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ABSTRACT

Understanding the adaptive responses of individual bacterial strains is crucial for microbiome
engineering approaches that introduce new functionalities into complex microbiomes, such as
xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic
reprogramming of the cell, which can be captured by multi-omics, but this data remains
formidably challenging to interpret and predict. Here we present a new approach that combines
genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are
common tools for studying dynamic population behavior. As a realistic demonstration, we
developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate
bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil
microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during
growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic
processes from the integrated model closely matched experimental observations. We conclude
that integrative and network-based analysis can help build predictive models that accurately
capture bacterial adaptation responses. Further development and testing of such models may
considerably improve the successful establishment of bacterial inoculants in more complex

systems.
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INTRODUCTION

Microbiome engineering is an upcoming discipline that aims to manipulate, complement or
restore the functionality of existing damaged communities, e.g., contaminated soils, by adding
specific new metabolic capabilities®. A rational engineering approach requires a detailed
understanding of general principles of the functioning of the microbial community and its
physiological adaptations to perturbations, but such understanding is currently lacking and
fragmentary'2. The technically most simple way to provide new metabolic capacities to an
existing microbial community is by strain addition (what one could call an N+1 scenario)®*. After
an initial screening of the existing capacity of the microbial community, one or more preselected
and well-characterized strains with the intended complementation could be prepared,
formulated and inoculated into the community. Depending on the aims, such inoculants should
maintain and reproduce for longer-term inside the resident community or only deploy their
metabolic capacity transiently*.

Inoculation of preselected strains has been widely practised for pollutant bioaugmentation, using
bacteria with particular metabolic capabilities that enable them to efficiently degrade and grow
on common pollutants such as toxic aromatic compounds®. However, even the simplest
inoculations and N+1-strategies are rarely effective because it is insufficiently understood what
inoculants need to establish successfully within a (new) existing community, and how they need
to adjust their physiology to meet the requirements of the new environment and degrade the
desired toxic compound(s). Modeling strategies based on the integration of a variety of
(nowadays more easily) accessible condition-specific omics data, would help to better
understand and predict how cellular regulation and physiology at different growth conditions
and environments interplay. However, the impact and advantage of such integrative analysis are
not yet explored to its full extent®. We propose and demonstrate here that combining
comprehensive genome-wide transcriptomics, exometabolomics and metabolic modeling can
better predict physiological adaptation.

Metabolic modeling has largely advanced through the development of GEnome-scale Metabolic
models (GEMs) and constraint-based modeling techniques such as Flux Balance Analysis (FBA).

GEMs can be built from the annotated genomes and they describe an organism's metabolism as
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80 completely as possible, linking genotype to metabolic phenotypes’. GEMs encompass
81 metabolites, metabolic reactions, and genes coding for the enzymes catalyzing the reactions.
82  Together with FBA, GEMs predict steady-state fluxes®®, and therefore, they can predict cellular
83  physiology. While the genome specifies the complete set of biochemical reactions which the cell
84  can potentially carry out, the actual enzymatic capacity at each physiological condition is
85  orchestrated by regulatory networks in the cell. GEMs do not explicitly consider regulation,
86  whose effects are better reflected in the global transcriptome and the metabolome®-%4, FBA
87  approaches have been extended with RNAseq and metabolomics data to capture cell regulation
88 and more accurately describe cellular metabolic behavior’>. For example, transcriptional
89  regulation of gene expression has been linked to GEMs, either by taking into account the absolute
90  expression values, scoring genes and subsequently reaction fluxes as active or non-active based
91  on their expression,'®'8 or by incorporating relative gene-expression'#8, Use of relative gene
92  expression is assuming that the relative changes between two conditions correlate with the
93 resulting differential flux profiles. Both approaches can lead to condition-specific GEMs that are
94  more effective for inferring the actual biochemical activity and the observed physiology of the
95  microorganism.
96  Asastudy system for predicting physiology from an integrated GEM-transcriptome-metabolome
97  approach, we here use Pseudomonas veronii 1YdABTEX2. Strain 1YdBTEX2 is capable of degrading
98 avariety of mono-aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and m- and
99  p-xylene (BTEX)?'23, The ability of P. veronii 1YdBTEX2 to grow in contaminated environments
100 makes it a promising candidate for rational complementation of microbial communities in
101  contaminated soils?*. Based on an available manually curated high-quality genome?3, we
102  reconstructed the first GEM for P. veronii (iPsvr). Genome-wide transcription changes and
103 exometabolome compounds were measured during growth of P. veronii on toluene, in
104  exponential and in stationary phase. Transcriptome and exometabolome data were integrated
105 into the iPsvr using the recently developed tool REMI (Relative Expression and Metabolomics
106  Integrations)?°. Two obtained metabolic models representing exponential and stationary
107  physiologies were then used to evaluate growth rates and the production of biomass precursors,

108 and model predictions were compared to the experimentally observed values. Although the
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109  temporal variations of the growth rate cannot be predicted using GEMs?°, we showed that
110  introducing the additional regulatory information from gene expression and metabolomics data
111  into GEMs allows for consistently estimating growth rates at different growth phases. Finally, we
112  incorporated into iPsvr previously published transcriptomics data of P. veronii transits from liquid
113 culture to sand?® to understand its physiological adaptation in soil. Our work shows strong
114  consistency of model outputs with the experimental data, manifesting that integration of
115  condition-specific omics data into a curated GEM constitutes a major improvement for prediction
116  of metabolic reprogramming during adaptation.

117

118  RESULTS

119  Developing an integrated genomic-transcriptomic-metabolomic workflow

120 To develop a pipeline that integrates genomics with transcriptomic and metabolomic data we
121 advanced in three stages: 1.) Quantify the cellular states at each unique growth phase by
122  genome-wide transcriptomics, and exometabolomic data from spent media composition (Fig.
123  1A); 2.) Construct a GEM for P. veronii strain 1YdBTEX2 (iPsvr), gap-fill missing parts of the
124  metabolism (compounds and reactions), complement genome annotation using the
125  transcriptomics and exometabolomic data and estimate the steady-state growth rate using FBA
126  (Fig. 1B); and 3.) Link the interrelationships between growth phases and the differentially
127  expressed genes and metabolite abundances by statistical inference and by REMI. The pipeline
128 generated two growth-phase-specific models, iPsvr-EXPO and iPsvr-STAT (Fig. 1C), which were
129  used to predict quantitative and dynamic readouts of P. veronii metabolism in both conditions

130 and in liquid-to-sand transition.

131 Genome-wide gene expression and metabolite formation over time

132  Whole-genome gene expression profiles and metabolite formation in the spent medium were
133  analyzed in P. veronii cultures growing in liquid minimal medium with toluene as sole carbon and
134  energy source, sampled at 0 h (TOh), 4 h (T4h, EXPO) and 24 h (T24h, STAT) after inoculation.
135 Genome-wide gene expression was quantified by mapping lllumina 100 nucleotide long single—
136  end sequencing reads from deeply sequenced cDNA libraries to the protein coding genes in P.

137  veronii genome (read numbers indicated in Table S1). For each sampling time point, four
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138  replicates clustered closely together, with slightly higher variability observed among the T24h
139  replicates (Fig. S1A). A pair-wise comparison of expression levels showed that 1458 (818 up-
140  regulated and 640 down-regulated) out of the total 6943 genes (21%) were significantly
141  differentially expressed between EXPO and STAT phase cells, with at least 2-log fold-change
142  induction (false discovery rate [FDR]<0.05) (Fig. 2A, B).

143 A priori, based on the genome annotation, a subset of 1241 “metabolic genes” were used in the
144  GEM reconstruction (iPsvr). Out of these 1241, 300 (21%) were significantly differentially
145  expressed in EXPO vs. STAT phase cells (FDR<0.05) (Table S2). The transition to STAT phase in
146  bacteria is characterized by growth arrest in response to several factors, such as nutrient
147  depletion, the accumulation of toxic compounds and environmental stress, which decrease
148  ribosomal activity and therefore protein synthesis. As anticipated, enriched GO terms for the
149  category “Biological Process” among the differentially expressed genes between EXPO and STAT
150 included “protein folding” (G0:0006457), “tRNA aminoacylation for protein translation”
151  (G0:0006418), “intracellular protein transmembrane transport” (GO:0065002) and “regulation
152  of transcription, DNA-templated” (GO:0006355) (Table S3), thus indicating cells to be more active
153  in EXPO phase, as expected. Consistent with nutrients becoming depleted in STAT phase, the
154  terms “benzoate catabolic process via hydroxylation” (GO:0043640) and “tricarboxylic acid cycle”
155 (GO:0006099) (Table S3), important for aromatic compound catabolism, were under-
156  represented in the STAT phase transcriptome.

157  The untargeted metabolomic analyses of the spent medium detected 1630 (positively charged)
158  and 3509 (negatively charged) distinct ion species or metabolite features. Unsupervised principal
159 component analysis vyielded three distinct clusters indicating metabolic phenotype
160 differentiation over time, from inoculum to stationary phase (Fig. S1B). Similar to the
161  transcriptomics data, a greater variability was observed among the T24h replicates.

162  Temporal patterns of annotated metabolites by HMDB database (accurate mass) matching?®
163  showed a significant increase in the spent media over time of the majority of the metabolites
164  implicated in the toluene and benzene degradation pathways and central carbon pathways,
165 including glycolysis, purine and pyrimidine metabolism and amino acid metabolism (Fig. 2C). This

166  implies their production by the bacteria and progressive release into the media. One specific
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167  group of metabolites, including citrate (C00158), glutamate (C00025), glutamine (C00064), and
168  aspartate (C00049), accumulated significantly in EXPO phase (T4h) in comparison to TOh,
169 followed by lower levels in STAT phase (Fig. 2C). This suggests their excretion in EXPO phase and
170  subsequent reconsumption when other nutrients became limiting (Fig. 2C).

171

172  Genome-scale metabolic model (GEM) of P. veronii strain 1YdABTEX2 (iPsvr)

173 A draft GEM was generated from the curated P. veronii genome?? by using the RAVEN toolbox?’
174  (Fig. 1B). The draft GEM was gap-filled by iterative manual curation until we obtained a model
175  able to carry non-zero flux through the biomass reaction at steady state. This signified cell
176  ‘growth’, and indicated that the model was performing as expected for a biological system. The
177  cell biomass composition and compartment information were derived from two available models
178  of other Pseudomonads species: P. putida?®3° and P. stutzeri*! (see Methods). The reconstructed
179  iPsvr accounted for 1243 genes, 1812 metabolic reactions and 1677 metabolites localized within
180  two intracellular compartments, the cytosol and periplasm, and the extracellular environment
181  (Table 1).

182  The scope of iPsvr GEM was further widened by restoring the connectivity of the remaining
183  ‘blocked’ reactions, i.e., isolated reactions that carry zero flux at any condition. To this end, we
184  explicitly considered the empirical gene-expression and exometabolomics data. We first used a
185  graph-based algorithm (see Methods) to decompose the iPsvr metabolic network into its main
186  subnetworks of 1370 reactions and 23 blocked reactions/pathways of different lengths, with the
187 longest blocked pathway consisting of seven reaction steps (Table S4). Out of 191 blocked
188  reactions/pathways, we identified those associated with differentially expressed genes between
189  the two growth conditions and the ones whose participating metabolites were present in the
190 exometabolomic data. The identified reactions/pathways were next unblocked by gap-filling as
191  described in the Methods section. Interestingly, we identified gap-filling reactions that had been
192  annotated to P. veronii genes with RAVEN but had a lower score than the ones chosen as a
193  baseline for the draft reconstruction of iPsvr. The gap-filling algorithm introduced 50 new
194  metabolic reactions together with their corresponding 26 genes to iPsvr (Table 1 and Table S5).

195
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196  Table 1: iPsvr components in the final GEM.

Genes

from annotation 1243

added for gap-filing 26

Reactions

metabolic reactions 1812
- from annotation 1762
- added for gap-filing 50

transport reactions 243

exchange reactions 219

Metabolites

intracellular compounds 1677

extracellular compounds 219

cellular building blocks 65

197

198  The experimentally determined maximum specific growth rate of P. veronii strain 1YdBTEX2 in
199  minimal medium with toluene as the sole carbon source was in the range of 0.25 h'! to 0.35 h%.
200 Computational prediction of the growth rate on toluene from the curated iPsvr using
201  thermodynamics-based flux balance analysis (TFA)33233, which integrates thermodynamic
202  constraints into FBA, yielded 0.91 h™* (at a maximum allowed toluene uptake rate of of 5.5 mmol
203  gDWh%, and without considering transcriptomics and metabolomics information, see Methods
204  section).

205

206  Omics-based curation and gap-filling in iPsvr for toluene degradation and phenylalanine
207 metabolism

208  Given the importance of toluene degradation by P. veronii 1YdBTEX2, we manually curated the
209 predicted toluene (Fig. 3A) and phenylalanine metabolic pathways (Fig. 3B) to ensure they were
210  fully functional in iPsvr. Toluene is converted in P. veronii via (1S,2R)-3-methylcyclohexa-3,5-
211  diene-1,2-diol to 3-methylcatechol, which is further degraded, according to the KEGG pathway
212 database?, through two pathways until the central carbon metabolism compounds are reached
213 (Fig. 3A and Fig. S2). The iPsvr growth simulation on minimal media containing toluene as the
214  sole carbon source showed that the pathway producing pyruvate and acetaldehyde in four

215  reaction steps was functional (1.13.11.2, 3.7.1.-, 4.2.1.8 and 4.1.3.39 in Fig. S2), which has
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216  experimentally been shown to be the main toluene degradation route in P. veronii?3. In contrast,
217  the second functional pathway (Fig. 3A)%3, was blocked in iPsvr because it lacked the enzyme
218  2.8.3.6 (highlighted in red in Fig. 3A), and it was therefore disconnected from the main metabolic
219  subnetwork. We found that three out of the six genes in this pathway (PVR_rlg5041,
220 PVR_r1g5042, PVR_r1g1440) were more than 2-fold differentially expressed between the two
221  growth conditions (highlighted in green in Fig. 3A), which further suggested that this pathway is
222  indeed active in P. veronii. Homology-based BLAST searches? of the gene sequences of 2.8.3.6
223 against the P. veronii genome identified the corresponding gene for catalyzing this reaction
224  (PVE_r1g3867, e-value of 102, to scoA). Note that the default e-value in RAVEN is 10°°, which is
225  why the reaction was not initially captured in the model from the genome annotation. Therefore,
226  the missing reaction (2.8.3.6) was added to iPsvr, and the toluene pathway (Fig. 3A) was
227  connected to the rest of the metabolic network through the Krebs cycle and carried flux.

228  The phenylalanine metabolic pathway was gap-filled using the exometabolomic data (Fig. 3B).
229  Three out of the eight reaction steps of this pathway (4.1.1.28, 1.14.14.54 and 1.14.13.-) were
230  initially missing in iPsvr, leading to a dead-end pathway without flux. Four metabolites of
231  phenylalanine metabolism were detected in the exometabolomics data (colored in blue in Fig.
232 2B), one of which, 2-hydroxyphenylacetate, was absent in the iPsvr GEM. This suggested that
233  phenylalanine metabolism should proceed via 2-hydroxyphenylacetate in P. veronii (Fig. 3B). The
234  enzyme producing 2-hydroxyphenylacetate from phenylacetaldehyde (1.14.14.54) was found by
235  BLAST (PVE_r1g94, e-value of 10%° to CYP504), added to iPsvr and could thus link both
236  metabolites. The next step (1.14.13.-), yielding homogentisate (Fig. 3B) was also added, but no
237  protein sequence could be assigned, as it corresponds to an orphan reaction (KEGG reaction ID:
238  R05450). The first enzyme (4.1.1.28), which decarboxylates L-phenylalanine to phenethylamine,
239  must be present, given the detection of both compounds in the exometabolomics data, although
240  no P. veronii protein sequence could be identified through BLAST search.

241

242  Omics integration into iPsvr

243  REMI (Relative Expression and Metabolomics Integrations) was used to integrate the relative

244  gene-expression and metabolite abundance data between EXPO and STAT into iPsvr. We
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explored three scenarios, depending on the type of data integrated into iPsvr: (i) REMI-TGex for
the integration of relative gene-expression data only; (ii) REMI-TM for the integration of
metabolomics data only; and (iii) REMI-TGexM for the simultaneous integration of both the gene-
expression and metabolite abundance data into a thermodynamically curated model. The “T” in
the three methods stands for the inclusion of thermodynamic constraints. Contextualized
metabolic models (iPsvr-EXPO and iPsvr-STAT) coherent with omics data were built, and the
growth rates were again simulated (Table 2).

342 out of a total of 352 (97%) integratable gene-expression and metabolite abundance data
points could be consistently included in REMI; the remaining 3% being inconsistent (Table 2, third
row). Simulated growth rates for EXPO phase under the condition of integrating both gene-
expression and metabolomics data (REMI-TGexM) were the closest to the experimentally
observed rates (0.40 h™! for REMI-TGexM versus 0.25-0.35 h%, Table 2).

The integration of exometabolomics data alone (REMI-TM) was insufficient, with a predicted
growth rate of 0.86 h™* , which is close to the rate of 0.91 h! that was obtained for the
unconstrained iPsvr model (Table 2). The integration of relative gene-expression data alone
(TGex) yielded an in silico exponential growth rate of 0.48 h't, which is close to the REMI-TGexM
value (Table 2). Both REMI-TGex and REMI-TGexM, but not REMI-TM, correctly estimated near

zero growth rates (0.06 h'and 0.07 h%, respectively) for stationary phase cells (Table 2).

Table 2: Summary of the REMI results of the relative integration of exometabolomics (REMI-
TM), gene expression (REMI-TGeX) and both datasets (REMI-TGeXM) into iPsvr. Theoretical
maximum consistency score, TMCS; Maximum consistency score, MCS; Std, standard deviation.

Score Growth rate (h™)
Method

TMCS MCS EXPO STAT
TFA - - 0.91* 0.91*
REMI-TM 215 123 0.86 0.67
REMI-TGeX 618 229 0.48 0.06
REMI-TGexM 833 342 0.40 0.07

Experimental - - 0.31 (std=0.05) 0

*by definition, there is no difference between the simulated growth rate at different growth

phases in FBA simulations.

10
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270  Analysis of the biomass precursor production at different growth phases

271  To understand the underlying mechanisms of growth reduction when cells transit from EXPO to
272  STAT, we identified the biomass precursors that may become limiting in the stationary phase,
273  therefore leading to growth arrest. The 65 biomass precursors were grouped into seven groups
274  of biomass building blocks (BBBs), namely carbohydrates, cofactors and vitamins, DNA
275 nucleotides, lipids, minerals, amino acids, and RNA nucleotides. For each metabolite, we
276  calculated the log2 fold-change of their maximal production between EXPO and STAT using REMI-
277  TGex and REMI-TGexM (Table S6).

278  Both REMI-TGex and REMI-TGexM indicated large variations in the production of BBBs between
279  thetwo phases (Fig. 4), the maximal relative change occurring in the production of cofactors and
280  vitamins. Out of the 20 precursors that were classified as cofactors and vitamins, the production
281  of 10 (REMI-TGexM) and 18 (REMI-TGex) of them was at least 2-log fold-change higher in iPsvr-
282  EXPO than in iPsvr-STAT (Table S6). Rather surprisingly, an increased production of certain BBBs
283  occurred in STAT. Both REMI-TGex and REMI-TgexM predicted that several amino acids, e.g.,
284  tyrosine and lysine, and some lipids, e.g., hexadecanoic acid, had at least a 2-log fold-change
285  higher production in STAT (Fig. 4A & B). As before, the variant with integration of only
286  exometabolomic data (REMI-TM) did not predict any significant differences in the production of
287  BBBs between EXPO and STAT culture (Table S6).

288

289  P. veronii adaptation from liquid culture to the soil as growth environment

290  Finally, as an additional validation of our approach, we predicted the in silico physiology for P.
291  veronii during adaptation to the soil environment, using a previously published genome-wide
292  transcriptome data set of cells exposed for 1 h to liquid medium or to sand, with either toluene
293  or succinate as carbon substrate?,

294 Integrating the transcriptomic data?® into iPsvr using REMI-TGex, produced in silico growth rates
295 0f 0.52 and 0.66 h™* for toluene or succinate in liquid medium. Remarkably, the model predicted
296  strong reduction of growth rate upon transition to the sand, i.e., from 0.52 h! to 0.23 h'!
297  (toluene)and 0.66 h'to 0.07 h'! (succinate). This suggests that cells have to adapt to soil as their

298 new environment and have to reprogram their physiology before resuming growth. The higher

11
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299  reduction of growth in case of succinate is in agreement with experimental results in the previous
300 study?3, and can be explained from the lower concentration of succinate than toluene available
301 inthe soil, therefore rapidly used by the cells and leading to nutrient starvation.

302 To understand how the transition from liquid medium to sand constrains the metabolic fluxes
303 and impacts growth of P. veronii, we analyzed the production of BBBs in both growth
304 environments. Intrestingly, we observed the same robust reduction in the production of
305 cofactors and vitamins upon transition to sand in the case of succinate, as had been predicted
306  for transition to STAT in liquid culture (14 out of 20 precursors with more than 2-log fold lower
307  production ). In contrast, in case of cells exposed to toluene in sand only 8 of the cofactor and
308  vitamin precursors were 2-log fold lower expressed. The higher number of precursors with lower
309 production rates might thus explain the stronger growth arrest in case of succinate during
310 transition to sand as opposed to toluene. In contrast, the production of other precursor BBBs,
311  such as phosphatidylcholine and ubiquinone-8, similarly increased in sand both for toluene and
312  succinate (Fig. S3 A&B). “This suggests that the cells in sand reshape their membrane content
313  and respiratory pathways

314

315  DISCUSSION

316  This work demonstrates how a metabolic-model-based (multi)omics data integration approach
317 can accurately capture cell physiology and adaptation during growth or environmental
318 transitions. Metabolic models are typically used for predicting optimal cell growth, but not for
319 growth transitions and adaptation. We show here the usefulness of models with
320 comprehensively integrated transcriptomics and exometabolomic to capture changes in growth
321  rate during adaptation. As example, we studied transition of the toluene-degrading bacterium P.
322  veronii 1YdBTEX2 from exponential growth to stationary phase, and during adaptation from
323  liquid to a sand environment.

324  For the purpose of this study, we reconstructed and curated the first genome-scale metabolic
325 model of P. veronii, iPsvr. iPsvr is useful for a wide range of applications in biological and
326  biotechnological research, such as the integration of omics data, investigation of relationships

327 among species in microbial communities, bioremediation strategies, design of metabolic
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328 engineering strategies, hypothesis-driven discovery, and analysis of metabolic network
329 properties. As such, iPsvr may represent a valuable resource for the study of complex
330 microbiomes and microbiome engineering.

331

332  GEMs usually contain inconsistencies that manifest as blocked reactions, i.e., the reactions that
333  carry zero flux. Most of the available metabolic models are gap-filled to obtain a functional model
334  that produces all the BBBs. Nevertheless, many reactions in GEMs are not directly connected to
335 biomass formation and may remain blocked even after routine gap-filling. Roughly, 20-50% of
336  thereactions of published GEMs are blocked reactions3®3”. For example, in the most recently and
337  best-curated published E. coli model, iML1515, 10% of the reactions are blocked?. We identified
338 the blocked reactions/pathways in iPsvr and introduced a novel omics-based gap-filling
339  approach, which targets the gap-filling of reactions/pathways by looking at differentially
340 expressed genes or metabolites. We showed that the gap-filling step improved the metabolic
341  model connectivity, thus increasing the number of functional pathways that can carry flux. The
342  curation also increased the consistency of the metabolic model with the omics data, expressed
343  asthe number of genes/metabolites with available omics data that can be integrated into iPsvr.
344  We illustrated through two gap-filling examples on toluene and phenylalanine metabolism how
345 we could add the missing parts of metabolism and increase consistency.

346  Statistical analysis of gene expressions and metabolite levels revealed significant variations
347  across the exponential and stationary phase, exemplifying the known distinct physiologies under
348 these conditions. However, the system’s level physiology and the underlying adaptation
349  mechanisms remained unrevealed.

350

351 It should be highlighted that in FBA, the growth rate is evaluated under the assumption that all
352  metabolic fluxes in the cell are geared towards the maximal production of biomass at each
353 moment of the cell growth and under any environmental condition. Nevertheless, inclusion of
354 REMI?®®, a method for the integration of omics data into metabolic models and for building
355  context-specific models, produced more accurate predictions of P. veronii growth rates under

356 dynamic conditions. Integration of the transcriptomic data (as in REMI-TGex and —TGexM) proved
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357  to be vital for improving growth rate predictions, whereas inclusion of metabolomic data alone
358 (as in REMI-TM) was insufficient. This might be expected, because only a small subset of
359 metabolites could be putatively identified, such that their impact on the predictions was
360 comparatively smaller. The estimated growth rate was slightly closer to the experimentally
361 measured values in the case of REMI-TGexM, which combines transcriptomics and metabolomics
362 data. Overall, these results clearly demonstrated that integrating multi-omics data in GEMs
363  significantly increases the consistency of the model predictions with experimental observations.
364

365 REMI-iPsvr analysis suggested P. veronii adapts to STAT phases primarily by limiting the
366  metabolic fluxes for the production of the majority of cofactors and vitamins required for growth,
367  with metabolism reshuffling being regulated at the transcriptional level. In addition, an increased
368  production of specific amino acids in STAT phase suggests the cell is preparing for starvation and
369  survival. Similar to the EXPO to STAT transition, the production of most of the BBBs decreased in
370 cellsinoculated in sand compared to liquid culture, which explains the overall observed reduction
371  ingrowth rates. In contrast, the production of several precursors from the cofactors and vitamins,
372  and the BBBs amino acids actually increased in cells transited to sand, both for sand with toluene
373  or succinate. We hypothesize that these BBBs are needed to adapt to the local sand conditions.
374  This finding is in agreement with work of Morales et al.?3, who concluded from Gene Ontology
375 terminology that P. veronii cells inoculated in sand readjusted their metabolism during the first
376  hour of contact.

377  Collectively, our results demonstrate the importance of integrating into metabolic models the
378  contextualization of condition-specific gene-expression and metabolite-abundance data. This
379  increases the value of growth rate predictions and improves the assessment of the relative
380 changes of measurable metabolic phenotypes. The method as demonstrated here is thus an
381 important advancement to explain, quantify or predict cellular responses to environmental or
382  genetic perturbations, which is crucial for microbiome engineering.

383

384

385
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386 METHODS

387  Culture conditions for P. veronii transcriptome and exometabolomic studies

388  P. veronii 1YABTEX2 was grown on solid 21C mineral medium3® with toluene in the vapor phase
389  at30°Cfor 3 days. Colonies were inoculated into three 100 ml screw-cap conical flasks containing
390 25 ml of the mineral medium amended with 0.5 ml of a 1:19 mixture of toluene:tetradecane
391  (Sigma-Aldrich ref: 34866; Aldrich ref: 87140). Flasks were incubated at 30°C and at 180 rpm on
392  an orbital shaker until a culture turbidity (ODeoo) of 0.7 (mid-exponential growth phase). At this
393  point, the three cultures were pooled, and the bacterial cells were harvested by centrifugation
394  (swing-out rotor A-4-44, Eppendorf; 3220 g, 8 min, 30°C). The cell pellet was resuspended in the
395 mineral medium and centrifuged again, as described above, to remove any residual carbon. After
396 that, the cells were resuspended in mineral medium, diluted to obtain a starting ODeoo of 0.16
397 and transferred into four replicate flasks, to which the toluene:tetradecane mix was added, as
398 described above. The cultures were incubated at 30°C and 180 rpm and regularly sampled for OD
399 measurements. For transcriptomics, approximately 1x10° cells were harvested from an
400 appropriate volume of the culture by centrifugation at 3,500 g, for 6 min at 30°C; snap-frozen in
401 liquid nitrogen and stored at -80°C until RNA extraction. Three quadruplicate sample sets were
402  produced: the inoculum at time 0 (TOh), that is cells starved for approximately 30 min at 25°C in
403  mineral medium without a carbon source; exponentially growing cells (at ODgoo = 0.5, harvested
404  after 4 h of incubation in the toluene-amended mineral medium); stationary phase cells (at
405 ODgoo = 1.8-1.9 harvested after 24 h incubation). To study the composition of the
406 exometabolome (metabolites in the culture medium excreted or leaked out of cells), 1 ml of the
407  culture was sampled at the same time points. Cell culture was transferred into a 1.5 ml
408  polypropylene microcentrifuge tube, which was clarified by 20 min centrifugation at 21,100 g
409 and 4°C, after which 0.5 ml of spent media was transferred to a new polypropylene tube, stored
410 at-80°C and shipped on dry ice to the metabolomics facility.

411

412  RNA extraction, RNA-seq library preparation and sequencing

413  Total RNA from the frozen cell pellets was extracted using the RNA PowerSoil Total RNA Isolation

414  Kit (MoBio Laboratories) as recommended by the manufacturer. Contaminating genomic DNA
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415  was removed by two cycles of TURBO DNase (Invitrogen) digestion and RNeasy MinElute Cleanup
416 kit (QIAGEN) column purification. The quantity, purity and integrity of RNA samples were
417  assessed using agarose gel electrophoresis, NanoDrop spectrophotometer (ThermoFisher
418  Scientific) measurements and Agilent 2100 Bioanalyser (Agilent Technologies) profiling.

419 The completeness of DNA removal was verified by PCR using primers Pv_chr2_fw,
420 ATCGGCTGTCCGACATCGGACG and Pv_chr2_rev, TCGAAGAGCTCCACCGAGAGCCGCC) and 1 pg of
421  genomic DNA as a positive control, as described previously?3. Next, 4 ug of each RNA sample were
422  depleted from ribosomal RNAs, converted to the reverse-complement stranded lllumina
423  sequencing library using the ScriptSeq Complete Kit (Bacteria, lllumina) and indexed with
424  ScriptSeq™ Index PCR primers set 1 (Epicentre, lllumina) following the standard protocol. The
425  resulting directional RNA-seq libraries were sequenced using single-end 100-nt read chemistry
426  on an lllumina HiSeq 2500 platform (Illumina) at the Lausanne Genomic Technologies Facility.
427

428  Untargeted LC-HRMS metabolomics

429  The spend media (100 uL) samples collected at different time points were extracted with 400 pL
430 of ice-cold methanol to quench the metabolism, precipitate proteins and extract a broad range
431  of polar metabolites. The extracted media were analyzed by HILIC-HRMS using an electrospray
432  ionization source operating in both positive and negative mode. Pooled QC samples
433  (representative of the entire sample set) were analyzed periodically (every 4 samples)
434  throughout the entire analytical run in order to assess the quality of the data, correct the signal
435 intensity drift and remove the peaks with poor reproducibility (CV > 30%) that can be considered
436  chemical or bioinformatic noise. Data were acquired using a 1290 UHPLC system (Agilent
437  Technologies) interfaced with a 6550 iFunnel Q-TOF mass spectrometer operating in a full-scan
438 MS mode. In addition, pooled QC samples were analyzed in auto MS/MS mode (i.e. Data
439  Dependent Analysis [DDA]) to acquire the MS/MS data for metabolite identification. In positive
440 mode, chromatographic separation was carried out using an Acquity BEH Amide, 1.7 um, 100 mm
441  x 2.1 mm I.D. column (Waters, Massachusetts, US). The mobile phase was composed of A =20
442  mM ammonium formate and 0.1% formic acid in water and B = 0.1% formic acid in acetonitrile.

443 A linear gradient elution from 95% B (0—1.5 min) down to 45% B (17-19 min) was applied
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444  followed by 5 min for column re-equilibration to the initial gradient conditions. The flow rate was
445 400 pL/min, column temperature 30°C and sample injection volume 2 pl. ESI source conditions
446  were set as follows: dry gas temperature 290°C and flow 14 L/min, fragmentor voltage 380V,
447  sheath gas temperature 350°C and flow 12 L/min, nozzle voltage 0 V, and capillary voltage 2000
448 V. In negative mode, a SeQuant ZIC-pHILIC (100 mm, 2.1 mm |.D. and 5 um particle size; Merck,
449  Damstadt, Germany) column was used. The mobile phase was composed of A = 20 mM
450 ammonium acetate and 20 mM NH4OH in water at pH 9.3 and B = 100% acetonitrile. The linear
451  gradient elution ran from 90% (0—1.5 min) to 50% B (8—11 min) down to 45% B (12—15 min).
452  Finally, the initial chromatographic conditions were established during a 9 min post-run for
453  column re-equilibration. The flow rate was 300 puL/min, column temperature 30°C and sample
454  injection volume 2 pl. ESI source conditions were set as follows: dry gas temperature 290°C and
455  flow 14 L/min, sheath gas temperature 350°C, nebulizer 45 psi and flow 12 L/min, nozzle voltage
456 0V, and capillary voltage 2000 V.

457  In the MS-only mode, the instrument was set to acquire over the m/z range 50-1200, with the
458  MS acquisition rate of two spectra/s. Targeted MS/MS data for dysregulated metabolite features
459  were acquired using the inclusion list with narrow isolation window (= 1.3 m/z), MS acquisition
460 rate of 500 ms, and MS/MS acquisition rate of 500 ms.

461

462  Data processing and statistical analysis

463  Transcriptomics: Read mapping, sorting and formatting of the raw reads was done with Bowtie24°
464  and Samtools*!, using the finalized gapless P. veronii 1YdBTEX2 genome sequence as in Morales
465 et al?®. Mapped reads were counted with HTSeq*?, then further processed and analyzed with
466  edgeR*3. Only reads counted more than once per million in at least three replicates were kept.
467  After normalization of the counts, transcript abundances were compared in pairwise conditions
468 in a modified Fischer exact test (as implemented in edgeR). Genes were called significantly
469  differentially expressed between two EXPO and STAT when their false-discovery rate was <0.05
470  and their fold-change >2 and were subsequently interpreted using Gene Ontology (GO) analysis.

471 GO terms of P. veronii genes were inferred using the program BLAST2GO*. The same software
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472  was then used to analyze GO data sets of significantly differentially expressed genes in each pair-
473  wise comparison, under the TopGO “Weight” algorithm.

474  Metabolomics: Raw LC-MS data were converted to mzXML files using ProteoWizard MS Convert.
475 mzXML files were uploaded to XCMS for data processing including peak detection, retention time
476  correction, profile alignment, and isotope annotation. Data were processed as a multi-group
477  experiment, and the parameter settings were as follows: centWave algorithm for feature
478  detection (Am/z = 20 ppm, minimum peak width = 5 sec and maximum peak width = 30 sec, S/N
479  threshold = 6, mzdiff = 0.01, integration method = 1, prefilter peaks = 3 prefilter intensity = 1000,
480 noise filter = 0), obiwarp settings for retention time correction (profStep = 1), and parameters for
481  chromatogram alignment, including mzwid = 0.015, minfrac = 0.5 and bw = 5.5. Preprocessed
482  data (following the signal-intensity drift correction and noise removal with the “batchCorr” R
483  package) were filtered according to the p-value (< 0.05) and signal intensity (> 1000 ion counts).
484  The remaining table of metabolite features together with the most significant ion features
485  selected from the loadings plot of the multivariate models in positive and negative ionization
486 mode were subjected to metabolite identification as described below.

487 In the first instance, putative metabolite identification was performed by accurate mass and
488  retention time (AMRT) matching against an in-house database (containing information on 600
489  polar metabolites from the Mass Spectrometry Metabolite Library Supplied by IROA
490 Technologies, Sigma-Aldrich, characterized under the same analysis conditions). For that, raw
491  data files (.d) were processed using Profinder B.08.00 software (Agilent Technologies) with the
492  following parameter settings: mass tolerance 10 ppm, retention time tolerance 0.2 min, height
493  filter 1000 counts, and peak spectrum obtained as an average of scans at 10% of the peak. In
494  parallel, the XCMS output table of significantly different metabolite features was matched
495  against the Human Metabolome Database (HMDB)?® based on accurate mass (AM) with Appm =
496  10. The list of hits was further manually curated by taking into account the biological relevance
497  of the hit (endogenous vs. exogenous metabolites) and a presence of the “true” peak shape
498  (using the interactive XCMS Online interface*®). Short listed ions of interest together with the
499  metabolites identified by the in-house database were further subjected to targeted MS/MS

500 validation. The metabolite identifications were validated by matching the MS/MS*¢ data acquired
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501 in the pooled samples (for each experiment in each LC-MS analysis mode) against the in-house
502 PCDL database, METLIN (https://metlin.scripps.edu/) standard metabolite database*” or
503 mzCloud (https://www.mzcloud.org/). Otherwise, if the MS/MS data quality did not allow for
504 metabolite ID confirmation, the metabolite IDs remained putative, based only on accurate mass
505  matching.

506

507 Genome-scale model reconstruction

508 The P. veronii 1YdBTEX2 genome-scale metabolic reconstruction process combines the
509 automated draft metabolic network process with several manual refinements and curation
510 procedures, in total involving four main steps: (i) functional annotation of the genome:
511  functional annotation of the genome is required prior to the reconstruction of the GEMs, and
512  consequently, the quality of a GEM highly depends on the availability of a gapless genome. The
513  protein sequences (FASTA files) of P. veronii 1YdBTEX2 were acquired from a previously published
514  study?® and were annotated to identify the associated reactions that enzymes catalyze to
515 determine the stoichiometric matrix, done using the RAVEN Toolbox?’. The generation of the
516  draft metabolic network followed the protocol detailed previously?”#%4°, and the output of this
517  annotation process is summarized in Table S6. Version 1.07 of the RAVEN Toolbox and the version
518 of KEGG database as of September 2017 were used. (ii) Compartmentalization, the definition of
519 biomass reaction and uptakes and secretions: In the absence of information or experimental
520 evidence about the compartmentalisation and the cell content in P. veronii 1YdBTEX2, the cell
521 compartment information (i.e., cytosol and periplasm), the transport mechanism between the
522  compartments and the extracellular environment, the uptakes and secretions, and the biomass
523  composition were obtained from two available models of closely related Pseudomonads:

28-30 and Pseudomonas stutzeri*t. The biomass reaction in a GEM designates

524  Pseudomonas putida
525 the metabolic precursors that build the BBBs, i.e., DNA, RNA, amino acids, lipids and
526  carbohydrates and their corresponding stoichiometric coefficients. (iii) Thermodynamic
527  curation: In a thermodynamically curated model, the standard Gibb’s free energy of a reaction
528 and consequently the directionality of the reactions, i.e., reversible or irreversible, are associated

529  with the reaction as additional constraints, which allow the performance of TFA. We followed the
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530 established protocol to thermodynamically curate metabolic models3%33 to add thermodynamics
531  constraints to iPsvr, where we could estimate the standard Gibb’s free energy of formation of
532  76% metabolites, using the group contribution method (GCM)>° and the standard Gibb’s free
533  energy of 84% of metabolic reactions in iPsvr. This allowed us to perform TFA, simulate the
534 growth and determine whether iPsvr was functional, with further evaluations if it correctly
535 predicted the expected growth-associate phenotypes. (iv) Gap-filling of iPsvr: The draft
536  metabolic network of iPsvr did not contain all the necessary reactions for the production of all
537  the biomass building blocks, and thus, the model did not show any growth. This is a very common
538  observation in the reconstruction process of GEMs, since the (automatic) genome annotations
539 are often incomplete or erroneous, with significant proportion of predicted proteins having no
540 functions attributed. Therefore, reactions without associated genes were included in order to
541  obtain a functional model that simulates non-zero growth, done using a procedure called gap-
542  filling. We followed the gap-filling procedure introduced previously*®, wherein the production of
543  each biomass precursor is defined as a metabolic task?’ and a mixed-integer linear programming
544  (MILP) formulation is used to generate alternative groups of minimal number of reactions
545  (borrowed from KEGG) that enable the production of the biomass precursor. The draft GEM was
546  gap-filled by iterative manual curation until a model was obtained that was able to carry non-
547  zero flux through the biomass reactions at steady state (i.e., signifying ‘growth’). Although gap-
548 filling is a routine procedure in the curation of GEMs and most of the available GEMs are gap-
549 filled to obtain a functional model that is able to grow under defined conditions, gaps in pathways
550 not involved with biomass production are, however, mostly overlooked in GEM analysis. We
551  performed a complementary second gap-filling step apart from the biomass reaction, where as
552  a result, the consistency of iPsvr with the obtained experimental data on gene expression and
553 metabolomics was increased. Available GEMs usually contain a large well-connected
554  subnetwork, which encompasses the most of the central carbon metabolism and a part of the
555  secondary metabolism, and many isolated reactions (or sets of reactions) are probably
556  disconnected from the rest of the network because of misannotations or insufficiently known
557  pathways. Such isolated reactions/pathways are blocked, i.e., cannot carry flux under any

558 condition, and therefore one or more reactions must be added to connect the blocked reactions
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559  with the rest of the metabolic network. To this end, the metabolic network structure of iPsvr was
560 decomposed to the main component and to the isolated (disconnected) reactions/pathways
561  using a MATLAB graph-based built-in function (conncomp). Using the same gap-filling approach,
562  the blocked reactions/pathways that were associated with differentially expressed genes (in the
563  pair-wise comparison of exponential- and stationary-phase datasets) or measured metabolites in
564  exometabolomic data were gap-filled to become functional in the model (carry non-zero flux).
565

566  Omics data integration

567 REMI?® was used for the integration of transcriptomics and exometabolomics data into iPsvr.
568 REMI assumes that reaction fluxes associated with genes that are significantly differentially
569  expressed are deregulated. Moreover, REMI also considers that the in vivo metabolite abundance
570 ratios between the two conditions, e.g., the two growth phases can be used to constrain reaction
571  fluxes associated with the metabolites that are differentially regulated. Expression/abundance-
572  based ratios between the two conditions are formulated as flux perturbations for each reaction
573 and are imposed as constraints on individual fluxes. Based on the data used, it translates into
574  three different methods: (i) REMI-TGex allows the integration of relative gene expression data
575 into a thermodynamically curated GEM, (ii) REMI-TM allows the integration of metabolomics
576  data and (iii) REMI-TGexM integrates simultaneously both the gene expression and metabolite
577  abundance data as additional constraints into the metabolic model.

578 REMI aims to maximize consistency between differential expression and fluxes as well as
579 differential metabolite concentrations and fluxes. To study condition-specific differences in
580 metabolism between two conditions (perturbed vs reference), REMI considers a separate
581 metabolic model for each condition. Then, to integrate differential expression, REMI enforces a
582  higher flux through a reaction in the perturbed condition (perturbed model) as compared to a
583 reference condition (reference model) if the genes of the reaction are upregulated. For
584  downregulated reactions, REMI enforces a lower flux as compared to a reference. To integrate
585  extracellular metabolite concentrations, REMI assumes that if a metabolite is upregulated, then
586 the production of the metabolite is forced to be higher as compared to a reference condition,

587 and similarly, a lower production of a metabolite is forced if a metabolite is found to be
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588 downregulated. Then, an optimization problem is formulated to maximize the number of
589  constraints imposed by the relative gene expression and metabolite abundances that can be
590 integrated into the model while preserving a growth phenotype. Two scores are calculated: a
591 theoretical maximum consistency score (TMCS), representing the number of genes/metabolites
592  with available omics data, and the maximum consistency score (MCS), representing the number
593  of genes/metabolites whose relative omics data are consistent with relative network fluxes and
594  therefore can be integrated in the model.

595  The MILP formulation enables enumerating alternative sets (size equal to MCS) from a given set
596  of constraints. The most consistent models are built by activating constraints that are overlapping
597  and consistent between all the alternatives.

598  We used the transcriptomics and/or exometabolomics datasets measured at the exponential and
599  stationary phase and also at the sand versus liquid environment, to derive additional flux
600  constraints for the TFA problem, which were applied using REMI.

601

602 Thermodynamics-based flux analysis (TFA) and the analysis of the biomass building blocks

603 To determine fluxes and subsequently the growth rate at different growth and environmental
604  conditions using iPsvr, we employed FBA, the most widely used constraint-based modeling
605 technique for studying biochemical networks and cellular physiology. Previous studies show that
606 the integration of appropriate thermodynamic constraints leads to more accurate metabolic
607 model predictions and also a significant reduction in the ranges of the predicted fluxes (solution
608  space)®32. We perform TFA for estimating the growth rate before and after the integration of
609  omics data.

610  We further identified the biomass building blocks (BBB), wherein a low/zero production limits
611  growth upon the transition of cells from the exponential to stationary phase or from liquid to the
612  soil environment (two examples that were discussed in this work). Each BBB was tested by
613  defining the TFA objective function as the maximum production of that metabolite under the
614  defined media condition (the same for all the BBBs). Then, the BBB production was compared
615 and the limiting BBBs for each case were identified.

616
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761  Figure 1: Schematic overview of the integrated genomic-transcriptomic-metabolomic pipeline
762  applied in this study. (A) Stage 1: Relative gene expression and exometabolomic data were
763  determined and analyzed, and these data were used to gap-fill iPsvr at blocked reactions. (B)
764  Stage 2: A genome-scale metabolic model (GEM) of P. veronii strain 1YdBTEX2, iPsvr, was
765  reconstructed and flux-balance analysis (FBA) was performed to simulate the growth of the cell.
766  (C) Stage 3: Additional relative differential gene expression and metabolite abundance data were
767  integrated into the metabolic model with REMI and physiology-specific models were built. Here,
768  the REMI methodology is illustrated on a section of inferred iPsvr glycine, serine and threonine
769  metabolism and iPsvr-EXPO (exponential phase) and iPsvr-STAT (stationary phase) as the two
770  physiology-specific models. Significantly differentially expressed genes (here, serB, glyA, DSD1
771  and GGAT) are outlined in boxes. The thickness of arrows designates the fold-change in estimated
772 fluxes, where green arrows indicate consistency with the gene-expression fold-change values,
773  and the red ones inconsistencies. Measured metabolite concentrations (here: pyr, sarcs, gly and
774  glx) are indicated in green if the values are consistent with estimated fluxes and in red otherwise.
775 Phosphoserine phosphatase, SerB; Serine hydroxymethyltransferase, GlyA; D-serine
776  dehydratase, DSD1; Glyoxylate aminotransferase, GGAT; Pyruvate, pyr; Sarcosine, sarcs; Glycine,
777  gly; Glyoxylate, glx.
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781  Figure 2: Genome-wide gene-expression and metabolite abundance differences in P. veronii
782  1YdBTEX in exponential (EXPO) relative to stationary (STAT) phase. (A) Smear-plot of global
783  gene expression intensity (2log counts per kilobase per million, CPKM) versus expression changes
784  (2log fold change) in EXPO vs. STAT. In grey, genes not statistically differentially expressed
785  (logFC<1, FDR>0.05, P>0.01); magenta, genes with lower, and dark purple, genes with higher
786  expression in EXPO (+). (B) Differential expression per gene between EXPO and STAT plotted as a
787  function of genomic location (chromosome 1, chrl; chromosome 2, chr2; and plasmid, plm;
788  organized according to locus_tag number). Bars indicate 2log-fold change, dark purple and pink
789  denote statistically significant higher and lower expressed genes in EXPO, respectively. (C)
790  Heatmap of 164 metabolites annotated with their KEGG IDs showing clustering at different
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791  culture sampling time points. Metabolites are clustered (x-axis) in three major groups (left to
792  right): (i) accumulation at T24h (STAT) (pink box), (ii) accumulation at T4 continued to T24 (yellow
793  box), and (iii) accumulation at T4h (EXPO) followed at depletion at T24h (STAT) (purple box).

794
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797  Figure 3: Gap filling of two blocked pathways in iPsvr based on the gene expression and
798 exometabolomics data. (A) One of the two toluene degradation pathways in P. veronii (from the
799  KEGG pathway database3?) involved one missing enzyme (highlighted in red), and three genes
800 (highlighted in green) differentially expressed between the exponential and stationary growth
801 conditions. (B) The phenylalanine metabolic pathway involved three missing enzymes
802  (highlighted in red) and four metabolites (highlighted in blue) identified in the exometabolomic
803  data.
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811  Figure 4: Differential in silico production (mmol/gDW/h) of seven biomass building block
812  groups between the exponential and stationary growth phase. (A) Integration of relative gene
813  expression data (EXPO vs STAT) using REMI-TGexM. (B) Integration of relative gene expression
814  and exometabolomics data (EXPO vs STAT) using REMI_TGex. Each dot in the graph represents
815 the individual biomass precursors within that category and the statistically significant changes
816  (p=value < 0.05) are highlighted in purple. For BBB group statistics, see Table S7.

817

818

819  SUPPLEMENTARY FIGURES

A [17oh @T24h  OTsh B Qc Toh  OTsh O T24h
® B
o J a
=1 9 &
o - (o]
~
g 2J g 0 -
- .. (e]
o ® ©°
= 1 ©
T T T ! T T -50 T T
2 1 0 1 2 50 0 50 100
820 PC1 PC1

31


https://doi.org/10.1101/690164
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/690164; this version posted July 10, 2019. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

821
822
823

824

825

826

827
828
829

830

831

832
833
834
835
836
837
838

839

840

aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 1: Principal component analysis of (A) quadruplicate global RNA-
sequencing data sets of P. veronii 1YdBTEX2 after 4 h, 24 h and the 0 h control (TO) and (B) of
exometabolomics data, grouped QC samples of TO, T4 and T24 samples.
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Supplementary Figure 2: Main functional toluene degradation pathway branch in iPsvr. 3-
methylcatechol is converted to pyruvate and acetaldehyde, which are further involved in
central carbon pathways.
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Supplementary Figure 3: Differential in silico production (mmol/gDW/h) of seven biomass
building block groups between cells in liquid medium and sand. (A) Integration of relative gene
expression data (liquid vs sand) using REMI-TGex when cells grow on Toluene . (B) Integration of
relative gene expression data (liquid vs sand) using REMI-TGex when cells grow on Succinate.
Each dot in the graph represents the individual biomass precursors within that category and the
statistically significant changes (p=value < 0.05) are highlighted in purple. For BBB group statistics,
see Table S7.
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841  SUPPLEMENTARY TABLES (given as an excel file and each excel sheet is a Supplementary Table)

842  Table S1. Summary of RNA-seq yields of the different time points.
843  Table S2. Significantly differentially expressed metabolic genes in EXPO vs. STAT
844  Table S3. Under-represented Biological processes in STAT vs EXPO.

845  Table S4. iPsvr network decomposition into its main subnetwork and isolated
846  reactions/pathways.

847  Table S5. Gap-filled reactions introduced into the iPsvr with their corresponding genes.

848  Table S6. Differential in silico production (mmol/gDW/h) of biomass precursors, grouped in
849  seven biomass building block groups, between the exponential and stationary growth phase
850 using REMI-TGexM, REMI-TGex and REMI-TM.

851  Table S7. Statistical test for BBB groups. Significant up- or down-regulations (p=value < 0.05)
852  are highlighted in red.
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