

Surface-induced formation and redox-dependent staining of outer membrane extensions in *Shewanella oneidensis* MR-1

1 Grace W. Chong¹, Sahand Pirbadian², Mohamed Y. El-Naggar^{1,2,3*}

2 ¹Molecular and Computational Biology Section, Department of Biological Sciences, University of
3 Southern California, Los Angeles, CA, USA

4 ²Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA,

5 ³Department of Chemistry, University of Southern California, Los Angeles, CA, USA.

6 *** Correspondence:**

7 Corresponding Author

8 mnaggar@usc.edu

9 **Keywords:** *Shewanella*, Redox, Extracellular Electron Transfer, Bacterial Nanowires,
10 Cytochromes

11 Abstract

12 The metal-reducing bacterium *Shewanella oneidensis* MR-1 produces extensions of its outer
13 membrane (OM) and periplasm that contain cytochromes responsible for extracellular electron transfer
14 (EET) to external redox-active surfaces, including minerals and electrodes. While the role of multi-
15 heme cytochromes in transporting electrons across the cell wall is well established, their distribution
16 along *S. oneidensis* OM extensions is also thought to allow lateral electron transport along these
17 filaments. These proposed bacterial nanowires, which can be several times the cell length, would
18 thereby extend EET to more distant electron acceptors. However, it is still unclear why these extensions
19 form, and to what extent they contribute to respiration in living cells. Here, we investigate physical
20 contributors to their formation using *in vivo* fluorescence microscopy. While previous studies focused
21 on the display of *S. oneidensis* outer membrane extensions (OMEs) as a response to oxygen limitation,
22 we find that cell-to-surface contact is sufficient to trigger the production of OMEs, including some that
23 reach >100 μ m in length, irrespective of medium composition, agitation, or aeration. To visualize the
24 extent of heme redox centers along OMEs, and help distinguish these structures from other
25 extracellular filaments, we also performed histochemical redox-dependent staining with transmission
26 electron microscopy on wild type and cytochrome-deficient strains. We demonstrate that redox-active
27 components are limited to OMEs and not present on other extracellular appendages, such as pili and
28 flagella. We also observed that the loss of 8 functional periplasmic and outer membrane cytochromes
29 significantly decreased both the frequency and intensity of redox-dependent staining found widespread
30 on OMEs. These results will improve our understanding of the environmental conditions that influence
31 the formation of *S. oneidensis* OMEs, as well as the distribution and functionality of EET components
32 along extracellular appendages.

33 1 Introduction

34 *Shewanella oneidensis* MR-1 is a Gram-negative, facultative anaerobic heterotrophic bacterium with
35 versatile respiratory capabilities: in its quest for energy, it can utilize an array of soluble and insoluble
36 electron acceptors, from oxygen to extracellular solid surfaces such as minerals and electrodes. This
37 ability to couple intracellular reactions to the respiration of external surfaces, known as extracellular

38 electron transfer (EET), allows microbial catalytic activity to be harnessed on the electrodes of
39 bioelectrochemical technologies ranging from microbial fuel cells to microbial electrosynthesis
40 (Nealson, 2017; Schröder and Harnisch, 2017). As an extensively studied model organism for EET,
41 studies of *S. oneidensis* revealed the critical role of periplasmic and outer membrane multi-heme
42 cytochromes in forming extracellular electron conduits that bridge the cell envelope (Beblawy et al.,
43 2018; Beliaev et al., 2001; Chong et al., 2018; Edwards et al., 2018; Myers and Myers, 2001;
44 Richardson et al., 2012). Specifically, the periplasmic decaheme cytochrome MtrA connects through
45 the MtrB porin to the outer membrane decaheme cytochrome MtrC that, along with another decaheme
46 cytochrome OmcA, function as the terminal reductases of external electron acceptors or soluble
47 electron shuttles (Richardson et al., 2012). In addition to this well-established role in directing electron
48 transfer across the cell envelope, the Mtr/Omc components have been recently shown to facilitate long-
49 distance electron transport across the membranes of multiple cells via a redox conduction mechanism
50 thought to arise from a combination of multistep hopping along cytochrome heme chains and
51 cytochrome-cytochrome interactions (Xu et al., 2018).

52
53 *S. oneidensis* also forms extensions of the outer membrane and periplasm that include the Mtr/Omc
54 multi-heme cytochromes responsible for EET (El-Naggar et al., 2010; Pirbadian et al., 2014;
55 Subramanian et al., 2018). These outer membrane extensions (OMEs) are proposed to function as
56 bacterial nanowires that also facilitate long-distance EET through redox conduction. However, in
57 contrast to electrode-spanning cells measured by electrochemical gating (Xu et al., 2018), the
58 cytochrome-dependent conductivity of these proposed bacterial nanowires has only been directly
59 assessed under dry, chemically fixed conditions (El-Naggar et al., 2010; Leung et al., 2013). A full
60 understanding of the role of *S. oneidensis* OMEs will therefore require challenging *in vivo*
61 measurements of their specific impact on extracellular respiration and observations of the membrane
62 protein dynamics that allow inter-cytochrome electron exchange and redox conduction (Zacharoff and
63 El-Naggar, 2017).

64
65 Beyond the detailed mechanism of electron transport along these structures, additional questions
66 remain regarding the physical and environmental conditions that trigger their formation. The *S.*
67 *oneidensis* OMEs can extend to several times the cell length, and have been observed with a range of
68 morphologies from chains of interconnected outer membrane vesicles to membrane tubes (Pirbadian
69 et al., 2014). Since early reports suggested that they form in response to electron acceptor limitation,
70 particularly oxygen limitation (Gorby et al., 2006), subsequent studies involving these OMEs have
71 been performed in oxygen limiting conditions (Barchinger et al., 2016; El-Naggar et al., 2010;
72 Pirbadian et al., 2014; Subramanian et al., 2018). However, while the increased expression and
73 production of multi-heme cytochromes under oxygen limiting and anaerobic conditions is well
74 established (Barchinger et al., 2016; Myers and Myers, 1992; Pirbadian et al., 2014), it is not clear if
75 oxygen limitation is the sole contributor to the membrane extension phenotype in *S. oneidensis*. In fact,
76 a recent gene expression study hinted at independent regulatory mechanisms for extending the
77 membrane and localizing the EET proteins (Barchinger et al., 2016). Furthermore, membrane
78 extensions have been reported in multiple organisms under a variety of growth conditions (Benomar
79 et al., 2015; Dubey and Ben-Yehuda, 2011; Galkina et al., 2011; McCaig et al., 2013; Pande et al.,
80 2015; Shetty et al., 2011; Wanner et al., 2008), including those in the form of vesicle chains (Dubey et
81 al., 2016; Pérez-Cruz et al., 2013; Remis et al., 2014; Subramanian et al., 2018; Wei et al., 2014), as is
82 the case for *S. oneidensis*.

83

84 It was previously shown that *S. oneidensis* membrane vesicles, which form the basis of OMEs, are
85 redox-active, and that this activity likely stems from the cytochromes present on the purified vesicles
86 (Gorby et al., 2008). The native-state characterization of cytochromes on the OMEs themselves is so
87 far limited to microscopic observations ranging from immunofluorescence (Pirbadian et al., 2014) to
88 electron cryotomography (Subramanian et al., 2018), rather than mapping the activity of the redox
89 centers. The possible association of redox-active components with other extracellular filaments in
90 *Shewanella*, beyond OMEs, also remains largely unexplored. Recent studies in both bacteria and
91 archaea, however, have demonstrated that a combination of histochemical heme-reactive staining and
92 electron microscopy can be used to visualize redox-dependent activity of cytochromes that enable
93 functions ranging from mineral oxidation to interspecies electron transfer within methanotrophic
94 consortia (Deng et al., 2018; McGlynn et al., 2015).

95

96 This study set out to address some of these outstanding questions regarding *S. oneidensis* OMEs. To
97 determine the conditions underlying OME formation, we designed *in vivo* fluorescence microscopy
98 experiments allowing us to examine the specific role of oxygen limitation and other physical conditions
99 which might influence OME production in *S. oneidensis* MR-1. We find that cell-to-surface contact is
100 sufficient to trigger the formation of *S. oneidensis* OMEs under a wide range of conditions. To assess
101 the extent of cytochrome-dependent redox activity in these structures, we implemented heme-
102 dependent staining with transmission electron microscopy to compare OMEs in wild type and
103 cytochrome-deficient strains. In doing so, we also probed 3 types of extracellular filaments (OMEs,
104 flagella, and pili) for these EET components. We find that periplasmic and outer membrane
105 cytochromes are responsible for most of the redox activity detected using this assay, and that these
106 components are limited to OMEs and do not associate with flagella or pili.

107 2 Materials and Methods

108 2.1 Cell Cultivation

109 For experiments probing the conditions of OME formation with fluorescence microscopy, *S.*
110 *oneidensis* MR-1 cells were grown aerobically from frozen (-80°C) stock in 50 mL LB broth overnight
111 at 30°C and 150 rpm up to late logarithmic phase (OD₆₀₀ 2.4-2.8). From this overnight culture, 5 mL
112 of cells were collected by centrifugation at 4226 × g for 5 min and washed twice in sterile defined
113 medium (Pirbadian et al., 2014). Cells were then introduced into a perfusion flow imaging platform
114 described previously (Pirbadian et al., 2014) or the coverslip-bottom glass reactor described below
115 after appropriate dilution to achieve a desirable cell density on the surface for fluorescence time-lapse
116 imaging.

117

118 Heme staining and transmission electron microscopy were performed on anaerobic cultures of *S.*
119 *oneidensis* MR-1 and JG1486 (Δ Mtr/ Δ mtrB/ Δ mtrE) (Coursolle and Gralnick, 2012). For both strains,
120 5 mL of an aerobic overnight LB pre-culture was pelleted by centrifugation, washed in defined medium
121 (Pirbadian et al., 2014), and used to inoculate 100 mL of anoxic defined medium in sealed serum bottles
122 with 30 mM fumarate as the sole electron acceptor. After 24 h at 30°C and 150 rpm, at OD₆₀₀ 0.28,
123 this anaerobic culture was harvested by centrifugation at 7142 × g for 10 min, washed by centrifugation
124 (4226 × g for 5 min), and resuspended in defined medium for a total volume of 10 mL. Cells were then
125 injected into the perfusion flow imaging platform containing an electron microscopy grid
126 (Subramanian et al., 2018).

127

128 **2.2 Fluorescence Microscopy**

129 In all experiments, the membrane stains FM 4-64FX (Life Technologies; 0.25 µg/mL), FM 1-43FX
130 (Life Technologies; 0.25 µg/mL) or TMA-DPH (Cayman Chemical Company; 10 µM) were used to
131 visualize cells and OMEs on an inverted microscope (Nikon Eclipse Ti-E) using the TRITC, FITC or
132 DAPI channels (Nikon filter sets G-2E/C, B-2E/C, and UV-2E/C) with 500 ms, 500 ms, and 100 ms
133 exposure times, respectively. FM 4-64FX was generally used as the membrane stain, except in
134 experiments with no flow or agitation, as this concentration of dye faded more quickly over time in
135 unmixed solutions.

136

137 Two experimental platforms were used for fluorescence imaging experiments: a perfusion flow setup
138 used previously (Pirbadian et al., 2014; Subramanian et al., 2018) or a coverslip-bottom glass reactor
139 constructed to allow gas injection and measurement of dissolved oxygen levels while visualizing cells.
140 The reactor consisted of a clean glass tube (thickness 1.5 mm, interior diameter 24.7 mm, and length
141 50 mm) glued on to a clean 43 mm × 50 mm no. 1 thickness glass coverslip (Thermo Scientific) using
142 waterproof silicone glue (General Electric). The autoclaved reactor was placed on the inverted
143 microscope, and a peristaltic pump (Cole-Parmer Masterflex L/S Easy-Load II) was used to control
144 injection of filtered air at a rate of 3.6 mL/min into the reactor. The air inlet (22G 3" sterile needle)
145 was placed 1-2 mm from the coverslip bottom of the reactor so as to ensure oxygen availability and
146 good mixing near the focal plane. Time-lapse imaging was started immediately following introduction
147 of 10 mL of the cell-media mixture into the reactor and continued for 2 h with images acquired in 5
148 min increments. Oxygen levels in the reactor were measured by a dissolved oxygen probe (Milwaukee
149 Instruments MW600) at various levels (e.g. 1 mm from bottom, middle, and 1 mm from top) over time
150 after cells were added. To check whether the planktonic cells also displayed OMEs, imaging was
151 stopped after the surface-attached cells produced OMEs, and 400 µL of the planktonic mixture
152 (obtained within 1-2 mm from the top solution-air interface) was gently pipetted to a new clean
153 coverslip, and immediately imaged for another 2 h.

154 **2.3 Heme-Reactive Staining and Transmission Electron Microscopy**

155 All heme staining experiments were performed on cells attached to electron microscopy grids
156 recovered from the perfusion flow imaging platform after confirmation of OME production using
157 fluorescence microscopy (Subramanian et al., 2018). To accomplish this, an X-thick holey carbon-
158 coated, R2/2, 200 mesh Au NH2 London finder Quantifoil EM grid was glued to the glass coverslip,
159 with the carbon film-coated side facing away from the glass, before sealing the perfusion chamber. The
160 chamber was filled with flow medium, then 400-600 µL of washed cells were injected for a surface
161 density of 50-150 cells visible per 74 µm × 74 µm square in the 200 mesh grid. Cells were allowed to
162 settle for 5-15 min on the grid before resuming perfusion flow at a volumetric flow rate of 6.1 ± 0.5
163 µL/s. Imaging continued for about 3.5 hours in 5-min increments before medium flow was stopped and
164 the chamber opened under sterile medium. The EM grid was then removed, chemically fixed, and
165 prepared for electron microscopy visualization of heme iron, using a staining protocol adapted from
166 (McGlynn et al., 2015). First, the sample was fixed for 30 min in 2.5% glutaraldehyde (dissolved in 25
167 mM HEPES, pH 7.4, 17.5 g/L NaCl), washed 5 times by soaking 1 min each in buffer (50 mM HEPES,
168 pH 7.4, 35 g/L NaCl), then incubated for 1 h or 2.5 h with the heme-reactive stain 3,3'-
169 diaminobenzidine (DAB; 0.0015 g/mL, dissolved in 50 mM Tris HCl, pH 8) with or without 0.02%
170 hydrogen peroxide (H₂O₂). After 5 washes (100 mM HEPES, pH 7.8), the sample was stained for 1 h
171 in 1% osmium tetroxide, and washed again 5 times. The sample was negative stained in 1% uranyl
172 acetate or 1% phosphotungstic acid for 2 min and air dried overnight. Dried samples were stored in a

173 desiccator before transmission electron microscopy (TEM) imaging. TEM images were acquired on a
174 JEOL JEM-2100F instrument operated at 200 kV, a FEI Morgagni 268 instrument operated at 80 kV,
175 or a FEI Talos F200C instrument operated at 200 kV.

176

177 To determine and quantify the extent of cytochrome-reactive staining after treatment with DAB,
178 ImageJ was used to measure the mean pixel intensity (arbitrary gray value units reflecting electron
179 transmission) across an area in the interior of an extension (*A*), or an area in the background (*B*). For
180 each image, a background threshold value (*C*) was generated by taking the mean background intensity
181 (*B*) and subtracting its standard deviation (*D*); thus, $C = B - D$. If the mean intensity of an extension
182 (*A*) was lower than this threshold (*C*), then it was categorized as stained. For each condition (wild type,
183 mutant, and chemical control), the percentage of stained OMEs (*E*) was calculated. To calculate the
184 staining intensity of a single OME (*F*), the mean pixel intensity of the extension (*A*) was subtracted
185 from that of the background (*B*), giving $F = B - A$. A value of *F* was calculated for each of the OMEs
186 assessed in each replicate experiment for each condition (wild type, mutant, and chemical control). For
187 each condition, the mean of all *F* values was calculated, giving G_{WT} , G_{mutant} , and $G_{control}$. Then, G_{WT}
188 and G_{mutant} were corrected by subtracting $G_{control}$, where $G_{WT} - G_{control} = H_{WT}$, and $G_{mutant} - G_{control} =$
189 H_{mutant} . These values H_{WT} and H_{mutant} represent mean staining intensities of all the OMEs in each strain,
190 corrected for the contribution of negative staining ($G_{control}$). To calculate the fold difference in staining
191 frequency between wild type and the mutant, the percentage of OMEs stained in the wild type (E_{WT})
192 was divided by that of the mutant (E_{mutant}). To calculate the fold difference in staining intensity between
193 wild type and the mutant, the mean staining intensity of the wild type (H_{WT}) was divided by that of the
194 mutant (H_{mutant}).

195 **3 Results and Discussion**

196 **3.1 Surface Contact is Sufficient to Induce Production of Outer Membrane Extensions by**
197 ***Shewanella oneidensis* MR-1**

198 Production of OMEs by a majority of *S. oneidensis* cells was observed in the oxygen limiting perfusion
199 flow platform, as previously described (Pirbadian et al., 2014; Subramanian et al., 2018) (Fig. 1), but
200 also in near-saturating oxygen conditions (6.5-7.5 ppm O₂) provided by a glass-bottomed reactor that
201 allowed air injection during *in vivo* microscopy (Fig. 2). Though it can take up to several hours for a
202 majority of surface-attached cells to produce OMEs, we can observe production of OMEs as early as
203 10 min after cells contact the surface of a glass coverslip (Figs. 2, S1). To further examine the role of
204 surface contact, planktonic cells from the bulk oxygenated reactor were sampled 2 h after the reactor
205 was inoculated (approx. 1.5 h after OMEs started being produced by surface-attached cells) and
206 transferred to clean coverslips for observation. These previously planktonic cells showed no evidence
207 of OMEs at the time of sampling, but then also went on to begin to display OMEs within 35 min after
208 contacting the surface (Fig. 2). These observations were not limited to the defined minimal medium
209 used, a particular surface chemistry, or mixing conditions; post-attachment OME production was also
210 observed in rich (LB) medium or in buffer (PBS), on different surfaces (glass coverslips and carbon-
211 coated electron microscopy grids), and regardless of liquid flow or agitation (Figs. S1, S2). To ensure
212 that the used cell density did not result in O₂-limiting conditions selectively at the surface, we also
213 experimented with sparse coverage, down to 5-20 cells per field of view (112 μm × 112 μm) in a well-
214 mixed and oxygenated reactor, and confirmed that these cells also produced OMEs (Fig. S2C).

215

216 Taken collectively, these observations of OME production by surface-attached cells, but not by
217 planktonic cells until subsequent attachment, and regardless of medium composition, surface type, and
218 oxygen availability, point to surface contact as the primary determinant of OME production by *S.*
219 *oneidensis*. Previous studies on the role of cytochrome-functionalized OMEs as bacterial nanowires
220 primarily focused on the formation of these structures under O₂-limited conditions (El-Naggar et al.,
221 2010; Gorby et al., 2006; Pirbadian et al., 2014; Subramanian et al., 2018). Our observations suggest
222 that, while O₂ limitation is necessary for enhanced production of the multi-heme cytochromes required
223 for EET (Barchinger et al., 2016; Myers and Myers, 1992), the membrane extension phenotype is
224 predominantly controlled by surface attachment. Our findings are consistent with a previous proposal
225 based on transcriptome and mutant analyses (Barchinger et al., 2016) that independent pathways are
226 responsible for producing the EET components and extending the outer membrane, while implicating
227 surface contact in controlling the latter pathway.

228

229 While our observations show that surface attachment is sufficient to induce OMEs, it is important to
230 note that we do not rule out the influence of O₂ limitation on the frequency of OME production. In
231 perfusion flow imaging, we are able to precisely define the percentage of OME-producing cells:
232 observation of 5400 cells over four replicate experiments revealed that 78% of surface-attached cells
233 produced OMEs during 3.5 h of perfusion culture (Fig. 1). This precise quantification is possible in
234 perfusion flow imaging because the laminar flow helps to restrict the structures to the focal plane near
235 the surface. However, this laminar flow establishes O₂ limitation as a result of cellular O₂ consumption
236 and the no-slip condition at the surface-solution interface (Pirbadian et al., 2014). Thus, we could
237 precisely determine the frequency of OME production only in O₂-limiting perfusion conditions, but
238 not in oxygenated well-mixed reactors where the structures could fluctuate in and out of the focal plane.

239

240 Membrane extensions, including those formed as chains of membrane vesicles (MVs), are not limited
241 to *S. oneidensis* (Benomar et al., 2015; Dubey et al., 2016; Dubey and Ben-Yehuda, 2011; Galkina et
242 al., 2011; McCaig et al., 2013; Pande et al., 2015; Pérez-Cruz et al., 2013; Remis et al., 2014; Shetty
243 et al., 2011; Subramanian et al., 2018; Wanner et al., 2008; Wei et al., 2014). The finding that surface
244 contact plays an important role is consistent with prior observations of vesicle chains and OMEs
245 produced by surface-attached cells of other bacteria, including *Shewanella vesiculosa* (Pérez-Cruz et
246 al., 2013), *Bacillus subtilis* (Dubey et al., 2016), and biofilms of *Myxococcus xanthus* (Remis et al.,
247 2014). In addition, another *M. xanthus* study noted that static, rather than shaken, conditions promote
248 more OME production (Wei et al., 2014). The importance of surface-attached, biofilm, or static
249 conditions may point to a generalized mechanism where MVs, which are ubiquitous features of bacteria
250 (Beveridge, 1999; Bohuszewicz et al., 2016; Schwechheimer and Kuehn, 2015), are successively
251 produced and merged into long extensions rather than shed away under more dynamic (e.g. free-
252 swimming or shaken culture) conditions. Once formed, these extensions may then enable a variety of
253 functions ranging from facilitating cell-cell interactions (Dubey et al., 2016; Dubey and Ben-Yehuda,
254 2011; Remis et al., 2014) to the long-distance EET role proposed for *S. oneidensis* OMEs (El-Naggar
255 et al., 2010; Gorby et al., 2006).

256

257 It was also previously proposed that MVs and OMEs can increase the likelihood of encountering
258 neighboring cells and external redox-active surfaces by virtue of the significant change in surface area-
259 to-volume ratio that these structures present (Pirbadian et al., 2014). Consistent with this proposal, we
260 occasionally captured multiple extensions from single cells (Fig. S3) as well as *in vivo* fluorescent
261 observations of remarkably long OMEs, likely the longest observed to date. Fig. 3 and Movie S1

262 captures a cell producing a >100 μm OME at a rate over 40 $\mu\text{m}/\text{h}$, at the same time that the cell surface
263 area appeared to shrink by an amount consistent with the newly displayed OME.

264 **3.2 Redox-Dependent Staining of Extracellular Filaments**

265 The localization of the multi-heme cytochromes responsible for EET to OMEs has been previously
266 demonstrated by immunofluorescence observations of MtrC and OmcA (Pirbadian et al., 2014), as
267 well as electron cryotomography observations of outer membrane and periplasmic electron densities
268 consistent with cytochrome dimensions (Subramanian et al., 2018). To examine the distribution and
269 activity of the heme iron redox centers along the OMEs, we applied the heme-reactive 3,3'-
270 diaminobenzidine (DAB)- H_2O_2 staining procedure (McGlynn et al., 2015), where the iron centers
271 catalyze the oxidation of DAB, forming a localized dark precipitate that can be observed with the
272 resolution of transmission electron microscopy (TEM). As expected, the OMEs clearly stained for
273 heme, with a noticeable <50 nm band of dark precipitate lining the vesicles that compose the entire
274 structure (Fig. 4). Staining was clearly limited to the OMEs and was absent from the other extracellular
275 filaments observed, demonstrating that the cytochromes do not associate with pili and flagella (Fig. 4).
276 The absence of staining in these structures, even when observed in contact with the OMEs (Fig. 4),
277 also points to the localized nature of the stain. Meanwhile, the <50 nm thickness of precipitate lining
278 OMEs (i.e., precipitate expansion in the direction perpendicular to the surface of the OME) suggests
279 <50 nm lateral distribution of heme redox centers on OMEs, consistent with the surface distribution of
280 putative cytochromes on OMEs visualized by electron cryotomography (Subramanian et al., 2018).

281

282 In addition to chemical controls for staining (i.e. wild type with no H_2O_2), we also systematically
283 compared OMEs from wild type *S. oneidensis* and a mutant lacking genes encoding eight functional
284 periplasmic and outer membrane cytochromes ($\Delta\text{Mtr}/\Delta\text{mtrB}/\Delta\text{mtrE}$), including the entire Mtr/Omc
285 pathway of decaheme cytochromes (Coursolle and Gralnick, 2012). This mutant is unable to perform
286 EET (Coursolle and Gralnick, 2012; Wang et al., 2019; Xu et al., 2018) or support long-distance redox
287 conduction across electrodes (Xu et al., 2018). We performed two replicate experiments for each of
288 three conditions (wild type, mutant, and wild type chemical control with no H_2O_2), with a total of 45-
289 60 OMEs analyzed per condition. Using image processing to compare OME staining to background
290 intensities (see **Materials and Methods**), we found that the majority (92%) of wild type OMEs stained
291 for heme, but none stained in the chemical control where H_2O_2 was omitted (Fig. 5). In contrast, a
292 fraction (39%) of OMEs in the mutant strain exhibited heme staining, 2.4-fold less than in wild type
293 ($p < 0.0001$, Pearson's chi-squared test) (Fig. 5). While lacking all cytochromes necessary for EET,
294 staining in the mutant OMEs is likely due to the additional periplasmic cytochromes, including the
295 flavocytochrome FccA present that functioned as the terminal fumarate reductase to support respiration
296 of fumarate in our anaerobic cultures. Consistent with this interpretation, staining intensity was 3.6-
297 fold stronger in the wild type than in the mutant ($p < 0.0001$, Student's *t*-test, two-sample assuming
298 equal variances) (Fig. 5). Relative to the mutant control, the observed wild type increase in both
299 staining frequency and intensity indicates that the periplasmic and outer membrane cytochromes
300 necessary for EET contribute much of the redox capacity of the OMEs.

301

302 Given its ability to discriminate between cytochrome-containing and cytochrome-free extracellular
303 filaments, and to examine the effect of specific mutations, this heme visualization strategy may hold
304 promise for understanding the presence of redox centers in a variety of microbial systems. However, a
305 detailed understanding of the extent to which these redox centers enable long-distance electron
306 transport along OMEs requires: (i) applying electrochemical techniques, recently used to measure

307 redox conduction in biofilms (Xu et al., 2018; Yates et al., 2016), specifically to OMEs or their MV
308 constituents; and (ii) measurements of the diffusive dynamics of redox molecules along membranes,
309 to test the hypothesis that these dynamics facilitate a collision-exchange mechanism of inter-protein
310 electron transport over micrometer length scales (Subramanian et al., 2018). We are actively pursuing
311 these electrochemical and dynamics measurements.

312 **4 Conclusions**

313 In summary, we investigated physical contributors to the production of OMEs by *Shewanella*
314 *oneidensis* MR-1 and applied heme-reactive staining to examine the extent of the redox centers along
315 the extensions. While previous studies focused on the role of oxygen limitation in triggering the
316 formation of these structures, we demonstrated that surface contact is sufficient to trigger production
317 of OMEs under a variety of medium, agitation, and aeration conditions. In addition, we show that the
318 multi-heme cytochromes necessary for EET contribute much of the redox-dependent staining
319 widespread on OMEs, and that these EET components do not associate with other extracellular
320 filaments. In addition to describing some reproducible microscopic and histochemical techniques to
321 observe redox-functionalized membrane extensions, these observations motivate additional studies to
322 understand the extent to which *Shewanella oneidensis* OMEs can contribute to EET and long-distance
323 redox conduction.

324 **5 Conflict of Interest**

325 The authors declare that the research was conducted in the absence of any commercial or financial
326 relationships that could be construed as a potential conflict of interest.

327 **6 Author Contributions**

328 G.W.C. designed, performed, and analyzed experiments with guidance from S.P. and M.Y.E-N.
329 G.W.C. and M.Y.E-N wrote and edited the manuscript, with revisions from S.P.

330 **7 Funding**

331 G.W.C. is a National Science Foundation Graduate Fellow supported by NSF grant DGE1418060. This
332 work was supported by the Air Force Office of Scientific Research Presidential Early Career Award
333 for Scientists and Engineers (FA955014-1-0294, to M.Y.E.-N.).

334 **8 Acknowledgments**

335 We are grateful to Professor Jeffrey A. Gralnick for providing the cytochrome mutant strain.
336 Transmission electron microscopy at 200 kV was performed at the University of Southern California's
337 Core Center of Excellence in Nano Imaging. We also thank Christopher Buser for imaging our electron
338 microscopy samples at 80 kV at the Huntington Medical Research Institutes.

339 **9 References**

340 Barchinger, S. E., Pirbadian, S., Sambles, C., Baker, C. S., Leung, K. M., Burroughs, N. J., et al. (2016).
341 Regulation of Gene Expression During Electron Acceptor Limitation and Bacterial Nanowire
342 Formation in *Shewanella oneidensis* MR-1. *Appl. Environ. Microbiol.* 82, 5428–5443.
343 doi:10.1128/AEM.01615-16.

344 Beblawy, S., Bursac, T., Paquete, C., Louro, R., Clarke, T. A., and Gescher, J. (2018). Extracellular
345 reduction of solid electron acceptors by *Shewanella oneidensis*. *Mol. Microbiol.* 109, 571–583.
346 doi:10.1111/mmi.14067.

347 Beliaev, A. S., Saffarini, D. A., McLaughlin, J. L., and Hunnicutt, D. (2001). MtrC, an outer membrane
348 decahaem c cytochrome required for metal reduction in *Shewanella putrefaciens* MR-1. *Mol.*
349 *Microbiol.* 39, 722–730. doi:10.1046/j.1365-2958.2001.02257.x.

350 Benomar, S., Ranava, D., Cárdenas, M. L., Trably, E., Rafrati, Y., Ducret, A., et al. (2015). Nutritional
351 stress induces exchange of cell material and energetic coupling between bacterial species. *Nat.*
352 *Commun.* 6. doi:10.1038/ncomms7283.

353 Beveridge, T. J. (1999). Structure of Gram-negative cell walls and their derived membrane vesicles. *J.*
354 *Bacteriol.* 181, 4725–4733.

355 Bohuszewicz, O., Liu, J., and Low, H. H. (2016). Membrane remodelling in bacteria. *J. Struct. Biol.*
356 196, 3–14. doi:10.1016/j.jsb.2016.05.010.

357 Chong, G. W., Karbelkar, A. A., and El-Naggar, M. Y. (2018). Nature's conductors: what can
358 microbial multi-heme cytochromes teach us about electron transport and biological energy
359 conversion? *Curr. Opin. Chem. Biol.* doi:10.1016/j.cbpa.2018.06.007.

360 Coursolle, D., and Gralnick, J. A. (2012). Reconstruction of extracellular respiratory pathways for
361 iron(III) reduction in *Shewanella oneidensis* strain MR-1. *Front. Microbiol.* 3, 1–11.
362 doi:10.3389/fmicb.2012.00056.

363 Deng, X., Dohmae, N., Nealson, K. H., Hashimoto, K., and Okamoto, A. (2018). Multi-heme
364 cytochromes provide a pathway for survival in energy-limited environments. *Sci. Adv.*, 1–9.
365 doi:10.1126/sciadv.aa05682.

366 Dubey, G. P., and Ben-Yehuda, S. (2011). Intercellular nanotubes mediate bacterial communication.
367 *Cell* 144, 590–600. doi:10.1016/j.cell.2011.01.015.

368 Dubey, G. P., Malli Mohan, G. B., Dubrovsky, A., Amen, T., Tsipshtain, S., Rouvinski, A., et al.
369 (2016). Architecture and Characteristics of Bacterial Nanotubes. *Dev. Cell* 36, 453–461.
370 doi:10.1016/j.devcel.2016.01.013.

371 Edwards, M. J., White, G. F., Lockwood, C. W. J., Lawes, M., Martel, A., Harris, G., et al. (2018).
372 Structural model of a porin-cytochrome electron conduit from the outer membrane of a metal
373 reducing bacterium suggests electron transfer via periplasmic redox partners. *J. Biol. Chem.*,
374 jbc.RA118.001850. doi:10.1074/jbc.RA118.001850.

375 El-Naggar, M. Y., Wanger, G., Leung, K. M., Yuzvinsky, T. D., Southam, G., Yang, J., et al. (2010).
376 Electrical transport along bacterial nanowires from *Shewanella oneidensis* MR-1. *Proc. Natl.*
377 *Acad. Sci.* 107, 18127–18131. doi:10.1073/pnas.1004880107.

378 Galkina, S. I., Romanova, J. M., Bragina, E. E., Tiganova, I. G., Stadnichuk, V. I., Alekseeva, N. V.,
379 et al. (2011). Membrane tubules attach *Salmonella Typhimurium* to eukaryotic cells and bacteria.
380 *FEMS Immunol. Med. Microbiol.* 61, 114–124. doi:10.1111/j.1574-695X.2010.00754.x.

381 Gorby, Y. A., McLean, J., Korenevsky, A., Rosso, K. M., El-Naggar, M. Y., and Beveridge, T. J.
382 (2008). Redox-reactive membrane vesicles produced by *Shewanella*. *Geobiology* 6, 232–241.
383 doi:10.1111/j.1472-4669.2008.00158.x.

384 Gorby, Y. A., Yanina, S., McLean, J. S., Rosso, K. M., Moyles, D., Dohnalkova, A. C., et al. (2006).
385 Electrically conductive bacterial nanowires produced by *Shewanella oneidensis* strain MR-1 and
386 other microorganisms. *Proc. Natl. Acad. Sci.* 103, 11358–11363. doi:10.1073/pnas.0905246106.

387 Leung, K. M., Wanger, G., El-Naggar, M. Y., Gorby, Y., Southam, G., Ming Lau, W., et al. (2013).
388 *Shewanella oneidensis* MR-1 Bacterial Nanowires Exhibit p-Type, Tunable Electronic Behavior.
389 *Nano Lett.* 13, 2407–2411. doi:10.1021/nl400237p.

390 McCaig, W. D., Koller, A., and Thanassi, D. G. (2013). Production of outer membrane vesicles and
391 outer membrane tubes by *Francisella novicida*. *J. Bacteriol.* 195, 1120–1132.
392 doi:10.1128/JB.02007-12.

393 McGlynn, S. E., Chadwick, G. L., Kempes, C. P., and Orphan, V. J. (2015). Single cell activity reveals
394 direct electron transfer in methanotrophic consortia. *Nature* 526, 531–535.
395 doi:10.1038/nature15512.

396 Myers, C. R., and Myers, J. M. (1992). Localization of Cytochromes to the Outer Membrane of
397 Anaerobically Grown *Shewanella putrefaciens* MR-1. *J. Bacteriol.* 174, 3429–3438.
398 doi:10.1016/0378-1097(93)90480-P.

399 Myers, J. M., and Myers, C. R. (2001). Role for Outer Membrane Cytochromes OmcA and OmcB of
400 *Shewanella putrefaciens* MR-1 in Reduction of Manganese Dioxide. *Appl. Environ. Microbiol.*
401 67, 260–269. doi:10.1128/AEM.67.1.260-269.2001.

402 Nealson, K. H. (2017). Bioelectricity (electromicrobiology) and sustainability. *Microb. Biotechnol.* 10,
403 1114–1119. doi:10.1111/1751-7915.12834.

404 Pande, S., Shitut, S., Freund, L., Westermann, M., Bertels, F., Colesie, C., et al. (2015). Metabolic
405 cross-feeding via intercellular nanotubes among bacteria. *Nat. Commun.* 6, 1–13.
406 doi:10.1038/ncomms7238.

407 Pérez-Cruz, C., Carrión, O., Delgado, L., Martínez, G., López-Iglesias, C., and Mercade, E. (2013).
408 New type of outer membrane vesicle produced by the Gram-negative bacterium *Shewanella*
409 *vesiculosa* M7T: Implications for DNA content. *Appl. Environ. Microbiol.* 79, 1874–1881.
410 doi:10.1128/AEM.03657-12.

411 Pirbadian, S., Barchinger, S. E., Leung, K. M., Byun, H. S., Jangir, Y., Bouhenni, R. A., et al. (2014).
412 *Shewanella oneidensis* MR-1 nanowires are outer membrane and periplasmic extensions of the
413 extracellular electron transport components. *Proc. Natl. Acad. Sci.* 111, 12883–12888.
414 doi:10.1073/pnas.1410551111.

415 Remis, J. P., Wei, D., Gorur, A., Zemla, M., Haraga, J., Allen, S., et al. (2014). Bacterial social
416 networks: Structure and composition of *Myxococcus xanthus* outer membrane vesicle chains.
417 *Environ. Microbiol.* 16, 598–610. doi:10.1111/1462-2920.12187.

418 Richardson, D. J., Butt, J. N., Fredrickson, J. K., Zachara, J. M., Shi, L., Edwards, M. J., et al. (2012).

419 The “porin-cytochrome” model for microbe-to-mineral electron transfer. *Mol. Microbiol.* 85,
420 201–212. doi:10.1111/j.1365-2958.2012.08088.x.

421 Schröder, U., and Harnisch, F. (2017). Life Electric—Nature as a Blueprint for the Development of
422 Microbial Electrochemical Technologies. *Joule* 1, 244–252. doi:10.1016/j.joule.2017.07.010.

423 Schwechheimer, C., and Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria:
424 biogenesis and functions. *Nat. Rev. Microbiol.* 13, 605–619. doi:10.1038/nrmicro3525.

425 Shetty, A., Chen, S., Tocheva, E. I., Jensen, G. J., and Hickey, W. J. (2011). Nanopods: A new bacterial
426 structure and mechanism for deployment of outer membrane vesicles. *PLoS One* 6.
427 doi:10.1371/journal.pone.0020725.

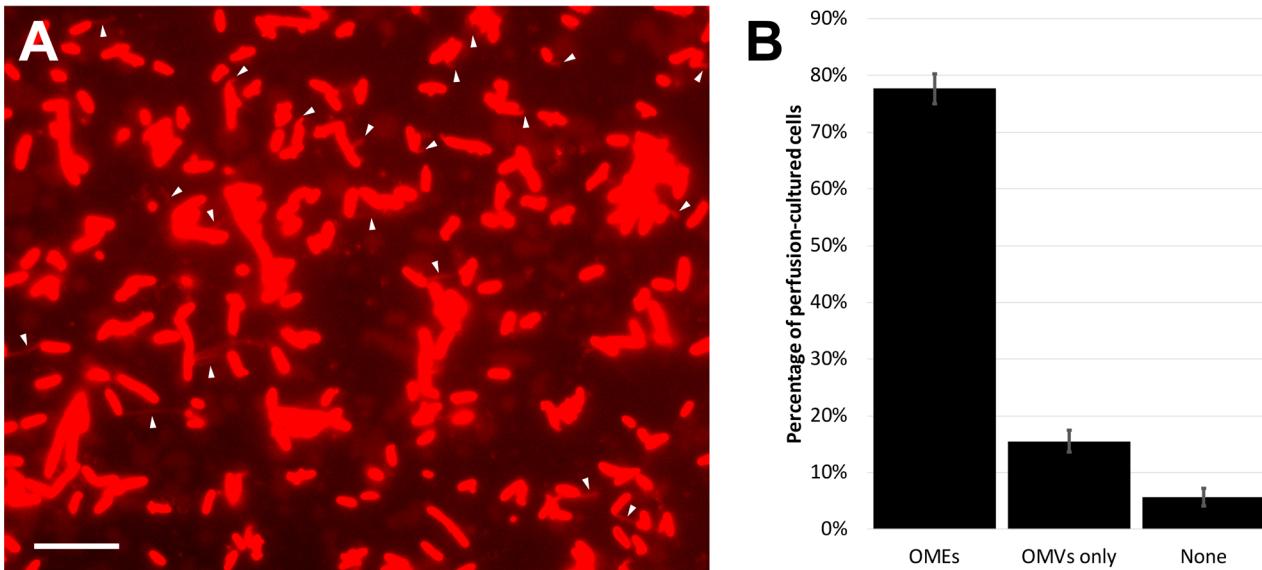
428 Subramanian, P., Pirbadian, S., El-Naggar, M. Y., and Jensen, G. J. (2018). Ultrastructure of
429 *Shewanella oneidensis* MR-1 nanowires revealed by electron cryotomography. *Proc. Natl. Acad.*
430 *Sci.* 115, 103242. doi:10.1101/103242.

431 Wang, Q., Jones, A.-A. D., Gralnick, J. A., Lin, L., and Buie, C. R. (2019). Microfluidic
432 dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and
433 electrochemical activity. *Sci. Adv.* 5. doi:10.1126/sciadv.aat5664.

434 Wanner, G., Vogl, K., and Overmann, J. (2008). Ultrastructural characterization of the prokaryotic
435 symbiosis in “*Chlorochromatium aggregatum*.” *J. Bacteriol.* 190, 3721–3730.
436 doi:10.1128/JB.00027-08.

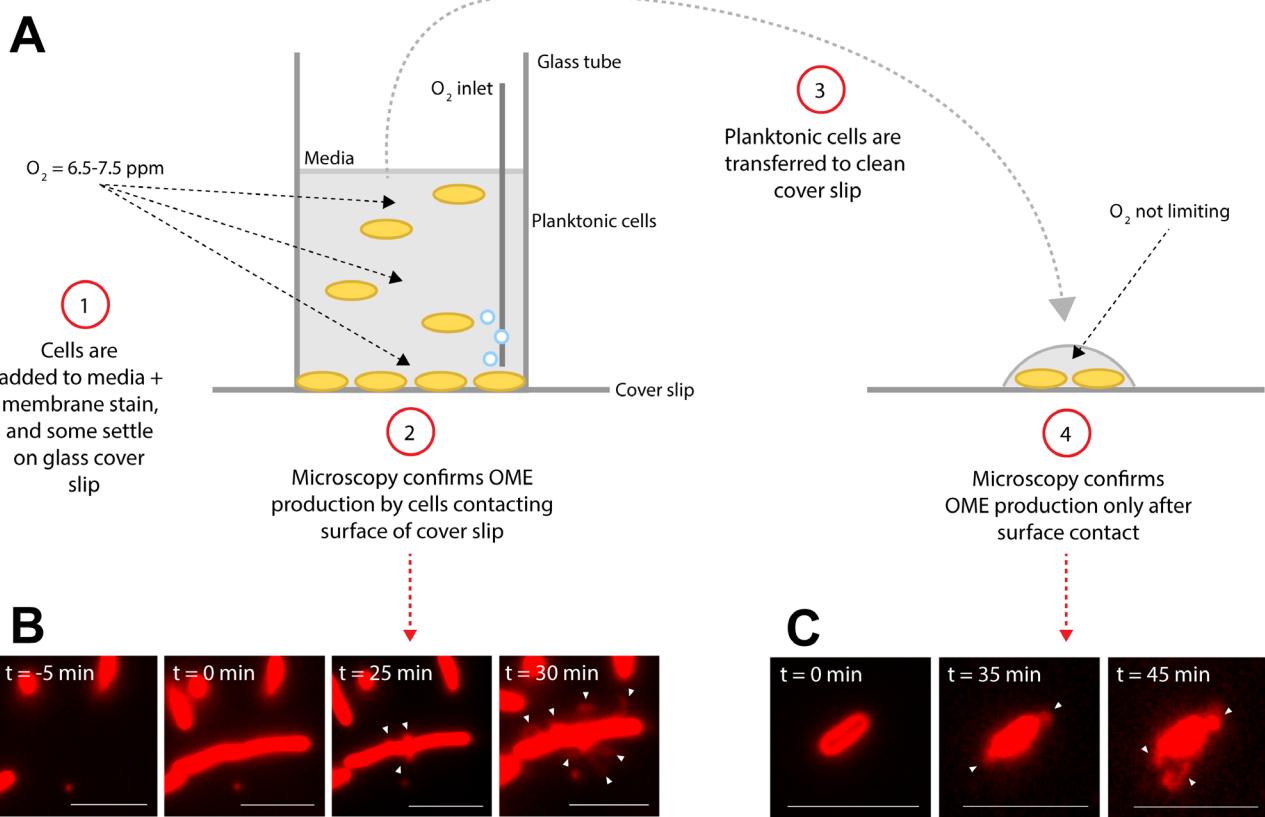
437 Wei, X., Vassallo, C. N., Pathak, D. T., and Wall, D. (2014). *Myxobacteria* produce outer membrane-
438 enclosed tubes in unstructured environments. *J. Bacteriol.* 196, 1807–1814.
439 doi:10.1128/JB.00850-13.

440 Xu, S., Barrozo, A., Tender, L. M., Krylov, A. I., and El-Naggar, M. Y. (2018). Multiheme Cytochrome
441 Mediated Redox Conduction through *Shewanella oneidensis* MR-1 Cells. *J. Am. Chem. Soc.*
442 doi:10.1021/jacs.8b05104.


443 Yates, M. D., Strycharz-Glaven, S. M., Golden, J. P., Roy, J. N., Tsoi, S., Erickson, J. S., et al. (2016).
444 Measuring conductivity of living *Geobacter sulfurreducens* biofilms. *Nat. Nanotechnol.* 11, 910–
445 913. doi:10.1038/nnano.2016.186.

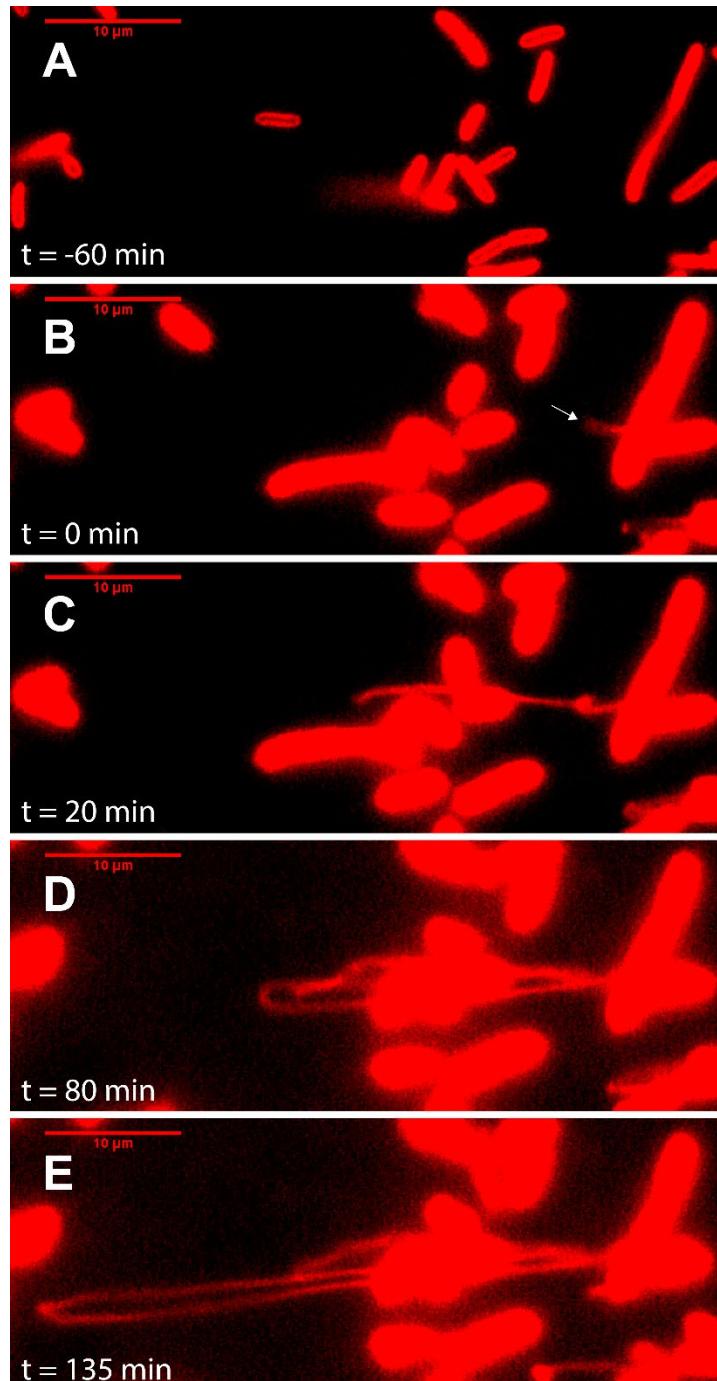
446 Zacharoff, L. A., and El-Naggar, M. Y. (2017). Redox conduction in biofilms: From respiration to
447 living electronics. *Curr. Opin. Electrochem.*, 1–8. doi:10.1016/j.coelec.2017.09.003.

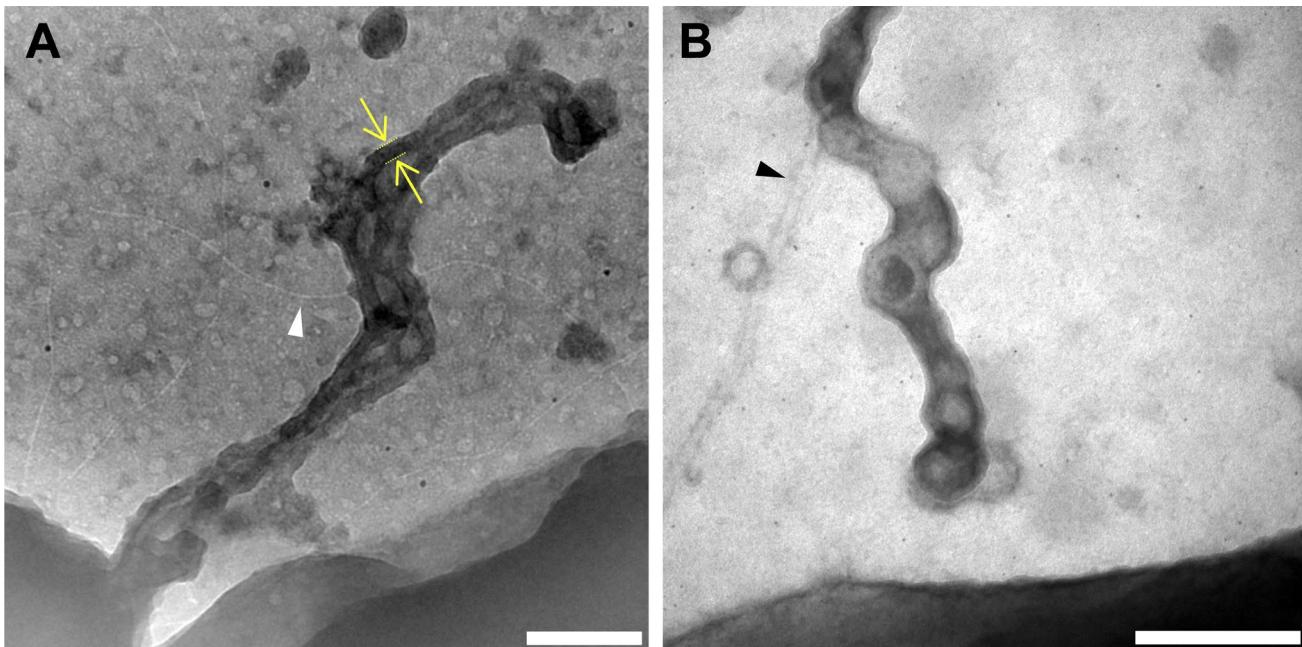
448


449 10 Figures

450

451 **Figure 1. Outer membrane extensions are commonly formed by surface-attached perfusion**
452 **culture cells. (A)** Time-lapse fluorescence microscopy snapshot of outer membrane extensions
453 (OMEs, white arrows) produced by *S. oneidensis* MR-1 at a single timepoint in a 3.5-h perfusion flow
454 imaging experiment. Cells and OMEs are visualized with the red membrane stain FM 4-64FX. **(B)**
455 Statistics of OME production from over 5400 cells in 4 replicate 3.5-h perfusion culture experiments
456 illustrates that a majority (78%) of cells produce OMEs visible over time. The remaining cells were
457 seen with only outer membrane vesicles (OMVs), or nothing at all. Error bars show mean ± SEM.
458 (Scale bar: 10 μ m.)

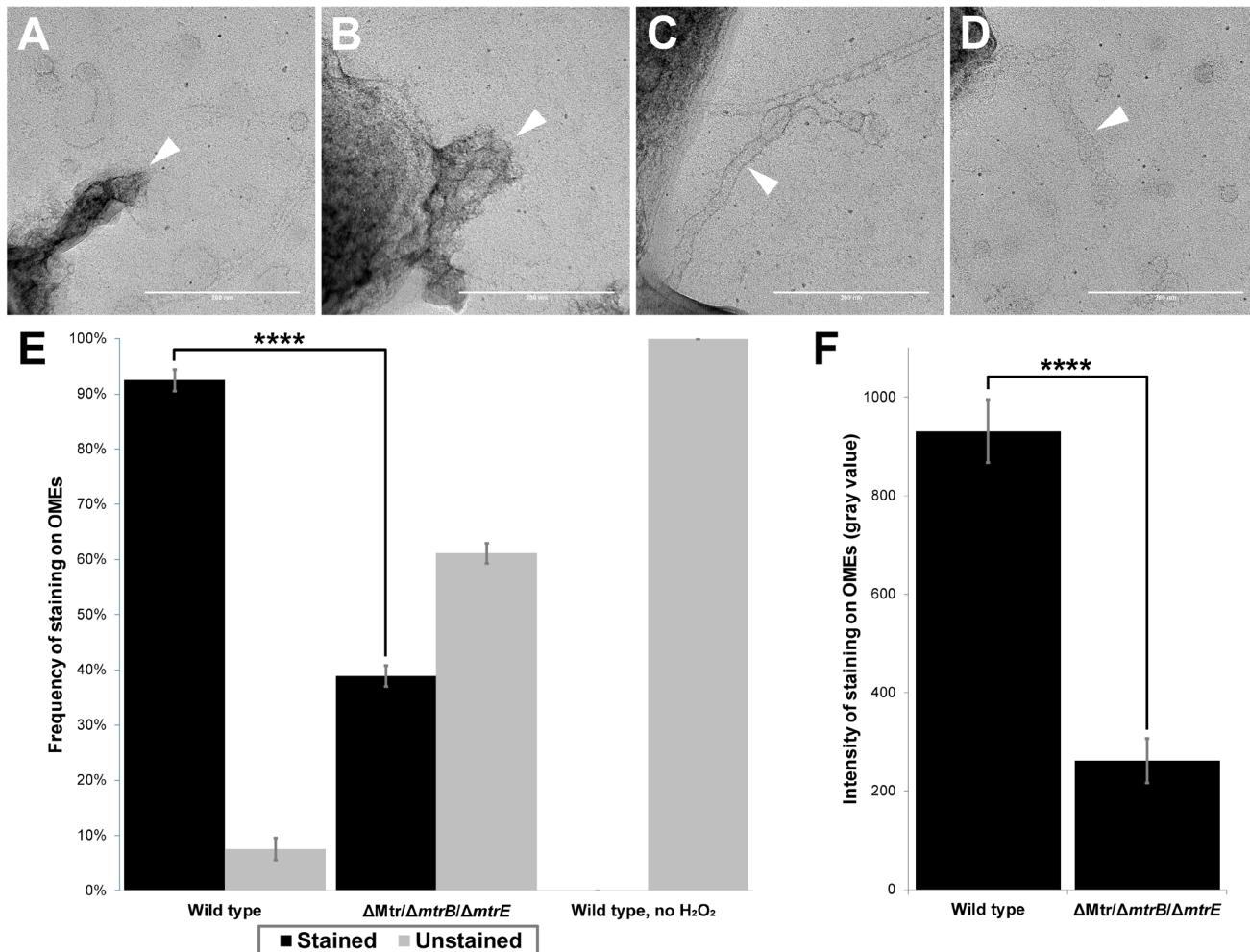

459



460

461 **Figure 2. Surface attachment is sufficient to induce production of outer membrane extensions.**
462 (A) Diagram illustrates experimental procedure. (B-C) Microscopy images of *S. oneidensis* MR-1 cells
463 and membrane extensions (white arrows) labeled with the red membrane stain FM 4-64FX. Time (t =
464 0 min) indicates estimated time of cells contacting the glass surface. (B) Demonstrates production of
465 outer membrane extensions (OMEs) by surface-attached cells in the aerated glass-bottomed reactor.
466 (C) Demonstrates OME production by planktonic cells from the reactor which were transferred to a
467 new coverslip surface after events in (B) were confirmed. (Scale bars: 5 μm .)

468



478

479 **Figure 4. Redox components are present only on outer membrane extensions, not pili or flagella.**
480 Histochemical redox-dependent staining with 3,3'-diaminobenzidine (2.5 h staining step) and
481 transmission electron microscopy distinguishes between types of extracellular filaments in *S.*
482 *oneidensis* MR-1. Images depict dark precipitate (yellow arrows and lines) labeling only outer
483 membrane extensions, but not adjacent extracellular structures (A) pili (white arrow) and (B) flagella
484 (black arrow). (Scale bars: 200 nm.)

485

486

487 **Figure 5. Presence of multi-heme cytochromes important for extracellular electron transfer leads**
488 **to significantly higher frequency and intensity of redox-dependent staining on outer membrane**
489 **extensions. (A-D)** Transmission electron microscopy images depict outer membrane extensions
490 (OMEs, white arrows) stained by 3,3-diaminobenzidine (DAB; 1 h staining step) in wild type and
491 cytochrome-deficient ($\Delta Mtr/\Delta mtrB/\Delta mtrE$) *S. oneidensis* MR-1 cells. (A) Wild type OMEs are stained
492 by DAB precipitate. (B-C) Mutant OMEs treated by DAB exhibit varying degrees of staining. (D)
493 Wild type OMEs in chemical controls where H_2O_2 was omitted appear unstained aside from negative
494 stain. (E) Frequency of staining displayed by OMEs in wild type, $\Delta Mtr/\Delta mtrB/\Delta mtrE$ mutant, and wild
495 type chemical control where H_2O_2 was omitted. 2.4-fold more OMEs were stained in wild type than in
496 the mutant ($p < 0.0001$). Statistical significance was determined by p -value from Pearson's chi-squared
497 test. (F) Intensity of staining displayed by OMEs is 3.6-fold higher in wild type than in
498 $\Delta Mtr/\Delta mtrB/\Delta mtrE$ mutant ($p < 0.0001$). Statistical significance was determined by two-tailed p -value
499 from Student's t -test, two-sample assuming equal variances. Error bars show mean \pm SEM. (Scale bars:
500 200 nm.)