

1 **Title:** Genomic selection analyses reveal tradeoff between chestnut blight tolerance and
2 genome inheritance from American chestnut (*Castanea dentata*) in (*C. dentata* x *C.*
3 *mollissima*) x *C. dentata* backcross populations
4

5 **Authors:** Jared W. Westbrook¹, Qian Zhang², Mihir K. Mandal³, Eric V. Jenkins¹, Laura
6 E. Barth¹, Jerry W. Jenkins⁴, Jane Grimwood⁴, Jeremy Schmutz⁴, Jason A. Holliday²

7 **Affiliations:** ¹The American Chestnut Foundation, Asheville, NC 28804,

8 ²Virginia Tech, Department of Forest Resources and Environmental Conservation,

9 Blacksburg, VA 24061, ³Claflin University, Department of Biology, Orangeburg, SC

10 29115, ⁴HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806

11 **Email addresses** (in author order): jared.westbrook@acf.org (corresponding author),

12 zqian@vt.edu, mimandal@claflin.edu, eric.jenkins@acf.org, laura.barth@acf.org,

13 jjenkins@hudsonalpha.org, jgrimwood@hudsonalpha.org, jschmutz@hudsonalpha.org,

14 jah1@vt.edu

15 **Acknowledgements:** We would like to thank the donors and volunteers with The
16 American Chestnut Foundation who have supported the breeding effort for the past 35
17 years. We also thank Advanced Research Computing at Virginia Tech for providing
18 computational resources and technical support related to the analyses described here.

19 Initial funding for proof-of-concept for genomic selection was provided by the U.S.
20 Endowment for Forestry and Communities and the United States Forest Service.

21 Subsequent funding to develop genomic prediction models was provided by USDA-NIFA
22 Project 2016-67013-24581 and McIntire-Stennis Project 1005394. Funding for

23 genotyping to predict resistance of remaining trees in Meadowview seed orchards was
24 provided by the Allegheny Foundation and an anonymous foundation. The Colcom

25 Foundation provided funding to generate the draft reference genome for American

26 chestnut.

27 **Abstract**

28 American chestnut was once a foundation species of eastern North American forests,
29 but was rendered functionally extinct in the early 20th century by an exotic fungal blight
30 (*Cryphonectria parasitica*). Over the past 30 years, The American Chestnut Foundation
31 (TACF) has pursued backcross breeding to generate hybrids that combine the timber-
32 type form of American chestnut with the blight tolerance of Chinese chestnut. The
33 backcross strategy has been implemented based on the hypothesis that blight tolerance
34 is conferred by few major effect alleles. We tested this hypothesis by developing
35 genomic prediction models for five presence/absence blight phenotypes of 1,230 BC₃F₂
36 selection candidates and average canker severity of their BC₃F₃ progeny. We also
37 genotyped pure Chinese and American chestnut reference panels to estimate the
38 proportion of BC₃F₂ genomes inherited from parent species. We found that genomic
39 prediction from a method that assumes an infinitesimal model of inheritance (HBLUP)
40 has a similar predictive ability to a method that tends to perform well for traits controlled
41 by major genes (Bayes C). Furthermore, the proportion of BC₃F₂ trees' genomes
42 inherited from American chestnut was negatively correlated with the blight tolerance of
43 BC₃F₂ trees and their progeny. On average, selected BC₃F₂ trees inherited 83% of their
44 genome from American chestnut and have blight-tolerance that is intermediate between
45 F₁ hybrids and American chestnut. Results suggest polygenic rather than major gene
46 inheritance for blight tolerance. The blight-tolerance of restoration populations will be
47 enhanced by advancing additional sources of blight-tolerance through fewer backcross
48 generations and by potentially by breeding with transgenic blight-tolerant trees.

49

50 **Keywords:** Genomic selection, *Castanea dentata*, *Cryphonectria parasitica*, backcross
51 breeding

52 **Introduction**

53 Efforts to restore the American chestnut (*Castanea dentata*) have been ongoing
54 for nearly 100 years. The chestnut blight fungus (*Cryphonectria parasitica*), first
55 introduced into North America from Asia in the early 1900s, killed approximately 4.2
56 billion *Castanea dentata* stems from northern Mississippi to coastal Maine by the 1950s
57 (Little, 1977; Gravat, 1949; Hepting, 1974; Newhouse, 1990). The extirpation of *C.*
58 *dentata* reduced wildlife carrying capacity and altered nutrient cycling in forests
59 throughout its native range (Ellison et al., 2005; Dalgleish et al., 2012). Today, an
60 estimated 431 million American chestnut stems survive as seedlings and collar sprouts,
61 but their stems rarely flower and almost never produce viable seed before being re-
62 infected with the blight (Dalgleish et al., 2016). Publicly funded breeding programs,
63 initiated in the 1920s by the U.S. Department of Agriculture and the Brooklyn Botanical
64 Garden, hybridized *C. dentata* with Asian *Castanea* species that are tolerant of chestnut
65 blight (Burnham et al., 1986; Anagnostakis, 2012). However, these F_1 hybrids were not
66 sufficiently competitive in the mixed hardwood forests typical of the historical *C. dentata*
67 range (Schlarbaum et al., 1998), and these early chestnut breeding programs were
68 largely discontinued by the 1960s (Jaynes, 1978).

69 In 1983, The American Chestnut Foundation (TACF) was founded and backcross
70 breeding was proposed to generate hybrids that combined the blight-tolerance of
71 Chinese chestnut (*Castanea mollissima*) with the timber-type form of American chestnut
72 (Burnham, 1981; Burnham et al., 1986; Burnham, 1988). Backcrossing *C. mollissima* x
73 *C. dentata* hybrids to *C. dentata* over three generations was expected to generate BC_3
74 hybrids that inherited an average of 15/16ths (93.75%) of their genome from *C. dentata*.
75 The BC_3 trees were intercrossed to generate BC_3F_2 populations from which a subset of
76 trees were predicted to be homozygous for blight-tolerance alleles from *C. mollissima*.

77 Large quantities of blight-tolerant BC₃F₃ seed for restoration would then be generated
78 through open-pollination among the selected homozygous blight-tolerant BC₃F₂ trees.

79 The backcross method was initially implemented based on two hypotheses. First,
80 alleles for blight-tolerance segregate at a few loci with incomplete dominance. Second,
81 trees that are heterozygous for blight-tolerance at all loci can be reliably selected in each
82 backcross generation. Incomplete dominance of blight-tolerance was surmised from the
83 observation that F₁ hybrids develop blight cankers that are intermediate in size and
84 severity between *C. mollissima* and *C. dentata* (Graves 1950). Burnham et al. (1986)
85 hypothesized that blight-tolerance segregates at two loci based on observations of
86 Clapper (1952) that F₁ hybrids backcrossed to *C. mollissima* segregate at a ratio of three
87 small cankered trees (blight-tolerant) to one large cankered tree (susceptible). Later,
88 Kubisiak et al. (1997; 2013) found that three QTLs on three linkage groups (B, F, G)
89 explained 40% of the variation in cancer severity in a full-sib (*C. dentata* x *C. mollissima*)
90 x (*C. dentata* x *C. mollissima*) F₂ family.

91 TACF began backcross breeding in 1989 by pollinating two (*C. dentata* x *C.*
92 *mollissima*) x *C. dentata* BC₁ hybrids (the 'Clapper' and 'Graves' trees) with *C. dentata*
93 pollen from multiple trees in southwest Virginia (Hebard, 2006; Steiner et al., 2017).
94 These BC₁ trees were chosen as sources of blight-tolerance to reduce the number of
95 additional generations of breeding and selection required to reach the BC₃F₃ generation.
96 The 'Clapper' and 'Graves' trees have different *C. mollissima* grandparents (Clapper,
97 1963; Hebard, 2006), and were bred as distinct sources of resistance based on the
98 possibility that blight-tolerance would segregate at different loci among the progeny of
99 these trees. Phenotypic selection was performed in the BC₂ and BC₃ generations at
100 TACF's Research Farms in Meadowview, Virginia, by artificially inoculating stems with
101 *C. parasitica* and selecting trees with subjective cancer severity ratings that were
102 indistinguishable from F₁ hybrids (Steiner et al., 2017). Additional selection was made for

103 leaf and twig characteristics that resembled those of *C. dentata* (Hebard, 1994; Diskin et
104 al., 2006). Citizen scientists affiliated with TACF have subsequently pollinated wild-type
105 trees ranging from Alabama to Maine with pollen from selected BC₂ and BC₃ trees from
106 the Meadowview breeding program to increase the genetic diversity and adaptive
107 capacity of backcross populations (Westbrook, 2018; Fig. 1).

108 The Meadowview backcross breeding program is now reaching the final stages
109 of selection for blight tolerance. Large segregating BC₃F₂ populations have been
110 generated by open-pollination among selected BC₃ descendants of the 'Clapper' and
111 'Graves' trees. Between 2002 and 2018, approximately 36,000 BC₃F₂ progeny of 83
112 'Clapper' BC₃ selections and 28,000 BC₃F₂ progeny of 68 'Graves' BC₃ selections were
113 planted in two seed orchards (Steiner et al., 2017). Assuming that blight-tolerance
114 segregates at three unlinked loci (Kubisiak et al., 1997), that all BC₃ selections were
115 heterozygous for *C. mollissima* alleles at these loci, and that 80% of BC₃F₂ seeds
116 planted would survive to inoculation, there is a 99% probability of generating nine
117 homozygous blight-tolerant BC₃F₂ trees from each backcross line (Hebard, 1994;
118 Hebard, 2002).

119 Between 60% and 80% of BC₃F₂ trees were culled on the basis of significant
120 canker expansion six months after inoculation. Additional culling was performed based
121 on blight phenotypes that take longer to develop, such as the survival of the main
122 inoculated stem and the severity of additional cankers that developed as a result of
123 natural infection by *C. parasitica* (Hebard, 2006). As of 2018, ~3,300 'Clapper', and
124 ~4,300 'Graves' BC₃F₂ trees remain. To select the most resistant of these remaining
125 trees, TACF has planted randomized field trials of their open-pollinated progeny. After
126 inoculating these trials with *C. parasitica*, average canker severity of the most blight
127 tolerant BC₃F₃ families was intermediate between Chinese chestnut and American
128 chestnut. This finding led Steiner et al. (2017) to hypothesize that blight tolerance

129 segregates at more loci than previously assumed and that phenotypic selection has not
130 been sufficiently accurate to select for the complete set of resistance alleles from *C.*
131 *mollissima* founders in all backcross lines.

132 Progeny testing all BC₃F₂ mothers is potentially more accurate than selection
133 based on blight phenotypes of individual BC₃F₂ trees. However, screening 7600 BC₃F₂
134 remaining mother trees would require planting hundreds of thousands of progeny and
135 waiting many years for all BC₃F₂ selection candidates to flower. An alternative approach
136 is genomic selection, which enables simultaneous ranking of a large number of BC₃F₂
137 selection candidates for blight-tolerance including younger trees that have not flowered.

138 In the context of TACF's breeding program, genomic selection entails genotyping
139 training populations composed of BC₃F₂ trees whose progeny have been inoculated with
140 *C. parasitica* or that have been phenotyped for late-developing blight traits. Breeding
141 values for BC₃F₂ selection candidates that have not been phenotyped for these traits
142 may be predicted from a blend of pedigree and genomic relationships with trees in the
143 training population using the single step BLUP (or HBLUP) method (Legarra et al. 2009;
144 Misztal et al., 2009; Aguilar et al., 2009). Alternatively, a genome-wide panel of SNP
145 genotypes may be regressed on phenotypes from the training population and breeding
146 values predicted by multiplying marker genotypes by allelic substitution effects
147 (Meuwissen et al., 2001).

148 In this study, our first aim was to optimize an analytical pipeline for genomic
149 selection for blight tolerance in American chestnut backcross populations. Towards this
150 end, we generated a draft reference genome for *C. dentata* and performed genotyping-
151 by-sequencing on 1,230 BC₃F₂ selection candidates from the Meadowview breeding
152 program. We optimized the HBLUP method to predict breeding values for late
153 developing blight phenotypes of BC₃F₂ selection candidates and average canker severity
154 of their BC₃F₃ progeny. We then summed the breeding values for these traits to create a

155 selection index to compare the blight tolerance of BC₃F₂ selection candidates under
156 different selection scenarios.

157 Our second aim was to test the hypothesis that blight-tolerance from *Castanea*
158 *mollissima* segregates at a few major effect loci. We tested this hypothesis first by
159 comparing the predictive ability of HBLUP to Bayes C regression. Bayes C, which
160 includes only the largest effect markers in the prediction model, has been found to have
161 greater predictive ability than HBLUP for traits that are controlled few major effect loci,
162 whereas HBLUP and Bayes C have similar predictive ability for polygenic traits
163 (Resende et al., 2012; Chen et al., 2014; Yoshida et al., 2018). We also tested this
164 hypothesis by estimating the correlation between the proportion of BC₃F₂ trees'
165 genomes inherited from *C. dentata* and breeding values for blight tolerance of these
166 trees.

167

168 **Materials and Methods**

169 **Phenotyping**

170 *Phenotyping BC₃F₃ progeny*: Between 2011 and 2016, 7,173 BC₃F₃ progeny from 346
171 'Clapper' and 198 'Graves' open-pollinated BC₃F₂ mothers were evaluated for blight-
172 tolerance. Between 27 and 33 BC₃F₃ progeny from each BC₃F₂ mother were planted at
173 TACF's Meadowview Research Farms in a completely randomized design (2011 – 2013
174 tests) or an alpha-lattice incomplete block design (2014 – 2016 tests) (Patterson &
175 Williams, 1976). In their third growing season, the main stems of BC₃F₃ trees were
176 inoculated with the SG2,3 (weakly pathogenic) and Ep155 (highly pathogenic) strains of
177 *C. parasitica* at two stem heights approximately 25 cm apart using the cork borer agar
178 disk method (TACF, 2016). The SG2,3 and Ep155 strains were originally isolated from
179 American chestnut trees in Virginia and Maryland, respectively (M. Double, pers.
180 communication). Inoculation with these two strains increases the range of canker

181 severity phenotypes. However, BC₃F₃ family rankings for average canker severity using
182 these two strains have been found to be strongly genetically correlated ($r_{genetic} > 0.95$),
183 suggesting generalized rather than strain-specific mechanisms of host blight tolerance
184 (Steiner et al., 2017; Westbrook & Jarrett, 2018).
185 Canker lengths and subjective ratings were phenotyped 5 to 6 months after inoculation.
186 Cankers were rated as 1 = minimal expansion beyond initial lesion, 2 = some expansion,
187 but canker partially contained by callus formation, or 3 = canker large, sunken, and
188 sporulating (Fig. A1). The trait 'canker severity' was calculated separately for each strain
189 of *C. parasitica* (SG2,3 & Ep155) by scaling the variation in canker lengths and canker
190 ratings to mean 0 and standard deviation 1, and summing the standardized rating and
191 length. The canker severities for each strain of *C. parasitica* were then summed to obtain
192 a single canker severity value for each tree. Canker severity phenotypes were obtained
193 for 48% of the BC₃F₃ seeds that were planted and 2 to 40 BC₃F₃ progeny (median = 13)
194 were phenotyped per BC₃F₂ mother. Canker severity phenotypes of BC₃F₃ trees were
195 continuously distributed and there was no difference in the average canker severity in
196 the Clapper and Graves BC₃F₃ populations (Fig. A2).
197 *Phenotyping BC₃F₂ parents:* Trees remaining in Meadowview seed orchards that were
198 between 5 and 16 years old were phenotyped for five binary traits hypothesized to be
199 indicative of blight-tolerance or susceptibility. All trees were phenotyped for main stem
200 survival. Trees with a living main stem were then phenotyped for four additional traits on
201 the main stem namely, presence or absence of any canker longer than 15 cm; presence
202 or absence of exposed wood; presence or absence of sporulation of *C. parasitica*
203 conidia from cankers; and presence or absence of sunken cankers. In total, 1134
204 'Clapper' and 1042 'Graves' BC₃F₂ selection candidates were phenotyped for these
205 traits.

206 **Marker discovery**

207 *Generation of a draft reference genome for *Castanea dentata*:* We generated a draft
208 reference genome sequence for the immediate purpose of detecting SNP variants in
209 backcross populations. We sequenced the 'Ellis1' clone of *Castanea dentata* by whole
210 genome shotgun sequencing using the PACBIO SEQUEL sequencing platform at the
211 HudsonAlpha Institute in Huntsville, Alabama. A total of 16 cells using chemistry 2.1
212 were sequenced with a p-read yield of 88.69 Gb (8,327,003 reads), for a total coverage
213 of 98.54x (median read size 7,745 bp). The reads were assembled using MECAT (Xiao
214 et al., 2017) and subsequently polished using ARROW (Chin et al., 2013). This
215 produced 2,959 contigs with an N_{50} of 4.4 Mb, and a total genome size of 967.1 Mb.
216 Contigs were then collapsed to remove redundant alternative haplotype sequence and
217 screened against bacterial proteins, organelle sequences, and the GenBank non-
218 redundant database to detect and remove contaminants. Version 0.5 of the *C. dentata*
219 genome contains 793.5 Mb of sequence, consisting of 950 contigs with a contig N_{50} of
220 8.1 Mb.

221 *Genotyping-by-sequencing of BC_3F_2 trees:* Newly expanded leaves were collected from
222 BC_3F_2 trees in Meadowview seed orchards in June 2017. The leaf tissue was ground in
223 liquid nitrogen and genomic DNA was extracted using a Qiagen DNeasy Plant Mini kit.
224 The quality and quantity of DNA was checked on a Nanodrop spectrophotometer (ND-
225 100) and 200 ng of DNA from each tree was digested with 1 μ l of ApeKI and Illumina-
226 compatible adapters with ApeKI overhangs. Adapters were ligated with 1.6 μ l of T4 DNA
227 ligase. Each of the P1 adapters had a variable length (4-8bp) index downstream of the
228 sequencing primer such that it was read immediately preceding the restriction site. The
229 P2 adapter was common across all samples. Following adapter ligation, 18 cycles of
230 PCR were performed to confirm ligation and the fragment size range. The DNA samples
231 were randomly assigned to pools of 50 per lane for trees whose progeny had previously

232 been inoculated with *C. parasitica*, or 96 per lane for trees whose progeny had not been
233 inoculated. Pools were purified with the New England Biolabs Monoch PCR and DNA
234 Clean Up Kit before and after 18 cycles of PCR amplification. Fragments in the range of
235 250-600 bp were selected on a BluePippin™ instrument (Sage Science, Beverly, MA,
236 USA) and the resulting libraries were visualized on a Bioanalyzer (Agilent 2100
237 BioAnalyzer). Libraries were then sequenced on an Illumina HiSeq 4000 instrument
238 in 2x150bp paired end mode at the Duke University Center for Genomic and
239 Computational Biology.

240 Raw reads were filtered for quality, filtered for adapter contamination, and de-
241 multiplexed using STACKS software (Catchen et al., 2013). Filtered reads were then
242 aligned to v. 0.5 of the *C. dentata* reference genome using the Burrows-Wheeler Aligner
243 (BWA) *mem* algorithm, and subsequently converted to BAM format, sorted, and indexed
244 with SAMtools (Li & Durbin 2010; Li et al. 2009). GVCF files for each sample were
245 generated using the GATK HaplotypeCaller algorithm (McKenna et al. 2010; Poplin et al.
246 2017), and these GVCFs were then merged using the GenotypeGVCFs function to
247 create a candidate polymorphism set. Variants were flagged and removed as low quality
248 if they had the following characteristics: low map quality (MQ < 40); high strand bias (FS
249 > 40); differential map quality between reads supporting the reference and alternative
250 alleles (MQRankSum < -12.5); bias between the reference and alternate alleles in the
251 position of alleles within the reads (ReadPosRankSum < -8.0); and low depth of
252 coverage (DP < 5). The resulting VCF file was filtered to retain only biallelic SNPs with
253 <10% missing data and minor allele frequencies >0.01, leaving 71,507 SNPs. Missing
254 SNP genotypes were imputed with Beagle v 4.1 (Browning & Browning, 2016). A total of
255 1,230 (865 'Clapper' and 365 'Graves') BC₃F₂ individuals were genotyped.

256 **Genomic prediction and validation**

257 *Single-step genomic prediction of progeny cancer severity:* Breeding values for progeny
258 cancer severity were obtained for all BC₃F₂ mothers that were genotyped and/or whose
259 progeny were phenotyped using the single-step HBLUP method (Legerra 2009; Misztal
260 et al. 2009; Aguilar et al., 2009). This method blends the pedigree and genomic
261 relationship matrix into a single matrix **H** so that phenotypic and genotypic data for both
262 genotyped and non-genotyped individuals can be used to estimate breeding values.
263 Breeding values were estimated from blended pedigree and genomic relationships and
264 progeny cancer severity phenotypes for 211 'Clapper' and 154 'Graves' BC₃F₂ mothers;
265 from pedigree relationships and progeny phenotypes for 135 'Clapper' and 44 'Graves'
266 BC₃F₂ mothers that died prior to genotyping; and from pedigree and genomic
267 relationships alone for 654 'Clapper' and 211 'Graves' BC₃F₂ mothers whose progeny
268 had not yet been phenotyped (Fig. 2).

269 Martini et al. (2018) found that the parameters τ and ω that scale the inverse of
270 genomic and pedigree relationships respectively in \mathbf{H}^{-1} , influence predictive ability and
271 inflation of breeding values. We therefore performed single step prediction with \mathbf{H} -
272 matrices parameterized with nine pairwise combinations of τ and ω involving $\tau = 1, 2$, or
273 3 and $\omega = 1, 0$, or -1 and a tenth combination in which $\tau = \omega = 0$, which is equivalent to
274 the pedigree relationship matrix. We sought the combination of τ and ω that maximized
275 predictive ability while minimizing inflation of breeding values. The inverse of the
276 parameterized \mathbf{H} -matrix (hereafter referred to as $\mathbf{H}_{\tau,\omega}^{-1}$) was calculated following Martini et
277 al., (2018):

$$278 \quad \mathbf{H}_{\tau,\omega}^{-1} = \mathbf{A}^{-1} + \begin{bmatrix} 0 & 0 \\ 0 & (\tau \mathbf{G}^{-1} + \omega \mathbf{A}_{22}^{-1}) \end{bmatrix} \quad (1)$$

279 Where \mathbf{A}^{-1} is the inverse of the pedigree relationship matrix, \mathbf{G}^{-1} is the inverse genomic
280 relationship matrix, and \mathbf{A}_{22}^{-1} is inverse pedigree relationship matrix among genotyped
281 individuals. Genomic relationships in **G** were estimated following VanRaden (2008):

282 $\mathbf{G} = \mathbf{Z}\mathbf{Z}' / 2 \sum_{j=1}^J p_j(1 - p_j)$ (2)

283 Where \mathbf{Z} is the centered genotypic matrix and p_j are reference allele frequencies for
284 locus 1 through J .

285 Mixed model analysis with different parameterizations of $\mathbf{H}_{\tau, \omega}^{-1}$ was performed
286 separately for BC_3F_3 descendants of 'Clapper' and 'Graves' populations with the
287 following model in ASReml-R v. 4.1 (Butler et al., 2018):

288 $y_{ijkl} = \mu + t_i + r_{j(i)} + b_{k(ji)} + g_l + \varepsilon_{ijkl}$ (3)

289 Where y is a vector of canker severity phenotypes for BC_3F_3 progeny and μ is the trait
290 mean. The vector t_i is composed of the random effects of inoculation years
291 (2011...2016) that were assumed to be independently and normally distributed
292 ($t_i \sim N[0, \mathbf{I}\sigma_t^2]$, \mathbf{I} is an identity matrix); $r_{j(i)}$ are random effects of complete blocks within the
293 years (2014-2016 trials only) ($r_{j(i)} \sim N[0, \mathbf{I}\sigma_r^2]$); $b_{k(ji)}$ are the random effects of incomplete
294 block within the complete block and year (2014-2016 trials only) ($b_{k(ji)} \sim N[0, \mathbf{I}\sigma_b^2]$); g_l are
295 the random additive genetic effects (i.e., the breeding value) of BC_3F_2 mothers
296 ($g_l \sim N[0, \mathbf{H}_{\tau, \omega}\sigma_g^2]$); and ε_{ijkl} are the residuals ($\varepsilon_{ijkl} \sim N[0, \mathbf{I}\sigma_e^2]$). Residuals were
297 approximately normally distributed and no data transformation was performed. The
298 heritability of family mean canker severity (h_{family}^2) was calculated as:

299 $h_{family}^2 = \sigma_g^2 / (\sigma_g^2 + \sigma_e^2/n)$ (4)

300 where, $n = 13.5$ is the mean number BC_3F_3 progeny evaluated per BC_3F_2 mother tree
301 (Isik et al., 2017).

302 Genomic predictive ability of breeding values (r_{gg}) for progeny canker severity
303 was estimated with ten-fold cross validation. The cross validation was performed in
304 ASReml-R by randomly subdividing the phenotyped BC_3F_3 families into ten subsets and

305 using phenotypic data from 9/10^{ths} of the families to predict breeding values for the
306 remaining 1/10th of the families via $H_{\tau, \omega}^{-1}$. This procedure was repeated for each subset of
307 families to obtain genomic predictions of breeding values for all families. Predictive
308 ability was assessed as the Pearson correlation between the breeding values predicted
309 from genomic and pedigree relationships via $H_{\tau, \omega}^{-1}$ and breeding values estimated with
310 $H_{\tau, \omega}^{-1}$ using cancer severity data from all phenotyped families. The entire ten-fold cross
311 validation procedure was repeated ten times for each parameterization $H_{\tau, \omega}^{-1}$ to estimate
312 variation in predictive ability that arises from randomly subdividing the training population
313 into training and prediction subsets.

314 Inflation of breeding values was estimated from the slope of the regression of
315 adjusted family mean cancer severity (y-axis) on the predicted breeding values for
316 progeny cancer severity (x-axis) (Martini et al. 2018). Adjusted family means for cancer
317 severity were estimated in ASReml-R by treating BC₃F₂ mothers as fixed factors and
318 year, block, and incomplete block as random factors as in equation 3. To predict
319 progeny cancer severity breeding values, we used the combination of τ and ω that
320 maximized predictive ability and where the variation in slope of the regression between
321 adjusted family means and breeding values intersected one among cross validation
322 replicates.

323 *Comparing the predictive ability of HBLUP to Bayes C:* Predictive ability of the optimized
324 HBLUP procedure was compared to that of Bayes C and prediction from pedigree
325 relationships (ABLUP). Bayes C first estimates the parameter π , which is the proportion
326 of SNPs with non-zero effects and then estimates allelic substitution effects of these
327 SNPs assuming that the effects are normally distributed (Habier et al., 2011). Bayes C
328 was implemented with the R package BGLR (Perez & de los Campos, 2014). Marker
329 effects were estimated over 10,000 iterations of a Gibbs sampler after 2,000 burn-in

330 iterations. To perform ten fold cross validation with Bayes C, allelic substitution effects
331 were estimated on adjusted family mean canker severity for 9/10th of the training
332 population. Genomic estimated breeding values (\hat{g}) for the remaining 1/10th of the
333 population were estimated with:

$$334 \quad \hat{g} = \mu + \sum_{i=1}^N \mathbf{Z} \hat{m} \quad (5)$$

335 where \mathbf{Z} is the centered and imputed genotypic matrix, N is the number of SNPs with
336 minor allele frequency > 0.01, and \hat{m} is a vector of allelic substitution effects. To
337 compare predictive ability between methods, predictive ability was estimated as the
338 Pearson correlation between estimated breeding values and adjusted family mean
339 canker severity ($r_{y\hat{g}}$). The entire ten-fold cross validation was repeated for ten random
340 partitions of the training population to estimate variation in predictive ability. The same
341 random partitions were used for each method for comparison between methods.

342 *Genomic prediction of binary blight phenotypes of BC₃F₂ parents:* HBLUP analysis of the
343 blight phenotypes of BC₃F₂ selection candidates was performed to 1) estimate the
344 heritability and genetic component of these phenotypes and 2) to predict breeding
345 values for genotyped trees age five or less that were too young to reliably express these
346 phenotypes. Breeding values for these traits were predicted for 324 'Clapper' and 115
347 'Graves' BC₃F₂ trees that were age five or younger from genomic or pedigree
348 relationships with 1134 Clapper and 1042 Graves BC₃F₂ trees that were phenotyped
349 (Fig. 2). Breeding values and heritability of presence/absence blight phenotypes of
350 individual BC₃F₂ trees were estimated with the binomial mixed model:

$$351 \quad y_{ijk} = \mu + t_i + b_j + g_k + \varepsilon_{ijk} \quad (6)$$

352 Where y is a binary phenotype (i.e., main stem alive/dead, presence/absence of large
353 cankers, exposed wood, sporulation, or sunken cankers); $t_i \sim N[0, \mathbf{I}\sigma_t^2]$ are the random

354 effects of years that the BC₃F₂ trees were planted (2002 – 2014); $b_j \sim N[0, \mathbf{I}\sigma_b^2]$ are the
355 random effects of seed orchard block (1...9); $g_k \sim N[0, \mathbf{H}_{\tau, \omega}\sigma_g^2]$ are the random additive
356 genetic effects of individual BC₃F₂ tree; and $\varepsilon_{ijk} \sim N[0, \mathbf{I}\sigma_e^2]$ are the residuals. The BC₃F₂
357 phenotypes were coded such that phenotypic classes indicative of blight-tolerance and
358 susceptibility were coded as 1 and 0, respectively (e.g., main stem alive = 1 or dead = 0;
359 large cankers absent = 1 or present = 0; exposed wood absent = 1, present = 0;
360 sporulation absent = 1 or present = 0; and sunken cankers absent = 1, present = 0).
361 Heritability and genomic predictive ability of breeding values were compared for two
362 parameterizations of $\mathbf{H}_{\tau, \omega}^{-1}$: 1) $\tau = \omega = 0$, which is equivalent to the pedigree relationship
363 matrix and 2) $\tau = \omega = 1$, which scales \mathbf{G}^{-1} and \mathbf{A}_{22}^{-1} equally. The heritability of blight
364 phenotypes of individual BC₃F₂ trees ($h_{individual}^2$) was calculated as:

$$365 h_{individual}^2 = \sigma_g^2 / (\sigma_g^2 + \pi^2/3) \quad (7)$$

366 Where $\pi^2/3$ is the variance of the standard logistic distribution (Davies et al., 2015).
367 Breeding values for binary blight traits were estimated as probability of having a trait
368 value of 1 given the individual trees' genotype. This probability was calculated as:

$$369 p = \exp(\mu + g) / (1 + \exp[\mu + g]) \quad (8)$$

370 Where μ is the model intercept and g is a vector random genetic effects in units of logit
371 scores (Gezan & Munoz, 2014).

372 Predictive ability of breeding values for blight phenotypes of individual BC₃F₂
373 trees was assessed using with ten-fold cross validation. Breeding values were predicted
374 for 1/10th of the population from phenotypes and H-matrix relationships with the
375 remaining 9/10ths of the population. Predictive ability was assessed as the Pearson
376 correlation between predicted breeding values (phenotype probabilities) of the

377 genotyped trees when the trees' phenotypes were left out of the model versus when all
378 trees' phenotypes were included. The ten-fold cross validation was repeated with ten
379 random partitions of the population for each trait.

380 **Estimation of blight selection indices and hybrid indices**

381 *Estimation of selection indices for blight tolerance:* Blight selection indices were
382 estimated for all genotyped trees from the sum of from HBLUP breeding values
383 predicted from parent blight phenotypes and progeny canker severity. A selection index
384 called 'Parent Condition Index' was created by summing the phenotype probabilities
385 estimated for each of the five blight traits that were phenotyped in the BC₃F₂ population.
386 The variance in breeding values for each trait is proportional to the trait's heritability, thus
387 each trait was weighted in proportion to $h^2_{\text{individual}}$. The breeding values for progeny
388 canker severity were multiplied by -1 to obtain the variable 'Progeny Blight Tolerance'.
389 Both Parent Condition Index and Progeny Blight tolerance were standardized to mean =
390 0 and standard deviation = 1 so that they would be equally weighted. The standardized
391 variables were then summed to create the 'Blight Selection Index.'

392 *Estimation of hybrid indices:* Hybrid indices were estimated to determine if blight
393 tolerance is correlated with proportion of the backcross trees' genomes inherited from *C.*
394 *dentata*. Hybrid indices were estimated for BC₃F₂ trees with the R package *introgress*
395 (Gompert & Buerkle, 2010). To generate the required parental data, genotyping-by-
396 sequencing was performed as described above on 56 *C. dentata* individuals and 47 *C.*
397 *mollissima* individuals. Bioinformatic processing of these data was the same as for the
398 BC₃F₂ samples, and after merging data from the pure species and BC₃F₂ samples,
399 27,306 SNPs were retained. The VCF file was converted to STRUCTURE format with
400 PLINK software (<http://zzz.bwh.harvard.edu/plink/>), and subsequently to *introgress*

401 format using the `prepare.data` function in *introgress*. Hybrid indices and their confidence
402 limits were then estimated using the `est.h` function.

403 **Results**

404 *Accuracy of HBLUP prediction of progeny canker severity:* Average predictive ability of
405 breeding values for BC₃F₃ progeny canker severity varied from 0.50 to 0.78 for 'Clapper'
406 and 0.33 to 0.60 for 'Graves' families depending on the scaling parameters τ for \mathbf{G}^{-1} and
407 ω for A_{22}^{-1} in $\mathbf{H}_{\tau,\omega}^{-1}$ (Table 1). Average predictive ability was lower when predicting from
408 pedigree relationships alone ($r_{gg}=0.33$ for 'Clapper' and $r_{g\bar{g}}=0.41$ for 'Graves') as
409 compared with most parameterizations of $\mathbf{H}_{\tau,\omega}^{-1}$ (Table 1). Heritability of BC₃F₃ family
410 mean canker severity was maximized for both Clapper ($h_{family}^2 = 0.75 \pm 0.05$) and
411 Graves ($h_{family}^2 = 0.72 \pm 0.08$) when the scaling parameter for \mathbf{G}^{-1} was maximized ($\tau=3$)
412 while the scaling parameter for A_{22}^{-1} was minimized ($\omega=-1$); however, average inflation of
413 breeding values was also maximized with this parameterization of $\mathbf{H}_{\tau,\omega}^{-1}$ (Table 1). The
414 combination of scaling parameters that maximized predictive ability with inflation values
415 that intersected one across cross validation replicates was $\tau = 3$ and $\omega = 1$ (Table 1).
416 Many of the genotyped BC₃F₂ trees were more closely related than expected from
417 pedigree relationships (Fig. A3), which may explain the increased predictive ability when
418 pedigree and genomic relationships were blended in $\mathbf{H}_{\tau,\omega}^{-1}$.

419 *Prediction of progeny canker severity using Bayes C:* There was no gain in predictive
420 ability of BC₃F₃ family mean canker severity using Bayes C, which sets a proportion of
421 the marker effects to zero, as compared with HBLUP, which incorporates all markers
422 into the prediction (Table 2). This result suggests that an infinitesimal model is as
423 accurate as a major gene model for predicting blight tolerance. Predictive ability of family
424 mean canker severity averaged across the HBLUP and Bayes C methods was greater

425 for the 'Clapper' population ($r_{y\hat{g}} = 0.256$) relative to the 'Graves' population ($r_{y\hat{g}} =$
426 0.155). Higher predictive abilities in 'Clapper' versus 'Graves' populations, respectively,
427 may be attributed to the larger training population in 'Clapper' (211 v. 154 genotyped
428 BC_3F_2 mothers; Fig. 2) and higher heritability of BC_3F_3 family mean canker severity in
429 'Clapper' (0.67 ± 0.06 v. 0.59 ± 0.09) (Table 1). Both and HBLUP and Bayes C methods
430 were more accurate than prediction from the pedigree (ABLUP) (Table 2).

431 *Heritability and predictive ability of blight phenotypes of BC_3F_2 parents:* Blight tolerance
432 phenotypes of BC_3F_2 trees (age 5 to 17) were weakly heritable, with $h^2_{\text{individual}}$ values
433 varying from 0 to 0.25 depending on the trait (Table 3). Heritabilities estimated with the
434 H-matrix were similar to those estimated with the pedigree. On average, trees with an
435 observed phenotype indicative of blight tolerance (i.e., main stem alive) also had a
436 greater probability of expressing a blight tolerance phenotype given the tree's genotype
437 (Fig. 3). However, due to the low heritability of the blight phenotypes of BC_3F_2 trees,
438 there was overlap in the distributions phenotype probabilities between observed
439 resistant versus susceptible phenotype classes. In the 'Graves' population, there was no
440 difference in phenotypic probabilities for the presence/absence of large cankers and
441 presence/absence of sporulation, suggesting these traits were not informative (Fig. 3).
442 Averaged across traits, predictive ability was 1.3 times greater in the 'Clapper'
443 population and 2.5 times greater in the 'Graves' population when using the H-matrix as
444 compared with prediction from the pedigree (Table 3).

445 *Estimation of hybrid indices:* Hybrid indices varied from 0.9996 (nearly 100% *C. dentata*)
446 to 0.4171 (58% *C. mollissima*) for 865 BC_3F_2 descendants of 'Clapper', and from 0.9996
447 to 0.3463 for 365 BC_3F_2 descendants of 'Graves' (Fig. 4). There were 24 'Clapper' and
448 10 'Graves' BC_3F_2 trees with hybrid indices less than or equal 0.55. These trees were
449 inferred to be 'pseudo-F₁' progeny of BC_3 mother trees that were pollinated by *C.*

450 *mollissima* trees on the same property. The average hybrid index of 'Clapper' and
451 'Graves' BC₃F₂ trees, excluding pseudo-F₁s, was 0.8943.

452 *Comparison of different selection scenarios:* Blight Selection Indices for genotyped trees
453 were obtained by summing the Parent Condition Index and Progeny Blight Tolerance
454 (see Materials & Methods). These selection candidates from the 'Clapper' and 'Graves'
455 populations were planted in 161 and 116 seed orchard plots, respectively. We
456 considered three selection scenarios: 1. Select one tree within each seed orchard plot
457 with the largest Blight Selection Index. 2. Select an equal number of trees, but select
458 trees with the largest Blight Selection Index regardless of seed orchard plot. 3. Select
459 the same number of trees, but select a maximum of three trees per plot with the largest
460 Blight Selection Indices. The pseudo-F₁ trees were excluded from consideration for
461 selection; however, Blight Selection Indices of the selected trees were compared to that
462 of the pseudo-F₁s.

463 For both the 'Clapper' and 'Graves' populations, all selection scenarios were
464 predicted to increase the mean Blight Selection Index. However, selected trees were, on
465 average, significantly less blight-tolerant than pseudo-F₁s (Fig. 5). The average Blight
466 Selection Index of selected BC₃F₂ trees was significantly greater when selecting trees
467 with the maximum Blight Selection Index (Scenario 2) or selecting up to three trees per
468 plot (Scenario 3) as compared with selecting one tree per plot (Scenario 1).

469 The tradeoff when relaxing the constraint of selecting one tree per plot was a
470 reduction of the number of *C. dentata* backcross lineages represented among the
471 selections. For example, the 'Clapper' BC₃F₂ selection candidates had 41 and 28 *C.*
472 *dentata* grandparents and great-grandparents in their maternal line. By selecting 160
473 trees with the maximum Blight Selection Indices regardless of plot (Scenario 2),
474 selections included descendants from 31 *C. dentata* grandparents and 24 great-

475 grandparents. By selecting a maximum of three trees per plot, selections included
476 descendants of 33 grandparents and 25 great-grandparents. We decided to proceed
477 with up to three selections per plot because this scenario resulted in selections with a
478 similar average Blight Selection Indices as Scenario 2 (Fig. 5), but retained a larger
479 proportion of the maternal *C. dentata* lineages.

480 For both the 'Clapper' and 'Graves' populations, blight-tolerance as assessed
481 with the Parent Condition Index, Progeny Blight Tolerance, and Blight Selection Index
482 was negatively correlated with the proportion of alleles inherited from *C. dentata* (Fig. 6).
483 These negative correlations were observed when genomic prediction models were
484 developed with and without including pseudo- F_1 s in the training population, suggesting
485 that the pseudo- F_1 s are not driving this result (not shown). Selected BC_3F_2 trees were
486 estimated to have inherited an average (max, min) of 83% (99%, 61%) of their genome
487 from *C. dentata*. Parent Condition Index was positively correlated with Progeny Blight
488 Tolerance (Fig. 7). A total of 121 of 161 'Clapper' and 70 of 116 'Graves' selections had
489 above average Parent Condition Index and above average Progeny Blight Tolerance
490 (Fig. 7). A representative BC_3F_2 selection, a pseudo- F_1 , and a pure *C. dentata* are
491 pictured in Fig. A4.

492 **Discussion**

493 *Outlook for genomic selection of the most blight-tolerant trees in BC_3F_2 seed orchards:*

494 Our first aim in this study was to optimize genomic selection to increase the
495 speed and accuracy of making final selections for blight-tolerance in American chestnut
496 BC_3F_2 seed orchards. We integrated two generations (BC_3F_2 and BC_3F_3) of blight-
497 tolerance phenotypes with genotyping-by-sequencing of BC_3F_2 trees to select the most
498 blight-tolerant trees. We were successful insofar as the accuracy of genomic prediction

499 of both BC₃F₂ blight tolerance phenotype probabilities and breeding values for BC₃F₃
500 progeny canker severity was more accurate than prediction from pedigree relationships.
501 Furthermore, all selection scenarios were predicted to increase the average blight
502 tolerance relative to the current population mean.

503 We plan to finish selection in the Meadowview seed orchards in the next few
504 years with additional progeny testing and genomic selection. An additional 184 'Clapper'
505 and 216 'Graves' BC₃F₃ families will be inoculated in field trials in 2019, 2020, and 2021.
506 Furthermore, genotyping of approximately 1,000 additional 'Clapper' and 'Graves' BC₃F₂
507 trees is currently ongoing. We anticipate that the accuracy of genomic selection will
508 increase by expanding the training population as has been predicted from simulation
509 studies (Grattipaglia & Resende, 2011) and observed for other species and traits (Asoro
510 et al. 2011; Zhang et al., 2017).

511 *Evaluating the major gene hypothesis for blight tolerance*

512 Our second aim was to use genomic selection and hybrid index analysis to
513 evaluate the hypothesis of major gene inheritance of blight tolerance. Two observations
514 support the alternative hypothesis that blight tolerance is inherited as a polygenic trait.
515 First, we observed a tradeoff between blight tolerance and the proportion of BC₃F₂ trees'
516 genomes inherited from *C. dentata*. Second, HBLUP, which assumes an infinitesimal
517 model of inheritance, was just as accurate at predicting progeny canker severity as
518 Bayes C, which includes only the markers with largest effects in the prediction model.
519 Previous QTL mapping studies of blight tolerance were conducted in a small *C. dentata*
520 x *C. mollissima* F₂ family (<100 full sib progeny) (Kubisiak et al., 1997; Kubisiak et al.,
521 2013); therefore it is likely that the effects of individual loci were inflated and these
522 studies were underpowered to comprehensively detect all loci associated with blight-
523 tolerance (Beavis, 1994; Slate, 2013). Regardless of the number of loci underlying

524 blight-tolerance, the low heritabilities ($h^2 < 0.25$) of blight-tolerance phenotypes of
525 suggests that some alleles for blight-tolerance have been lost in some backcross
526 generations and lines as a result of low-accuracy phenotypic selection.

527 *Revised projections of average blight-tolerance after selection at BC₃F₂:*

528 Steiner et al. (2017) predicted final selection in BC₃F₂ seed orchards would result
529 in a BC₃F₃ population with an average blight-tolerance similar to *C. mollissima* x *C.*
530 *dentata* F₁ hybrids. We observed that average blight tolerance of BC₃F₂ selections that
531 inherited approximately 90% of their genome from *C. dentata* was less than that of
532 pseudo-F1 trees, which inherited approximately 50% of their genome from *C. dentata*.
533 Previous studies have found that BC₃F₃ progeny from partially selected seed orchards
534 have improved blight-tolerance relative to *C. dentata* in orchard and greenhouse trials
535 (Steiner et al., 2017; Westbrook & Jarrett, 2018). Therefore, we predict that the average
536 blight-tolerance of BC₃F₃ progeny from fully selected BC₃F₂ seed orchards will be
537 between that of F₁ hybrids and *C. dentata*.

538 *Where does breeding for American chestnut restoration go from here?*

539 *Restoration trials:* It is not known what combination of blight-tolerance and *C. dentata*
540 inheritance will be sufficient for American chestnut restoration. The American chestnut
541 Foundation has planted field trials composed of BC₃F₃ progeny from Meadowview seed
542 orchards at over 35 sites across the eastern U.S. (Fig. 1). Many of these trials are
543 between five and ten years old: too young to reliably assess for blight tolerance following
544 natural infection by *C. parasitica*. Encouragingly, in the oldest field trials, blight incidence
545 and severity on eight-year old BC₃F₃ trees was lower than on pure American chestnut
546 and similar to Chinese chestnut (Clark et al., 2019). Once selection is complete in seed
547 orchards, TACF intends to plant additional restoration trials composed of the most blight
548 tolerant BC₃F₃ families planted on sites most suitable for growing American chestnut.

549 The influence of environmental factors such as competition, climate, and soil on blight-
550 tolerance will be estimated via replication of BC₃F₃ families across sites and varying
551 silvicultural treatments within sites (TACF, 2012).

552 *Selection for blight tolerance and timber-type form in earlier backcross generations:* The
553 American Chestnut Foundation is currently generating and selecting *C. dentata*
554 backcross progeny from ten additional *C. mollissima* sources of blight-tolerance (Steiner
555 et al., 2017; Westbrook et al., 2018). Based on the finding of a tradeoff between blight-
556 tolerance and *C. dentata* inheritance, we will advance these additional sources only to
557 the BC₁ or BC₂ generations rather than BC₃ before intercrossing the selections.

558 Backcross trees will be selected for blight-tolerance not only with phenotypic selection,
559 but also by inoculating progeny derived from controlled pollinations of these trees to
560 ensure that selection is accurate.

561 While BC₁ and BC₂ selections are expected to be more blight tolerant than
562 selections from later backcross generations, the earlier backcross selections are
563 expected to inherit other traits from *C. mollissima* that may be undesirable for forest
564 restoration. Compared with American chestnut, Chinese chestnuts growing in North
565 America generally have lower height growth (Diller & Clapper, 1969; Sclarbaum et al.
566 1998; Thomas-Van Gundy, 2016), greater stem branching (Clark et al., 2012), lower
567 maximum photosynthetic rates (Knapp et al., 2014), lower cold tolerance (Gurney et al.,
568 2011; Saielli et al., 2012), and differential colonization of roots by mycorrhizae and other
569 fungi (Reazin et al., 2019). After selecting for blight tolerance, we will perform additional
570 selection for timber-type form and overall proportion of backcross trees' genomes
571 inherited from *C. dentata*, which will necessitate screening large populations segregating
572 for these traits.

573 *Incorporating transgenic blight-tolerance: Lower than expected blight-tolerance within*
574 *BC₃F₃* populations highlights potential advantages of using transgenic American
575 chestnut trees for restoration. Transgenic *C. dentata* founder lines that constitutively
576 overexpress an oxalate oxidase (OxO) gene from wheat have high levels of blight-
577 tolerance in seedling trials (Newhouse et al., 2014; Powell et al., 2019). Progeny from
578 transgenic x wild-type crosses essentially inherit 100% of their genome from *C. denata*.
579 The inheritance of OxO, which is expected in approximately 50% of the progeny, can be
580 detected inexpensively with an enzymatic assay or with PCR (Zhang et al., 2013).
581 Federal regulatory review in the United States is ongoing to release transgenic American
582 chestnut founder trees for breeding and restoration trials outside of a few confined,
583 permitted field trials. If federal regulatory approval is granted, TACF plans to outcross
584 transgenic founder clone(s) to wild-type trees over five generations to increase the
585 effective population size to > 500 and to maximize genome inheritance from wild-type
586 trees with marker-assisted introgression (Westbrook et al., 2019). Transgenic trees may
587 also be crossed with backcross trees to potentially enhance blight-tolerance. Public
588 acceptance of transgenic American chestnut trees for restoration is mixed (Delbourne et
589 al., 2018) and the long-term blight-tolerance of transgenic trees in forest conditions is not
590 currently known. Therefore, it is prudent to continue traditional breeding approaches to
591 introgress blight-tolerance from Asian *Castanea* species into *C. denata* separately from
592 breeding with transgenic trees.

593 **Conclusions and future directions**

594 In developing genomic prediction models and estimating hybrid indices for BC₃F₂
595 American chestnuts, we discovered a tradeoff between blight-tolerance and proportion of
596 the genome inherited from *C. dentata*. Results suggest that genetic architecture
597 underlying the inheritance of blight-tolerance is more complex than previously assumed.
598 A chromosome-scale genome assembly for *Castanea dentata* is forthcoming, which will

599 be combined with genotyping of thousands of backcross individuals to enable mapping
600 the inheritance of *C. mollissima* haplotypes and discovery of genomic regions associated
601 with variation in blight-tolerance.

602

603 **Data archiving statement:** Demultiplexed and quality-trimmed sequence reads per
604 sample have been uploaded to the NCBI Sequence Read Archive (SRA) under
605 bioproject accessions PRJNA507748 and PRJNA507747. The blight phenotypes and a
606 VCF file containing the filtered and imputed SNPs can be accessed on Dryad. Contact
607 Jeremy Schmutz (jschmutz@hudsonapha.org) for access to the latest assembly of the
608 *Castanea dentata* genome sequence under the Ft. Lauderdale agreement. Once the
609 annotation is finalized, the genome will be publicly available at the Phytozome,
610 comparative plant genomics portal.

611

612 **Literature cited**

613 Aguilar, I., Misztal, I., Johnson, D.L., Legarra, A., Tsuruta ,S. & Lawlor, T.J. (2009). Hot
614 topic: A unified approach to utilize phenotypic, full pedigree, and genomic
615 information for genetic evaluation of Holstein final score. *Journal of Dairy Science*
616 93:743–752.

617 Anagnostakis, S. (2012). Chestnut breeding in the United States for disease and insect
618 resistance. *Plant Disease*, 96, 1392-1403.

619 Asoro, F.G., Newell, M.A., Beavis, W.D., Scott, M.P., & Jannink, J-L. (2011). Accuracy and
620 training population design for genomic selection on quantitative traits in elite North
621 American oats. *The Plant Genome* 4(2), 132-144.

622 Beavis, W.D. (1994). The power and deceit of QTL experiments: Lessons from comparative
623 QTL studies. Paper presented at the 49th Annual Corn Sorghum Research Conference
624 of the American Seed Trade Association, Chicago, IL.

625 Browning, B.L., & Browning, S.R. (2016). Genotype imputation with millions of reference
626 samples. *American Journal of Human Genetics*, 98, 116-126.

627 Burnham, C.R. (1981). Blight resistant American chestnut: there's hope. *Plant Disease*, 65, 459-
628 460.

629 Burnham, C.R., Rutter, P., & French, D. (1986). Breeding blight-resistant chestnuts. *Plant
630 Breeding Reviews*, 4, 347-397.

631 Burnham, C.R. (1988). The Restoration of the American Chestnut: Mendelian genetics may
632 solve a problem that has resisted other approaches. *American Scientist*, 76(5), 478-487.

633 Butler, D. G., Cullis, B. R., Gilmour, A. R., & Gogel, B. J. (2018). ASReml-R 4 reference manual:
634 mixed models for S language environments: Queensland Department of Primary
635 Industries and Fisheries.

636 Catchen, J., Hohenlohe. P., Bassham. S., Amores A., & Cresko, W. (2013). Stacks: An analysis
637 tool set for population genomics. *Molecular Ecology*, 22(11), 3124-3140.

638 Chin, C-S, Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., . . . Korlach, J.
639 (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT
640 sequencing data. *Nature Methods*, 10, 563–569.

641 Clapper, R. B. (1952). Relative blight resistance of some chestnut species and hybrids. *Journal
642 of Forestry*, 50, 453-455.

643 Clapper, R. B. (1963). A promising new forest-type chestnut tree. *Journal of Forestry*, 61, 921-
644 922.

645 Clark, S.L., Sclarbaum, S.E., Saxton, A.,M., Hebard, F.V. (2012). Nursery performance of
646 American and Chinese chestnuts and backcross generations in commercial tree
647 nurseries. *Forestry* 85, 589-600.

648 Clark, S.L., Schlarbaum, S.E., Saxton, A.M., & Baird, R. (2019). Eight-year blight (*Cryphonectria
649 parasitica*) resistance of backcross generation American chestnuts (*Castanea dentata*)
650 planted in the southeastern United States. *Forest Ecology and Management*, 433(153-

651 161).

652 Dalgleish, H. J., Nelson, C. D., Scrivani, J. A., & Jacobs, D. F. (2016). Consequences of shifts in
653 abundance and distribution of American chestnut for restoration of a foundation forest
654 tree. *Forests*, 7(1).

655 Dalgleish, H. J., & Swihart, R. K. (2012). American chestnut past and future: Implications of
656 restoration for resource pulses and consumer populations of eastern U.S. forests.
657 *Restoration Ecology*, 20, 490-497.

658 Davies, S.W., Scarpino, S.V., Pongwarin, T., Scott, J., Matz, M.V. (2015). Estimating trait
659 heritability in highly fecund species. *G3:Genes Genomes Genetics* 5(12), 2639-2645.

660 Delborne, J.A., Binder A.R., Rivers, L., Barnes, J.C., Barnhill-Dilling S.K., George D., . . .
661 Sudweeks J. (2018). Biotechnology, the American chestnut tree, and public engagement
662 workshop report Raleigh, NC: Genetic Engineering and Society Center, North Carolina
663 State University. <https://research.ncsu.edu/ges/files/2018/10/Biotech-American-Chestnut-Public-Engagement-2018.pdf>

664

665 Diller, J.D. & Clapper, R.B. (1969). Asiatic and hybrid chestnut trees in the Eastern United
666 States. *Journal of Forestry* 67(5), 328-331.

667 Diskin, M., Steiner, K.C., & Hebard, F. V. (2006). Recovery of American chestnut characteristics
668 following hybridization and backcross breeding to restore blight-ravaged *Castanea*
669 *dentata*. *Forest Ecology and Management*, 223, 439-447.

670 Ellison, A. M., Bank, M.S., Clinton, B. D., Colburn, E. A., Elliot, K., Ford, C. R., . . . Lovett, G. M.
671 (2005). Loss of foundation species: Consequences for the structure and dynamics of
672 forested ecosystems. *Frontiers in Ecology and Environment*, 9, 479-486.

673 Gezan S.A., Munoz, P.R. (2014). Analysis of experiments using ASReml with emphasis on
674 breeding trials. Retrieved May 15, 2019, from
675 https://www.biostatsgen.com/uploads/3/8/9/6/38964623/alldiap_sa_oct2014.pdf

676 Gompert, Z., & Buerkle, C.A. (2010). INTROGRESS: A software package for mapping

677 components of isolation in hybrids. *Molecular Ecology Resources*, 10, 378-384.

678 Grattapaglia, D., & Resende, M.D.V. (2011). Genomic selection in forest tree breeding.

679 *Tree Genetics & Genomes*, 7(2), 241-255

680 Gravatt, F. (1949). Chestnut blight in Asia and North America. *Unasylva*, 3, 2-7.

681 Graves, A. (1950). Relative blight resistance in species and hybrids of *Castanea*.

682 *Phytopathology*, 40(12), 1125-1131.

683 Gurney, K.M., Schaberg, P.G., Hawley, G.J., Shane, J.B. (2011). Inadequate cold tolerance as

684 a possible limitation to American chestnut restoration in the Northeastern United States.

685 *Restoration Ecology* 19(1), 55-63.

686 Habier, D., Fernando, R.L., Kizilkaya, K., & Garrick, D.J. (2011). Extension of the bayesian

687 alphabet for genomic selection. *BMC Bioinformatics* 12:186.

688 Hebard, F. (2006). The backcross breeding program of The American Chestnut Foundation.

689 Pages 61-77 in: Restoration of American Chestnut to Forest Lands—Proceedings of a

690 Conference and Workshop, May 4-6, 2004, The North Carolina Arboretum. K. C.

691 Steiner, and J. E. Carlson, eds. Natural Resources Report NPS/NCR/CUE/NRR –

692 2006/001. National Park Service, Washington, DC.

693 Hebard, F.V. (2002). Meadowview notes 2001-2002. *The Journal of The American Chestnut*

694 *Foundation*, 16(1), 7-18.

695 Hebard F.V. (1994). Inheritance of juvenile leaf and stem morphological traits in crosses of

696 Chinese and American chestnut. *Journal of Heredity*, 85, 440-446.

697 Hepting, G. (1974). Death of the American chestnut. *Journal of Forest History*, 18, 60-67.

698 Isik, F., Holland, J., Maltecca, C. (2017). Genetic data analysis for plant and animal

699 breeding. Springer International Publishing, 400 p.

700 Jaynes, R. (1978). *Selecting and breeding blight-resistant chestnut trees*. Paper presented at

701 the American Chestnut Symposium, Morgantown, WV.

702 Knapp, B.O., Wang, G., Clark, S.L., Pile, L.S., Sclarbaum, S.E. (2014). Leaf physiology and

703 morphology of *Castanea dentata* (Marsh.) Borkh., *Castanea mollissima* Blume, and
704 three backcross breeding generations planted in the southern Appalachians, USA. *New
705 Forests* 45:283-293.

706 Kubisiak, T., Hebard, F., Nelson, C., Jhang, J., Bernatzky, R., Huang, H., . . . Doudrick, R.
707 (1997). Molecular mapping of resistance to blight in an interspecific cross in the genus
708 *Castanea*. *Phytopathology*, 87, 751-759.

709 Kubisiak, T.L., Nelson, C.D., Staton, M.E., Zhebentyayeva, T., Smith, C., Olukolu, B.A., Fang,
710 G-C., Hebard, F.V., Anagnostakis, S., Wheeler, N., Sisco, P.H., Abbott, A.G., Sederoff,
711 R.R. (2013). A transcriptome-based genetic map of Chinese chestnut (*Castanea
712 mollissima*) and identification of regions of segmental homology with peach (*Prunus
713 persica*). *Tree Genetics & Genomes*, 9, 557-571.

714 Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and
715 genomic information. *Journal of Dairy Science*, 92, 4656–4663.

716 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Durbin, R., 1000
717 Genome Project Data Processing Subgroup. (2009). The Sequence Alignment/Map
718 format and SAMtools. *Bioinformatics*, 25(16), 2078-2079.

719 Li, H. & Durbin, R (2010). Fast and accurate long-read alignment with Burrows-Wheeler
720 Transform. *Bioinformatics*, 26, 589-595.

721 Little, E L. 1977. Atlas of United States trees. Vol. 4. Minor eastern hardwoods. Misc.
722 Pub. No. 1342. Washington, DC: U.S. Department of Agriculture, Forest Service.
723 17 p.

724 Martini, J.W.R., Schrauf, M.R. Garcia□Baccino, C.A., Pimentel, E.C.G.,
725 Munilla, S., Rogberg□Munoz, A., Cantet, R.J.C., Reimer, C., Gao, N., Wimmer,
726 V. & Simianer, H. (2018). The effect of the H^{-1} scaling factors τ and ω on the
727 structure of H in the single□step procedure. *Genetics Selection Evolution* 50:16.

728 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K.,
729 Altshuler, D., Gabriel, S., Daly, M., ... DePristo, M. A. (2010). The Genome Analysis
730 Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
731 *Genome research*, 20(9), 1297-1303.

732 Meuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value
733 using genome-wide dense marker maps. *Genetics*, 157(4), 1819-1829.

734 Misztal, I., Legarra, A.; Aguilar, I. (2009). Computing procedures for genetic evaluation
735 including phenotypic, full pedigree, and genomic information. *Journal of Dairy
736 Science* 92:4648–4655.

737 Newhouse, A., McGuigan, L., Baier, K., Valletta, K., Rottmann, W., Tschaplinski, T., . . . Powell,
738 W. (2014). Transgenic American chestnuts show enhanced blight resistance and
739 transmit the trait to T1 progeny. *Plant Science*, 228, 88-97.

740 Newhouse, J. R. (1990). Chestnut blight. *Scientific American*, 262(1), 106-111.

741 Patterson, H. D., & Williams, E. R. (1976). New class of resolvable incomplete block designs.
742 *Biometrika*, 63(1), 83-92.

743 Perez, P., de los Campos, G. (2014). Genome-wide pgregation and prediction with the BGLR
744 statistical package. *Genetics* 198, 483-495.

745 Poplin, R., Ruano-Rubio, V., DePristo, M. A., Fennell, T. J., Carneiro, M. O., Van der Auwera,
746 G. A., . . . Banks, E. (2017). Scaling accurate genetic variant discovery to tens of
747 thousands of samples. *bioRxiv*, 10.1101/201178.

748 Powell, W.A., Newhouse, A.E., Coffey, V. (2019). Developing blight-tolerant American chestnut
749 trees. *Cold Spring Harbor Perspectives in Biology* doi: 10.1101/cshperspect.a034587.

750 Reazin C., Baird, R., Clark, S.L., Jumponnen, A. (2019). Chestnuts bred for blight
751 resistance depart nursery with distint fungal rhizobiomes. *Mycorrhiza*.
752 *Mycorrhiza*. doi: 10.1007/s00572-019-00897-z.

753 Saielli, T.M., Schaberg, P.G., Hawley, G.J., Halman, J.M., Gurney, K.M. (2012). Nut cold

754 hardness as a factor influencing the restoration of American chestnut in northern
755 latitudes and high elevations. *Canadian Journal of Forest Research* 42: 849-857.

756 Schlarbaum, S. E., Hebard, F. V., Spaine, P. C., & Kamalay, J. C. (1998). *Three American*
757 *tragedies: chestnut blight, butternut canker, and Dutch elm disease*. Paper presented at
758 the Exotic pests of eastern forests Nashville, TN.

759 Slate J. (2012). From Beavis to beak color: A simulation study to examine how much QTL
760 mapping can reveal about the genetic architecture of quantitative traits. *Evolution*, 67(5),
761 1251–1262.

762 Steiner, K. C., Westbrook, J. W., Hebard, F. V., Georgi, L. L., Powell, W. A., & Fitzsimmons, S.
763 F. (2017). Rescue of American chestnut with extraspecific genes following its destruction
764 by a naturalized pathogen. *New Forests*, 48, 317-336.

765 TACF. (2012). Protocols for testing and evaluating B_3F_3 chestnut progeny. 2018, from
766 <https://www.acf.org/wp-content/uploads/2016/09/Testing-Task-Force-Protocol.pdf>

767 TACF. (2016). Inoculating chestnuts with the blight fungus from https://www.acf.org/wp-content/uploads/2016/09/Inoculating_Chestnuts_with_Blight.pdf?x27388

769 Thomas-Van Gundy, M. Bard, J., Kochenderfer, J., & Berrang P. (2016). Mortality, early
770 growth, and blight occurrence in hybrid, Chinese, and American chestnut
771 seedlings in West Virginia. Proceedings of the 20th Central Hardwood Forest
772 Conference, Columbia, MO.

773 VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. *Journal of Dairy*
774 *Science*, 91(11), 4414-4423.

775 Wang, G., Knapp, B., Clark, S., & Mudder, B. (2013). The silvics of *Castanea dentata* (Marsh.)
776 Borkh., American Chestnut, Fagaceae (Beech Family) *Southern Research Station*
777 *General Technical Report*, SRS-173, 1-18.

778 Westbrook, J. W. (2018). Merging backcross breeding and transgenic blight resistance to
779 accelerate restoration of the American chestnut: The American Chestnut Foundation's

780 breeding and selection plan 2015-2015, from https://www.acf.org/wp-content/uploads/2018/03/TACF_2015-2025_BreedingSciencePlan_updated2_9_18.pdf

781

782 Westbrook, J.W. (2019). A plan to diversify a transgenic blight-tolerant American chestnut

783 population using citizen science. *Plants People Planet*, *in press*.

784 Westbrook, J.W., & Jarrett, B.T. (2018). Accelerated blight resistance screening with small stem

785 assays. *The Journal of The American Chestnut Foundation*, 31(1), 22:24.

786 Xiao, C.L., Chen, Y., Xie S.Q., Chen K.N., Wang, Y., Han, Y., . . . Xie, Z. (2017). MECAT: fast

787 mapping, error correction, and de novo assembly for single-molecule sequencing reads.

788 *Nature Methods*, 14, 1072-1074.

789 Yoshida, G.M., Bangera, R., Carvalheiro, R., Correa, K., Figuero, R., Lhoorente, J.P., Yanez,

790 J.M. (2018). Genomic prediction accuracy for resistance against *Piscirickettsia salmonis*

791 in farmed rainbow trout. *G3: Genes, Genomes Genetics* 8(2), 719-726.

792 Zhang, B., Oakes, A. D., A.E., N., Baier, K. M., Maynard, C. A., & Powell, W. A. (2013). A

793 threshold level of oxalate oxidase transgene expression reduces *Cryphonectria*

794 *parasitica*-induced necrosis in a transgenic American chestnut (*Castanea dentata*) leaf

795 bioassay. *Transgenic Research*, 22, 973-982.

796 Zhang, A., Wang, H., Beyene, Y., Semagn, K., Liu, Y., Cao, S., Cui, Z., Ruan, Y., Burgeano, J.,

797 San Vincente, F., Olsen, M., Prasanna, B.M., Crossa, J., Yu, H., Zhang, X. (2017). Effect

798 of trait heritability, training population size and marker density on genomic prediction

799 accuracy estimation in 22 bi-parental tropical maize populations. *Frontiers in Plant*

800 *Science* 8, 1916.

801 **Table 1:** The effect of different parameterizations of the $H_{\tau, \omega}^{-1}$ inverse relationship matrix on family mean heritability (h^2_{family}), predictive
 802 ability of breeding values ($r_{g\hat{g}}$), and inflation of breeding values for canker severity among BC_3F_2 descendants of the 'Clapper' and
 803 'Graves' trees. The parameters τ and ω scale pedigree and genomic relationships, respectively, among genotyped individuals.

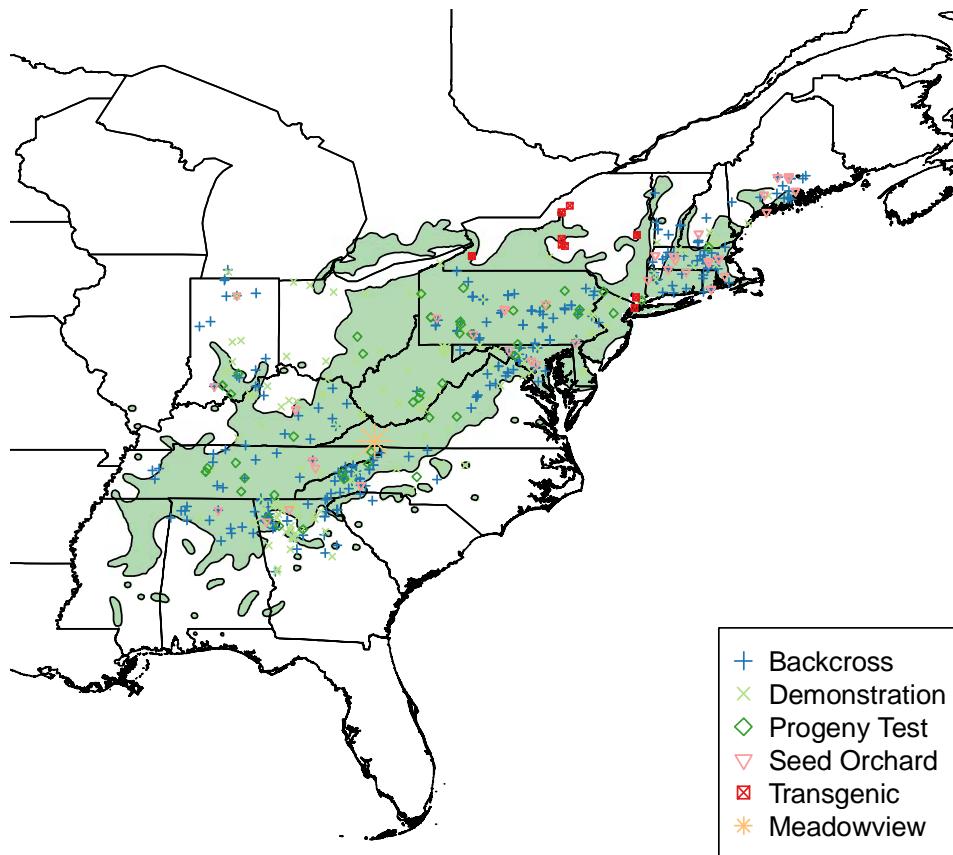
τ	ω	$h^2_{\text{family}} \pm \text{SE}$		Predictive ability ($r_{g\hat{g}}$)						Inflation of breeding values					
				Clapper			Graves			Clapper			Graves		
				Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min
3	1	0.67 ± 0.06	0.59 ± 0.09	0.79	0.78	0.75	0.63	0.60	0.58	1.16	1.09	0.98	1.60	1.27	0.94
2	1	0.64 ± 0.06	0.50 ± 0.10	0.76	0.74	0.72	0.62	0.60	0.57	1.10	1.03	0.92	1.50	1.19	0.88
1	1	0.54 ± 0.07	0.34 ± 0.09	0.71	0.70	0.67	0.62	0.60	0.58	1.03	0.95	0.84	1.43	1.14	0.84
3	0	0.73 ± 0.05	0.68 ± 0.08	0.70	0.68	0.65	0.46	0.43	0.40	1.53	1.39	1.28	2.33	1.69	1.05
2	0	0.71 ± 0.05	0.65 ± 0.09	0.65	0.63	0.60	0.43	0.40	0.36	1.48	1.33	1.21	2.26	1.63	0.97
1	0	0.68 ± 0.05	0.58 ± 0.09	0.56	0.55	0.51	0.38	0.35	0.31	1.39	1.21	1.06	2.13	1.54	0.87
3	-1	0.75 ± 0.05	0.72 ± 0.08	0.65	0.63	0.60	0.42	0.39	0.34	1.66	1.48	1.32	2.71	1.92	1.11
2	-1	0.74 ± 0.05	0.69 ± 0.08	0.60	0.58	0.55	0.39	0.36	0.31	1.57	1.37	1.19	2.58	1.84	1.03
1	-1	0.72 ± 0.05	0.65 ± 0.09	0.52	0.50	0.46	0.36	0.33	0.28	1.37	1.15	0.95	2.31	1.69	0.92
0	0	0.56 ± 0.06	0.35 ± 0.10	0.35	0.33	0.29	0.44	0.41	0.38	0.63	0.51	0.40	1.45	1.13	0.73

804 Note: The pedigree relationship matrix is equivalent to $\tau = \omega = 0$.

805

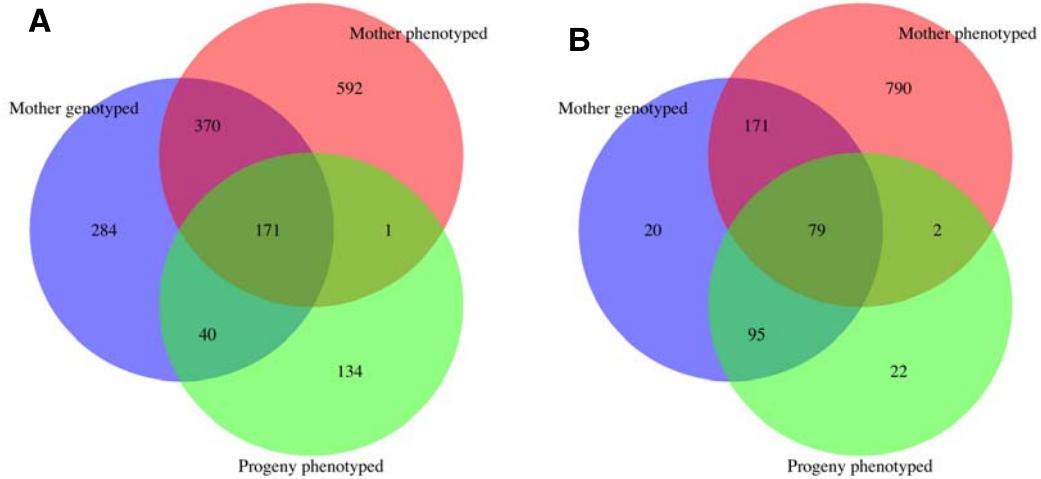
806 **Table 2:** Comparison of the predictive ability of different genomic selection methods. Predictive ability was assessed with ten-fold
 807 cross as the correlation between the predicted and observed BC₃F₃ family mean canker severity ($r_{y\hat{g}}$). To estimate variation in
 808 predictive ability, the cross validation repeated ten times with different random partitions of the training population. In the Bayes B
 809 and Bayes C methods, the proportion of markers with non-zero effects varied between cross validation replicates.

	Clapper						Graves					
	Proportion of markers included			Predictive ability ($r_{y\hat{g}}$)			Proportion of markers included			Predictive ability ($r_{y\hat{g}}$)		
	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg	Min
HBLUP	1	1	1	0.30	0.28	0.25	1	1	1	0.19	0.15	0.11
ABLUP	0	0	0	0.24	0.21	0.18	0	0	0	0.10	0.06	0.02
Bayes C	0.54	0.27	0.14	0.28	0.25	0.20	0.49	0.31	0.16	0.22	0.16	0.10

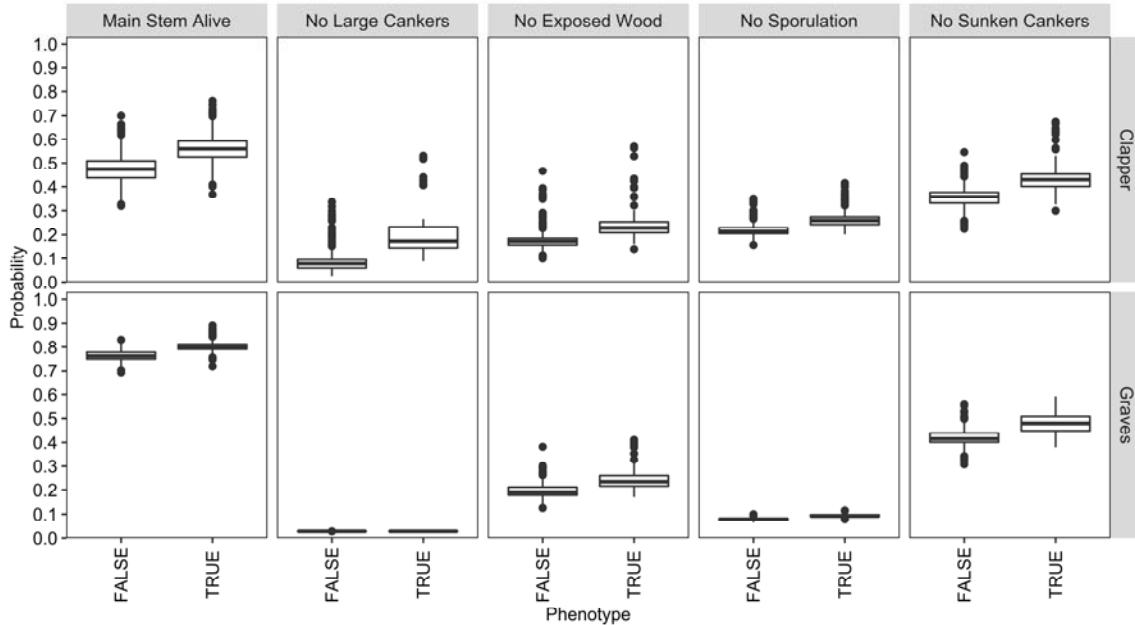

810
 811

812 **Table 3:** Comparison of the heritability and predictive ability of binary blight phenotypes of BC₃F₂ trees. Predictive ability was
 813 assessed with ten-fold cross validation as the correlation between phenotype probabilities when the phenotype was observed v. left
 814 out. The ten-fold cross validation was repeated ten times with different random partitions of the training population to estimate
 815 variation in predictive ability.

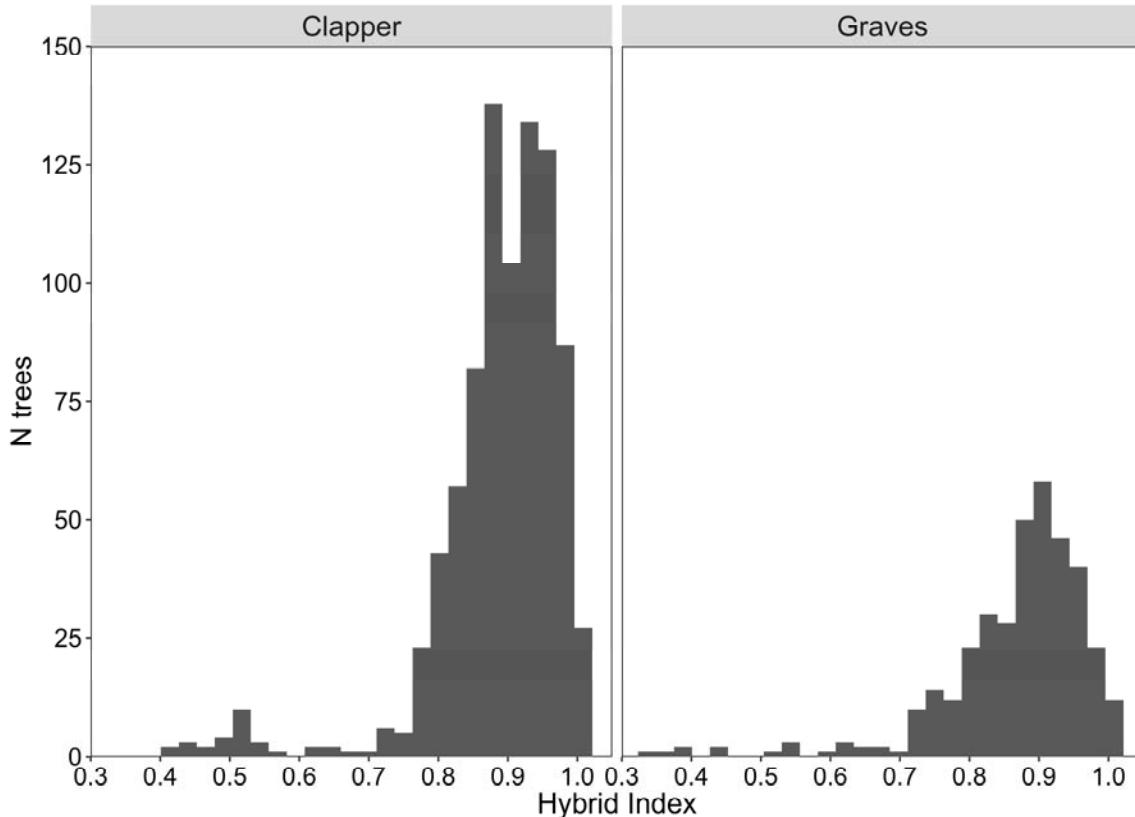
	N TRUE	N FALSE	Pedigree $h^2 \pm SE$	H-matrix $h^2 \pm SE$	Pedigree predictive ability			H-matrix predictive ability		
					Max	Avg	Min	Max	Avg	Min
<i>Clapper</i>										
Main stem alive	645	489	0.07 ± 0.04	0.08 ± 0.04	0.78	0.75	0.67	0.93	0.91	0.89
No large cankers	55	577	0.20 ± 0.10	0.25 ± 0.09	0.78	0.74	0.68	0.91	0.88	0.83
No sporulation	151	483	0.03 ± 0.07	0.07 ± 0.06	0.52	0.44	0.27	0.90	0.86	0.81
No exposed wood	109	519	0.11 ± 0.08	0.12 ± 0.06	0.80	0.70	0.60	0.94	0.92	0.88
No sunken cankers	245	388	0.08 ± 0.06	0.09 ± 0.05	0.76	0.72	0.67	0.92	0.90	0.89
<i>Graves</i>										
Main stem alive	872	170	0.08 ± 0.06	0.06 ± 0.06	0.42	0.37	0.34	0.84	0.80	0.73
No large cankers	28	843	0.05 ± 0.24	0	0.32	0.26	0.17	NA	NA	NA
No sporulation	70	802	0.04 ± 0.12	0.05 ± 0.11	0.28	0.21	0.13	0.60	0.55	0.50
No exposed wood	191	681	0.04 ± 0.05	0.07 ± 0.05	0.36	0.31	0.25	0.95	0.94	0.92
No sunken cankers	412	457	0.07 ± 0.04	0.07 ± 0.05	0.52	0.46	0.40	0.89	0.87	0.86


816 Note: predictive ability using the H-matrix was not assessed for presence/absence of large cankers in the 'Graves' population
 817 because the trait heritability was zero.

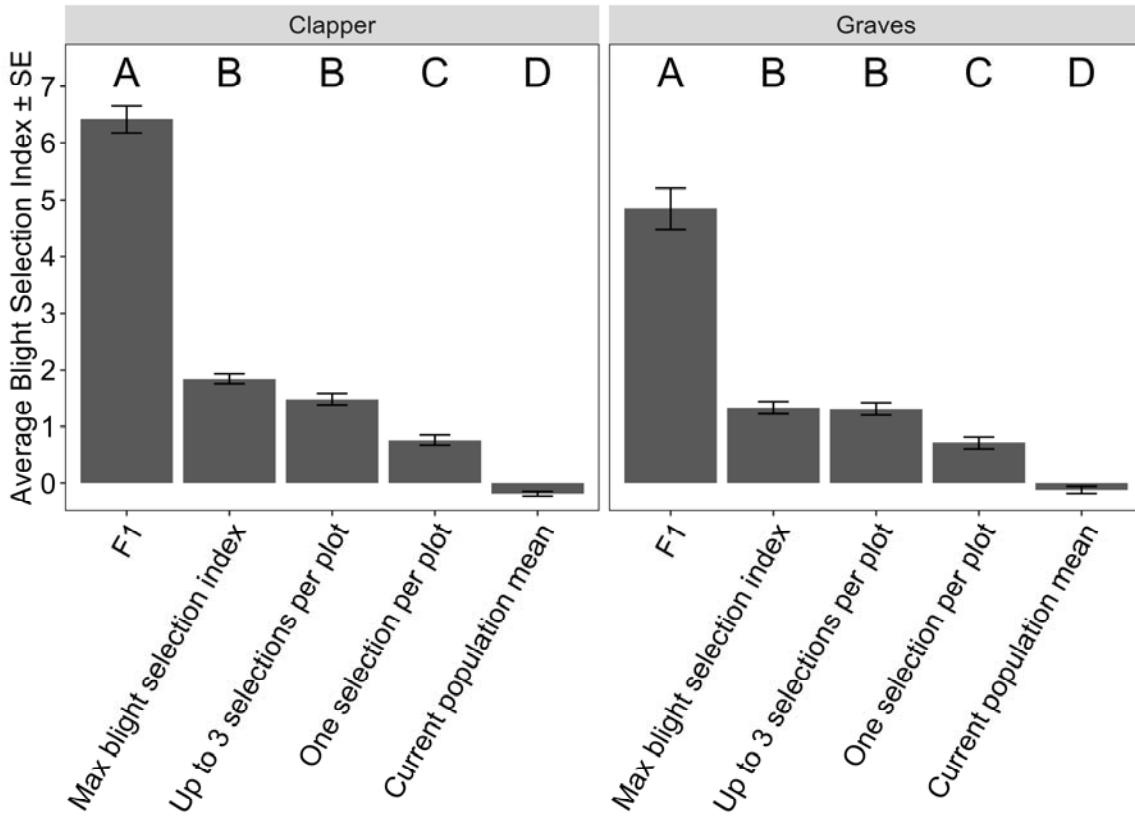
819 **Figure legends**


820

821 **Figure 1: Map of The American Chestnut Foundation orchard locations across the**
822 **native range of *Castanea dentata*.**

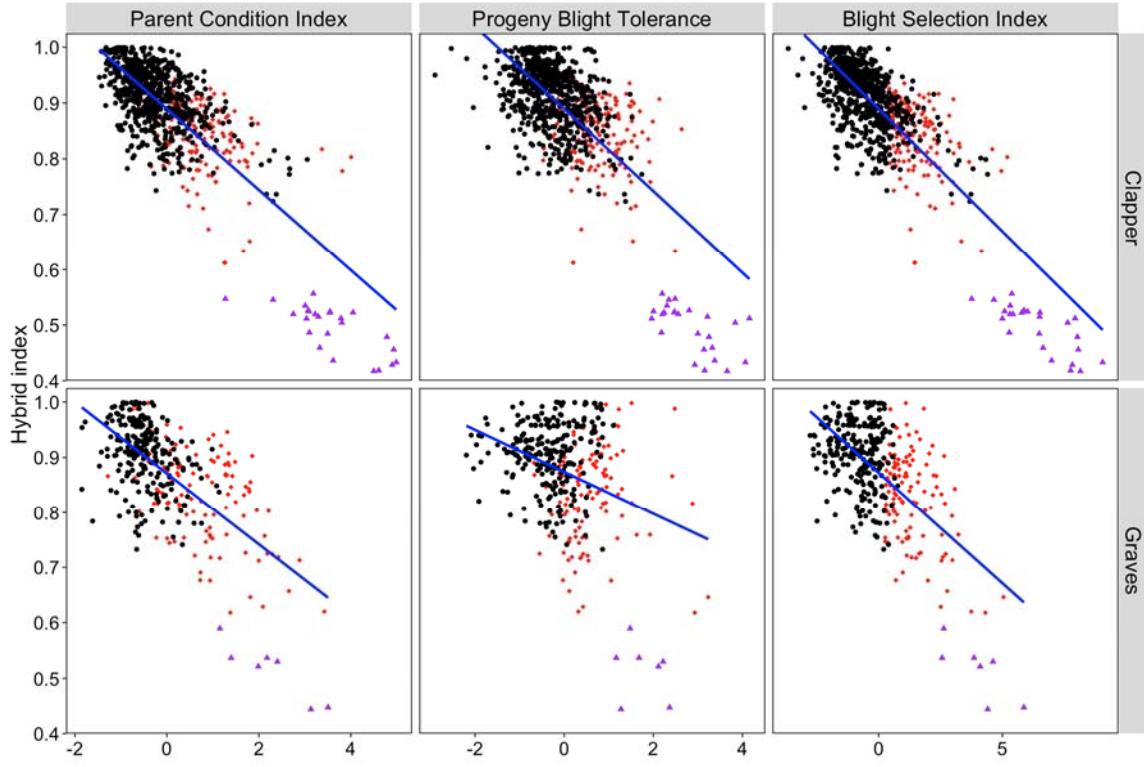

823

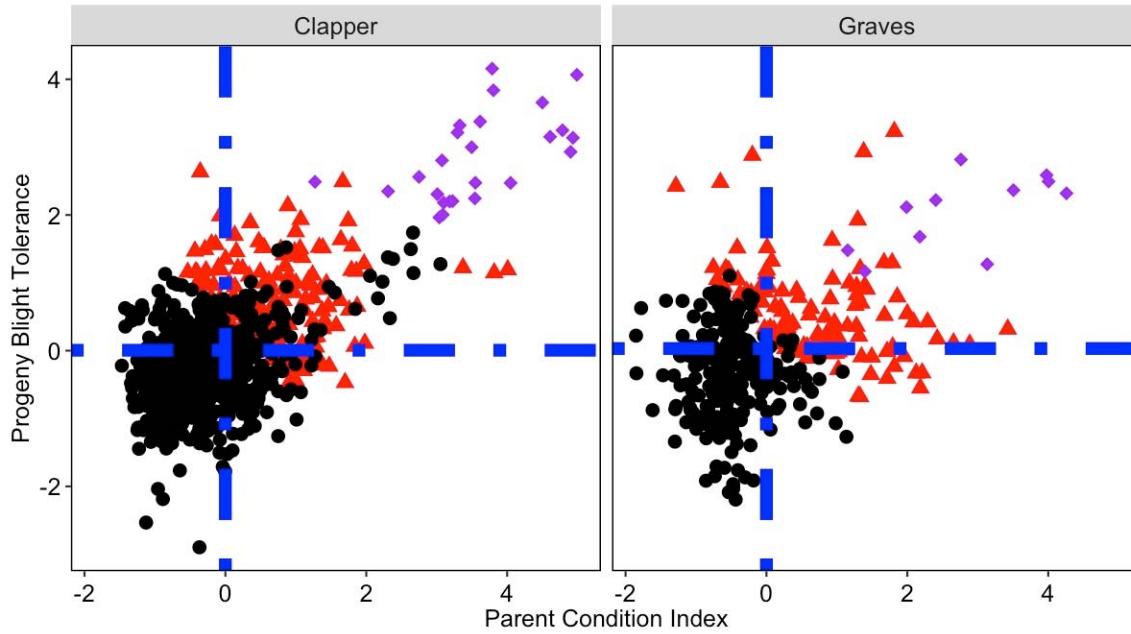
824 **Figure 2:** Numbers of BC₃F₂ descendants of 'Clapper' or 'Graves' trees that were
825 phenotyped for five traits indicative of blight tolerance (Mother phenotyped), whose
826 BC₃F₃ progeny were phenotyped (Progeny phenotyped), and/or were genotyped for
827 genomic selection (Mother genotyped).


828

829 **Figure 3:** Probabilities that BC₃F₂ trees will have a phenotype indicative of blight
830 tolerance given trees' genotypes versus trees' observed phenotypes for 'Clapper' and
831 'Graves' BC₃F₂ trees.

832

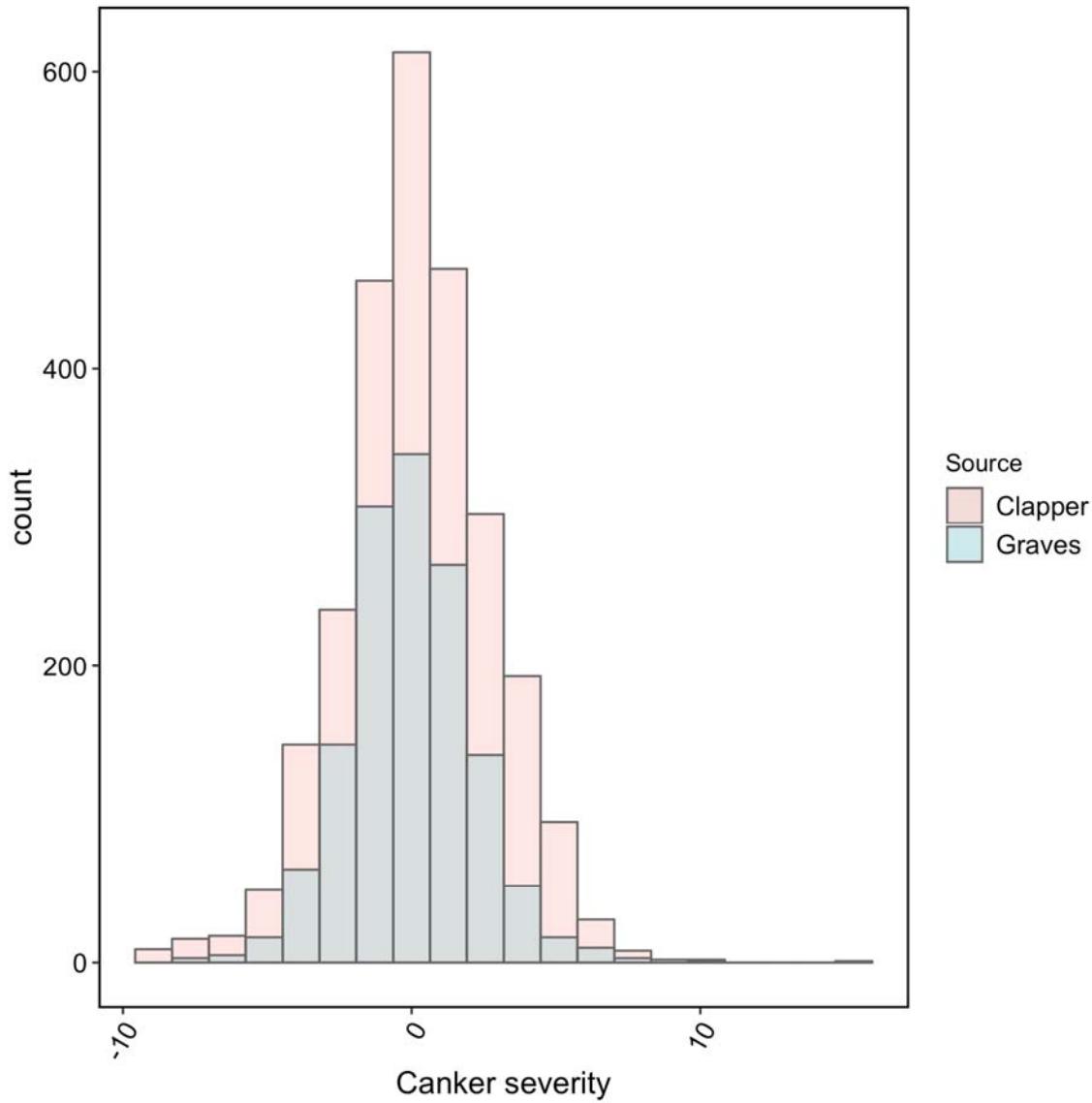

833 **Figure 4:** Distribution of hybrid index values for BC₃F₂ descendants of 'Clapper' and
834 'Graves'. Hybrid index values indicate the proportion of hybrid genomes inherited from
835 *C. dentata* v. *C. mollissima* (1 = 100% *C. dentata*).


836

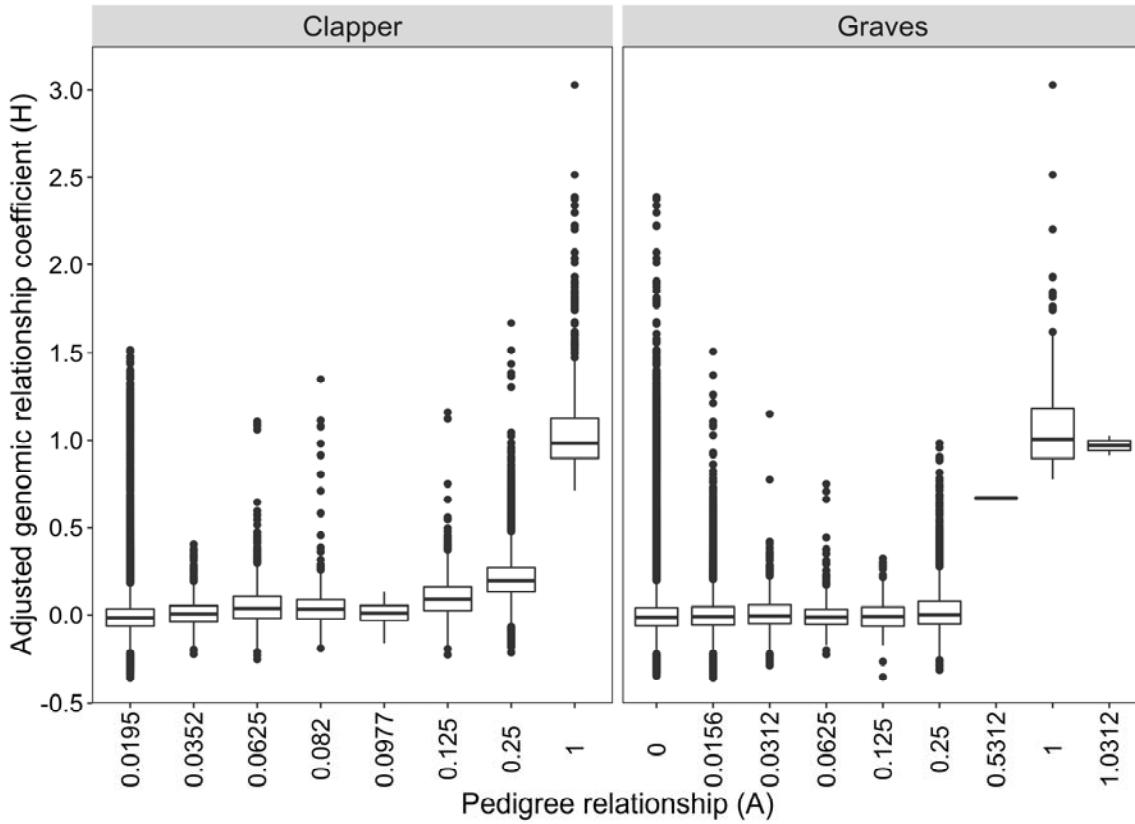
837 **Figure 5:** Comparison of average Blight Selection Indices for selected 'Clapper' and
838 'Graves' BC₃F₂ trees under different selection scenarios. Selection scenarios included
839 making one selection per 150 half sibs planted in each seed orchard subplot (one
840 selection per plot); selecting an equal number of trees with the maximum Blight
841 Selection Index (max blight selection index); and making up to three selections per plot
842 (up to three selections per plot). The average Blight Selection Index for the selected
843 BC₃F₂ trees was compared to that of the current population and pseudo- F_1 trees (i.e.,
844 progeny of BC₃ trees outcrossed to *C. mollissima*). Letters above the bars indicate the
845 significance of differences in average Blight Selection Index (Tukey test, P < 0.05).

846

847 **Figure 6:** Proportion of Clapper and Graves BC₃F₂ genomes inherited from *C. dentata*
848 (hybrid index) versus blight-tolerance. Blight-tolerance was assessed via the Parent
849 Condition Index (a sum of phenotype probabilities for in late-developing blight trait on
850 BC₃F₂ stems), Progeny Blight Tolerance (breeding values for average progeny canker
851 severity, reversed in scale), and Blight Selection Index (Parent Condition Index +
852 Progeny Blight Tolerance). Red triangles are BC₃F₂ selections (up to three selections
853 per 150-tree subplot), purple diamonds are the pseudo-F₁ progeny of BC₃ trees
854 outcrossed to *C. mollissima*, and black dots are inferior trees to cull. Blue lines are the
855 least squares regressions between hybrid index and blight-tolerance traits.


856

857 **Figure 7:** Relationship between Parent Condition Index and Progeny Blight Tolerance
858 for 'Clapper' and 'Graves' populations. Red triangles are BC_3F_2 selections with up to
859 three selections per seed orchard plot, purple diamonds are pseudo- F_1 progeny of BC_3
860 trees outcrossed to *C. mollissima*, and black dots are inferior trees to cull. Blue dashed
861 lines are the population means for Parent Condition Index and Progeny Blight Tolerance.


862

863 **Figure A1:** Pictures of subjective canker ratings and canker lengths obtained when
864 phenotyping American chestnut BC₃F₃ trees for blight-tolerance.

865

866 **Figure A2:** Distribution of canker severity values for BC_3F_3 descendants of 'Clapper' and
867 'Graves.'

869 **Figure A3:** Comparison of pedigree and adjusted genomic relationship coefficients for
870 BC₃F₂ descendants of 'Clapper' and 'Graves.' Genomic relationship coefficients were
871 centered on their expected pedigree values with pedigree and genomic relationships
872 scaled equally ($\tau = \omega = 1$).

873

874 **Figure A4:** A pure *Castanea dentata* (A) as compared with a *C. dentata* BC₃F₂ hybrid
875 selections (B) and a pseudo-F₁ (*C. dentata* BC₃ x *C. mollissima*) (C).