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ABSTRACT 23 

Understanding the adaptive responses of individual bacterial strains is crucial for microbiome 24 

engineering approaches that introduce new functionalities into complex microbiomes, such as 25 

xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic 26 

reprogramming of the cell, which can be captured by multi-omics, but this data remains 27 

formidably challenging to interpret and predict. Here we present a new approach that combines 28 

genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are 29 

common tools for studying dynamic population behavior. As a realistic demonstration, we 30 

developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate 31 

bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil 32 

microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during 33 

growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic 34 

processes from the integrated model closely matched experimental observations. We conclude 35 

that integrative and network-based analysis can help build predictive models that accurately 36 

capture bacterial adaptation responses. Further development and testing of such models may 37 

considerably improve the successful establishment of bacterial inoculants in more complex 38 

systems. 39 
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INTRODUCTION 51 

Microbiome engineering is an upcoming discipline that aims to manipulate, complement or 52 

restore the functionality of existing damaged communities, e.g., contaminated soils, by adding 53 

specific new metabolic capabilities1. A rational engineering approach requires a detailed 54 

understanding of general principles of the functioning of the microbial community and its 55 

physiological adaptations to perturbations, but such understanding is currently lacking and 56 

fragmentary1,2. The technically most simple way to provide new metabolic capacities to an 57 

existing microbial community is by strain addition (what one could call an N+1 scenario)3,4. After 58 

an initial screening of the existing capacity of the microbial community, one or more preselected 59 

and well-characterized strains with the intended complementation could be prepared, 60 

formulated and inoculated into the community. Depending on the aims, such inoculants should 61 

maintain and reproduce for longer-term inside the resident community or only deploy their 62 

metabolic capacity transiently3,4. 63 

Inoculation of preselected strains has been widely practised for pollutant bioaugmentation, using 64 

bacteria with particular metabolic capabilities that enable them to efficiently degrade and grow 65 

on common pollutants such as toxic aromatic compounds5. However, even the simplest 66 

inoculations and N+1-strategies are rarely effective because it is insufficiently understood what 67 

inoculants need to establish successfully within a (new) existing community, and how they need 68 

to adjust their physiology to meet the requirements of the new environment and degrade the 69 

desired toxic compound(s). Modeling strategies based on the integration of a variety of 70 

(nowadays more easily) accessible condition-specific omics data, would help to better 71 

understand and predict how cellular regulation and physiology at different growth conditions 72 

and environments interplay. However, the impact and advantage of such integrative analysis are 73 

not yet explored to its full extent6. We propose and demonstrate here that combining 74 

comprehensive genome-wide transcriptomics, exometabolomics and metabolic modeling can 75 

better predict physiological adaptation. 76 

Metabolic modeling has largely advanced through the development of GEnome-scale Metabolic 77 

models (GEMs) and constraint-based modeling techniques such as Flux Balance Analysis (FBA). 78 

GEMs can be built from the annotated genomes and they describe an organism's metabolism as 79 
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completely as possible, linking genotype to metabolic phenotypes7. GEMs encompass 80 

metabolites, metabolic reactions, and genes coding for the enzymes catalyzing the reactions. 81 

Together with FBA, GEMs predict steady-state fluxes8,9, and therefore, they can predict cellular 82 

physiology. While the genome specifies the complete set of biochemical reactions which the cell 83 

can potentially carry out, the actual enzymatic capacity at each physiological condition is 84 

orchestrated by regulatory networks in the cell. GEMs do not explicitly consider regulation, 85 

whose effects are better reflected in the global transcriptome and the metabolome10–14. FBA 86 

approaches have been extended with RNAseq and metabolomics data to capture cell regulation 87 

and more accurately describe cellular metabolic behavior15. For example, transcriptional 88 

regulation of gene expression has been linked to GEMs, either by taking into account the absolute 89 

expression values, scoring genes and subsequently reaction fluxes as active or non-active based 90 

on their expression,16–18 or by incorporating relative gene-expression14,18. Use of relative gene 91 

expression is assuming that the relative changes between two conditions correlate with the 92 

resulting differential flux profiles. Both approaches can lead to condition-specific GEMs that are 93 

more effective for inferring the actual biochemical activity and the observed physiology of the 94 

microorganism. 95 

As a study system for predicting physiology from an integrated GEM-transcriptome-metabolome 96 

approach, we here use Pseudomonas veronii 1YdBTEX2. Strain 1YdBTEX2 is capable of degrading 97 

a variety of mono-aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and m- and 98 

p-xylene (BTEX)21–23. The ability of P. veronii 1YdBTEX2 to grow in contaminated environments 99 

makes it a promising candidate for rational complementation of microbial communities in 100 

contaminated soils24. Based on an available manually curated high-quality genome23, we 101 

reconstructed the first GEM for P. veronii (iPsvr). Genome-wide transcription changes and 102 

exometabolome compounds were measured during growth of P. veronii on toluene, in 103 

exponential and in stationary phase. Transcriptome and exometabolome data were integrated 104 

into the iPsvr using the recently developed tool REMI (Relative Expression and Metabolomics 105 

Integrations)20. Two obtained metabolic models representing exponential and stationary 106 

physiologies were then used to evaluate growth rates and the production of biomass precursors, 107 

and model predictions were compared to the experimentally observed values. Although the 108 
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temporal variations of the growth rate cannot be predicted using GEMs25, we showed that 109 

introducing the additional regulatory information from gene expression and metabolomics data 110 

into GEMs allows for consistently estimating growth rates at different growth phases. Finally, we 111 

incorporated into iPsvr previously published transcriptomics data of P. veronii transits from liquid 112 

culture to sand23 to understand its physiological adaptation in soil. Our work shows strong 113 

consistency of model outputs with the experimental data, manifesting that integration of 114 

condition-specific omics data into a curated GEM constitutes a major improvement for prediction 115 

of metabolic reprogramming during adaptation. 116 

 117 

RESULTS 118 

Developing an integrated genomic-transcriptomic-metabolomic workflow 119 

To develop a pipeline that integrates genomics with transcriptomic and metabolomic data we 120 

advanced in three stages: 1.) Quantify the cellular states at each unique growth phase by 121 

genome-wide transcriptomics, and exometabolomic data from spent media composition (Fig. 122 

1A); 2.) Construct a GEM for P. veronii strain 1YdBTEX2 (iPsvr), gap-fill missing parts of the 123 

metabolism (compounds and reactions), complement genome annotation using the 124 

transcriptomics and exometabolomic data and estimate the steady-state growth rate using FBA 125 

(Fig. 1B); and 3.) Link the interrelationships between growth phases and the differentially 126 

expressed genes and metabolite abundances by statistical inference and by REMI. The pipeline 127 

generated two growth-phase-specific models, iPsvr-EXPO and iPsvr-STAT (Fig. 1C), which were 128 

used to predict quantitative and dynamic readouts of P. veronii metabolism in both conditions 129 

and in liquid-to-sand transition. 130 

Genome-wide gene expression and metabolite formation over time 131 

Whole-genome gene expression profiles and metabolite formation in the spent medium were 132 

analyzed in P. veronii cultures growing in liquid minimal medium with toluene as sole carbon and 133 

energy source, sampled at 0 h (T0h), 4 h (T4h, EXPO) and 24 h (T24h, STAT) after inoculation. 134 

Genome-wide gene expression was quantified by mapping Illumina 100 nucleotide long single–135 

end sequencing reads from deeply sequenced cDNA libraries to the protein coding genes in P. 136 

veronii genome (read numbers indicated in Table S1). For each sampling time point, four 137 
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replicates clustered closely together, with slightly higher variability observed among the T24h 138 

replicates (Fig. S1A). A pair-wise comparison of expression levels showed that 1458 (818 up-139 

regulated and 640 down-regulated) out of the total 6943 genes (21%) were significantly 140 

differentially expressed between EXPO and STAT phase cells, with at least  2-log fold-change 141 

induction (false discovery rate [FDR]<0.05) (Fig. 2A, B).  142 

A priori, based on the genome annotation, a subset of 1241 “metabolic genes” were used in the 143 

GEM reconstruction (iPsvr). Out of these 1241, 300 (21%) were significantly differentially 144 

expressed in EXPO vs. STAT phase cells (FDR<0.05) (Table S2). The transition to STAT phase in 145 

bacteria is characterized by growth arrest in response to several factors, such as nutrient 146 

depletion, the accumulation of toxic compounds and environmental stress, which decrease 147 

ribosomal activity and therefore protein synthesis. As anticipated, enriched GO terms for the 148 

category “Biological Process” among the differentially expressed genes between EXPO and STAT 149 

included “protein folding” (GO:0006457), “tRNA aminoacylation for protein translation” 150 

(GO:0006418), “intracellular protein transmembrane transport” (GO:0065002) and “regulation 151 

of transcription, DNA-templated” (GO:0006355) (Table S3), thus indicating cells to be more active 152 

in EXPO phase, as expected. Consistent with nutrients becoming depleted in STAT phase, the 153 

terms “benzoate catabolic process via hydroxylation” (GO:0043640) and “tricarboxylic acid cycle” 154 

(GO:0006099) (Table S3), important for aromatic compound catabolism, were under-155 

represented in the STAT phase transcriptome.  156 

The untargeted metabolomic analyses of the spent medium detected 1630 (positively charged) 157 

and 3509 (negatively charged) distinct ion species or metabolite features. Unsupervised principal 158 

component analysis yielded three distinct clusters indicating metabolic phenotype 159 

differentiation over time, from inoculum to stationary phase (Fig. S1B). Similar to the 160 

transcriptomics data, a greater variability was observed among the T24h replicates. 161 

Temporal patterns of annotated metabolites by HMDB database (accurate mass) matching26 162 

showed a significant increase in the spent media over time of the majority of the metabolites 163 

implicated in the toluene and benzene degradation pathways and central carbon pathways, 164 

including glycolysis, purine and pyrimidine metabolism and amino acid metabolism (Fig. 2C). This 165 

implies their production by the bacteria and progressive release into the media. One specific 166 
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group of metabolites, including citrate (C00158), glutamate (C00025),  glutamine (C00064), and 167 

aspartate (C00049), accumulated significantly in EXPO phase (T4h) in comparison to T0h, 168 

followed by lower levels in STAT phase (Fig. 2C). This suggests their excretion in EXPO phase and 169 

subsequent reconsumption when other nutrients became limiting (Fig. 2C). 170 

 171 

Genome-scale metabolic model (GEM) of P. veronii strain 1YdBTEX2 (iPsvr) 172 

A draft GEM was generated from the curated P. veronii genome23 by using the RAVEN toolbox27 173 

(Fig. 1B). The draft GEM was gap-filled by iterative manual curation until we obtained a model 174 

able to carry non-zero flux through the biomass reaction at steady state. This signified cell 175 

‘growth’, and indicated that the model was performing as expected for a biological system. The 176 

cell biomass composition and compartment information were derived from two available models 177 

of other Pseudomonads species: P. putida28–30 and P. stutzeri31 (see Methods). The reconstructed 178 

iPsvr accounted for 1243 genes, 1812 metabolic reactions and 1677 metabolites localized within 179 

two intracellular compartments, the cytosol and periplasm, and the extracellular environment 180 

(Table 1).  181 

The scope of iPsvr GEM was further widened by restoring the connectivity of the remaining 182 

‘blocked’ reactions, i.e., isolated reactions that carry zero flux at any condition. To this end, we 183 

explicitly considered the empirical gene-expression and exometabolomics data. We first used a 184 

graph-based algorithm (see Methods) to decompose the iPsvr metabolic network into its main 185 

subnetworks of 1370 reactions and 23 blocked reactions/pathways of different lengths, with the 186 

longest blocked pathway consisting of seven reaction steps (Table S4). Out of 191 blocked 187 

reactions/pathways, we identified those associated with differentially expressed genes between 188 

the two growth conditions and the ones whose participating metabolites were present in the 189 

exometabolomic data. The identified reactions/pathways were next unblocked by gap-filling as 190 

described in the Methods section. Interestingly, we identified gap-filling reactions that had been 191 

annotated to P. veronii genes with RAVEN but had a lower score than the ones chosen as a 192 

baseline for the draft reconstruction of iPsvr. The gap-filling algorithm introduced 50 new 193 

metabolic reactions together with their corresponding 26 genes to iPsvr (Table 1 and Table S5).  194 

 195 
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Table 1: iPsvr components in the final GEM. 196 

Genes  
from annotation 1243 

added for gap-filing 26 

Reactions  
metabolic reactions 1812 

- from annotation 1762 

- added for gap-filing 50 

transport reactions 243 

exchange reactions 219 

Metabolites   

intracellular compounds 1677 
extracellular compounds 219 
cellular building blocks 65 

 197 

The experimentally determined maximum specific growth rate of P. veronii strain 1YdBTEX2 in 198 

minimal medium with toluene as the sole carbon source was in the range of 0.25 h-1 to 0.35 h-1. 199 

Computational prediction of the growth rate on toluene from the curated iPsvr using 200 

thermodynamics-based flux balance analysis (TFA)8,32,33, which integrates thermodynamic 201 

constraints into FBA, yielded 0.91 h–1 (at a maximum allowed toluene uptake rate of of 5.5 mmol 202 

gDW–1 h–1, and without considering transcriptomics and metabolomics information, see Methods 203 

section).  204 

 205 

Omics-based curation and gap-filling in iPsvr for toluene degradation and phenylalanine 206 

metabolism  207 

Given the importance of toluene degradation by P. veronii 1YdBTEX2, we manually curated the 208 

predicted toluene (Fig. 3A) and phenylalanine metabolic pathways (Fig. 3B) to ensure they were 209 

fully functional in iPsvr. Toluene is converted in P. veronii via (1S,2R)-3-methylcyclohexa-3,5-210 

diene-1,2-diol to 3-methylcatechol, which is further degraded, according to the KEGG pathway 211 

database34, through two pathways until the central carbon metabolism compounds are reached 212 

(Fig. 3A and Fig. S2). The iPsvr growth simulation on minimal media containing toluene as the 213 

sole carbon source showed that the pathway producing pyruvate and acetaldehyde in four 214 

reaction steps was functional (1.13.11.2, 3.7.1.-, 4.2.1.8 and 4.1.3.39 in Fig. S2), which has 215 
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experimentally been shown to be the main toluene degradation route in P. veronii23. In contrast, 216 

the second functional pathway (Fig. 3A)23, was blocked in iPsvr because it lacked the enzyme 217 

2.8.3.6 (highlighted in red in Fig. 3A), and it was therefore disconnected from the main metabolic 218 

subnetwork. We found that three out of the six genes in this pathway (PVR_r1g5041, 219 

PVR_r1g5042, PVR_r1g1440) were more than 2-fold differentially expressed between the two 220 

growth conditions (highlighted in green in Fig. 3A), which further suggested that this pathway is 221 

indeed active in P. veronii. Homology-based BLAST searches35 of the gene sequences of 2.8.3.6 222 

against the P. veronii genome identified the corresponding gene for catalyzing this reaction 223 

(PVE_r1g3867, e-value of 10-20, to scoA). Note that the default e-value in RAVEN is 10-50, which is 224 

why the reaction was not initially captured in the model from the genome annotation. Therefore, 225 

the missing reaction (2.8.3.6) was added to iPsvr, and the toluene pathway (Fig. 3A) was 226 

connected to the rest of the metabolic network through the Krebs cycle and carried flux.  227 

The phenylalanine metabolic pathway was gap-filled using the exometabolomic data (Fig. 3B). 228 

Three out of the eight reaction steps of this pathway (4.1.1.28, 1.14.14.54 and 1.14.13.-) were 229 

initially missing in iPsvr, leading to a dead-end pathway without flux. Four metabolites of 230 

phenylalanine metabolism were detected in the exometabolomics data (colored in blue in Fig. 231 

2B), one of which, 2-hydroxyphenylacetate, was absent in the iPsvr GEM. This suggested that 232 

phenylalanine metabolism should proceed via 2-hydroxyphenylacetate in P. veronii (Fig. 3B). The 233 

enzyme producing 2-hydroxyphenylacetate from phenylacetaldehyde (1.14.14.54) was found by 234 

BLAST (PVE_r1g94, e-value of 10-20 to CYP504), added to iPsvr and could thus link both 235 

metabolites. The next step (1.14.13.-), yielding homogentisate (Fig. 3B) was also added, but no 236 

protein sequence could be assigned, as it corresponds to an orphan reaction (KEGG reaction ID: 237 

R05450). The first enzyme (4.1.1.28), which decarboxylates L-phenylalanine to phenethylamine, 238 

must be present, given the detection of both compounds in the exometabolomics data, although 239 

no P. veronii protein sequence could be identified through BLAST search. 240 

 241 

Omics integration into iPsvr  242 

REMI (Relative Expression and Metabolomics Integrations) was used to integrate the relative 243 

gene-expression and metabolite abundance data between EXPO and STAT into iPsvr. We 244 
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explored three scenarios, depending on the type of data integrated into iPsvr: (i) REMI-TGex for 245 

the integration of relative gene-expression data only; (ii) REMI-TM for the integration of 246 

metabolomics data only; and (iii) REMI-TGexM for the simultaneous integration of both the gene-247 

expression and metabolite abundance data into a thermodynamically curated model. The “T” in 248 

the three methods stands for the inclusion of thermodynamic constraints. Contextualized 249 

metabolic models (iPsvr-EXPO and iPsvr-STAT) coherent with omics data were built, and the 250 

growth rates were again simulated (Table 2).  251 

342 out of a total of 352 (97%) integratable gene-expression and metabolite abundance data 252 

points could be consistently included in REMI; the remaining 3% being inconsistent (Table 2, third 253 

row). Simulated growth rates for EXPO phase under the condition of integrating both gene-254 

expression and metabolomics data (REMI-TGexM) were the closest to the experimentally 255 

observed rates (0.40 h-1 for REMI-TGexM versus 0.25–0.35 h-1, Table 2).  256 

The integration of exometabolomics data alone (REMI-TM) was insufficient, with a predicted 257 

growth rate of 0.86 h-1 , which is close to the rate of 0.91 h-1 that was obtained for the 258 

unconstrained iPsvr model (Table 2). The integration of relative gene-expression data alone 259 

(TGex) yielded an in silico exponential growth rate of 0.48 h-1 , which is close to the REMI-TGexM 260 

value (Table 2). Both REMI-TGex and REMI-TGexM, but not REMI-TM, correctly estimated near 261 

zero growth rates (0.06 h-1 and 0.07 h-1, respectively) for stationary phase cells (Table 2).  262 

 263 

Table 2: Summary of the REMI results of the relative integration of exometabolomics (REMI-264 

TM), gene expression (REMI-TGeX) and both datasets (REMI-TGeXM) into iPsvr. Theoretical 265 

maximum consistency score, TMCS; Maximum consistency score, MCS; Std, standard deviation. 266 

Method 
Score Growth rate (h–1) 

TMCS MCS EXPO STAT 

TFA - - 0.91* 0.91* 

REMI-TM 215 123 0.86 0.67 

REMI-TGeX 618 229 0.48 0.06 

REMI-TGexM 833 342 0.40 0.07 

Experimental - - 0.31 (std=0.05) 0 

*by definition, there is no difference between the simulated growth rate at different growth 267 

phases in FBA simulations.  268 

 269 
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Analysis of the biomass precursor production at different growth phases  270 

To understand the underlying mechanisms of growth reduction when cells transit from EXPO to 271 

STAT, we identified the biomass precursors that may become limiting in the stationary phase, 272 

therefore leading to growth arrest. The 65 biomass precursors were grouped into seven groups 273 

of biomass building blocks (BBBs), namely carbohydrates, cofactors and vitamins, DNA 274 

nucleotides, lipids, minerals, amino acids, and RNA nucleotides. For each metabolite, we 275 

calculated the log2 fold-change of their maximal production between EXPO and STAT using REMI-276 

TGex and REMI-TGexM (Table S6).  277 

Both REMI-TGex and REMI-TGexM indicated large variations in the production of BBBs between 278 

the two phases (Fig. 4), the maximal relative change occurring in the production of cofactors and 279 

vitamins. Out of the 20 precursors that were classified as cofactors and vitamins, the production 280 

of 10 (REMI-TGexM) and 18 (REMI-TGex) of them was at least 2-log fold-change higher in iPsvr-281 

EXPO than in iPsvr-STAT (Table S6). Rather surprisingly, an increased production of certain BBBs 282 

occurred in STAT. Both REMI-TGex and REMI-TgexM predicted that several amino acids, e.g., 283 

tyrosine and lysine, and some lipids, e.g., hexadecanoic acid, had at least a 2-log fold-change 284 

higher production in STAT (Fig. 4A & B). As before, the variant with integration of only 285 

exometabolomic data (REMI-TM) did not predict any significant differences in the production of 286 

BBBs between EXPO and STAT culture (Table S6). 287 

 288 

P. veronii adaptation from liquid culture to the soil as growth environment  289 

Finally, as an additional validation of our approach, we predicted the in silico physiology for P. 290 

veronii during adaptation to the soil environment, using a previously published genome-wide 291 

transcriptome data set of cells exposed for 1 h to liquid medium or to sand, with either toluene 292 

or succinate as carbon substrate23.  293 

Integrating the transcriptomic data23 into iPsvr using REMI-TGex, produced in silico growth rates 294 

of 0.52 and 0.66 h–1 for toluene or succinate in liquid medium. Remarkably, the model predicted 295 

strong reduction of growth rate upon transition to the sand, i.e., from 0.52 h-1 to 0.23 h-1 296 

(toluene) and 0.66 h-1 to 0.07 h-1 (succinate). This suggests that cells have to adapt to soil as their 297 

new environment and have to reprogram their physiology before resuming growth. The higher 298 
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reduction of growth in case of succinate is in agreement with experimental results in the previous 299 

study23 , and can be explained from the lower concentration of succinate than toluene available 300 

in the soil, therefore rapidly used by the cells and leading to nutrient starvation.  301 

To understand how the transition from liquid medium to sand constrains the metabolic fluxes 302 

and impacts growth of P. veronii, we analyzed the production of BBBs in both growth 303 

environments. Intrestingly, we observed the same robust reduction in the production of 304 

cofactors and vitamins upon transition to sand in the case of succinate, as had been predicted 305 

for transition to STAT in liquid culture (14 out of 20 precursors with more than 2-log fold lower 306 

production ). In contrast, in case of cells exposed to toluene in sand only 8 of the cofactor and 307 

vitamin precursors were 2-log fold lower expressed. The higher number of precursors with lower 308 

production rates might thus explain the stronger growth arrest in case of succinate during 309 

transition to sand as opposed to toluene. In contrast, the production of other precursor BBBs, 310 

such as phosphatidylcholine and ubiquinone-8, similarly increased in sand both for toluene and 311 

succinate (Fig. S3 A&B). “This suggests that the cells in sand reshape their membrane content 312 

and respiratory pathways  313 

 314 

DISCUSSION  315 

This work demonstrates how a metabolic-model-based (multi)omics data integration approach 316 

can accurately capture cell physiology and adaptation during growth or environmental 317 

transitions. Metabolic models are typically used for predicting optimal cell growth, but not for 318 

growth transitions and adaptation. We show here the usefulness of models with 319 

comprehensively integrated transcriptomics and exometabolomic to capture changes in growth 320 

rate during adaptation. As example, we studied transition of the toluene-degrading bacterium P. 321 

veronii 1YdBTEX2 from exponential growth to stationary phase, and during adaptation from 322 

liquid to a sand environment. 323 

For the purpose of this study, we reconstructed and curated the first genome-scale metabolic 324 

model of P. veronii, iPsvr. iPsvr is useful for a wide range of applications in biological and 325 

biotechnological research, such as the integration of omics data, investigation of relationships 326 

among species in microbial communities, bioremediation strategies, design of metabolic 327 
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engineering strategies, hypothesis-driven discovery, and analysis of metabolic network 328 

properties. As such, iPsvr may represent a valuable resource for the study of complex 329 

microbiomes and microbiome engineering. 330 

 331 

GEMs usually contain inconsistencies that manifest as blocked reactions, i.e., the reactions that 332 

carry zero flux. Most of the available metabolic models are gap-filled to obtain a functional model 333 

that produces all the BBBs. Nevertheless, many reactions in GEMs are not directly connected to 334 

biomass formation and may remain blocked even after routine gap-filling. Roughly, 20–50% of 335 

the reactions of published GEMs are blocked reactions36,37. For example, in the most recently and 336 

best-curated published E. coli model, iML1515, 10% of the reactions are blocked38. We identified 337 

the blocked reactions/pathways in iPsvr and introduced a novel omics-based gap-filling 338 

approach, which targets the gap-filling of reactions/pathways by looking at differentially 339 

expressed genes or metabolites. We showed that the gap-filling step improved the metabolic 340 

model connectivity, thus increasing the number of functional pathways that can carry flux. The 341 

curation also increased the consistency of the metabolic model with the omics data, expressed 342 

as the number of genes/metabolites with available omics data that can be integrated into iPsvr. 343 

We illustrated through two gap-filling examples on toluene and phenylalanine metabolism how 344 

we could add the missing parts of metabolism and increase consistency.  345 

Statistical analysis of gene expressions and metabolite levels revealed significant variations 346 

across the exponential and stationary phase, exemplifying the known distinct physiologies under 347 

these conditions. However, the system’s level physiology and the underlying adaptation 348 

mechanisms remained unrevealed. 349 

 350 

It should be highlighted that in FBA, the growth rate is evaluated under the assumption that all 351 

metabolic fluxes in the cell are geared towards the maximal production of biomass at each 352 

moment of the cell growth and under any environmental condition. Nevertheless, inclusion of 353 

REMI20, a method for the integration of omics data into metabolic models and for building 354 

context-specific models, produced more accurate predictions of P. veronii growth rates under 355 

dynamic conditions. Integration of the transcriptomic data (as in REMI-TGex and –TGexM) proved 356 
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to be vital for improving growth rate predictions, whereas inclusion of metabolomic data alone 357 

(as in REMI-TM) was insufficient. This might be expected, because only a small subset of 358 

metabolites could be putatively  identified, such that their impact on the predictions was 359 

comparatively smaller. The estimated growth rate was slightly closer to the experimentally 360 

measured values in the case of REMI-TGexM, which combines transcriptomics and metabolomics 361 

data. Overall, these results clearly demonstrated that integrating multi-omics data in GEMs 362 

significantly increases the consistency of the model predictions with experimental observations. 363 

 364 

REMI-iPsvr analysis suggested P. veronii adapts to STAT phases primarily by limiting  the 365 

metabolic fluxes for the production of the majority of cofactors and vitamins required for growth, 366 

with metabolism reshuffling being regulated at the transcriptional level. In addition, an increased 367 

production of specific amino acids in STAT phase suggests the cell is preparing for starvation and 368 

survival. Similar to the EXPO to STAT transition, the production of most of the BBBs decreased in 369 

cells inoculated in sand compared to liquid culture, which explains the overall observed reduction 370 

in growth rates. In contrast, the production of several precursors from the cofactors and vitamins, 371 

and the BBBs amino acids actually increased in cells transited to sand, both for sand with toluene 372 

or succinate. We hypothesize that these BBBs are needed to adapt to the local sand conditions. 373 

This finding is in agreement with work of Morales et al.23, who concluded from Gene Ontology 374 

terminology that P. veronii cells inoculated in sand readjusted their metabolism during the first 375 

hour of contact. 376 

Collectively, our results demonstrate the importance of integrating into metabolic models the 377 

contextualization of condition-specific gene-expression and metabolite-abundance data. This 378 

increases the value of growth rate predictions and improves the assessment of the relative 379 

changes of measurable metabolic phenotypes. The method as demonstrated here is thus an 380 

important advancement to explain, quantify or predict cellular responses to environmental or 381 

genetic perturbations, which is crucial for microbiome engineering. 382 

 383 

 384 

 385 
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METHODS 386 

Culture conditions for P. veronii transcriptome and exometabolomic studies 387 

P. veronii 1YdBTEX2 was grown on solid 21C mineral medium39 with toluene in the vapor phase 388 

at 30°C for 3 days. Colonies were inoculated into three 100 ml screw-cap conical flasks containing 389 

25 ml of the mineral medium amended with 0.5 ml of a 1:19 mixture of toluene:tetradecane 390 

(Sigma-Aldrich ref: 34866; Aldrich ref: 87140). Flasks were incubated at 30°C and at 180 rpm on 391 

an orbital shaker until a culture turbidity (OD600) of 0.7 (mid-exponential growth phase). At this 392 

point, the three cultures were pooled, and the bacterial cells were harvested by centrifugation 393 

(swing-out rotor A-4-44, Eppendorf; 3220 g, 8 min, 30°C). The cell pellet was resuspended in the 394 

mineral medium and centrifuged again, as described above, to remove any residual carbon. After 395 

that, the cells were resuspended in mineral medium, diluted to obtain a starting OD600 of 0.16 396 

and transferred into four replicate flasks, to which the toluene:tetradecane mix was added, as 397 

described above. The cultures were incubated at 30°C and 180 rpm and regularly sampled for OD 398 

measurements. For transcriptomics, approximately 1 x 109 cells were harvested from an 399 

appropriate volume of the culture by centrifugation at 3,500 g, for 6 min at 30°C; snap-frozen in 400 

liquid nitrogen and stored at -80°C until RNA extraction. Three quadruplicate sample sets were 401 

produced: the inoculum at time 0 (T0h), that is cells starved for approximately 30 min at 25°C in 402 

mineral medium without a carbon source; exponentially growing cells (at OD600 ≈ 0.5, harvested 403 

after 4 h of incubation in the toluene-amended mineral medium); stationary phase cells (at 404 

OD600 ≈ 1.8–1.9 harvested after 24 h incubation). To study the composition of the 405 

exometabolome (metabolites in the culture medium excreted or leaked out of cells), 1 ml of the 406 

culture was sampled at the same time points. Cell culture was transferred into a 1.5 ml 407 

polypropylene microcentrifuge tube, which was clarified by 20 min centrifugation at 21,100 g 408 

and 4°C, after which 0.5 ml of spent media was transferred to a new polypropylene tube, stored 409 

at -80°C and shipped on dry ice to the metabolomics facility. 410 

 411 

RNA extraction, RNA-seq library preparation and sequencing 412 

Total RNA from the frozen cell pellets was extracted using the RNA PowerSoil Total RNA Isolation 413 

Kit (MoBio Laboratories) as recommended by the manufacturer. Contaminating genomic DNA 414 
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was removed by two cycles of TURBO DNase (Invitrogen) digestion and RNeasy MinElute Cleanup 415 

kit (QIAGEN) column purification. The quantity, purity and integrity of RNA samples were 416 

assessed using agarose gel electrophoresis, NanoDrop spectrophotometer (ThermoFisher 417 

Scientific) measurements and Agilent 2100 Bioanalyser (Agilent Technologies) profiling.  418 

The completeness of DNA removal was verified by PCR using primers Pv_chr2_fw, 419 

ATCGGCTGTCCGACATCGGACG and Pv_chr2_rev, TCGAAGAGCTCCACCGAGAGCCGCC) and 1 pg of 420 

genomic DNA as a positive control, as described previously23. Next, 4 µg of each RNA sample were 421 

depleted from ribosomal RNAs, converted to the reverse-complement stranded Illumina 422 

sequencing library using the ScriptSeq Complete Kit (Bacteria, Illumina) and indexed with 423 

ScriptSeq™ Index PCR primers set 1 (Epicentre, Illumina) following the standard protocol. The 424 

resulting directional RNA-seq libraries were sequenced using single-end 100-nt read chemistry 425 

on an Illumina HiSeq 2500 platform (Illumina) at the Lausanne Genomic Technologies Facility. 426 

 427 

Untargeted LC-HRMS metabolomics 428 

The spend media (100 µL) samples collected at different time points were extracted with 400 µL 429 

of ice-cold methanol to quench the metabolism, precipitate proteins and extract a broad range 430 

of polar metabolites. The extracted media were analyzed by HILIC-HRMS using an electrospray 431 

ionization source operating in both positive and negative mode. Pooled QC samples 432 

(representative of the entire sample set) were analyzed periodically (every 4 samples) 433 

throughout the entire analytical run in order to assess the quality of the data, correct the signal 434 

intensity drift and remove the peaks with poor reproducibility (CV > 30%) that can be considered 435 

chemical or bioinformatic noise. Data were acquired using a 1290 UHPLC system (Agilent 436 

Technologies) interfaced with a 6550 iFunnel Q-TOF mass spectrometer operating in a full-scan 437 

MS mode. In addition, pooled QC samples were analyzed in auto MS/MS mode (i.e. Data 438 

Dependent Analysis [DDA]) to acquire the MS/MS data for metabolite identification. In positive 439 

mode, chromatographic separation was carried out using an Acquity BEH Amide, 1.7 μm, 100 mm 440 

× 2.1 mm I.D. column (Waters, Massachusetts, US). The mobile phase was composed of A = 20 441 

mM ammonium formate and 0.1% formic acid in water and B = 0.1% formic acid in acetonitrile. 442 

A linear gradient elution from 95% B (0–1.5 min) down to 45% B (17–19 min) was applied 443 
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followed by 5 min for column re-equilibration to the initial gradient conditions. The flow rate was 444 

400 μL/min, column temperature 30°C and sample injection volume 2 µl. ESI source conditions 445 

were set as follows: dry gas temperature 290°C and flow 14 L/min, fragmentor voltage 380 V, 446 

sheath gas temperature 350°C and flow 12 L/min, nozzle voltage 0 V, and capillary voltage 2000 447 

V. In negative mode, a SeQuant ZIC-pHILIC (100 mm, 2.1 mm I.D. and 5 μm particle size; Merck, 448 

Damstadt, Germany) column was used. The mobile phase was composed of A = 20 mM 449 

ammonium acetate and 20 mM NH4OH in water at pH 9.3 and B = 100% acetonitrile. The linear 450 

gradient elution ran from 90% (0–1.5 min) to 50% B (8–11 min) down to 45% B (12–15 min). 451 

Finally, the initial chromatographic conditions were established during a 9 min post-run for 452 

column re-equilibration. The flow rate was 300 μL/min, column temperature 30°C and sample 453 

injection volume 2 µl. ESI source conditions were set as follows: dry gas temperature 290°C and 454 

flow 14 L/min, sheath gas temperature 350°C, nebulizer 45 psi and flow 12 L/min, nozzle voltage 455 

0 V, and capillary voltage 2000 V. 456 

In the MS-only mode, the instrument was set to acquire over the m/z range 50–1200, with the 457 

MS acquisition rate of two spectra/s. Targeted MS/MS data for dysregulated metabolite features 458 

were acquired using the inclusion list with narrow isolation window (≈ 1.3 m/z), MS acquisition 459 

rate of 500 ms, and MS/MS acquisition rate of 500 ms. 460 

 461 

Data processing and statistical analysis 462 

Transcriptomics: Read mapping, sorting and formatting of the raw reads was done with Bowtie240 463 

and Samtools41, using the finalized gapless P. veronii 1YdBTEX2 genome sequence as in Morales 464 

et al23. Mapped reads were counted with HTSeq42, then further processed and analyzed with 465 

edgeR43. Only reads counted more than once per million in at least three replicates were kept. 466 

After normalization of the counts, transcript abundances were compared in pairwise conditions 467 

in a modified Fischer exact test (as implemented in edgeR). Genes were called significantly 468 

differentially expressed between two EXPO and STAT when their false-discovery rate was <0.05 469 

and their fold-change >2 and were subsequently interpreted using Gene Ontology (GO) analysis. 470 

GO terms of P. veronii genes were inferred using the program BLAST2GO44. The same software 471 
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was then used to analyze GO data sets of significantly differentially expressed genes in each pair-472 

wise comparison, under the TopGO “Weight” algorithm. 473 

Metabolomics: Raw LC-MS data were converted to mzXML files using ProteoWizard MS Convert. 474 

mzXML files were uploaded to XCMS for data processing including peak detection, retention time 475 

correction, profile alignment, and isotope annotation. Data were processed as a multi-group 476 

experiment, and the parameter settings were as follows: centWave algorithm for feature 477 

detection (Δm/z = 20 ppm, minimum peak width = 5 sec and maximum peak width = 30 sec, S/N 478 

threshold = 6, mzdiff = 0.01, integration method = 1, prefilter peaks = 3 prefilter intensity = 1000, 479 

noise filter = 0), obiwarp settings for retention time correction (profStep = 1), and parameters for 480 

chromatogram alignment, including mzwid = 0.015, minfrac = 0.5 and bw = 5.5. Preprocessed 481 

data (following the signal-intensity drift correction and noise removal with the “batchCorr” R 482 

package) were filtered according to the p-value (< 0.05) and signal intensity (> 1000 ion counts). 483 

The remaining table of metabolite features together with the most significant ion features 484 

selected from the loadings plot of the multivariate models in positive and negative ionization 485 

mode were subjected to metabolite identification as described below.  486 

In the first instance, putative metabolite identification was performed by accurate mass and 487 

retention time (AMRT) matching against an in-house database (containing information on 600 488 

polar metabolites from the Mass Spectrometry Metabolite Library Supplied by IROA 489 

Technologies, Sigma-Aldrich, characterized under the same analysis conditions). For that, raw 490 

data files (.d) were processed using Profinder B.08.00 software (Agilent Technologies) with the 491 

following parameter settings: mass tolerance 10 ppm, retention time tolerance 0.2 min, height 492 

filter 1000 counts, and peak spectrum obtained as an average of scans at 10% of the peak. In 493 

parallel, the XCMS output table of significantly different metabolite features was matched 494 

against the Human Metabolome Database (HMDB)26 based on accurate mass (AM) with Δppm = 495 

10. The list of hits was further manually curated by taking into account the biological relevance 496 

of the hit (endogenous vs. exogenous metabolites) and a presence of the “true” peak shape 497 

(using the interactive XCMS Online interface45). Short listed ions of interest together with the 498 

metabolites identified by the in-house database were further subjected to targeted MS/MS 499 

validation. The metabolite identifications were validated by matching the MS/MS46 data acquired 500 
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in the pooled samples (for each experiment in each LC-MS analysis mode) against the in-house 501 

PCDL database, METLIN (https://metlin.scripps.edu/) standard metabolite database47 or 502 

mzCloud (https://www.mzcloud.org/). Otherwise, if the MS/MS data quality did not allow for 503 

metabolite ID confirmation, the metabolite IDs remained putative, based only on accurate mass 504 

matching. 505 

 506 

Genome-scale model reconstruction 507 

The P. veronii 1YdBTEX2 genome-scale metabolic reconstruction process combines the 508 

automated draft metabolic network process with several manual refinements and curation 509 

procedures, in total involving four main steps: (i) functional annotation of the genome: 510 

functional annotation of the genome is required prior to the reconstruction of the GEMs, and 511 

consequently, the quality of a GEM highly depends on the availability of a gapless genome. The 512 

protein sequences (FASTA files) of P. veronii 1YdBTEX2 were acquired from a previously published 513 

study23 and were annotated to identify the associated reactions that enzymes catalyze to 514 

determine the stoichiometric matrix, done using the RAVEN Toolbox27. The generation of the 515 

draft metabolic network followed the protocol detailed previously27,48,49, and the output of this 516 

annotation process is summarized in Table S6. Version 1.07 of the RAVEN Toolbox and the version 517 

of KEGG database as of September 2017 were used. (ii) Compartmentalization, the definition of 518 

biomass reaction and uptakes and secretions: In the absence of information or experimental 519 

evidence about the compartmentalisation and the cell content in P. veronii 1YdBTEX2, the cell 520 

compartment information (i.e., cytosol and periplasm), the transport mechanism between the 521 

compartments and the extracellular environment, the uptakes and secretions, and the biomass 522 

composition were obtained from two available models of closely related Pseudomonads: 523 

Pseudomonas putida28–30 and Pseudomonas stutzeri31. The biomass reaction in a GEM designates 524 

the metabolic precursors that build the BBBs, i.e., DNA, RNA, amino acids, lipids and 525 

carbohydrates and their corresponding stoichiometric coefficients. (iii) Thermodynamic 526 

curation: In a thermodynamically curated model, the standard Gibb’s free energy of a reaction 527 

and consequently the directionality of the reactions, i.e., reversible or irreversible, are associated 528 

with the reaction as additional constraints, which allow the performance of TFA. We followed the 529 
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established protocol to thermodynamically curate metabolic models32,33 to add thermodynamics 530 

constraints to iPsvr, where we could estimate the standard Gibb’s free energy of formation of 531 

76% metabolites, using the group contribution method (GCM)50 and the standard Gibb’s free 532 

energy of 84% of metabolic reactions in iPsvr. This allowed us to perform TFA, simulate the 533 

growth and determine whether iPsvr was functional, with further evaluations if it correctly 534 

predicted the expected growth-associate phenotypes. (iv) Gap-filling of iPsvr: The draft 535 

metabolic network of iPsvr did not contain all the necessary reactions for the production of all 536 

the biomass building blocks, and thus, the model did not show any growth. This is a very common 537 

observation in the reconstruction process of GEMs, since the (automatic) genome annotations 538 

are often incomplete or erroneous, with significant proportion of predicted proteins having no 539 

functions attributed51. Therefore, reactions without associated genes were included in order to 540 

obtain a functional model that simulates non-zero growth, done using a procedure called gap-541 

filling. We followed the gap-filling procedure introduced previously48, wherein the production of 542 

each biomass precursor is defined as a metabolic task27 and a mixed-integer linear programming 543 

(MILP) formulation is used to generate alternative groups of minimal number of reactions 544 

(borrowed from KEGG) that enable the production of the biomass precursor. The draft GEM was 545 

gap-filled by iterative manual curation until a model was obtained that was able to carry non-546 

zero flux through the biomass reactions at steady state (i.e., signifying ‘growth’). Although gap-547 

filling is a routine procedure in the curation of GEMs and most of the available GEMs are gap-548 

filled to obtain a functional model that is able to grow under defined conditions, gaps in pathways 549 

not involved with biomass production are, however, mostly overlooked in GEM analysis. We 550 

performed a complementary second gap-filling step apart from the biomass reaction, where as 551 

a result, the consistency of iPsvr with the obtained experimental data on gene expression and 552 

metabolomics was increased. Available GEMs usually contain a large well-connected 553 

subnetwork, which encompasses the most of the central carbon metabolism and a part of the 554 

secondary metabolism, and many isolated reactions (or sets of reactions) are probably 555 

disconnected from the rest of the network because of misannotations or insufficiently known 556 

pathways. Such isolated reactions/pathways are blocked, i.e., cannot carry flux under any 557 

condition, and therefore one or more reactions must be added to connect the blocked reactions 558 
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with the rest of the metabolic network. To this end, the metabolic network structure of iPsvr was 559 

decomposed to the main component and to the isolated (disconnected) reactions/pathways 560 

using a MATLAB graph-based built-in function (conncomp). Using the same gap-filling approach, 561 

the blocked reactions/pathways that were associated with differentially expressed genes (in the 562 

pair-wise comparison of exponential- and stationary-phase datasets) or measured metabolites in 563 

exometabolomic data were gap-filled to become functional in the model (carry non-zero flux). 564 

 565 

Omics data integration 566 

REMI20 was used for the integration of transcriptomics and exometabolomics data into iPsvr. 567 

REMI assumes that reaction fluxes associated with genes that are significantly differentially 568 

expressed are deregulated. Moreover, REMI also considers that the in vivo metabolite abundance 569 

ratios between the two conditions, e.g., the two growth phases can be used to constrain reaction 570 

fluxes associated with the metabolites that are differentially regulated. Expression/abundance-571 

based ratios between the two conditions are formulated as flux perturbations for each reaction 572 

and are imposed as constraints on individual fluxes. Based on the data used, it translates into 573 

three different methods: (i) REMI-TGex allows the integration of relative gene expression data 574 

into a thermodynamically curated GEM, (ii) REMI-TM allows the integration of metabolomics 575 

data and (iii) REMI-TGexM integrates simultaneously both the gene expression and metabolite 576 

abundance data as additional constraints into the metabolic model. 577 

REMI aims to maximize consistency between differential expression and fluxes as well as 578 

differential metabolite concentrations and fluxes. To study condition-specific differences in 579 

metabolism between two conditions (perturbed vs reference), REMI considers a separate 580 

metabolic model for each condition. Then, to integrate differential expression, REMI enforces a 581 

higher flux through a reaction in the perturbed condition (perturbed model) as compared to a 582 

reference condition (reference model) if the genes of the reaction are upregulated. For 583 

downregulated reactions, REMI enforces a lower flux as compared to a reference. To integrate 584 

extracellular metabolite concentrations, REMI assumes that if a metabolite is upregulated, then 585 

the production of the metabolite is forced to be higher as compared to a reference condition, 586 

and similarly, a lower production of a metabolite is forced if a metabolite is found to be 587 
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downregulated. Then, an optimization problem is formulated to maximize the number of 588 

constraints imposed by the relative gene expression and metabolite abundances that can be 589 

integrated into the model while preserving a growth phenotype. Two scores are calculated: a 590 

theoretical maximum consistency score (TMCS), representing the number of genes/metabolites 591 

with available omics data, and the maximum consistency score (MCS), representing the number 592 

of genes/metabolites whose relative omics data are consistent with relative network fluxes and 593 

therefore can be integrated in the model. 594 

The MILP formulation enables enumerating alternative sets (size equal to MCS) from a given set 595 

of constraints. The most consistent models are built by activating constraints that are overlapping 596 

and consistent between all the alternatives.  597 

We used the transcriptomics and/or exometabolomics datasets measured at the exponential and 598 

stationary phase and also at the sand versus liquid environment, to derive additional flux 599 

constraints for the TFA problem, which were applied using REMI. 600 

 601 

Thermodynamics-based flux analysis (TFA) and the analysis of the biomass building blocks 602 

To determine fluxes and subsequently the growth rate at different growth and environmental 603 

conditions using iPsvr, we employed FBA, the most widely used constraint-based modeling 604 

technique for studying biochemical networks and cellular physiology. Previous studies show that 605 

the integration of appropriate thermodynamic constraints leads to more accurate metabolic 606 

model predictions and also a significant reduction in the ranges of the predicted fluxes (solution 607 

space)8,32. We perform TFA for estimating the growth rate before and after the integration of 608 

omics data. 609 

We further identified the biomass building blocks (BBB), wherein a low/zero production limits 610 

growth upon the transition of cells from the exponential to stationary phase or from liquid to the 611 

soil environment (two examples that were discussed in this work). Each BBB was tested by 612 

defining the TFA objective function as the maximum production of that metabolite under the 613 

defined media condition (the same for all the BBBs). Then, the BBB production was compared 614 

and the limiting BBBs for each case were identified. 615 

 616 
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 760 

Figure 1: Schematic overview of the integrated genomic-transcriptomic-metabolomic pipeline 761 

applied in this study. (A) Stage 1: Relative gene expression and exometabolomic data were 762 

determined and analyzed, and these data were used to gap-fill iPsvr at blocked reactions. (B) 763 

Stage 2: A genome-scale metabolic model (GEM) of P. veronii strain 1YdBTEX2, iPsvr, was 764 

reconstructed and flux-balance analysis (FBA) was performed to simulate the growth of the cell. 765 

(C) Stage 3: Additional relative differential gene expression and metabolite abundance data were 766 

integrated into the metabolic model with REMI and physiology-specific models were built. Here, 767 

the REMI methodology is illustrated on a section of inferred iPsvr glycine, serine and threonine 768 

metabolism and iPsvr-EXPO (exponential phase) and iPsvr-STAT (stationary phase) as the two 769 

physiology-specific models. Significantly differentially expressed genes (here, serB, glyA, DSD1 770 

and GGAT) are outlined in boxes. The thickness of arrows designates the fold-change in estimated 771 

fluxes, where green arrows indicate consistency with the gene-expression fold-change values, 772 

and the red ones inconsistencies. Measured metabolite concentrations (here: pyr, sarcs, gly and 773 

glx) are indicated in green if the values are consistent with estimated fluxes and in red otherwise. 774 

Phosphoserine phosphatase, SerB; Serine hydroxymethyltransferase, GlyA; D-serine 775 

dehydratase, DSD1; Glyoxylate aminotransferase, GGAT; Pyruvate, pyr; Sarcosine, sarcs; Glycine, 776 

gly; Glyoxylate, glx. 777 

 778 

 779 
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 780 

Figure 2: Genome-wide gene-expression and metabolite abundance differences in P. veronii 781 

1YdBTEX in exponential (EXPO) relative to stationary (STAT) phase. (A) Smear-plot of global 782 

gene expression intensity (2log counts per kilobase per million, CPKM) versus expression changes 783 

(2log fold change) in EXPO vs. STAT. In grey, genes not statistically differentially expressed 784 

(logFC<1, FDR>0.05, P>0.01); magenta, genes with lower, and dark purple, genes with higher 785 

expression in EXPO (+). (B) Differential expression per gene between EXPO and STAT plotted as a 786 

function of genomic location (chromosome 1, chr1; chromosome 2, chr2; and plasmid, plm; 787 

organized according to locus_tag number). Bars indicate 2log-fold change, dark purple and pink 788 

denote statistically significant higher and lower expressed genes in EXPO, respectively. (C) 789 

Heatmap of 164 metabolites annotated with their KEGG IDs showing clustering at different 790 
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culture sampling time points. Metabolites are clustered (x-axis) in three major groups (left to 791 

right): (i) accumulation at T24h (STAT) (pink box), (ii) accumulation at T4 continued to T24 (yellow 792 

box), and (iii) accumulation at T4h (EXPO) followed at depletion at T24h (STAT) (purple box). 793 

 794 

 795 

 796 

Figure 3: Gap filling of two blocked pathways in iPsvr based on the gene expression and 797 

exometabolomics data. (A) One of the two toluene degradation pathways in P. veronii (from the 798 

KEGG pathway database34) involved one missing enzyme (highlighted in red), and three genes 799 

(highlighted in green) differentially expressed between the exponential and stationary growth 800 

conditions. (B) The phenylalanine metabolic pathway involved three missing enzymes 801 

(highlighted in red) and four metabolites (highlighted in blue) identified in the exometabolomic 802 

data. 803 
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 809 

 810 

Figure 4: Differential in silico production (mmol/gDW/h) of seven biomass building block 811 

groups between the exponential and stationary growth phase. (A) Integration of relative gene 812 

expression data (EXPO vs STAT) using REMI-TGexM. (B) Integration of relative gene expression 813 

and exometabolomics data (EXPO vs STAT) using REMI_TGex. Each dot in the graph represents 814 

the individual biomass precursors within that category and the statistically significant changes 815 

(p=value < 0.05) are highlighted in purple. For BBB group statistics, see Table S7. 816 

 817 

 818 

SUPPLEMENTARY FIGURES 819 

 820 
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Supplementary Figure 1: Principal component analysis of (A) quadruplicate global RNA-821 

sequencing data sets of P. veronii 1YdBTEX2 after 4 h, 24 h and the 0 h control (T0) and (B) of 822 

exometabolomics data, grouped QC samples of T0, T4 and T24 samples. 823 

  824 

 825 

 826 

Supplementary Figure 2: Main functional toluene degradation pathway branch in iPsvr. 3-827 

methylcatechol is converted to pyruvate and acetaldehyde, which are further involved in 828 

central carbon pathways. 829 

 830 

 831 

Supplementary Figure 3: Differential in silico production (mmol/gDW/h) of seven biomass 832 

building block groups between cells in liquid medium and sand. (A) Integration of relative gene 833 

expression data (liquid vs sand) using REMI-TGex when cells grow on Toluene . (B) Integration of 834 

relative gene expression data (liquid vs sand) using REMI-TGex when cells grow on Succinate. 835 

Each dot in the graph represents the individual biomass precursors within that category and the 836 

statistically significant changes (p=value < 0.05) are highlighted in purple. For BBB group statistics, 837 

see Table S7. 838 

 839 

 840 
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SUPPLEMENTARY TABLES (given as an excel file and each excel sheet is a Supplementary Table) 841 

Table S1.  Summary of RNA-seq yields of the different time points.  842 

Table S2.  Significantly differentially expressed metabolic genes in EXPO vs. STAT  843 

Table S3.  Under-represented Biological processes in STAT vs EXPO. 844 

Table S4.  iPsvr network decomposition into its main subnetwork and isolated 845 

reactions/pathways. 846 

Table S5.  Gap-filled reactions introduced into the iPsvr with their corresponding genes. 847 

Table S6.  Differential in silico production (mmol/gDW/h) of biomass precursors, grouped in 848 

seven biomass building block groups, between the exponential and stationary growth phase 849 

using REMI-TGexM, REMI-TGex and REMI-TM. 850 

Table S7. Statistical test for BBB groups. Significant up- or down-regulations (p=value < 0.05) 851 

are highlighted in red. 852 
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