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Abstract

Background: The human microbiome forms very complex communities that
consist of hundreds to thousands of different microorganisms that not only affect
the host, but also participate in disease processes. Several state-of-the-art
methods have been proposed for learning the structure of microbial communities
and to investigate the relationship between microorganisms and host
environmental factors. However, these methods were mainly designed to model
and analyze single microbial communities that do not interact with or depend on
other communities. Such methods therefore cannot comprehend the properties
between interdependent systems in communities that affect host behavior and
disease processes.

Results: We introduce a novel hierarchical Bayesian framework, called
BALSAMICO (BAyesian Latent Semantic Analysis of Microbial COmmunities),
which uses microbial metagenome data to discover the underlying microbial
community structures and the associations between microbiota and their
environmental factors. BALSAMICO models mixtures of communities in the
framework of nonnegative matrix factorization, taking into account
environmental factors. This method first proposes an efficient procedure for
estimating parameters. A simulation then evaluates the accuracy of the estimated
parameters. Finally, the method is used to analyze clinical data. In this analysis,
we successfully detected bacteria related to colorectal cancer. These results show
that the method not only accurately estimates the parameters needed to analyze
the connections between communities of microbiota and their environments, but
also allows for the effective detection of these communities in real-world
circumstances.

Keywords: metagenomics; non-negative matrix factorization; Bayesian
hierarchical modeling

Background

Microbiota in the human gut form complex communities that consist of hundreds to
thousands of different microorganisms that affect various important functions such
as the maturation of the immune system, physiology [1], metabolism [2], and nutri-
ent circulation [3]. Species in a community survive by interacting with each other
and can concurrently belong to multiple communities [4]. Moreover, the composition
of bacterial species can change over time. In some cases, a single species or strain
significantly affects the state of the community, making it a causative agent for

disease. For example, Helicobacter pylori is a pathogen that induces peptic disease
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[5]. However, problems are not always rooted in an individual species or strain. In
many cases it is the differences in different types of microbial communities, i.e. their
composition ratios, that affect the overall structure of the gut microbiota. These
overall structures relate to various features of interest— for example, the ecosys-
tem process [6], the severity of the disease [7], or the impact of dietary intervention
[8]. Therefore, finding co-occurrence relationships between species and revealing the
community structure of microorganisms is crucial to understanding the principles
and mechanisms of microbiota-associated health and disease relationships and in-
teractions between the host and microbe.

Thanks to modern technology, revealing these community structures is becom-
ing easier. Advances in high-throughput sequencing technologies such as shotgun
metagenomics have made it possible to investigate the relationship among microor-
ganisms within the whole gut ecosystem and to observe the interaction between
microbiota and their host environments. Many microbiome projects, including the
Human Microbiome Project (HMP) [9] and the Metagenomics and the Human In-
testinal Tract (MetaHIT) project [10], have generated considerable data regarding
human microbiota by studying microbial diversity in different environments. The
data consists of either marker-gene data (the abundance of operational taxonomic
units; OTUs) or functional metagenomic data (the abundance of reaction-coding
enzymes). Although collecting such data is no longer methodologically difficult,
analysis remains challenging. Even with limited samples, the data always consists
of hundreds or even thousands of variables (OTUs or enzymes). In addition, there
are many rare species of microbiota, and these are observed only in very few sam-
ples. Thus the data is highly sparse [11]. The sparse nature of the data means
that classical statistical analysis methods, which were designed for data rich situ-
ations, have limited ability to identify complex features and structures within the
data. Several new methods are therefore emerging in order to properly analyze and
understand microbiota.

In this study, we focus on learning the structure of microbial communities and
investigating the relationship between microorganisms and their environmental fac-
tors using metagenomic data. Currently, there are several methods that seek to
clarify this relationship. One is probabilistic modeling of metagenomic data, which
often provides a powerful framework for the problem. For example, [12] proposed
BioMiCo, a two-level hierarchical Bayes model of a mixture of multidimensional
distributions constrained by Dirichlt priors to identify each OTU cluster, called an
assemblage, and to estimate the mixing ratio of the assemblages within a sample.
Another popular method for learning community structure is non-negative matrix
factorization (NMF) [13, 14]. Cai et al. [15] proposed a supervised version of NMF
to identify communities representing the connection between the sample microbial
composition and OTUs and to infer systematic differences between different types
of communities. These methods are useful in a variety of circumstances, but they
also possess limitations.

When it comes to learning the structure of microbial communities related to en-
vironmental features of interest, the limitations of the current approaches become
clear. Although BioMiCo can learn how microbes contribute to an underlying com-
munity structure that is related to a known feature of each sample, it fails when the
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microbes are composed of a mixture of communities that interact with each other.
In such cases, another method must be applied. Supervised NMF is one option, as
it can be used to extract communities that are characterized by a co-occurrence
relationship. However, in this framework, the analyst must explicitly specify the
communities to which the bacteria belong [15]. This process depends on the knowl-
edge of the analyst, so in cases of limited information about the communities the
method cannot be used. To our knowledge, no framework currently exists that ad-
equately details the interaction between a mixture of microbial communities and
multiple environmental factors. A new framework is needed to address this problem.

To remedy this situation, we propose a novel approach, called BALSAMICO
(BAyesian Latent Semantic Analysis of MIcrobial COmmunities). The contribu-
tions of our research are as follows:

e BALSAMICO uses the OTU abundances and the host environmental factors
as input to provide a path to interpret microbial communities and their en-
vironmental factors. In BALSAMICO, the data matrix of a microbiome is
approximated to the product of two matrices. One matrix is represented by
a mixing ratio of microbial communities, and the other matrix is represented
by the abundance of bacteria in the communities. BALSAMICO decomposes
the mixing ratio into the observed environmental factors and their coefficients
in order to identify the influence of the environmental factors.

e Not only is this decomposition a part of ordinary NMF, but it improves upon
ordinary NMF by displaying a hierarchical structure. One clear advantage of
the Bayesian hierarchical model is to introduce stochastic fluctuations at all
levels. This makes it possible to smoothly handle missing data and to easily
give credible intervals.

e Unlike supervised NMF, BALSAMICO does not require prior knowledge re-
garding the communities to which the bacteria belong. BALSAMICO can
estimate an unknown community structure without explicitly using prede-
termined community information. Furthermore, the parameters of unknown
community structures can be estimated automatically through Bayesian learn-
ing.

e While the computation cost of other methods, which use Gibbs sampling, is
high, we provide an efficient learning procedure for BALSAMICO by using
a variational Bayesian inference and Laplace approximation to reduce com-
putational cost. The software package that implements BALSAMICO in the
R environment is available from GitHub (https://github.com/abikoushi/
BALSAMICO).

The structure of this paper will proceed as follows: The “Methods” section de-
scribes our model and the procedure for parameter estimation. The “Results” sec-
tion contains an evaluation of the accuracy of the estimator using synthetic data.
Additionally, BALSAMICO is applied to clinical metagenomic data to detect bac-
terial communities related to colorectal cancer (CRC). Through this content, both
the usefulness and accuracy of BALSAMICO are confirmed.

Methods

Calculations for this method are based on the assumption that the microbiome
consists of several communities. BALSAMICO extracts the communities from the
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data, using NMF. Suppose that we observe a nonnegative integer matrix Y = (yn, 1)
(n=1,...,N,k=1,...,K), where y, j is the microbial abundance of k-th taxon
in the n-th sample. Our goal is to seek a positive NV x L matrix W and an L x K
matrix H, such that

Y ~ WH. (1)

The (n,!)-element w,, ; of matrix W can be interpreted as contributing to commu-
nity [ of sample n. The (I, k)-element h;, of matrix H can be interpreted as the
relative abundance of the k-th taxon given community /. We thus refer to W as the
contribution matriz and to H as the excitation matriz.

In addition, if covariate X = (xy,,4) (d = 1,...,D) is observed (e.g. whether or
not the n-th sample has a certain disease), our aim is to seek how W changes when
X is given. For this, BALSAMICO seeks the D x L matrix V', such that

W =~ a,exp(XV) (2)
where exp(+) is an element-wise exponential function. As shown in Figure 1, BAL-

SAMICO approximates matrix Y using the product of low-rank matrices.
In brief, we consider the following hierarchical model:

h; ~ Dirichlet(a), (3)
B =exp(—XV) (4)
Wy ~ Gamma(ay, By.1), (5)
Sn,1,k ~ Poisson(wy, 1hy k7). (6)

L
Yn,k = Z Sn,lk (7)
=1

where B, ; is the (n, [)-element of matrix B, 7, is an offset term, V' is a D x L matrix,
and S = {s, 1} are latent variables. The variable S is introduced for inference to
make the calculations more smooth. In this study, we set 7,, = Zszl Yn,k- The
total read count 7, is dependent on the setting of the DNA sequencer, so it is not
a reflection of an abundance of bacteria. The offset term then adjusts the setting-
based effect on the read counts to accurately estimate W. The (d,l)-element vq
of matrix V' can be interpreted as contributing to the community [ of the d-th
covariate. This Poisson observation model is frequently used in Bayesian NMF [16].
Gamma and Dirichlet prior distribution are the conjugate priors.

Figure 2 shows a plate diagram of the data generating process. BALSAMICO es-
timates parameters W, H, a,,, and V', using variational inference [17]. More details
for this parameter estimation procedure are listed in the supplemental document.
After estimating the parameters it is possible to move on to analyzing real data,
but first the accuracy of the estimation should be confirmed.

Results

Simulation Study

Starting with the BALSAMICO estimated parameters detailed in “Methods,” we
can now evaluate these parameters for accuracy before moving on to an analysis
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of real-world data. The following simulation experiments evaluate the bias, the
standard error (SE), and the coverage probability (CP) of the estimators. The bias
of 0 is defined by the difference between the true value and the estimated value
(E[f] — 6). The coverage probability is the proportion at which the 95% credible
interval contains the true value. The synthetic data was naturally produced via the
data generating process given by Eqs. 3-7.

We estimated the parameters in 10,000 replicates of the experiment. We set X =
(1,1, x2), where 1 is a vector of ones. The variables @1 and x5 are sampled from
the standard normal distribution and the Bernoulli distribution with a probability
of 0.5. When generating the synthetic data, we set N = 100, K = 100, L = 3,
7, = 10,000, and «p = 1 for all k. We also set a = 1 for all k¥ when estimating
parameters, which is equivalent to a non-informative prior distribution. To avoid
the problem of label switching [18], the estimated parameters are rearranged as
V21 < V22 < U23.

The gamma distribution changes considerably when the shape parameter aw
is smaller than 1, which leads to a heavier tail than an exponential distribution.
Consequently, we conducted two patterns of the simulation. Table 1 shows these
results. The first half of the table shows the case of a heavy tail.

When the shape parameter ay is set to 0.5, the credible intervals of v;; (i = 1,2, 3)
have under-coverage. However, this was only observed in intercept terms. In most
cases, the CP was an almost nominal value. This result indicates that there is no
inconsistency when interpreting the estimated coefficients.

Moreover, the parameters were estimated with small biases. By this we know that
the proposed method produces reasonable estimates. This being confirmed, it is now
possible to apply the proposed method to real data to assess how well it conforms
to current studies.

Results on real data

This section tests the usefulness of our results by investigating the identification
of gut dysbiosis associated with the development of CRC. Zeller et gl. [19] stud-
ied gut metagenomes extracted from 199 persons: 91 CRC patients, 42 adenoma
patients, and 66 controls. The data is available in the R package “curatedMetage-
nomicData” (https://github.com/waldronlab/curatedMetagenomicData). This
analysis uses the abundance of genus-level taxa.

We set o = 1 and use the disease label, gender, and age as covariates. The age
variable is scaled by dividing by 100. The number of communities L = 7 was selected
using leave-one-out cross-validation (Figure 3).

Figure 4 shows the estimated W H and normalized abundance (yy, ./ {Zﬁzl Yn.k})-
The observed data matrix is approximated by W H.

Figure 6 shows estimates of coefficient V. First, we can see that the human mi-
crobiome is not dependent on gender as the absolute value of coefficients for gender
is small, and their credible intervals contain zero. Focusing on CRC, we can see that
the credible intervals of the coefficient for community 6 do not contain zeros. More-
over the value of coefficients for community 6 increases as adenoma progresses to
CRC. Community 6 is thus strongly suspected of being associated with the disease.
Figure 7 shows estimates of W, . We observed individual differences, but, overall,
CRC patients have large community 6, which confirms this suspicion.
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Figure 5 shows the top five estimates of h; ;, in each community I. Arumugam et al.
[20] reports that the human gut microbiome can be classified into several types,
called enterotypes. Arumugam et al. [20] shows that an enterotype is characterized
by the differences in the abundance of Bacteroides, Prevotella, and Ruminococcus.
Communities 1, 2, and 4 are characterized by an abundance of Bacteroides, Pre-
votella, and Ruminococcus respectively (Figure 5). Communities 1, 2, and 4 thus
correspond to enterotypes. Community 6, which is suspected of being related to
CRC, is characterized by abundant Akkermansia. This is markedly different from
the other communities and deserves further examination.

To detect the bacteria that exists exclusively in community 6, we use following
amount:

hi i

- == 8
UIN Zzzlhl,k ( )

where 71, is the probability that a certain taxon k belongs to community [.

The bacteria belonging to community 6 are suspected of being associated with
CRC. Table 2 shows estimates of 7 j greater than 0.95. This result indicates that
these bacteria are related to CRC. These bacteria that characterize community 6 are
Akkermansia, Desulfotomaculum, Mucispirillum, Methanobacterium, Hahellaceae,
Nakaseomyces, Fretibacterium, Alphabaculovirus, Synergistes, and Enhydrobacte.
The connection between these bacteria and CRC is further supported by current
studies.

o Akkermansia: Weir et al. [21] reports that mucin-degrading bacteria, Akker-
mansia muciniphila, was present in a significantly greater proportion in the
feces of colon cancer patients. This is consistent with our result.

e Desulfotomaculum: Desulfotomaculum belongs to sulfate-reducing bacteria,
which obtains energy by oxidizing organic compounds or molecular hydro-
gen while reducing sulfate to hydrogen sulfide. Hydrogen sulfide is toxic to
intestinal epithelium cells and causes DNA damage in human cells [22].

o Mucispirillum: Similar to Akkermansia, Mucispirillum is a mucus-resident
bacteria and may coexist with Akkermansia. If so, these bacteria are dis-
tributed in mucus layer that covers the mucous membrane of the intestine.
[23].

o Methanobacterium: Patients with CRC contain a higher proportion of breath
methane excreters than the control group [24]. Methanobacterium is a
methanogenic bacterium.

e Enhydrobacter: Xu & Jiang [25] uses linear discriminative analysis to
biomarker discovery. The result suggests that FEnhydrobacter can be a
biomarker for CRC.

The information found in the above studies strongly supports the results returned
by applying our method to real data. This suggests that BALSAMICO is able to
successfully and accurately analyze communities of bacteria and their environmental
interactions.

The information found in the above studies strongly supports the results returned
by applying our method to real data. This suggests that BALSAMICO is able to
successfully and accurately analyze communities of bacteria and their environmental

interactions.
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Conclusion

We proposed a novel hierarchical Bayesian model to discover the underlying mi-
crobial community structures and the associations between microbiota and their
environmental factors based on microbial metagenomic data. One of the most im-
portant features of our model is to decompose the contribution matrix into observed
environmental factors and their coefficients. The parameters for this model were es-
timated using variational Bayesian inference, as described in “Methods.” In terms
of computation, this parameter-estimation procedure offers two advantages over ex-
isting methods. First, in an algorithm that uses Gibbs sampling, the computational
cost is large due to the large number of samples required. By contrast, our proce-
dure involves a matrix operation that substitutes for this requirement, helping to
reduce computational cost. Second, our procedure involves hyper-parameter tun-
ing. The parameters of the gamma prior distribution are estimated from the data.
The parameters of the Dirichlet prior distribution can be non-informative, and the
number of communities L can be selected by cross-validation.

The results of our simulations suggest that the estimators of the effects of environ-
mental factors V' are consistent. Generally, other NMF methods lack consistency
because they may not have a unique solution [15]. Indeed, the consistency of our
method increases the reproducibility of the analysis. Moreover, the credible intervals
of coefficient V are easily computed and help to identify notable bacteria.

From the perspective of data analysis, BALSAMICO has useful properties. Using
the Dirichlet prior distribution, the excitation matrix H is easily interpreted as a
relative abundance of species in communities. As shown in Figure 5, h; ; obtains a
value that is often close to zero. This property thus expresses data sparsity. Further-
more, the Poisson observation model may be applicable to counting other data (for
example, gene expression data). The hierarchical structure of our model allows it to
capture (i) dependencies between environmental factors and the community struc-
ture (represented by coefficient V'), and (#) the individual differences in microbial
composition (represented by the contribution matrix W'). Thus, BALSAMICO can
be used to find latent relationships between bacteria. As discussed in “Results,”
BALSAMICO’s findings from real data are supported by previous studies. This
demonstrates that BALSAMICO is effective at knowledge discovery.

This research has possibility for expansion and may provide positive contributions
to future studies. In many situations, microbiome data is obtained as time a series
which repeats measurements for each sample. To handle the time series data, our
model could be expanded so the contribution matrix W is extended from a matrix to
a tensor. This facilitates the analysis of time-varying bacteria compositions during
the progression of a disease. Furthermore, although this research was limited to
the study of the gut microbiome in connection to CRC, BALSAMICO will prove
useful to other studies seeking to find relationships between various microbiomes
and environmental factors. This will allow for a better understanding of the cause
of disease and how disease is impacted by the microbiome environment.
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Availability of data and material

BALSAMICO is implemented with R and is available from GitHub (https://github.com/abikoushi/BALSAMICO).
The data is available in the R package “curatedMetagenomicData"”
(https://github.com/waldronlab/curatedMetagenomicData).
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Figure 3 Mean of test log-likelihood evaluated by leave-one-out cross-validation. The z-axis
corresponds to the number of communities L.
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Figure 4 Comparison between W H (fitted) and normalized abundance (observed). For
visibility, we use a logarithmic scale. The z-axis corresponds to the genera, and the y-axis
corresponds to the samples.
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Figure 5 Estimated excitation matrix H. The z-axis corresponds to the community, and the
y-axis corresponds to the genus. The black parts indicate high abundance, and the white parts
indicate zero.
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Figure 6 Estimated coefficients V for the disease label. The each panel corresponds to
community, the x-axis corresponds to the value of coefficients and the y-axis corresponds to the
variable name. The bars indicate 95%-credible intervals.
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Figure 7 Estimated contribution matrix ws,e of each sample n. The z-axis corresponds to the
samples, and the y-axis corresponds to the value of w 6.

Table 1 Bias, se, and CP of the estimates

true value bias se CP
aw 0.5 -—-0.01 0.10
v11 1.00 0.00 0.30 0.86
v12 —0.50 —-0.00 0.15 0.95
V13 0.50 0.00 030 0.94
V21 1.00 0.01 0.30 0.86
v22 0.00 —-0.00 0.15 0.95
V23 0.00 0.00 0.30 0.94
v31 1.00 0.01 0.30 0.86
v32 0.50 0.00 0.15 0.95
V33 —0.50 0.01 0.29 0.95
aw 2.00 0.06 0.17
v11 1.00 —-0.04 0.13 0.93
vi2 —0.50 —0.00 0.07 0.94
v13 0.50 0.00 0.15 0.94
va1 1.00 —-0.04 0.13 0.92
V22 0.00 0.00 0.07 0.94
v23 0.00 0.00 0.15 0.94
v31 1.00 —-0.03 0.13 0.94
v32 0.50 —0.00 0.07 0.94
V33 —0.50 0.01 0.15 0.95

Table 2 Estimates of ng j greater than 0.95

Genus n
Akkermansia 1.00
Desulfotomaculum 1.00
Mucispirillum 1.00
Methanobacterium 1.00
Hahellaceae_unclassified  1.00
Nakaseomyces 1.00
Fretibacterium 1.00
Alphabaculovirus 1.00
Synergistes 1.00
Enhydrobacter 1.00

Tables

Additional Files

Additional file 1 — Supplemental methods
Details of variational inference.
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