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Abstract

Oncogenic viruses like human papilloma virus (HPV) or Epstein Barr virus (EBV) are a major cause of human
cancer. Viral oncogenesis has a direct impact on treatment decisions because virus-associated tumors can
demand a lower intensity of chemotherapy and radiation or can be more susceptible to immune check-

point inhibition. However, molecular tests for HPV and EBV are not ubiquitously available.

We hypothesized that the histopathological features of virus-driven and non-virus driven cancers are suf-
ficiently different to be detectable by artificial intelligence (Al) through deep learning-based analysis of
images from routine hematoxylin and eosin (HE) stained slides. We show that deep transfer learning can
predict presence of HPV in head and neck cancer with a patient-level 3-fold cross validated area-under-
the-curve (AUC) of 0.89 [0.82; 0.94]. The same workflow was used for Epstein-Barr virus (EBV) driven
gastric cancer achieving a cross-validated AUC of 0.80 [0.70; 0.92] and a similar performance in external
validation sets. Reverse-engineering our deep neural networks, we show that the key morphological fea-

tures can be made understandable to humans.

This workflow could enable a fast and low-cost method to identify virus-induced cancer in clinical trials or
clinical routine. At the same time, our approach for feature visualization allows pathologists to look into
the black box of deep learning, enabling them to check the plausibility of computer-based image classifi-

cation.
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Introduction

Oncogenic viruses cause approximately 15% of malignant tumors in humans.! Viruses can induce cancers
with different histology and across different anatomic sites including squamous cell carcinomas (e.g. head
and neck, cervix), adenocarcinomas (e.g. gastric), sarcomas (e.g. Kaposi), lymphomas (e.g. Burkitt) and
hepatocellular carcinoma. Virus-driven tumors are an important health issue in western countries, but
their global health impact is even higher as 80% of all virus-driven cancers occur in developing nations.?
Their incidence is expected to increase drastically in the next decade in developing and economically de-
veloped countries.>* Some types of cancer are almost always virally driven (e.g. cervical cancer) while
others can have viral or non-viral driver mechanisms (e.g. head and neck cancer or gastric cancer). In these
cases, it is important to determine if a patient’s tumor has a viral origin because if this is the case, a dif-
ferent clinical management may be warranted and virus status might influence the choice of a clinical trial
for that particular patient. For example, in the case of head and neck squamous cell carcinoma (HNSC),
patients with human papilloma virus (HPV)-positive tumors have superior overall survival compared to
patients with HPV-negative tumors of the same stage and can benefit from treatment de-escalation.’
Likewise, patients with Epstein-Barr-Virus (EBV) related gastric adenocarcinoma tend to have a better

prognosis and EBV positivity has been suggested as a biomarker for immunotherapy response.®

The gold standard method for detection of viruses in human cancer is dependent on the tumor type. In
head and neck cancer, overexpression of p16 as assessed by immunohistochemistry is the most commonly
used surrogate marker for virus presence. However, p16 is neither perfectly sensitive nor specific’, and
some centers also use HPV polymerase-chain reaction, in-situ hybridization, or targeted DNA sequencing
for HPV detection in tumor tissue. While these tests are more specific, they are also more expensive and
time consuming. Presence of latent EBV infection in gastric cancer is usually measured using EBV-encoded
RNA in-situ hybridization in pathology samples, which has a relatively high sensitivity and specificity but

requires dedicated testing equipment and expertise for accurate interpretation.
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In the present study, we hypothesized that morphological features correlating with the presence of vi-
ruses in solid tumors can be deduced from hematoxylin and eosin (H&E) histology, which is routinely
available for almost any patient with a solid tumor. As a tool for feature extraction from images, we used
deep learning, a form of artificial intelligence (Al), which has previously been used to detect high-level

morphological features directly from histological images.®*°
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Methods

Ethics and data sources

All experiments were conducted in accordance with the Declaration of Helsinki and the International Eth-
ical Guidelines for Biomedical Research Involving Human Subjects. Anonymized scanned whole slide im-
ages were retrieved from The Cancer Genome Atlas (TCGA) project through the Genomics Data Commons
Portal (https://portal.gdc.cancer.gov/). From this source, we retrieved images of head and neck squamous

) and gastric adenocarcinoma (stomach adenocarcinoma, STAD)*. Exclusion crite-

cell carcinoma (HNSC
ria for patients in these cohorts were missing values in virus status, corrupt image files or lack of tumor
tissue on the whole slide image. For TCGA-HNSC, images from N=450 patients were downloaded of which
N=38 met exclusion criteria, leaving images from N=412 patients for further processing. For TCGA-STAD,
images from N=416 patients were downloaded of which N=99 met exclusion criteria, leaving N=317 pa-
tients for further processing. Furthermore, we retrieved anonymized archival tissue samples of N=105
patients with HNSC from the University of Chicago Medicine Pathology archive (Chicago, lllinois, USA;
“UCH-HNSC”) and anonymized tissue samples of N=197 patients with gastric cancer from the Kanagawa
Cancer Center Hospital (Yokohama, Japan; “KCCH-STAD”) as described before®3. For HNSC, HPV status was
determined as described by Campbell et al.* (by consensus of DNA sequencing® and RNA sequencing®®).
For TCGA-STAD, EBV status was retrieved from genomic subtypes as described by Liu et al.'”. For samples

in UCH-HNSC, HPV status was defined by polymerase-chain reaction for the viral genes E6 and E7. For

tumor samples in KCCH-STAD, EBV status was defined by EBV-encoded RNA in-situ hybridization.®

Deep transfer learning workflow

All histological slides were reviewed and tumor regions were manually delineated in QuPath'?, tessellated
into tiles of 256 x 256 um? which were subsequently downsampled to 224 x 224 px, yielding an effective

magnification of 1.14 um/px. These tumor tiles were used for deep transfer learning in MATLAB R2019a
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as described before®°

. We used a modified VGG19 deep convolutional neural network® which was pre-
trained on ImageNet (http://www.image-net.org, architecture shown in Suppl. Table 1). VGG19 was cho-
sen because of its previously proven performance in detecting multiple tissue components in human can-
cer histology® and because of its compatibility with the Deep Dream method (see below). All TCGA cohorts
were randomly split into three equal subsets at patient level. A VGG19 classifier was trained on these data
in a three-fold cross-validated way. This procedure yielded three independent classifiers which were eval-

uated on their respective test set of held-out patients. For each tumor type, the classifier was subse-

quently re-trained on the whole TCGA set and evaluated on an external test set.

Feature visualization

To trace back deep-learning based predictions to human-understandable morphological patterns in his-
tology, we used deep-dream-based visualization of output layer neurons for each class. We used a
MATLAB implementation (https://de.mathworks.com/help/deeplearning/ref/deepdreamimage.html) of
the original DeepDream algorithm (https://github.com/tensorflow/tensorflow/blob/master/tensor-
flow/examples/tutorials/deepdream/deepdream.ipynb) with pyramid level 6 and 500 iterations and sub-
sequently auto-optimized colors by histogram stretching in IrfanView 4.52 (https://www.irfanview.com/).
Color optimization was done with identical parameters for all deep-dream-images generated by a given

network.

Statistics and data presentation

Classifier performance was assessed by the Area under the Receiver Operating Curve (AUC under the ROC)
with sensitivity (true positive rate, TPR) plotted on the vertical axis and 1 — specificity (false positive rate,
FPR) plotted on the horizontal axis. 95% confidence intervals for the AUC were calculated with 500-fold
bootstrapping with the “bias corrected and accelerated percentile method” % unless otherwise stated.

For three-fold cross validated experiments, the mean of AUCs and the mean of confidence interval


https://doi.org/10.1101/690206
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/690206; this version posted July 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

95 boundaries from all three classifiers is given if not otherwise noted. The ROC procedure is a widely used
96 technique to assess the power of a classifier for any possible cutoff value of a numerical test. In this study,
97  the cutoff for “percentage of virus-positive image tiles” was varied, yielding different sensitivity/specificity

98  pairs which are plotted as ROC curves.

99  Data availability

100  Images from the TCGA cohorts are available at https://portal.gdc.cancer.gov/. Our source codes are avail-

101  able at https://github.com/jnkather/VirusFromHE.

102
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103 Results

104 Deep learning detects virus presence in squamous cell carcinomas and adenocarcinomas

105  We hypothesized that the presence of human papillomavirus (HPV) can be detected in head and neck
106  squamous cell carcinoma (HNSC, Figure 1a) and that the presence Epstein-Barr-Virus (EBV) can be de-
107  tected in gastric adenocarcinoma (STAD, Figure 1b) directly from histology by deep learning with a convo-
108 lutional neural network (CNN). We used hematoxylin and eosin (H&E) stained tissue slides of patients
109  included in the multicenter TCGA cohort (Suppl. Table 2) and trained a deep learning classifier in a patient-
110 level three-fold cross-validated way (Figure 1c), followed by re-training on the whole cohort (Figure 1d).
111 In head and neck cancer (N=412 patients, 12% HPV positive), this yielded an average patient-level AUC of
112  0.89[0.82; 0.94] (Figure 1e) and applying the same workflow to detect EBV in gastric cancer (N=317 pa-
113  tients from TCGA, 8% EBV positive, Suppl. Table 3), a patient-level three-fold cross-validated neural net-
114  work achieved an AUC of 0.80 [0.70; 0.92] (Figure 1f). Together, these results show that deep learning can
115 robustly distinguish virus-induced (“virus present”) from non-virus-induced tumors (“virus not present”)

116  across different histologies and anatomic sites.

117  Noisy tile level data yields high patient-level accuracy in external validation cohorts

118 To assess the robustness of the classifiers, we used the neural network that was trained on the entire
119  TCGA patient cohorts for head and neck and gastric cancer, respectively, and evaluated the classifiers on
120  external validation cohorts. Non-overlapping tissue tiles of 256 um edge length were used to predict a
121 “virus probability score” which classified each tile as either virus positive or negative (derived from a tu-
122 mor that was virally induced or derived from a tumor that was non-virally induced). These predictions
123  were subsequently pooled on a patient level as “fraction of positive tiles” with varying thresholds accord-
124  ing to the Receiver Operating Characteristic procedure (Figure 2a). Because each tile in the training set

125  was assigned the label of the corresponding patient (obtained via bulk testing of tissue) and the tiles
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126 contained a multitude of different tissue types (tumor epithelium, stroma, necrosis, mucus, and others),
127  this training set was inherently noisy. Correspondingly, predictions for virus-negative tiles in the EBV test-
128  ing set were noisy with many false positive tile-level predictions (Figure 2b, right-hand side). However,
129 tiles from virus-positive patients were mostly classified correctly (Figure 2a, left panel), enabling robust
130 classification after pooling tile-level predictions on a patient level. AUC for EBV detection in the KCCH-
131 STAD cohort (N=197 patients, 5% EBV positive) was 0.81 [0.69; 0.89] (Figure 2c; trained on TCGA-STAD,
132  tested on KCCH-STAD). We manually assessed the histomorphology of tissue tiles in the KCCH-STAD co-
133 hort (Figure 2d, more examples are available at http://doi.org/ 10.5281/zenodo0.3247009) and found that
134  false positive tiles often presented with lymphocyte-rich stroma, a known morphological hallmark of EBV-
135 positive gastric cancer.?* Thus, we conclude that misclassifications of individual image tiles were due to

136  plausible human-understandable morphological features.

137  Similarly, we validated the virus detector for HPV trained on TCGA-HNSC (N=412 patients, 12% HPV posi-
138  tive) in our in-house cohort UCH-HNSC from University of Chicago (N=105 patients, 49% HPV positive).
139  This cohort had two main differences compared to the TCGA cohort which might negatively affect classi-
140  fier performance: first, a polymerase-chain reaction for high-risk HPV viral genes was used to determine
141  virus status. Second, this cohort was artificially balanced for HPV status and thus had a much higher prev-
142  alence of HPV-induced cancer than TCGA. In spite of these stark differences, our classifier achieved an
143  AUC of 0.70 [0.66; 0.74] for HPV prediction in UCH-HNSC. Manual review of representative tissue tiles by
144  an expert pathologist showed that tiles with a high HPV prediction score were “carcinomas with large
145 nested, broad-based invasion and relative decrease in cytoplasmic keratinization, resulting in a blue (cool-
146  toned) appearance”. This is compatible with previously known morphological features of HPV-positive
147  HNSC.? Tiles with a low HPV prediction score were “carcinomas with small nested invasion and eosino-

148  philic (pink or warm-toned) cytoplasmic keratinization”. Thus, we conclude that in HNSC as well as in
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149  gastric cancer, predictions of viral status in individual tissue tiles by a deep neural network were plausible

150 to expert pathologists.

151  Together, these data show that despite noisy training data and tile-level misclassifications, patient-level

152 prediction of virus status in HNSC and gastric cancer can reach a high accuracy.

153  Reverse-engineering trained neural networks

154  Attempting to characterize more precisely which morphological features may have been used by the neu-
155 ronal network to detect virus-induced cancer, we used a feature-visualization method and discussed the
156  results with a panel of expert pathologists. We hypothesized that reverse-engineering features from neu-
157  ral networks could be used as a plausibility check for deep learning, completing the cycle “human to Al
158  and back”. In an exploratory study, we employed the Deep Dream algorithm which uses a trained neural
159  network (Figure 3a) to create pseudo-images for each output class in the classification layer (Figure 3b).
160 This approach yielded “pseudo-histology” images for HPV positive and negative HNSC (Figure 3b) and EBV
161 positive and negative gastric cancer (Figure 3c), discussing the resulting images with five pathologists. In
162  general, pathologists described the images as “beautiful” and “psychedelic”. Relating the aspect of
163 pseudo-histology in histological terms, they described the features as “a sheet of small nodules composed
164  of bright, predominantly warm colors” (HPV negative HNSC, Figure 3c, left panel), “large nests with
165 rounded borders composed of dark, predominantly cool colors punctuated by red dots” (HPV positive
166  HNSC, Figure 3c, right panel) and “ill-defined dark green whorls punctuated by blue dots and wisps of
167  yellow” (EBV negative gastric cancer [STAD], Figure 3d, left panel), “overlapping sheets with reticulated
168  patterns in pastel colors”, potentially resembling “lymphoid stroma” (EBV positive gastric cancer, Figure

169  3dright panel).

170  Together, these data show that deep learning can plausibly sort tissue tiles (Figure 2d) and yields a high
171  classification performance for virus presence (Figure 2c). The actual morphological patterns used for this

10
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172  classification may be different from the ones that humans typically use but can be visualized in a way that
173 might be understandable for humans through the Deep Dream algorithm (as has been shown in non-
174  medical applications?®). Based on this, we conclude that, by analyzing tile-level classification and possibly
175 by analyzing Deep Dream images, human observers can get an insight about morphological patterns used
176 by deep neural networks, allowing for quality control and possibly performing human classification per-

177  formance through machine-identified morphological features.

178
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179 Discussion

180  Virus-induced cancers mostly occur in developing countries, making them neglected diseases on a global
181  scale. Some of these virus-driven cancers are under-tested for in clinical routine. Existing wet lab assays
182  to test for virus presence (such as sequencing) are costly, require a high level of expertise (such as in-situ
183 hybridization) and not all assays achieve a perfect classification accuracy (such as p16 immunohistochem-
184  istry*%). Here, we present a deep-learning-based low-to-no-cost assay for routine detection of virus pres-
185  ence from ubiquitously available histology in two major tumor types of very different histology. We
186  demonstrate that classification accuracy is as high as AUC 0.81 when trained with a few hundred patients.
187  Our approach relies on digitally scanned images of hematoxylin & eosin stained tissue slides. The cost to
188  scan such a histology slide is well below $10 at low throughput and considerably lower at high through-

189  put'®, potentially enabling noticeable cost savings for virus testing of tumor tissue in the future.

190 Atthe moment, sensitivity and specificity of our classifier is lower than in routine diagnostic tests: for EBV
191  detection in gastric cancer by EBV-encoded RNA in-situ hybridization, one study reported a sensitivity of
192 100% at a specificity of 90%.% For HPV detection in HNSC by p16 immunohistochemistry, another study
193 reported a sensitivity of 97.4% and a specificity 93.75%.2* As shown in Figure 1e-f and Figure 2c, the deep
194  learning classifier approaches these gold standard methods but is still less sensitive and specific. However,
195  sensitivity and specificity of our method are higher than those in previous studies of deep-learning based

196  prediction of molecular features from histology.®%®

197  In our experiments, the deep learning classifiers reached a high cross-validated performance which we
198  could replicate in an external validation set for gastric cancer (Figure 2c). In the multicenter TCGA-HNSC
199  cohort, cross-validated HPV detection performance was high, but dropped in the external validation co-
200  hort UCH-HNSC. This may be related to the relatively small patient size of this cohort or due to different

201  gold standards for HPV detection (consensus of DNA and RNA sequencing in TCGA-HNSC and polymerase-

12
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202  chainreaction in UCH-HNSC). Most probably, however, this is due to the very different prevalence of virus-
203 induced cancers in the training set and in the test set. Whereas the training set (TCGA-HNSC) reflected
204  the natural prevalence of HPV-positive cancers, the test set (UCH-HNSC) was artificially balanced to a
205 prevalence of 50%. This may have negatively affected classifier performance as has been described for

206  mutation prediction in lung cancer®.

207  According to our experience from similar tasks, it can be expected that training on larger clinical cohorts
208  will likely improve performance of our method. Similarly, further optimizing hyperparameters and neural
209  network architectures will likely yield a performance boost. Also, further dividing deep learning classifiers
210 by anatomical sub-sites of tumors (e.g. oropharyngeal or hypopharyngeal) will likely increase perfor-
211 mance. In the end, this image-based biomarker, like all biomarkers, needs to be tested in prospective

212  clinical trials before widespread clinical use.

213 A new aspect of our study is the approach “human to Al and back”: humans (expert pathologists) deline-
214  ated tumor tissue in whole slide sections and thus enabled the Al to detect virus presence in histological
215 images. In turn, using deep-dream-based feature visualization, we show that the Al can in principle inform
216  a human observer about morphological features of interest. Feature visualization by Deep Dream and
217  similar methods?’ is well-established to understand the inner workings of deep neural networks. Yet, to
218  our knowledge, this has never been systematically used for pathologist-Al-crosstalk. Thus, our study
219  shows for the first time that deep learning algorithms can not only be used as tools to facilitate diagnostic

220  routine but could also enable human observers to get a different viewpoint on histomorphology.

221
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222 Figures

a head and neck squamous cell carcinoma (HNSC) b stomach adenocarcinoma (STAD)
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223  Figure 1: Detection of virus-induced cancer from histological routine images. (a) A representa-
224 tive sample (one of N=412 patients) of the TCGA-HNSC training cohort with a manual outline
225  around the tumor tissue, (b) a representative sample of the TCGA-STAD cohort (1 of N=317 pa-
226  tients), scale barsin a and b are 5000 um. (c) We trained and tested classifiers with patient-level
227  three-fold cross-validation. (d) Subsequently, we re-trained on the whole cohort and tested in an
228  external validation cohort. (e) Receiver operating characteristic (ROC, horizontal axis is 1-speci-
229  ficity and vertical axis is sensitivity) for HPV detection in TCGA-HNSC (N=412 patients), x marks
230 the performance of the current clinical gold standard (p16 immunohistochemistry) (f) ROC for
231  EBV detection in TCGA-STAD (N=317 patients), x marks the performance of EBV-encoded RNA
232 (EBER) in-situ hybridization, the diagnostic gold standard. Each ROC curve corresponds to one
233 cross-validation run.
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234

235  Figure 2: Tile-level classification yields high patient-level performance. (a) Schematic of the pre-
236  diction process: in a histological whole slide image, non-overlapping areas of 256 x 256 um
237  (“blocks” or “tiles”) were used to predict virus status and subsequently pooled on a patient-level
238 by fraction of positive tiles. Image credit for icon https://twemoji.twitter.com (b) For a subset of
239  tiles in the KCCH-STAD validation cohort, the predicted EBV score is plotted for true EBV-positive
240  (left) and EBV-negative tiles (right). A small random symmetric x-y-offset was added to each point
241  for better visibility. While most positive tiles attained a high EBV score, prediction of EBV-nega-
242 tive tiles was noisy. More examples and more information about tile preprocessing is available at
243 http://doi.org/10.5281/zenodo.3247009. (c) Despite noisy tile-level classification, patient-level
244  prediction reached a high classification accuracy with an AUC of 0.81 in the independent KCCH-
245  STAD validation set. (d) Representative tiles from the top and bottom quantile of EBV predictions.
246  False positive tiles are lymphocyte-rich, which is a hallmark of virus-driven cancer and thus makes
247  these misclassifications plausible.
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249  Figure 3: Feature visualization of viral morphological signatures in histological images by Deep
250 Dream. (a) We used a modified VGG19 deep neural network that reads images in through the
251  input layer and outputs predictions in a two-neuron output layer. (b) Information flow from left
252  torightis used to classify images. The Deep dream algorithm uses the reverse direction to itera-
253 tively create pseudo images for each output neuron. (c) Example of Deep dream pseudo-images
254  for HPV negative and positive HNSC with subjective manual description on morphological fea-
255  tures by expert pathologists, (b) corresponding images for EBV in STAD.
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