1 mM, DTT 1 mM, B-glycerophospate 10 

mM and 1x Protease Inhibitor Cocktail (Roche Diagnostics, San Diego, CA, USA). 

IGEPAL (CA-630) 0.4% was then added and samples were vigorously vortexed and 

centrifuged at 12000g at 4ºC for 5 minutes. The supernatant (cytoplasmic fraction) 

was recovered, and the remaining pellets were incubated in lysis buffer containing 10 

mM TRIS pH 7.4, NaCl 400 mM, IGEPAL (CA-630) 0.5%, EDTA 1 mM, EGTA 1 mM,DTT 

1 mM, B-glycerophospate 10 mM and 1x Protease Inhibitor Cocktail (Roche 

Diagnostics, San Diego, CA, USA) to recover nuclear protein extracts (nuclear 

fraction). The protein concentrations of the supernatant were determined via 

bicinchoninic acid technique (Pierce® BCA protein assay; Thermo Fisher Scientific) 

and stored at -80C. Equal protein amounts were loaded, separated in 10% SDS–PAGE 

and transferred into a PVDF membrane. The membrane was blocked with 5% milk in 

TBS with 0.1% Tween-20 for 1h at room temperature and incubated at 4 °C overnight 

with the following primary antibody solutions (4% milk, 0,5% Tween-TBS): Anti p120 

(Ctnnd1) 1:2000 (Millipore 05-1567, clone 15D2); Anti Mbnl1 1:100 (DSHB-

MB2a(3b4)); Anti Ac H3 1:1000 (Millipore 06-599); Anti tubulin coupled HRP (Thermo 

MA5-16308-HRP). Membranes were incubated for 1h at room temperature with the 
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following secondary antibody dilutions (4% milk, 0,5% Tween-TBS): Anti mouse HRP 

(Life A16072) 1:10000; Anti rabbit HRP (Thermo 31460) 1:10000. Signal detection was 

performed with an enhanced chemiluminescence kit (ECL Plus Western blotting 

detection reagent from GE Healthcare, Piscataway Township, NJ, USA) and bands 

were detected using Alliance Q9 Advanced (Uvitec Cambridge Inc). 
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