

1 **Testis single-cell RNA-seq reveals the dynamics of *de novo* gene transcription and**
2 **germline mutational bias in *Drosophila***

3 **Authors:** Evan Witt¹, Sigi Benjamin¹, Nicolas Svetec¹, Li Zhao^{1*}

4 **Affiliations:** ¹Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University,
5 New York, NY 10065, USA

6 ***Correspondence to:** lzhao@rockefeller.edu

7

8 **Summary**

9 The testis is a peculiar tissue in many respects. It shows patterns of rapid gene evolution
10 and provides a hotspot for the origination of genetic novelties such as *de novo* genes,
11 duplications and mutations. To investigate the expression patterns of genetic novelties across cell
12 types, we performed single-cell RNA-sequencing of adult *Drosophila* testis. We found that new
13 genes were expressed in various cell types, the patterns of which may be influenced by their
14 mode of origination. In particular, lineage-specific *de novo* genes are commonly expressed in
15 early spermatocytes, while young duplicated genes are often bimodally expressed. Analysis of
16 germline substitutions suggests that spermatogenesis is a highly reparative process, with the
17 mutational load of germ cells decreasing as spermatogenesis progresses. By elucidating the
18 distribution of genetic novelties across spermatogenesis, this study provides a deeper
19 understanding of how the testis maintains its core reproductive function while being a hotbed of
20 evolutionary innovation.

21

22 **Introduction**

23 The testis is a highly transcriptionally active tissue whose core function of sperm
24 production is conserved across kingdoms. In humans, flies, and mice, spermatogenesis consists
25 of several key steps: 1) differentiation of germline stem cells into spermatogonia, 2) mitotic
26 divisions of spermatogonia, which become spermatocytes, 3) meiotic divisions to generate
27 primary spermatids, and 4) sperm maturation (Fuller, 1993; Jan et al., 2012; White-Cooper,
28 2010). Across animal species, the testis is unique from a transcriptomics perspective because it
29 expresses more genes than any other tissue (Parisi et al., 2004). Genotypes and phenotypes
30 associated with sex and reproduction diverge rapidly and may have important functional
31 consequences (Lande, 1981). Despite evolutionary genetic hypotheses trying to explain the
32 complexity of the testis transcriptome, it remains unclear why this tissue expresses a broader
33 array of genes than any other tissue, including the brain, which is more phenotypically and
34 structurally complex and contains more cell types (Parisi et al., 2004; Soumillon et al., 2013;
35 Wang et al., 2003).

36 Not only it is a highly transcriptionally active tissue, the testis is also a hotspot for newly
37 originated genes (Long et al., 2003; Neme and Tautz, 2016). One hypothesis is that testis
38 catalyzes the birth and retention of novel genes (Kaessmann, 2010). This hypothesis suggests
39 that novel genes are likely to be born in testis due to a permissive chromatin state. Novel
40 functional genes with beneficial products are selectively preserved and eventually evolve more
41 refined regulatory programs (Bai et al., 2007; Kaessmann, 2010). In the past decade, many
42 studies have found that young genes, including *de novo* originated genes (genes born from
43 ancestrally noncoding DNA), tend to be biased towards the testis (Levine et al., 2006; Long et
44 al., 2003; Park et al., 2014; Ruiz-Orera et al., 2015; Tautz and Domazet-Lošo, 2011; Zhao et al.,

45 2014). *De novo* genes may arise in two main ways: 1) an unexpressed DNA sequence gains
46 expression, and the resulting transcript can acquire a function, coding potential or 2) a potential
47 Open Reading Frame (ORF) gains expression and translation, and undergoes functional
48 refinement (Carvunis et al., 2012; Durand et al., 2019; McLysaght and Hurst, 2016; Schlötterer,
49 2015). Natural selection may not only preserve testis-bias and function of novel genes, but also
50 shape expression and function in somatic tissues for others (Chen et al., 2010, 2013; Zhou et al.,
51 2008). Elucidating the biology of new-gene evolution therefore requires a comprehensive picture
52 of spatio-temporal dynamics of testis gene regulation.

53 Spermatogenesis is a highly conserved process in many animal taxa and is well-
54 understood from an anatomical and histological perspective, but its molecular foundations are
55 still poorly understood (Birkhead et al., 2008; Demarco et al., 2014; Russell et al., 1993; White-
56 Cooper, 2010). New analytical methods in genomics allow the quantification of expression
57 biases of gene groups involved in various cellular processes (Jung et al., 2018; Lukassen et al.,
58 2018; Stévant et al., 2018). From the prevalence of their transcripts, one can make inferences
59 about the developmental timing of translation, DNA repair, nuclear export, and other processes.
60 Moreover, these methods also make possible the identification of germline variants and the
61 individual cells in which they occur.

62 Such methods include the recent advent of single-cell sequencing, a technology that may
63 shed light on unknown aspects of germline mutation. For instance, it is known that the human
64 mutation rate per base per generation ranges from 10E-7 to 10E-9 (Moorjani et al., 2016; Scally
65 and Durbin, 2012), but this germline mutation rate is the result of an equilibrium between
66 errors/lesions and repair. Substitutions that arise within an individual's germline but do not reach
67 mature gametes will not be passed to the next generation, meaning that population genetics
68 approaches can only observe a subset of germline variants. Is the population-level mutation rate
69 influenced by the mutation-repair equilibrium of spermatogenesis?

70 A roadblock to the answer of this question is the fact that any substitutions that prevent
71 gamete maturation or fertilization will be lost from the population, meaning that the population-
72 level mutation rate may vastly underestimate the germline variants propagating within
73 individuals. Since male *Drosophila* do not undergo meiotic recombination, germ cell variants
74 that occur in earlier developmental stages may not be repaired through recombination related
75 mechanisms (Hunter, 2015). It is also known that different cell types in the testis accumulate
76 DNA lesions at different rates (Gao et al., 2014), but it is unclear if the net mutational load varies
77 during spermatogenesis. Single-cell RNA-seq can be used to infer mutational events within a
78 whole tissue, even if such lesions would be repaired before gamete maturation. Unlike single-cell
79 genome sequencing, this approach can infer the cell types associated with each variant, allowing
80 estimation of the mutational load of cells as they progress through spermatogenesis. Due to its
81 versatility, reproducibility, and wealth of useful data, single-cell RNA-seq is a powerful tool for
82 the study of germline mutation.

83 We leveraged single-cell RNA-seq and unsupervised clustering to identify all the major
84 cell classes of the sperm lineage, validated by previously studied marker genes. We identified
85 populations of somatic cells, including cyst stem cells, hub cells, and terminal epithelial cells.
86 We found that the overall gene expression is very active in early spermatogenesis and decreases
87 throughout spermatogenesis. Lineage-specific *de novo* genes (genes derived from ancestrally
88 noncoding DNA (Zhao et al., 2014)) showed expression in various cell types and are commonly
89 expressed in spermatocytes. We also identified putative germline *de novo* substitutions from our
90 population of cells and found that they decrease in relative abundance during spermatogenesis.

91 We also found that the proportion of mutated cells decreases throughout spermatogenesis, a
92 finding with possible implications for the study of male germline DNA repair. In an opposite
93 pattern, DNA damage response genes are upregulated in early spermatogenesis, indicating a role
94 for these genes in early spermatogenesis.

95 These patterns of mutation and *de novo* gene expression augment and enrich our current
96 understanding of the male-specific evolutionary novelty. It was previously known that young *de*
97 *novo* genes tend to be testis biased, and we have further traced the main source of this bias to
98 spermatocytes. We uncover a compelling time course of mutational load throughout
99 spermatogenesis, putting forward the *Drosophila* testis as a model for the study of spermatogenic
100 mutational surveillance. Mutation and *de novo* gene evolution are critical components of the
101 adaptive process, and our results demonstrate these processes in action during spermatogenesis.

102

103 **Results**

104 **Unsupervised clustering elucidates the distribution of *de novo* genes across cell types**

105 We prepared a single-cell suspension from freshly dissected testes of 48-hours-old *D.*
106 *melanogaster* adult males (Figure 1-figure supplement 1, also see methods). The cell suspension
107 was then made into a library and sequenced. We recovered 426,563,073 reads from a total of
108 5000 cells. On average, we mapped 85,312 reads per cell and detected the expression of an
109 average of 4185 genes per cell. The dataset correlates well with bulk testis RNA-seq and a
110 separate testis single-cell RNA-seq library, with a Pearson's R of 0.97, indicating high
111 reproducibility (Figure 1-figure supplement 2). Using t-Stochastic-Neighbor Embedding (t-SNE)
112 in Seurat (Van Der Maaten and Hinton, 2008; Satija et al., 2015) we reduced the dimensionality
113 of the gene/cell expression matrix to two primary axes and grouped cells by their similarity
114 across their thousands of unique gene expression profiles. Grouping similar cells into clusters,
115 we observed marker genes enriched in particular clusters, allowing us to infer the identity of the
116 cells within each cluster (see methods).

117 Based on the clustering results, we inferred the presence of germline stem cells,
118 spermatogonia, spermatocytes, and spermatids (germ cells) as well as cyst stem cells, terminal
119 epithelial cells, and hub cells (somatic cells) (Figure 1A, 1B). We confirmed that the top 50 most
120 highly enriched genes in cell clusters from each cell type (Supplementary file 1) were consistent
121 with previous knowledge of marker genes. For instance, *cup* genes were biased toward late
122 spermatids (Barreau et al., 2008), and *Hsp23* and *MtnA* were highly expressed in the epithelial
123 cells (Faisal et al., 2014; Michaud et al., 1997). Cell clusters from each developmental stage in
124 the t-SNE map are near each other, suggesting that cell progression through spermatogenesis is a
125 continuous process. The expression of marker genes confirmed the assignment of cell clusters
126 (Figure 1C, 1D). Germline Stem Cells (GSCs) and early spermatogonia clustered together due to
127 1) high transcriptional similarity, 2) the relatively low numbers of GSCs within the tissue, and 3)
128 the sparse expression of GSC-specific marker genes. Different types of somatic cells clustered
129 close to each other in the t-SNE graph, suggesting distinct transcriptional patterns compared to
130 germ cells. A principal component analysis of variable genes in the testis is presented in Figure
131 1-figure supplement 3.

132 To gauge the accuracy of our cell type assignments, we queried if various cell types
133 utilize biological pathways known to be important in spermatogenesis. Using a PANTHER Gene
134 Ontology (GO) search of all significantly enriched genes for each cell type, we found that the
135 most enriched GO terms for GSC, early and late spermatogonia tend to involve translation,
136 transcription, and ATP synthesis (Supplementary file 2), supporting high levels of cellular

137 activity. Early spermatocytes showed an enrichment for ubiquitin-independent proteasomal
138 catabolism; late spermatocytes were enriched for genes involved in spermatid motility and
139 differentiation (Supplementary file 2). Early spermatids were enriched in GO terms for
140 spermatogenesis, gamete generation, and cellular movement, and late spermatids showed no
141 enrichment in any GO terms (Supplementary file 2).

142 The average number of expressed genes per cell ranged between ~2000 genes for late
143 spermatids and ~7000 genes for our late spermatogonia (Figure 2A). The number of genes
144 expressed in early and late spermatids is lower than at any other point during the sperm lineage
145 (Figure 2A), suggesting that post-meiotic transcription exists, but occurs at a lower level (Schultz
146 et al., 2003). Consistently with this result, the cellular RNA content, measured by the number of
147 Unique Molecular Indices (UMI) recovered per cell, is low in spermatids and high in
148 spermatogonia and early spermatocyte (Figure 2B). The RNA content in the post-meiotic cells is
149 five times lower (21%) than that of meiotic stages, inferred from the average number of UMIs
150 per cell. Congruently, we noticed that spermatids express 53% of the total number of genes that
151 spermatocytes express.

152 Since most *de novo* genes in *Drosophila* are expressed in the testis (Zhao et al., 2014), we
153 asked whether they can be found uniformly across cell types, or whether they are enriched in
154 particular stages of spermatogenesis. We detected expression of 87 segregating and 97 fixed *de*
155 *novo* genes from Zhao et al. (2014) that are expected to have originated sometime after the
156 divergence with *D. simulans* (Zhao et al. 2014 identified 142 segregating and 106 fixed genes,
157 respectively). Consistent with our predicted expression patterns of functional novel genes, we
158 found that *de novo* genes are expressed in various cell types and a large number of *de novo* genes
159 are expressed in meiotic germ cells (Figure 2C).

160 After calculating the cell-type specific expression profile for every detectable gene, we
161 asked whether a given cell expresses similar proportions of *de novo* genes, testis-specific genes,
162 and all other annotated genes. We observed that in most cell types, segregating *de novo* genes
163 were the least commonly expressed group of genes, fixed *de novo* genes were more common,
164 and testis-specific genes were most commonly expressed (Figure 2C). Early and late
165 spermatocytes, however, express similar proportions of fixed *de novo* genes and testis-specific
166 genes. Moreover, spermatocytes also show the highest relative abundance of segregating *de novo*
167 genes compared to other cell types. Altogether, the high proportion of *de novo* genes expressed
168 in spermatocytes suggests that such genes may play functional roles in these cells and
169 development stage.

170 171 **Developmental trajectories show *de novo* gene expression bias during spermatogenesis**

172 To study the transcriptomic path that a progenitor cell would take during its
173 differentiation process, we reconstructed the developmental trajectory of spermatogenesis using
174 monocle (Trapnell et al., 2014), which uses a graph-based minimum-spanning tree to align cells
175 along an inferred path called pseudotime (Figure 3A, Figure 3-figure supplement 1). Pseudotime
176 does not correspond to the actual timing of developmental processes; rather, it is a roadmap of
177 cell differentiation as a function of transcriptomic changes. As an initial step to verify the
178 accuracy of our pseudotime map, we plotted the number of UMIs detected as a function of
179 pseudotime as a proxy of RNA content throughout spermatogenesis (Figure 3B). We saw that the
180 number of UMIs starts fairly low, increases dramatically, and then decreases towards the end of
181 pseudotime. This is consistent with the known post-meiotic downregulation of most transcription
182 during spermatogenesis (Barreau et al., 2008).

183 By plotting inferred gene expression in every cell as a function of pseudotime, we
184 approximated the behavior of individual genes throughout spermatogenesis. Marker genes
185 consistently show a similar profile in pseudotime and the Seurat analysis. For instance, *bam*, *vas*,
186 and *His2Av* enrichment denote the beginnings of spermatogenesis, and *fzo* and *twe* denote early
187 and late spermatocytes, respectively (Figure 3C). Confident that our calculated pseudotime is an
188 accurate representation of spermatogenesis, we proceeded to use it to query how the expression
189 of *de novo* genes changes throughout spermatogenesis.

190 If a given novel gene is functional, one would expect it to be biased towards meiotic
191 cells, since germline stem cell-specific genes may not undergo long-term and recurrent positive
192 selection (Choi and Aquadro, 2015). If these genes confer limited beneficial effects, we predict
193 that they may show stochastic transcription pattern in a large variety of cell types. Consistent
194 with our predicted expression patterns of functional novel genes, we found that a large number of
195 *de novo* genes are expressed specifically in a stage-biased manner, with a significant bias
196 towards meiotic germ cells. Fixed annotated *de novo* genes show a variety of expression patterns
197 over pseudotime (Figure 3D), with some showing bias towards early stages (*CG44174*), some
198 with a bimodal expression pattern (*CG44329*), and some biased towards late spermatogenesis
199 (*CR44412*). The top five most differentially expressed segregating *de novo* genes show a variety
200 of expression patterns, but four of the five are biased towards early/middle pseudotime (Figure
201 3E).

202

203 **Gene age and mode of origination affects gene expression bias across cell types**

204 Our prior observation that many *de novo* genes are enriched in GSC/early spermatogonia
205 led us to ask whether the expression patterns of *de novo* genes differ from the expression patterns
206 of other genes. Although individual *de novo* genes show a variety of expression patterns, we
207 found that, compared to testis-specific genes, segregating *de novo* genes are less expressed in
208 germline stem cells ($p.\text{adj} = 9.35\text{E-}04$) and slightly enriched in early spermatids ($p.\text{adj} = 1.70\text{E-}02$)
209 (Figure 4A, Table 1). By contrast, the scaled expression of fixed *de novo* genes is not
210 statistically different from that of testis-specific genes (Figure 4B, Table 1). These results
211 suggest that cell-type expression patterns may impact the likelihood that a *de novo* gene will
212 reach fixation.

213 We also asked whether this spermatocyte-biased expression is driven by segregating or
214 fixed *de novo* genes. We quantified gene expression bias for segregating and fixed *de novo* genes
215 separately and found that both groups of genes display the same direction of bias and a similar
216 degree of statistical significance in every cell type (Table 1, Supplementary file 3). These results
217 suggest that cell-type expression patterns do not impact the likelihood that a *de novo* gene will
218 reach fixation, rather, the function and fitness effect may play an important role in the process of
219 fixation.

220 Given a general trend for meiotic enrichment of *de novo* genes, we asked what proportion
221 of *de novo* genes exhibit this pattern. Across pseudotime, we qualitatively estimated the relative
222 expression biases of all *de novo* genes we could detect from Zhao et al. (2014). Overall, 55% of
223 segregating and 62% of fixed genes were biased towards middle stages (spermatocytes), and
224 11% of both segregating and fixed genes showed high expression bias toward later stages
225 (spermatids). Surprisingly, 29% of segregating genes and 26% of fixed genes showed high
226 expression bias toward early stages (GSC and spermatogonia) (Figure 4C). While many
227 segregating *de novo* genes are highly expressed in early spermatogenesis, our results from Figure
228 4A suggest that as a group they are less expressed than typical testis-specific genes in GSC and

229 early spermatogonia. This variety of expression patterns in young *de novo* genes indicates
230 functional diversification in short evolutionary timescales.

231 Given that *de novo* genes, like typical testis-specific genes, are usually maximally
232 expressed during meiosis, we asked if the expression dynamics of recently duplicated genes,
233 another class of young genes, are similar (Figure 4D). Using a list of *D. melanogaster*-specific
234 “child” genes and their parental copies (Zhou et al., 2008), we queried expression of the parental
235 and derived copies of duplicated genes over pseudotime (Figure 4-figure supplement 1). We
236 classified gene expression patterns into “early”, “late” “middle” and “bimodal” for each group.
237 Only 2/14 “child” genes whose expression could be detected in testis had the same expression
238 pattern as their parental copy, indicating that most derived gene copies are regulated by different
239 mechanisms than their parental copy. All parental genes exhibited an early or late expression
240 pattern, but child genes were a mixture of early, late, middle and bimodal expression patterns.
241 (Table 2, Figure 4-figure supplement 1).

242 Bimodal expression (a peak in early and middle/late stages) is the most frequent
243 expression pattern for child genes (43%), a pattern we did not observe for any parental genes. It
244 is possible that these bimodal genes were originally expressed with the same pattern as their
245 parental copy and later acquired expression in a different stage, consistent with
246 neofunctionalization (Ding et al., 2010; Lynch and Conery, 2000).

247 We also observed strikingly different expression patterns for young genes depending on
248 their mode of origination (duplication vs. *de novo*). To compare young genes of a similar age
249 group, we quantified expression patterns for fixed *melanogaster*- specific *de novo* genes from
250 Zhao et. al 2014, and *melanogaster*-specific gene duplicates from Zhou et. al 2008. We found
251 that fixed *de novo* genes are most frequency biased towards mid-spermatogenesis (Table 2), and
252 *melanogaster*-specific duplicate genes are most commonly bimodally expressed. This result
253 indicates that a gene’s expression pattern is influenced by its mode of origination. *De novo* genes
254 often build regulatory sequences from scratch, but young gene duplicates may co-opt flanking
255 promoter and enhancer sequences from their parental copy.

256

257

258 **Mutational load decreases throughout spermatogenesis**

259 Since evolutionary innovations largely depend on novelties occurring at the DNA
260 sequence level, we asked if the mutational load of germ cells varies during the process of sperm
261 development. From our single-cell RNA-seq data, we identified 73 high-confidence substitutions
262 that likely arose *de novo*. While the reference allele for every variant was present in somatic
263 cells, the variant form of each of them was exclusively found in germ cells, and each inferred
264 substitution is unlikely to be an RNA editing event or unrepaired transcriptional error (see
265 methods). These substitutions were not present in population-level genome sequencing or
266 previous whole-tissue RNA-seq of RAL517 testis, and the variant form of each substitution was
267 also not present in any of our 3 types of somatic cells. We observed several instances of tightly
268 clustered substitutions (<20 bp apart) present in the same cells, which we interpreted as single
269 mutational events (Supplementary file 2, Figure 5-figure supplement 1). These substitution
270 clusters could be the result of replicative errors resulting from the misincorporation of bi-
271 nucleotides or multi-nucleotides, or due to the recruitment of an error-prone repair pathway at a
272 double-strand break or bulky lesion. After counting clustered mutations as one mutational event,
273 we obtained 44 mutational events present in one or more cell types (Figure 5A).

274 Putative *de novo* mutations are each likely unique to an individual. If a mutation were
275 found in multiple individuals, it would likely be an inherited somatic variant and we would catch
276 such mutated alleles in somatic cells. For each of the mutations, we identified reads from somatic
277 cells with the WT allele at that position, and the mutated allele is only present in germ cells.
278 Each variant is also supported by multiple germ cell reads with different UMIs.

279 To approximate per-base mutation load of each cell type, we accounted for two factors.
280 Firstly, we are more likely to call a mutation event in more abundant cell types. Secondly, we are
281 only able to detect mutation events in transcribed regions, so cells with a larger breadth of
282 transcribed regions will likely yield more events. To control for these variables, we calculated
283 the approximate per-base mutation load of each cell type by dividing the number of detected
284 substitutions by the number of cells and the number of bases covered by 10 or more reads in that
285 cell type, finding a decrease in the relative abundance of substitutions during the progression of
286 spermatogenesis (Figure 5B).

287 Importantly, while we detected 30% (22/73) of inferred germline substitutions in early
288 spermatids, we detected no germline variants in late spermatids. This means that either 1) most
289 lesions are corrected by this stage, or 2) cells with lesions were removed by programmed cell
290 death, or 3) that we captured insufficient quantities of mature spermatid mRNA to detect
291 remaining variants. Although we found that early and late spermatids have similar RNA content,
292 the low abundance of late spermatids makes either explanation possible. Since we observed a
293 steady downward trend of mutation abundance during the progression of spermatogenesis, it is
294 reasonable to infer that late spermatids have a mutational burden equal to or less than that of
295 early spermatids. We counted the number of cells of each type carrying mutations throughout
296 spermatogenesis. We observed that the relative proportion of cells carrying mutations drops
297 consistently throughout spermatogenesis (Figure 5C), indicating that mutational load decreases
298 during spermatogenesis. A chi-square test of the trend in proportions shows that the relative
299 numbers of mutated cells follow a linear trend (p value = 2.20E-16). This result is highly
300 statistically significant and lends credence to our other observations of dwindling mutational load
301 during spermatogenic progression. This trend could be the result of active lesion repair, or the
302 death of cells carrying unrepaired lesions.

303 304 **DNA repair genes and ribosomal protein genes show an early expression bias**

305 We asked whether two key programs, DNA repair, and translation, show signatures of
306 expression bias during spermatogenesis. We hypothesized that both programs are critical to the
307 production of healthy spermatids, which must undergo heavy periods of growth and division
308 without accumulating mutations.

309 Ribosomal protein genes appear to be strongly biased towards early spermatogenesis
310 (Table 1, Supplementary file 3). Compared to testis-specific genes or all other genes, they are
311 upregulated in GSCs/early spermatogonia and late spermatogonia, and downregulated in early
312 spermatocytes, late spermatocytes, early spermatids, and late spermatids. Our results indicate
313 that translation is required at the very beginning of spermatogenesis, possibly to build cellular
314 machinery during a period of rapid growth and division. Interestingly, recent studies suggest that
315 ribosomes play an important role in regulating stem cell fate and homeostasis (Fortier et al.,
316 2015; Turner, 2008). The observed abundance of those ribosome protein genes is consistent with
317 ribosome loading playing an important role in stem cell differentiation and germ cell
318 differentiation. Translation is important for later spermatogenesis as well, and our results indicate
319 that the ribosomal machinery may be built early and stored for use in later developmental stages.

320 We hypothesized that since replication and transcription are very active in early
321 spermatogenesis, DNA repair-gene expression may be biased towards early spermatogenesis. We
322 quantified the expression pattern of 211 DNA repair genes in the testis (DNA repair genes were
323 taken from Svetec et al., 2016). We found that, compared to testis-specific genes, DNA repair
324 genes were upregulated in GSCs/early spermatogonia and late spermatogonia (corr. p values =
325 8.14E-62, 5.80E-44, respectively), and depleted in early and late spermatocytes (corr. p values =
326 1.75E-38, 4.58E-29, respectively) (Figure 5D, Table 1). We reason that DNA repair genes are
327 transcribed early because the DNA repair machinery must be assembled early in order to repair
328 mutations as soon as they occur.

329

330

331 Discussion

332 Our findings provide an unprecedented perspective on evolutionary novelty within the
333 testis. We have developed a simple but robust method to quantify gene expression bias in a cell-
334 type specific manner in single-cell data. It revealed the presence of expression biases in DNA
335 repair genes, segregating *de novo* genes, and other gene groups. Zhao et al. 2014 characterized
336 *de novo* genes as lowly expressed from bulk RNA-seq data, but our data demonstrate that *de*
337 *novo* genes show various expression patterns among all cell types and are commonly expressed
338 in spermatocytes. Our other observation that segregating *de novo* genes exceed the expected
339 post-meiotic expression of testis-specific genes is also intriguing. One possibility is that some *de*
340 *novo* transcripts may escape RNA degeneration and have a long lifespan after meiosis. Over
341 time, if the products of *de novo* transcripts are selected and modified by natural selection, the
342 regulatory sequences and resulting expression pattern will be refined. Since fixed *de novo* genes
343 show similar scaled expression patterns to older testis-specific genes, it is possible that certain
344 expression patterns common to older testis-specific genes increase the likelihood of a segregating
345 gene reaching fixation, or that many of the *de novo* genes function similarly to testis-specific
346 genes.

347 Our finding that young duplicated genes have different expression patterns than *de novo*
348 genes merits further study. Young duplicated genes are more likely to be bimodally expressed
349 than *de novo* genes of a similar age. While it appears that *de novo* genes are often highly
350 expressed during meiosis, many duplicated genes display a bimodal expression pattern. While *de*
351 *novo* genes may have relatively simple minimal promoters, young duplicated genes may
352 maintain much of the regulatory sequence of their parent copy. However, since only 2 out of 14
353 *melanogaster*-specific child duplicates have the same general expression pattern as their parent
354 genes, it seems that their regulatory sequences are often modified to produce alternative
355 expression patterns. This observation suggests that some young duplicated genes have relaxed
356 selective pressure to perform the ancestral function, allowing for neofunctionalization.

357 We also developed a method to extract mutational information from single-cell RNA-seq
358 data, which can provide information about germline or *de novo* DNA lesions present in a sample
359 without the need for DNA sequencing. While our method cannot identify variants in
360 untranscribed regions, introns, or sense strands, our method approximates the relative mutational
361 load of different cell types in a sample. Variation in RNA content between cell types may
362 decrease our power to detect substitutions in less transcriptionally-active cells such as late
363 spermatids, although our calculated mutational load in Figure 5B accounts for this. Despite the
364 lack of data for late spermatids, our results suggest that many errors are at least partially repaired
365 before the completion of spermatid maturation. Alternatively, cell death could have removed

366 mutated cells before spermatid maturation if a lesion could not be repaired. Our data cannot
367 distinguish between the death of mutated cells and successful repair of lesions.

368 The variants we have found are either DNA lesions that have escaped repair, or the
369 lesions that have been selected through competition among cells (Loewe and Hill, 2010). It is
370 likely that some of these substitutions would result in inviable offspring and would never be
371 observed in an adult population. Our result suggests that mutational load varies between different
372 cell divisions, consistent with previous work that suggests a variable lesion rate between cell
373 types (Gao et al., 2011, 2014). Mutational load is the net product of damage and repair, and
374 further characterization of how lesions occur and accumulate in the germline is needed to better
375 understand the evolutionary ramifications of this process (Moorjani et al., 2016).

376 It appears that the cell types with the highest mutational load are germline stem
377 cells/early spermatogonia, the earliest germ cells. This indicates that by the time germline stem
378 cells enter spermatogenesis, they carry a relatively high mutational burden. This could be due to
379 the fact that germline stem cells cycle many times, dividing asymmetrically to produce
380 spermatogonia and a replenished germline stem cell. This cycle, repeated enough times, could
381 cause a buildup of variants in germline stem cells as they continue to produce spermatogonia.
382 Such a scenario would necessitate a mechanism to remove high level of lesions from maturing
383 gametes. This mechanism must be an equilibrium removing enough lesions to prevent the
384 accumulation of harmful phenotypes. However, the population-level mutation rate never reaches
385 zero, otherwise adaptive evolution will cease (Lynch, 2010).

386 Since we observed that the transcription of 211 DNA repair genes drops during meiotic
387 stages, we suspect that DNA repair gene products are translated early and continue to repair
388 lesions throughout spermatogenesis. After meiosis, however, the gametes become haploid, and
389 there is no longer a template strand to facilitate homology-directed repair. This should constrain
390 the types of DNA damage repair available in late spermatogenesis. It is also important to note
391 that male *Drosophila* do not undergo meiotic recombination, meaning that the DNA repair
392 events that occur during spermatogenesis are likely due to replicative or transcriptional forces,
393 not recombination. Transcription-coupled repair during spermatogenesis is apparent in mouse
394 and humans, as variants on the template strand and the coding strand of testis-expressed genes
395 are asymmetrical (Xia et al., 2018). Our finding that the number of variants decreases throughout
396 spermatogenesis is consistent with the results of Xia et al., who posit a generalized genomic
397 surveillance function of spermatogenesis. Future work should use single-cell genome sequencing
398 on FACS-purified subpopulations of testis cells to identify germline variants and calculate their
399 relative abundance. Additionally, our work necessitates comparison of the relative mutational
400 burden of older flies to younger flies. If DNA lesions accumulate in cycling germline stem cells
401 over time, spermatogenic mutational surveillance may less efficiently compensate for more
402 lesions in sperm from older individuals. Our result indicates that cell-type specific mutational
403 load can be estimated from single-cell RNA-seq data with reasonable accuracy. Overall, we
404 provide novel insights into the dynamics of mutation, repair, and *de novo* gene expression
405 profiles in the male germline.

406 **Acknowledgments**

407 We thank Connie Zhao and Nneka Nnabueugo for the help on the single-cell sequencing
408 experiment. We thank Kristofer Davie for the suggestions on single-cell suspension. We thank
409 members of the Zhao laboratory for helpful discussions during the work. We are grateful to Mia
410 Levine, Leslie Vosshall, David Begun, Ziyue Gao, Molly Przeworski, Xiaolan Zhao, and Sohail
411 Tavazoie for critical reading of an earlier version of the manuscript.

412

413 **Funding**

414 L.Z. was supported by the Robertson Foundation, a Monique Weill-Caulier Career Scientist
415 Award, and an Alfred P. Sloan Research Fellowship (FG-2018-10627).

416

417 **Declaration of interests**

418 The authors declare no competing interests.

419

420 **Data and materials availability**

421 Fastq files of the single-cell testis RNA-seq data have been deposited at NCBI SRA with
422 accession numbers SAMN10840721 (RAL517 strain in main text, BioProject # PRJNA517685)
423 and SAMN12046583 (Wild strain used for reproducibility analysis in Figure 1-figure
424 supplement 2, PRJNA548742).

425

426 Script used to create the custom reference and run the cellranger pipeline is available at
427 https://github.com/LiZhaoLab/2019_Dmel_testis_singlecell, along with the custom reference
428 used for the analysis.

429

430 **Materials and Methods**

431 **Key resources:**

Reagent type (species) or resource	Designation	Source or reference	Identifiers
strain, strain background ()	<i>Drosophila melanogaster</i> RAL517 (male)	PMID:22318601	BDSC:25197
commercial assay or kit	10X chromium 3' kit V2	10X genomics	10X genomics product number CG00052
chemical compound, drug	Gibco Collagenase, type I	Thermo Fisher	Thermo Fisher catalog number 17018029
chemical compound, drug	Trypsin LE	Thermo Fisher	Thermo Fisher catalog number 12605036
software, algorithm	Cellranger	10X genomics	
software, algorithm	Hisat2	PMID:25751142	
software, algorithm	Stringtie	PMID:25690850	
software, algorithm	Seurat	PMID:25867923	
software, algorithm	bcftools	PMID:28205675	
software, algorithm	samJDK	https://doi.org/10.1093/bioinformatics/btx734	
software, algorithm	Monocle	PMID:24658644	

432

433 **Preparation and sequencing of testis single-cell RNA-seq libraries**

434 We used 2- to 3- day-old DGRP-RAL517 flies in this study (MacKay et al., 2012). Testes
435 from 50 male flies were dissected in cold PBS. The resulting 50 testes were de-sheathed in 200
436 μ l of lysis buffer (Trypsin L + 2 mg/ml collagenase). The samples were incubated in lysis buffer
437 for 30 minutes at room temperature with gentle vortex mixing every 10 minutes. The samples
438 were filtered through a 30 μ m tissue culture filter followed by a 7 minutes centrifugation at 1200
439 rpm. The cells were washed with 200 μ l of cold HBSS and pelleted again for 7 minutes at 1200
440 rpm. The resulting cell preparation was re-suspended in 20 μ l of HBSS before further processing.
441 For cell counting, 5 μ l of the single cell suspension were mixed with 5 μ l of the exclusion dye
442 trypan blue and the total cell number as well as the ratio between live and dead cells were
443 analyzed using an automated cell counter (Logos Biosystems). For imaging, 15 μ l of the cell
444 suspension were transferred to a slide and imaged in a Zeiss upright light microscope. This
445 method yielded high numbers of single cells with an average of 93-96% viability. We then
446 submitted 8000 cells (sequenced 5000 cells) for library preparation with the 10X Genomics
447 chromium 3' kit, followed by sequencing with Illumina Nextseq 98-bp paired-end chemistry.
448

449 **Preparation of custom annotation file for *de novo* gene analysis**

450 We analyzed *de novo* genes identified in Zhao et al. 2014, by converting the gene
451 coordinates to *D. melanogaster* version 6 reference genome with FlyBase coordinates converter.
452 Strand data and splicing information is not present for those reference genes, so we chose to
453 proceed only with genes whose expression could be detected in our *D. melanogaster* testis
454 single-cell sequencing data. Using whole-tissue RNA-seq data from multiple strains of
455 *Drosophila* testis, we used Stringtie merged to create a merged transcriptome GTF containing
456 unannotated transcripts and used BLAST to compare the novel transcripts against converted
457 coordinates for the Zhao et al. 2014 genes. For genes with a match between the converted 2014
458 coordinates and the new merged transcriptome, we added the coordinates from the merged GTF
459 to the FlyBase dmel_r6.15 reference GTF. Since a single-exon *de novo* genes could be on either
460 strand, we created a plus and minus strand version of every verified *de novo* gene. Our custom
461 annotation file thus contains all the standard FlyBase dmel_r6.15 genes, plus a set of assembled
462 transcripts known to correspond to *de novo* genes.

463 Our study only seeks to analyze previously characterized *de novo* genes, and will inherit
464 the limitations of identification of *de novo* genes using bulk RNA-seq data. Zhao et. al 2014, the
465 source paper for these segregating and fixed *de novo* genes, detected *de novo* genes from bulk
466 testis RNA-seq of multiple *D. melanogaster* strains, meaning that *de novo* genes that are
467 enriched in a rare cell type may not be counted as *de novo* genes if their expression in the whole
468 tissue does not reach a certain threshold. Despite this possibility we still observe many *de novo*
469 genes with maximum expression in rare cell types such as germ line stem cells and
470 spermatogonia.

471

472 **Quantification of reproducibility**

473 If single-cell suspension results to relatively unbiased ratios of cell types compared to in
474 vivo cell types, one would expect a relatively high correlation of single-cell RNA-seq and bulk
475 RNA-seq data. To verify this, we aligned the single-cell RNA-seq reads and bulk RNA-seq reads
476 of RAL517 separately to the reference genome using Hisat2, calculated gene TPMs with
477 Stringtie, and then used DEseq2 to regularized-log transform the TPM values from both datasets.
478 After that, we plot the correlation of normalized gene expression and calculated the Pearson's R

479 (Figure 1-figure supplement 2A). Using the same method, we also compared our dataset to a
480 second single-cell library prepared from testis of a wild *D. melanogaster* strain from our lab
481 (Figure 1-figure supplement 2B).

482

483 **Processing of single-cell data**

484 Illumina BCL files were converted into fastq files using Cellranger mkfastq. A reference
485 genome was created with Cellranger mkref, with all genes from the FlyBase *D. melanogaster*
486 reference. To this reference, we added all segregating and fixed *de novo* genes from Zhao et al.
487 2014. We used the custom reference to run Cellranger count, which demultiplexed the single cell
488 reads into a usable format for Seurat. Going forward, we kept all genes expressed in at least 3
489 cells and all cells with at least 200 genes expressed. We ran Seurat ScaleData and NormalizeData
490 with default parameters. According to the Seurat documentation, “Feature counts for each cell
491 are divided by the total counts for that cell and multiplied by the scale.factor (default=10,000).
492 This is then natural-log transformed using log1p.” We then ran Seurat’s default t-SNE function
493 and found clusters based on the first nine principal components (resolution=2). Of the parameters
494 we tried, most produced a similar t-SNE clustering pattern, but nine principal components
495 generated the best separation between different cell types.

496

497 **Identification of cell types in single-cell RNA-seq data**

498 We used marker genes to infer the predominant cell type within each cluster in Seurat.
499 *Aubergine (aub)* is a marker of germline stem cells (Rojas-Ríos et al., 2017), and *Bag of Marbles*
500 (*bam*) is a marker of spermatogonia (Kawase, 2004). A cluster enriched in *vasa* (Ohlstein and
501 McKearin, 1997) and *bam* but not *aub* was annotated as late spermatogonia. Clusters most
502 enriched in *fuzzy onions (fzo)* were inferred to be early spermatocytes (Hwa et al., 2002), and
503 clusters with enrichment of *twine (twe)* but not *fzo* were inferred to be late spermatocytes
504 (Courtot et al., 1992). The literature is clear that transcription of *fzo* and *twe* peaks in
505 spermatocytes, but it is less clear which marker denotes early and late spermatocytes,
506 respectively. To resolve this ambiguity, we used monocle (Trapnell et al., 2014) to align our cells
507 on a developmental trajectory called pseudotime ($\rho=68$, $\delta=5$, ordered using the top 1000
508 differentially expressed genes). We found that *twe* expression peaked later in spermatogenesis
509 than *fzo*, and concluded that clusters expressing *twe* but not *fzo* were late spermatocytes.
510 Epithelial cells were defined based on enrichment of *MntA* and *Hsp23*, Hub cells were defined
511 based on *Fas3*, and Cyst cells were defined by enrichment of *zfh1* (Zhao et al., 2009). Late
512 spermatids were marked by *p-cup*, a post-meiotically transcribed gene.

513

514 **Analysis of the spermatogenic developmental trajectory**

515 The adult testis contains both somatic and germ cells, but lacks the common progenitor
516 cells for each lineage. Therefore, when constructing a lineage tree for all cells in our tissue, we
517 would expect to see a separate branch containing somatic cells erroneously branching from
518 somewhere along the inferred lineage of more common germ cells. In the somatic cell branch
519 from Figure 3A, *MntA* is enriched (Figure 3-figure supplement 1), leading us to infer that this
520 state is mainly somatic cells. As such, we ignored this branch for our analysis of gene expression
521 during germ cell development in Figures 2C-E. One should not interpret this result as evidence
522 that somatic cells in the testis arose from germ cell progenitors, rather, this is a consequence of
523 Monocle’s algorithm that forces a minimum spanning tree for all cells in a sample, regardless of
524 their real cell-type of origin. Since the original common progenitor for the germ lineage and

525 somatic testis cells is not present in adult tissues, Monocle placed the somatic cells to their
526 closest germ cell neighbors, in this case late germ cells. As shown in Figure 2A, there is a gap
527 between the group of somatic cells and the tightly clustered lineage of germ cells, indicating that
528 the cells are indeed from a different lineage.

529 To construct the trajectory, we used the following parameters:

```
530 >reduceDimension(max_components = 2, num_dim=3, norm_method = 'log', reduction_method  
531 = 'tSNE')  
532 >clusterCells(my_cds, rho_threshold = 55, delta_threshold = 10, frequency_thresh = 0.1)
```

533 To order the cells, we used the top 1000 genes with the highest q value of being
534 differentially expressed between clusters.

535

536 **Calculation of cell-type bias of gene groups**

537 Testing whether gene expression is biased across cell types requires overcoming two
538 challenges. Firstly, different cell types have varying levels of RNA and global transcription, so it
539 is important to account for the behavior of other genes in a cell type when calculating expression
540 bias of a group of genes. Additionally, the calculated expression values for different groups of
541 genes will vary by orders of magnitude. Expression values must be scaled across the dataset on a
542 per-gene basis, with 0 representing a gene's mean expression across the tissue, and positive or
543 negative values corresponding to the Z-score of a calculated expression value. To address the
544 confounding effect of global variation in gene expression, we compared groups of genes against
545 all other genes within a cell type, and asked if some groups of genes behave as outliers in a given
546 cell type. For *de novo* genes, we compared the scaled, average expression of putative *de novo*
547 genes to every other gene within a cell type using a signed Wilcox test (Wilcoxon, 1945).

548 For groups of genes (e.g. *de novo* genes, DNA repair genes), we asked whether their
549 scaled expression distribution in a cell type was statistically different from that of other genes.
550 For every gene, we calculated its average scaled expression within each cell type, and then
551 performed a Wilcox signed test to determine if the mean scaled expression of genes in the cell
552 type was statistically higher or lower than all other genes in the same cell type. For each gene
553 group and cell type, we adjusted the resulting p-values with Hochberg's correction (Haynes,
554 2013). This shows the direction and statistical significance of each cell-type specific bias of a
555 gene group. For the raw and adjusted p values of every gene group tested, please refer to
556 Supplementary file 3. For germline cells, the direction of bias and adjusted p values are given in
557 Table 1. Gene lists used are in Supplementary file 6.

558

559 **Calculation of base substitution rate for individual cells**

560 Using the demultiplexed, aligned reads generated by Cellranger, we ran bcftools mpileup
561 (Narasimhan et al., 2016) with a minimum quality cutoff of 25 to find nucleotide polymorphisms
562 from our RNA-seq data. We filtered the calls to exclude variants known to be segregating in
563 populations of *D. melanogaster* DGRP-RAL517 (MacKay et al., 2012). We also filtered the
564 variant calls against a *D. melanogaster* DGRP-RAL517 population genome dataset we generated
565 recently. We also excluded variants whose read coverage for the reference allele was less than
566 10. With the remaining 2590 polymorphisms, we used samjdk (Lindenbaum and Redon, 2018) to
567 extract reads containing the variant allele and match the cell barcode to the cell identities from
568 our Seurat analysis. To remove variants that likely arose prior to the collection of this data, we
569 excluded variants found in somatic cells (hub, cyst, epithelial cells). The numbers of variants
570 remaining after each filtering step is given in Supplementary file 4.

571 We found a number of substitutions clustered together in close proximity and expressed
572 in the same cells (Figure 5-figure supplement 1). We treated these clusters as single mutational
573 events to avoid biasing our calculated mutational abundance. After counting the total variants
574 detected within each cell type, we subtracted polymorphisms found within 10 bp of each other in
575 the same cells so that each cluster of variants counted as one mutation event. To approximate
576 cell-type specific substitution rate, the number of mutational events detected in each cell type
577 was divided by the number of cells and the number of bases covered by at least 10 reads by all
578 cells of a type using samtools. Number of cells, mutational events and covered bases are given in
579 Supplementary file 5.

580 To ensure that our inferred mutations are not uncorrected transcriptional errors, we made
581 sure each variant followed at least 2 of following criteria: 1) The alternate allele for most of our
582 inferred mutations was found in multiple germ cells (but not somatic cells). A transcriptional
583 error is unlikely to happen at the same position in multiple cells. 2) In every cell where a
584 mutation was identified, the reference allele was either completely absent (possible homozygote)
585 or present with as many or fewer reads as the alternate allele (possible heterozygote). 3) For
586 substitutions found in only one cell, the alternate allele was present on multiple mRNA
587 molecules (different UMIs). A transcriptional error is unlikely to produce the same change at the
588 same position multiple times.

589 We performed the following steps to remove possible RNA editing events from our
590 samples. Recurrent RNA editing events would be present in whole-tissue RNA-seq data, so we
591 ran bcftools mpileup with the same parameters on whole-tissue testis RNA seq data of *D.*
592 *melanogaster* RAL 517. Four of our seventy-seven inferred germline variants were present in the
593 whole-tissue data, so we removed them for downstream steps. The final list does not show a high
594 level of A>G substitution, which would be expected from RNA editing (Tan et al., 2017).

596 Calculation of the proportion of mutated cells, by type

597 We manually checked every SNP with every cellular barcode within which the alternate
598 allele was found. Using cellular identities that we inferred using Seurat, we counted the number
599 of cells of each type containing at least one substitution. This number, divided by the total cells
600 identified as that type, yields the proportion of mutated cells shown in Figure 5C and
601 Supplementary file 5.

602

603 References

604 Bai, Y., Casola, C., Feschotte, C., and Betrán, E. (2007). Comparative genomics reveals a
605 constant rate of origination and convergent acquisition of functional retrogenes in *Drosophila*.
606 *Genome Biol.* 8, R11.

607 Barreau, C., Benson, E., Gudmannsdottir, E., Newton, F., and White-Cooper, H. (2008). Post-
608 meiotic transcription in *Drosophila* testes. *Development* 135, 1897–1902.

609 Birkhead, T., Hosken, D., and Pitnick, S. (2008). *Sperm biology* (Academic Press).

610 Carvunis, A.-R., Rolland, T., Wapinski, I., Calderwood, M.A., Yildirim, M.A., Simonis, N.,
611 Charlotteaux, B., Hidalgo, C.A., Barbette, J., Santhanam, B., et al. (2012). Proto-genes and de
612 novo gene birth. *Nature* 487, 370–374.

613 Chen, S., Zhang, Y.E., and Long, M. (2010). New genes in *Drosophila* quickly become essential.

614 Science 330, 1682–1685.

615 Chen, S., Krinsky, B.H., and Long, M. (2013). New genes as drivers of phenotypic evolution.
616 Nat. Rev. Genet. 14, 645–660.

617 Choi, J.Y., and Aquadro, C.F. (2015). Molecular evolution of *Drosophila* germline stem cell and
618 neural stem cell regulating genes. Genome Biol. Evol. 7, 3097–3114.

619 Courtot, C., Fankhauser, C., Simanis, V., and Lehner, C.F. (1992). The *Drosophila cdc25*
620 homolog *twine* is required for meiosis. Development 116, 405–416.

621 Demarco, R.S., Eikenes, Å.H., Haglund, K., and Jones, D.L. (2014). Investigating
622 spermatogenesis in *Drosophila melanogaster*. Methods 68, 218–227.

623 Ding, Y., Zhao, L., Yang, S., Jiang, Y., Chen, Y., Zhao, R., Zhang, Y., Zhang, G., Dong, Y., Yu,
624 H., et al. (2010). A young *Drosophila* duplicate gene plays essential roles in spermatogenesis by
625 regulating several Y-linked male fertility genes. PLOS Genet. 6, e1001255.

626 Durand, E., Gagnon-Arsenault, I., Hallin, J., Hatin, I., Dube, A.K., Nielly-Thibault, L., Namy,
627 O., and Landry, C.R. (2019). The high turnover of ribosome-associated transcripts from de novo
628 ORFs produces gene-like characteristics available for de novo gene emergence in wild yeast
629 populations. Genome Res. 329730.

630 Faisal, M.N., Hoffmann, J., El-Kholy, S., Kallsen, K., Wagner, C., Bruchhaus, I., Fink, C., and
631 Roeder, T. (2014). Transcriptional regionalization of the fruit fly's airway epithelium. PLoS One
632 9, e102534.

633 Fortier, S., MacRae, T., Bilodeau, M., Sargeant, T., and Sauvageau, G. (2015). Derivation of
634 completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad.
635 Sci. U.S.A. 90, 8424–8428.

636 Fuller, M.T. (1993). Spermatogenesis. In The Development of *Drosophila Melanogaster*, M.
637 Bate, and A. Martinez-Arias, eds. (Cold Spring Harbor Laboratory Press), pp. 71–148.

638 Gao, J.-J., Pan, X.-R., Hu, J., Ma, L., Wu, J.-M., Shao, Y.-L., Barton, S.A., Woodruff, R.C.,
639 Zhang, Y.-P., and Fu, Y.-X. (2011). Highly variable recessive lethal or nearly lethal mutation
640 rates during germ-line development of male *Drosophila melanogaster*. Proc. Natl. Acad. Sci. U.
641 S. A. 108, 15914–15919.

642 Gao, J.-J., Pan, X.-R., Hu, J., Ma, L., Wu, J.-M., Shao, Y.-L., Ai, S.-M., Liu, S.-Q., Barton, S.A.,
643 Woodruff, R.C., et al. (2014). Pattern of mutation rates in the germline of *Drosophila*
644 *melanogaster* males from a large-Scale mutation screening experiment. G3 4, 1503–1514.

645 Haynes, W. (2013). Holm's Method. In Encyclopedia of Systems Biology, W. Dubitzky, O.
646 Wolkenhauer, K.-H. Cho, and H. Yokota, eds. (New York, NY: Springer New York), p. 902.

647 Hunter, N. (2015). Meiotic recombination: The essence of heredity. Cold Spring Harb. Perspect.
648 Biol. 7, pii: a016618.

649 Hwa, J.J., Hiller, M.A., Fuller, M.T., and Santel, A. (2002). Differential expression of the
650 *Drosophila* mitofusin genes fuzzy onions (fzo) and dmfn. Mech. Dev. 116, 213–216.

651 Jan, S.Z., Hamer, G., Repping, S., de Rooij, D.G., Van Pelt, A.M.M., and Vormer, T.L. (2012).
652 Molecular control of rodent spermatogenesis. Biochim. Biophys. Acta - Mol. Basis Dis. 1822,
653 1838–1850.

654 Jung, M., Wells, D., Rusch, J., Ahmed, S., Marchini, J., Myers, S., and Conrad, D. (2018).
655 Unified single-cell analysis of testis gene regulation and pathology in 5 mouse strains. *BioRxiv*.

656 Kaessmann, H. (2010). Origins, evolution, and phenotypic impact of new genes. *Genome Res.*
657 20, 1313–1326.

658 Kawase, E. (2004). Gbb/Bmp signaling is essential for maintaining germline stem cells and for
659 repressing bam transcription in the *Drosophila* testis. *Development* 131, 1365–1375.

660 Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. *Proc. Natl. Acad.*
661 *Sci. U.S.A* 78, 3721–3725.

662 Levine, M.T., Jones, C.D., Kern, A.D., Lindfors, H.A., and Begun, D.J. (2006). Novel genes
663 derived from noncoding DNA in *Drosophila melanogaster* are frequently X-linked and exhibit
664 testis-biased expression. *Proc. Natl. Acad. Sci. U. S. A.* 103, 9935–9939.

665 Lindenbaum, P., and Redon, R. (2018). bioalcidae, samjs and vcffilterjs: object-oriented
666 formatters and filters for bioinformatics files. *Bioinformatics* 34, 1224–1225.

667 Loewe, L., and Hill, W.G. (2010). The population genetics of mutations : good , bad and
668 indifferent. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 1153–1167.

669 Long, M., Betrán, E., Thornton, K., and Wang, W. (2003). The origin of new genes: Glimpses
670 from the young and old. *Nat. Rev. Genet.* 4, 865–875.

671 Lukassen, S., Bosch, E., Ekici, A.B., and Winterpacht, A. (2018). Characterization of germ cell
672 differentiation in the male mouse through single-cell RNA sequencing. *Sci. Rep.* 8, 6521.

673 Lynch, M. (2010). Rate, molecular spectrum, and consequences of human mutation. *Proc. Natl.*
674 *Acad. Sci.* 107, 961–968.

675 Lynch, M., and Conery, J.S. (2000). The evolutionary fate and consequences of duplicate genes.
676 *Science*. 290, 1151–1155.

677 Van Der Maaten, L.J.P., and Hinton, G.E. (2008). Visualizing high-dimensional data using t-sne.
678 *J. Mach. Learn. Res.* 9, 2579–2605.

679 MacKay, T.F.C., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., Zhu, D., Casillas, S.,
680 Han, Y., Magwire, M.M., Cridland, J.M., et al. (2012). The *Drosophila melanogaster* genetic
681 reference panel. *Nature* 482, 173–178.

682 McLysaght, A., and Hurst, L.D. (2016). Open questions in the study of de novo genes: what,
683 how and why. *Nat. Rev. Genet.* 17, 567–578.

684 Michaud, S., Marin, R., Westwood, J.T., and Tanguay, R.M. (1997). Cell-specific expression and
685 heat-shock induction of Hsps during spermatogenesis in *Drosophila melanogaster*. *J Cell Sci*
686 110, 1989–1997.

687 Moorjani, P., Gao, Z., and Przeworski, M. (2016). Human germline mutation and the erratic
688 evolutionary clock. *PLoS Biol.* 14, e2000744.

689 Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., and Durbin, R. (2016).
690 BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-
691 generation sequencing data. *Bioinformatics* 32, 1749–1751.

692 Neme, R., and Tautz, D. (2016). Fast turnover of genome transcription across evolutionary time

693 exposes entire non-coding DNA to *de novo* gene emergence. *Elife* 5, e09977.

694 Ohlstein, B., and McKearin, D. (1997). Ectopic expression of the *Drosophila* Bam protein
695 eliminates oogenic germline stem cells. *Development* 124, 3651–3662.

696 Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lü, J., Doctolero, M., Vainer, M.,
697 Chan, C., Malley, J., et al. (2004). A survey of ovary-, testis-, and soma-biased gene expression
698 in *Drosophila melanogaster* adults. *Genome Biol.* 5, R40.

699 Park, S., Wan, K.H., Oliver, B., Roberts, J., Brown, J.B., Carninci, P., Perrimon, N., Miller, D.,
700 Booth, B.W., Eads, B.D., et al. (2014). Diversity and dynamics of the *Drosophila* transcriptome.
701 *Nature* 512, 393–399.

702 Rojas-Ríos, P., Chartier, A., Pierson, S., and Simonelig, M. (2017). Aubergine and piRNAs
703 promote germline stem cell self-renewal by repressing the proto-oncogene *Cbl*. *EMBO J.* 36,
704 3194–3211.

705 Ruiz-Orera, J., Hernandez-Rodriguez, J., Chiva, C., Sabidó, E., Kondova, I., Bontrop, R.,
706 Marqués-Bonet, T., and Albà, M.M. (2015). Origins of *de novo* genes in human and chimpanzee.
707 *PLOS Genet.* 11, e1005721.

708 Russell, L.D., Ettlin, R.A., Hikim, A.P.S., and Clegg, E.D. (1993). Histological and
709 histopathological evaluation of the testis. *Int. J. Androl.* 16, 83–83.

710 Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., and Regev, A. (2015). Spatial reconstruction of
711 single-cell gene expression data. *Nat. Biotechnol.* 33, 495–502.

712 Scally, A., and Durbin, R. (2012). Revising the human mutation rate: Implications for
713 understanding human evolution. *Nat. Rev. Genet.* 13, 745–753.

714 Schlötterer, C. (2015). Genes from scratch--the evolutionary fate of *de novo* genes. *Trends
715 Genet.* 31, 215–219.

716 Schultz, N., Hamra, F.K., and Garbers, D.L. (2003). A multitude of genes expressed solely in
717 meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. *Proc. Natl.
718 Acad. Sci.* 100, 12201–12206.

719 Soumillon, M., Necsulea, A., Weier, M., Brawand, D., Zhang, X., Gu, H., Barthès, P.,
720 Kokkinaki, M., Nef, S., Gnirke, A., et al. (2013). Cellular source and mechanisms of high
721 transcriptome complexity in the mammalian testis. *Cell Rep.* 3, 2179–2190.

722 Stévant, I., Neirijnck, Y., Borel, C., Escoffier, J., Smith, L.B., Antonarakis, S.E., Dermitzakis,
723 E.T., and Nef, S. (2018). Deciphering cell lineage specification during male sex determination
724 with single-cell RNA sequencing. *Cell Rep.* 22, 1589–1599.

725 Svetec, N., Cridland, J.M., Zhao, L., and Begun, D.J. (2016). The Adaptive Significance of
726 Natural Genetic Variation in the DNA Damage Response of *Drosophila melanogaster*. *PLOS
727 Genet.* 12, e1005869.

728 Tan, M.H., Li, Q., Shanmugam, R., Piskol, R., Kohler, J., Young, A.N., Liu, K.I., George, C.X.,
729 Ramu, A., Zhang, R., et al. (2017). Dynamic landscape and regulation of RNA editing in
730 mammals. *Nature* 550, 249–254.

731 Tautz, D., and Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. *Nat. Rev.
732 Genet.* 12, 692–702.

733 Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak,
734 K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and regulators of cell fate decisions
735 are revealed by pseudotemporal ordering of single cells. *Nat. Biotechnol.* 32, 381–386.

736 Turner, B.M. (2008). Open chromatin and hypertranscription in embryonic stem cells. *Cell Stem
737 Cell* 2, 408–410.

738 Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Jänne, O.A., Krasnickas, E., Chinnaiyan, A.M., Pienta,
739 K.J., and Brown, M. (2003). Paucity of genes on the *Drosophila* X chromosome showing male-
740 biased expression. *Science*. 299, 697–700.

741 White-Cooper, H. (2010). Molecular mechanisms of gene regulation during *Drosophila*
742 spermatogenesis. *Reproduction* 139, 11–21.

743 Wilcoxon, F. (1945). Individual comparisons by ranking methods. *Biometrics Bull.* 1, 80–83.

744 Xia, B., Baron, M., Yan, Y., Wagner, F., Kim, S.Y., Keefe, D.L., and Joseph, P. (2018).
745 Widespread transcriptional scanning in testes modulates gene evolution rates. *BioRxiv*.

746 Zhao, J., Klyne, G., Benson, E., Gudmannsdottir, E., White-Cooper, H., and Shotton, D. (2009).
747 FlyTED: The *Drosophila* testis gene expression database. *Nucleic Acids Res.* 38, 710–715.

748 Zhao, L., Saelao, P., Jones, C.D., and Begun, D.J. (2014). Origin and spread of de novo genes in
749 *Drosophila melanogaster* populations. *Science*. 343, 769–772.

750 Zhou, Q., Zhang, G., Zhang, Y., Xu, S., Zhao, R., Zhan, Z., Li, X., Ding, Y., Yang, S., and
751 Wang, W. (2008). On the origin of new genes in *Drosophila*. *Genome Res.* 18, 1446–1455.

752

753 **Figures and Tables**

754

755 **Figure 1. Clustering and cell-type assignment of single cells in Seurat.** A). An illustration of the major cell types
756 in the testis, and the marker genes we used to identify them are in brackets. Somatic cells are hub, cyst, and
757 epithelial cells. Spermatogenesis begins with germline stem cells which undergo mitotic divisions to form
758 spermatogonia. These become spermatocytes which undergo meiosis and differentiate into spermatids. B). A t-SNE
759 projection of every cell type identified in the data. C). Examples of marker genes that vary throughout
760 spermatogenesis. *His2Av* is most active in early spermatogenesis, *fzo* and *soti* are active in intermediate and late
761 stages, respectively, and *p-cup* is exclusively enriched in late spermatids. D). Dotplot of scaled expression of marker
762 genes in each inferred cell type. The size of each dot refers to the proportion of cells expressing a gene, and the color
763 of each dot represents the calculated scaled expression value; blue is lowest, red is highest. 0 is the gene's mean
764 scaled expression across all cells and the numbers in the scale are z scores. The cutoffs shown here were chosen to
765 emphasize cell-type-specific enrichment of key marker genes. The genes used to assign each cell type are detailed in
766 the methods section.

767

768 **Figure 2. Gene expression and RNA content through spermatogenesis.** A). Boxplots of the number of genes
769 expressed in each cell, binned by assigned cell type. Late spermatogonia and early spermatocytes express the most
770 genes, and spermatids the least. B). The number of Unique Molecular Indices (UMIs) detected for each cell, a proxy
771 of RNA content. By this metric RNA content peaks in early spermatocytes, and is reduced thereafter by post-meiotic
772 transcriptional suppression. C). The proportion of segregating *de novo*, fixed *de novo*, testis-specific, and all genes
773 expressed in every cell. For each cell, we counted the number of each class of gene with non-zero expression and
774 divided it by the total number of genes of that type, grouping by cell type. For every cell type except spermatocytes,
775 segregating *de novo* genes are the least commonly expressed, fixed *de novo* genes are more commonly expressed
776 and all genes are most commonly expressed. In every cell type except early spermatocytes, a smaller proportion of
777 fixed *de novo* genes are expressed than testis-specific genes, but early and late spermatocytes express similar
778 proportions of fixed *de novo* genes and testis-specific genes. It is important to note that this measure looks at the
779 number of genes of each type detected in a cell, not the expression level of each, and does not distinguish between
780 high and low expression.

781

782 **Figure 3. Pseudotime approximates the developmental trajectory of spermatogenesis.** A). We aligned every
783 cell from our testis sample along an unsupervised developmental trajectory. From the expression of marker genes,
784 we found that state 3 (blue) corresponds to somatic cells which were forced onto the developmental trajectory. For
785 further analysis we disregard this branch (See methods, Figure 3-figure supplement 1). Spermatogenesis begins at
786 the far-left end of state 1 (red), and proceeds into state 2 (green). B). The relative RNA content per cell peaks in
787 mid-spermatogenesis, and declines during spermatid maturation, as approximated by the number of UMIs detected
788 per cell. The number of genes expressed declines as well. The black line is a Loess-smoothed regression of the data,
789 which should be thought of as a general trend among stochastic data and not a mathematical model. C). Loess-
790 smoothed expression of marker genes along the path leading from state 1 to state 2 assigned in panel A. Along this
791 lineage, the relative expression of marker genes is consistent with their temporal dynamics inferred from previous
792 work. D). Fixed *de novo* genes show a variety of expression patterns, including biphasic, early-biased, and late-
793 biased. E). Segregating *de novo* genes are often biased towards early/mid spermatogenesis.

794

795 **Figure 4. Expression bias of young genes.** Spermatogenesis starts at GSC, early spermatogonia and proceeds
796 rightward. A). The scaled expression distribution of segregating *de novo* genes in each cell type, compared with the
797 distribution of every other gene and testis-specific genes. For every gene, 0 is its mean scaled expression in a cell
798 type, and the Y axis corresponds to Z scores of deviations higher or lower than that mean value. Asterisks represent
799 Hochberg-corrected p values. The color of the asterisks indicates which gene set is being compared to *de novo*
800 genes, and their placement above or below the boxplots indicates that gene set's relationship (higher or lower) to *de*
801 *novo* genes. By this measure, *de novo* genes are biased downwards in early spermatogenesis and upwards in early
802 spermatids. B). The scaled expression patterns of fixed *de novo* genes are typical of testis-specific genes. C). The
803 scaled expression of detected fixed *de novo* genes across pseudotime (left to right), clustered by monocle's
804 plot_pseudotime_heatmap function. While most *de novo* genes are biased towards intermediate cell-types, a small

805 portion of *de novo* genes are most expressed during early and late spermatogenesis. D). The scaled expression of
 806 *melanogaster*-specific duplicate genes over pseudotime. Despite being a similar evolutionary age to fixed *de novo*
 807 genes, young duplicate genes are more likely to be biased towards early and late spermatogenesis.
 808

809 **Figure 5. Abundance of putative *de novo* germline mutations.** A). For every cell type, the total number of high-
 810 quality polymorphisms identified. Out of 2590 candidate variants, we excluded all substitutions that could be found
 811 in any somatic cell, leaving 73 variants. We then counted clustered polymorphisms as single mutational events and
 812 removed variants that could have resulted from RNA editing. See methods for details. B). Dividing the number of
 813 polymorphisms in a cell type by the number of cells of that type, and the number of bases covered with at least 10
 814 reads in that cell type (Supplementary file 5) yields an approximate relative substitution frequency for each cell type.
 815 By this metric, substitutions are most prevalent in early spermatogenesis, and decrease in relative abundance during
 816 spermatid development. This could be due to the apoptosis of mutated cells, or the systematic repair of DNA lesions
 817 during spermatogenesis. C). The proportion of cells of each type with at least one identified germline lesion. Error
 818 bars are the 95 percent confidence intervals for each proportion. A Chi-square test for trend in proportions gives a p
 819 value of 2.20E-16, indicating strong evidence of a linear downward trend. D). DNA repair genes are generally
 820 biased towards early spermatogenesis, statistically enriched compared to the distribution of all other genes. (Wilcox
 821 adjusted p value <0.05)

822
 823

Versus:	Ribosomal Protein genes		Segregating <i>de novo</i> genes		Fixed <i>de novo</i> genes		DNA repair genes	
	All other genes	Testis-specific genes	All other genes	Testis-specific genes	All other genes	Testis-specific genes	All other genes	Testis-specific genes
GSC, early spermatogonia	↑ 1.13E-82	↑ 1.44E-84	↓ 1.46E-21	↑ 9.35E-04	↓ 2.92E-22	ns	↑ 4.69E-26	↑ 8.14E-62
Late spermatogonia	↑ 1.24E-75	↑ 1.62E-74	↓ 8.22E-19	ns	↓ 5.89E-18	ns	↑ 2.30E-20	↑ 5.80E-44
Early spermatocytes	↓ 2.53E-76	↓ 1.08E-71	↑ 4.08E-15	ns	↑ 5.31E-13	ns	↓ 6.50E-23	↓ 1.75E-38
Late spermatocytes	↓ 2.51E-57	↓ 1.90E-58	↑ 1.09E-10	ns	↑ 2.17E-15	ns	↓ 3.96E-09	↓ 4.58E-29
Early spermatids	↓ 8.94E-03	↓ 1.57E-08	ns	↓ 1.70E-02	ns	ns	↑ 5.89E-08	ns
Late spermatids	↓ 7.40E-10	↓ 1.70E-02	ns	ns	ns	ns	ns	ns

824

825 **Table 1. Adjusted p values and direction of bias for gene expression biases of selected gene groups in germ**
 826 **cells.** Spermatogenesis progresses downward from GSC/Early spermatogonia and ends in late spermatids. Upwards
 827 arrows indicate that the top group of genes is biased upwards compared to the bottom group, and downwards arrows
 828 indicate that it is biased downward according to a directional Hochberg test. For example, ribosomal proteins are
 829 more expressed in late spermatogonia than all other genes, with an adjusted p value of 1.24E-75. Note that while
 830 segregating *de novo* genes are expressed differently from testis-specific genes in GSC, early spermatogonia and
 831 early spermatids, fixed *de novo* genes do not significantly deviate from expression patterns of testis-specific genes in
 832 any cell type.

833

Pattern	Fixed <i>melanogaster</i> -specific <i>de novo</i> proportion	<i>melanogaster</i> -specific parental duplicate proportion	<i>melanogaster</i> -specific child duplicate proportion
early	0.26	0.37	0.14
mid	0.62	0.00	0.21
late	0.11	0.63	0.21
bimodal	0.01	0.00	0.43

834

835 **Table 2: Frequency of pseudotime expression patterns for fixed *de novo* genes and *melanogaster*-specific**
 836 **duplicate genes.** For genes in Figures 4C and 4D, we counted the number of genes showing a strong bias for early
 837 pseudotime, late pseudotime, mid-pseudotime, or a bimodal expression pattern. Fixed *de novo* genes are most

838 frequently biased towards mid-pseudotime and the plurality of *melanogaster*-specific child duplicate genes show a
839 bimodal expression pattern. Pseudotime expression plots of the parent-child duplicate gene pairs used in this
840 analysis are in Figure 4- figure supplement 1. Proportions are rounded to 2 decimal places and may not add up to 1.
841
842

843 Supplemental Figures and Tables

844

845 Figure 1-figure supplement 1

846 **Establishing a single cell suspension from *Drosophila* testes.** Representative images of single cell suspensions
847 from two *D. melanogaster* strains, RAL 517 (A), and our lab's wild strain (B). Dissected testes were treated with
848 proteases followed by straining and washes (see methods). The images contain single cells of various developmental
849 stages, some with tails of various lengths. Cells were imaged using a 40X magnification and scale bars represent 10
850 μm . Since cells are present in many focal planes, the size of some cells may not correspond to the scale bar shown.
851

852 Figure 1-figure supplement 2

853 **Reproducibility of RAL517 single-cell sequencing data.** A). Correlation between DESeq2 regularized log-
854 transformed TPM (transcripts per million) of genes in 517 whole-tissue RNA-seq data and our single-cell RNA-seq
855 data. Despite different library strategies and sequencing methods our data correlate extremely well with whole-tissue
856 RNA-seq data indicating that our dataset has captured an accurate sampling of testis-expressed genes and our results
857 are reproducible. B). Correlation between our RAL517 single-cell library and a library of a wild *D. melanogaster*
858 strain from our lab. Despite being from different strains, the libraries show a high correlation in normalized TPM.
859 This result shows, however, that many genes vary between *D. melanogaster* strains, necessitating further work to
860 understand transcriptome evolution on a single-cell level.
861

862

863 Figure 1-figure supplement 3

864 **Principal component analysis of testis-expressed genes.** Horizontally, each line is 500 randomly selected cells,
865 and vertically, the expression of the 15 genes with the highest positive and negative scores for the principal
866 component. For PC 1, one interpretation could be that *soti*, a marker of late spermatocytes/early spermatids, is
867 negatively correlated with the expression of many ribosomal protein genes. This is consistent with our finding that
868 ribosomal protein genes peak in early spermatogenesis. It is worth noting that the higher numbered PCs become
869 more and more diffuse, as they each explain a smaller proportion of variance than the PCs 1 and 2.
870

871

872 Figure 3-figure supplement 1

873 **Assignment of somatic branch of pseudotime trajectory.** This is the same pseudotime developmental trajectory
874 from Figure 3A, but each cell has been colored according to its expression of *MtnA*, a marker of somatic cells. This
875 led us to conclude that state 3 in Figure 2A is mostly somatic cells and is not part of the germ lineage since it is
876 enriched in *MtnA*.
877

878

879 Figure 4-figure supplement 1

880 **Expression heatmaps of parental and derived duplicated genes.** A row is a gene, shown as it progresses along
881 pseudotime from left to right. A). The scaled expression of a set of parental copies of duplicated genes, plotted in
882 pseudotime. B). The scaled expression of the derived copies of duplicated genes.
883

884

885 Figure 5-figure supplement 1

886 **Alignment of germline mutations along pseudotime.** For the 73 germline SNPs, we plotted every cell containing
887 the SNP according to its pseudotime value inferred by monocle. Some SNPs are found in multiple cell types. Other
888 SNPs are actually clustered close to other SNPs found in the same cells, such as the SNPs from 2L_13902470 to
889 2L_13902482. For the purposes of calculating mutational abundance in Figure 5, we considered clusters of SNPs
890 within 10 bp of each other to be a single mutational event, to prevent clusters of SNPs from biasing our inferred
891 mutational abundance. Raw numbers of SNPs per cell type and corrected mutational events for each cell type are
892 available in Supplementary file 5.
893
894

891 **Supplementary file 1.**

892 **Table of the 50 most enriched genes within cell types.** Calculated by Seurat, positive markers only, ranked by
893 average fold change.

894

895 **Supplementary file 2.**

896 **Top 10 enriched Gene Ontology (GO) terms in every cell type.** For every gene that Seurat deemed enriched in a
897 given cell type with a q value <0.05 , we queried the ID's against the PANTHER web database for *Drosophila*
898 *melanogaster* (default parameters) and kept the top 10 enriched GO terms with the highest fold change and
899 Bonferroni-adjusted p value <0.05 .

900

901 **Supplementary file 3.**

902 **Mathematical comparisons of gene bias between cell types for various gene groups.** Corresponding to Figures
903 4, 5, and Table 1, this table indicates the raw and Hochberg-adjusted p. values comparing each gene group's scaled
904 expression distribution to the scaled expression distribution of testis-specific genes and all other genes within a cell
905 type. P.greater is the p value for the gene set being expressed higher than the control set, and p.less is the p value for
906 the gene set being expressed less than the control set in the cell type. Hochberg-corrected p values are the final two
907 columns in each table. For example, in early spermatids, *de novo* genes have a p of 2.47E-04 and an adjusted p.
908 value of 2.72E-03 to have higher scaled expression than testis-specific genes. A simplified version of this data is
909 presented in Table 1.

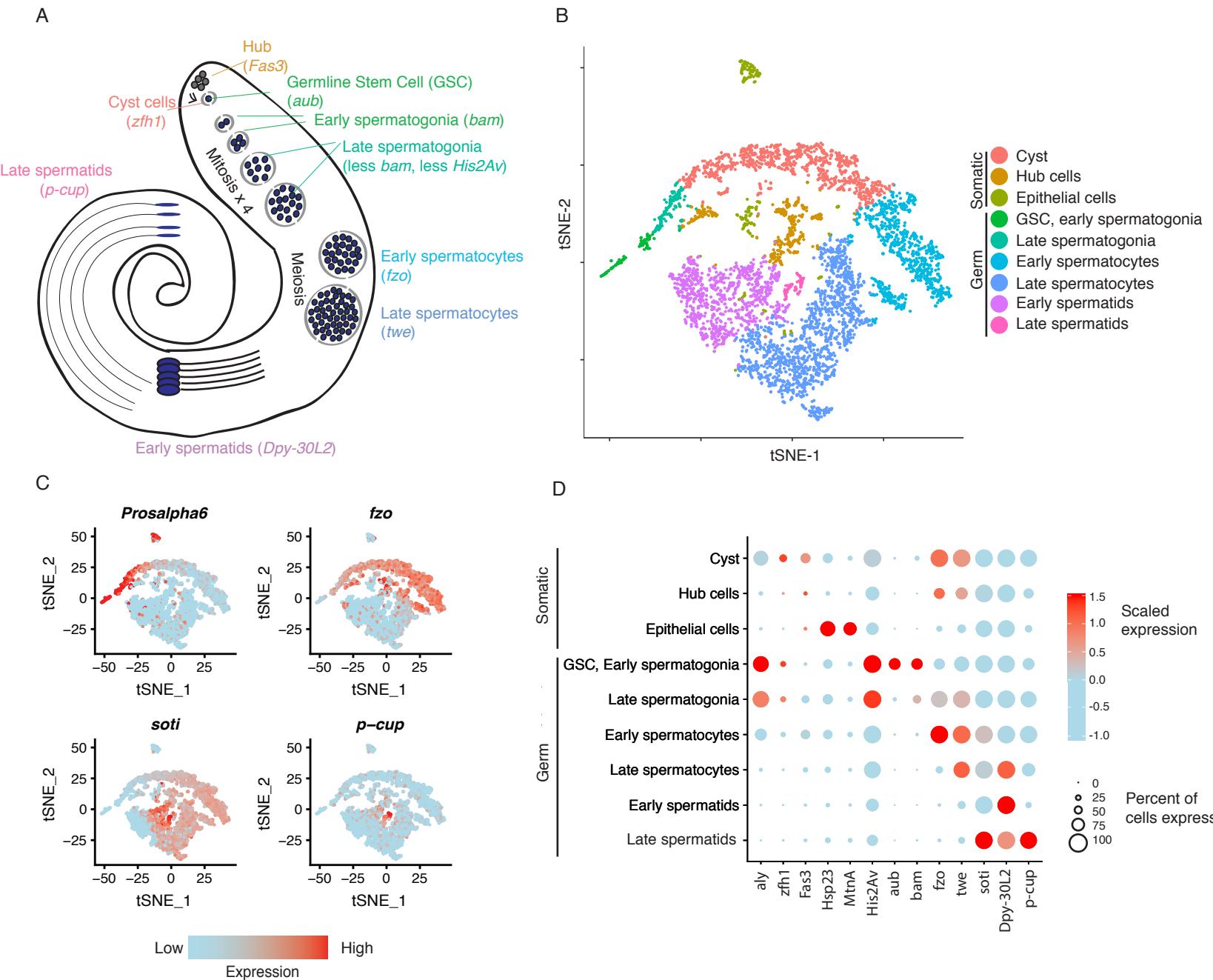
910

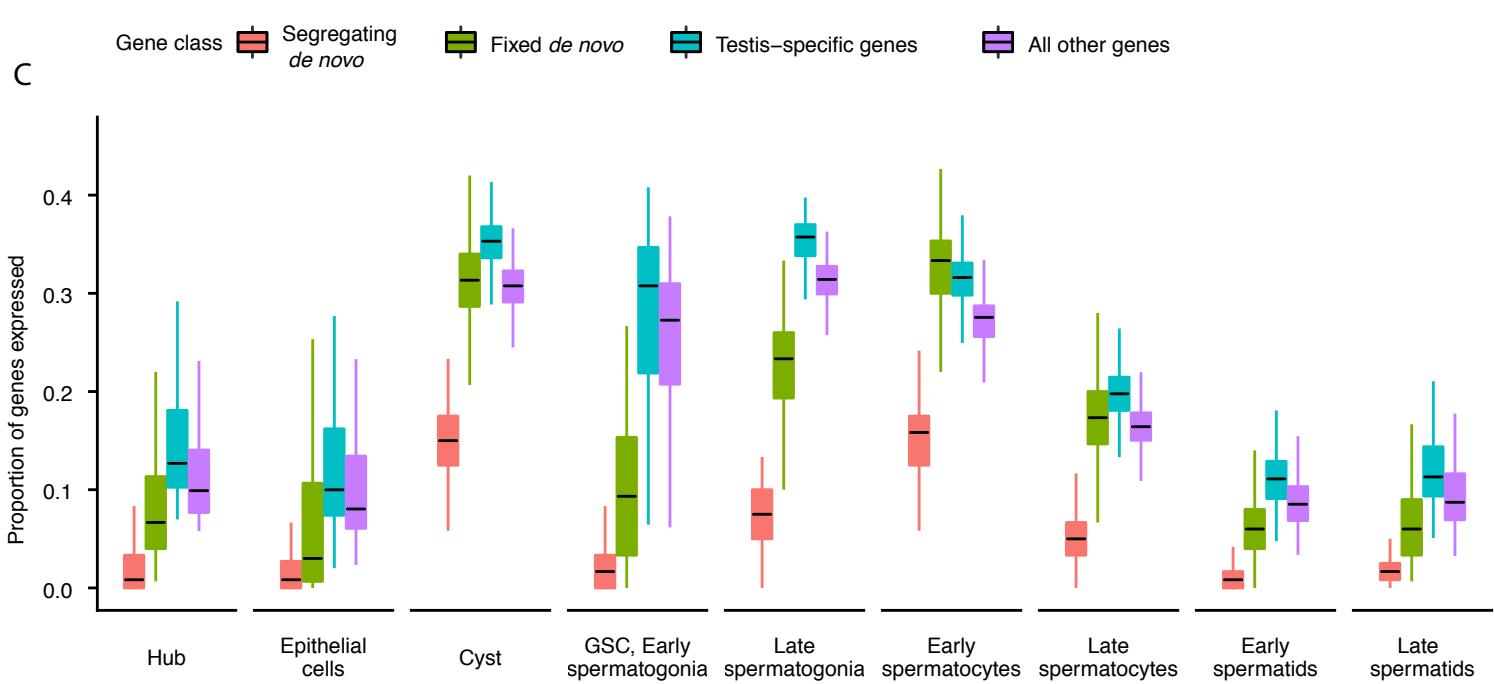
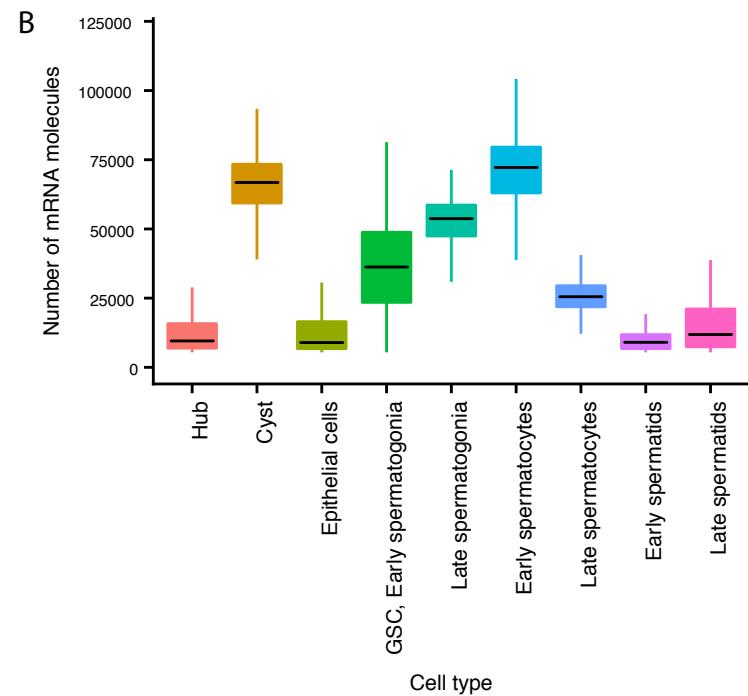
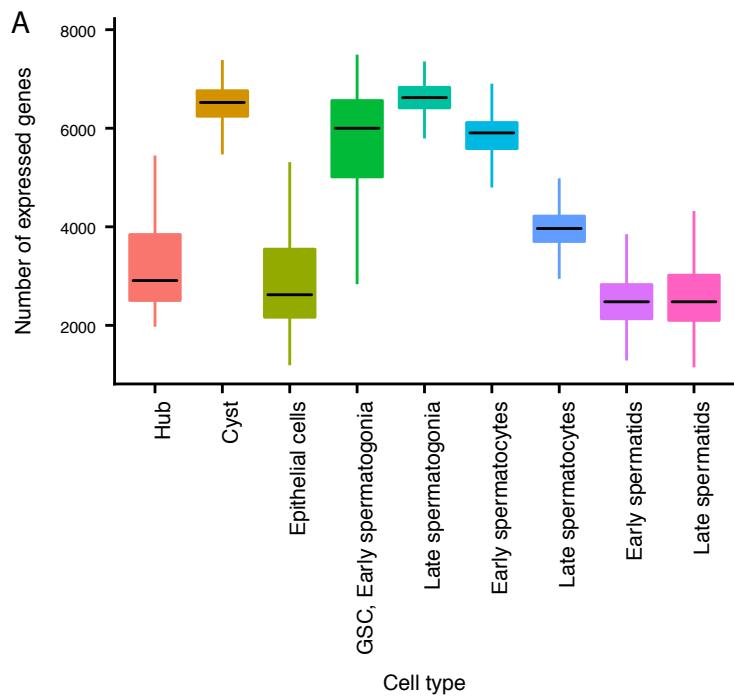
911 **Supplementary file 4.**

912 **Filtering steps for Single Nucleotide Polymorphism calls.** The 44 variants remaining at the end of the process
913 were considered candidates for *de novo* germline mutations, since the reference allele is present in the population
914 but the mutant allele is only present in germline cells.

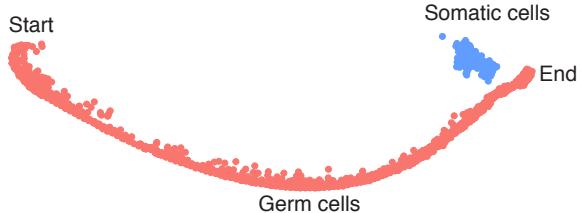
915

916 **Supplementary file 5.**

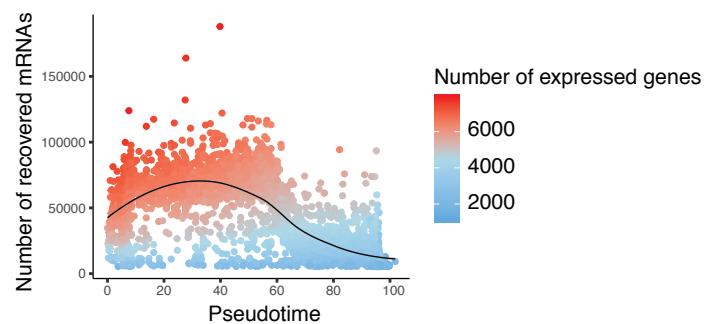

917 **Counts of Single Nucleotide Polymorphisms per cell type.** "Polymorphisms detected" is the raw values for Figure
918 5A. Included for each cell type is the mean number of genes expressed and the number of cells of that type, allowing
919 the calculation of variants/cell/covered base in Figure 5B. This table also contains, for each cell type, the number of
920 cells with detected mutations. This is used to calculate the proportion of mutated cells in Figure 5C.

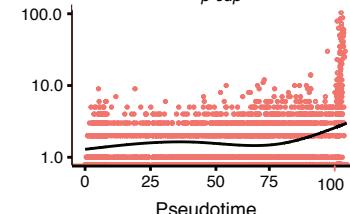
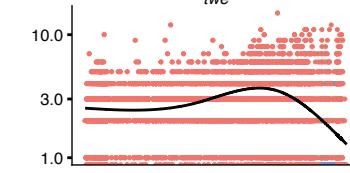
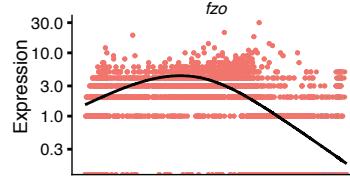
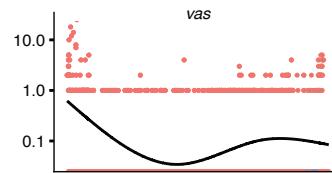
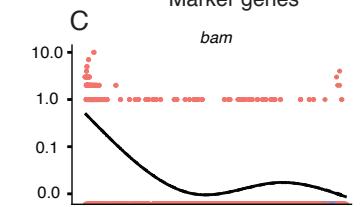
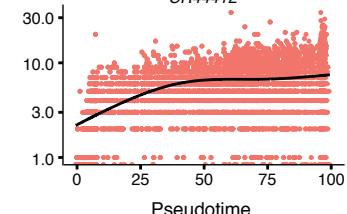
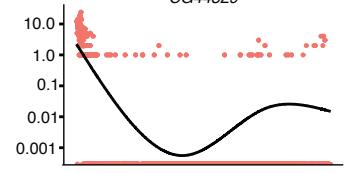



921

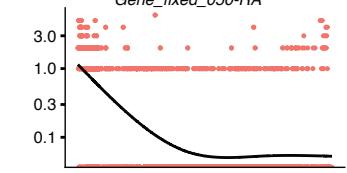
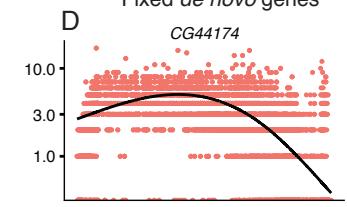
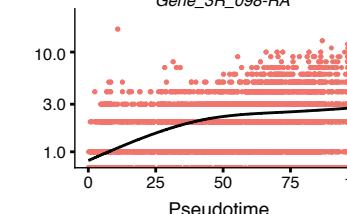
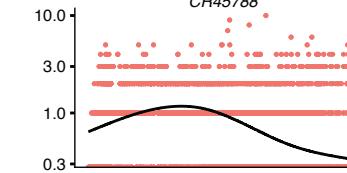
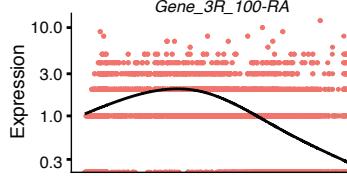
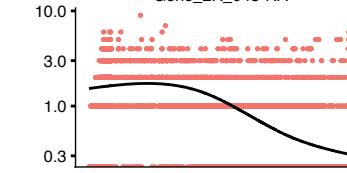
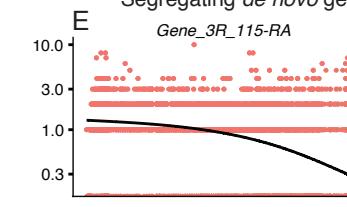
922 **Supplementary file 6.**

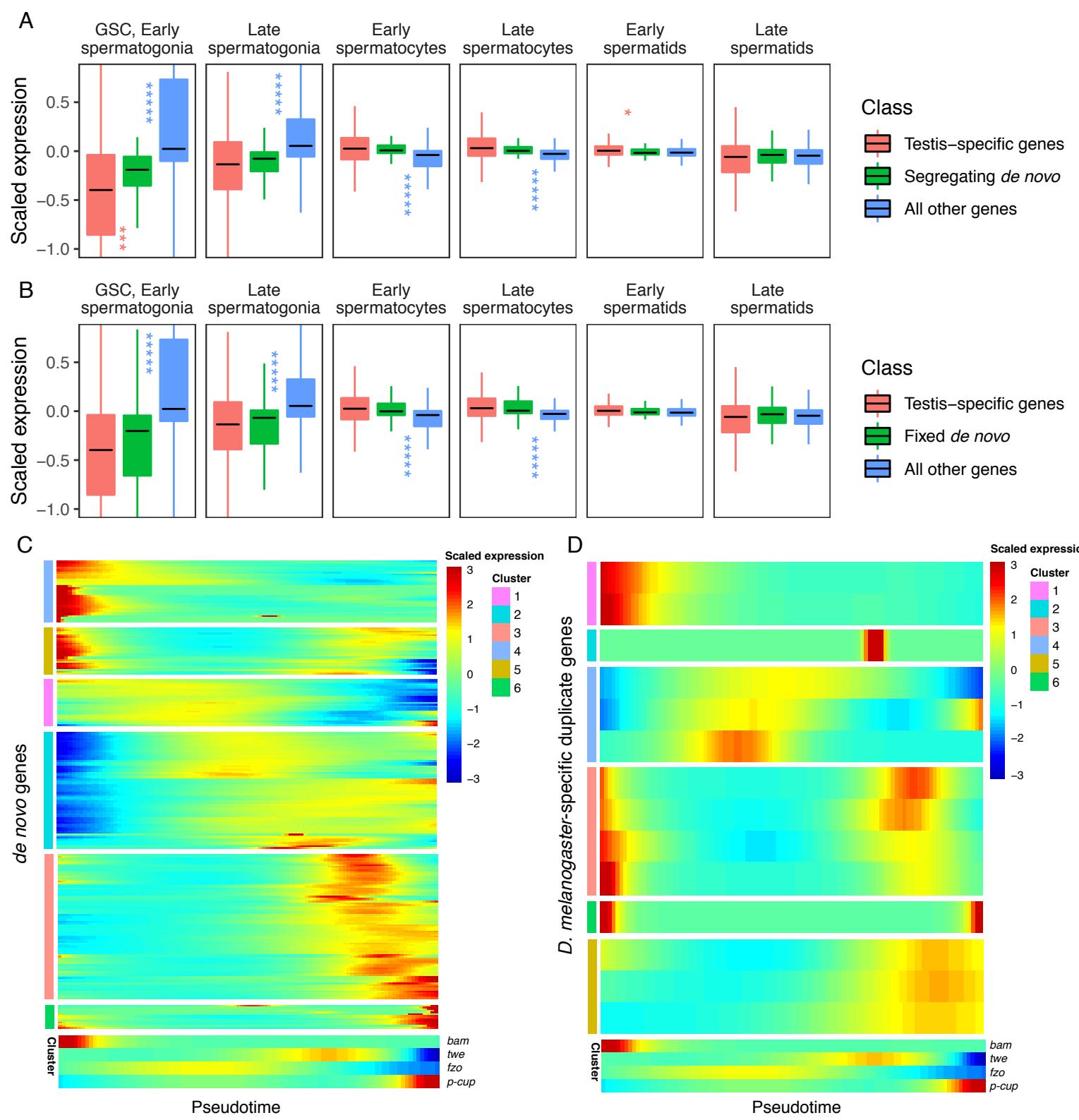

923 **Gene lists used to compare scaled expression bias of gene groups.** For gene groups mentioned in Figures 4 and 5,
924 these lists are the genes used.

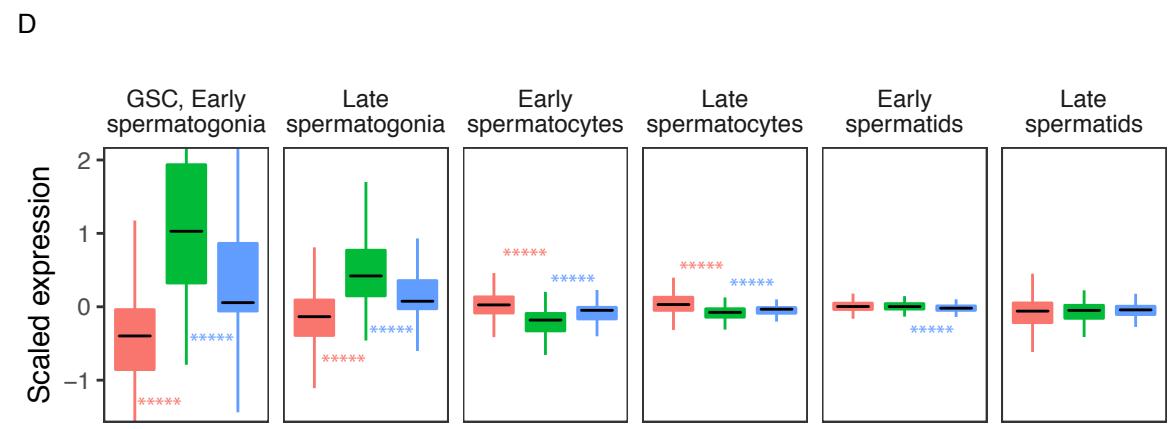
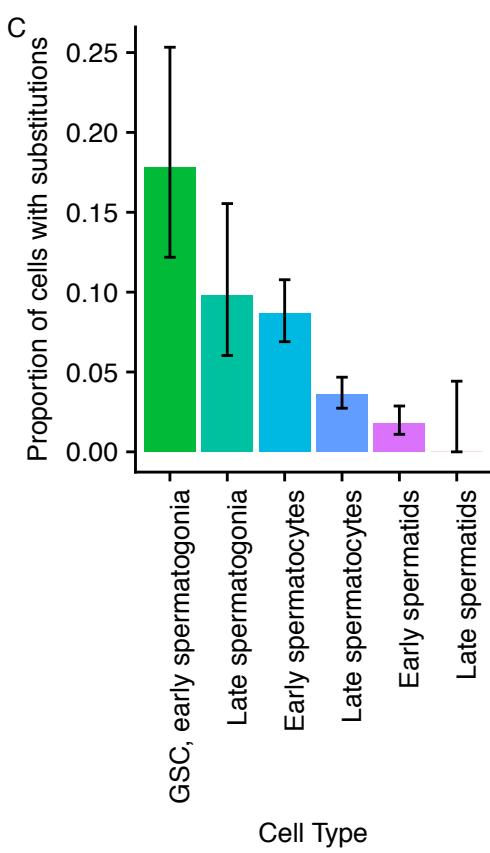
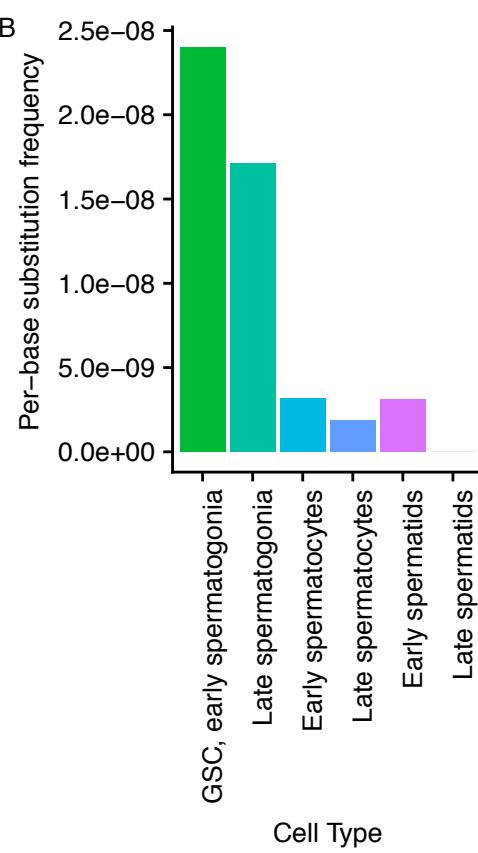
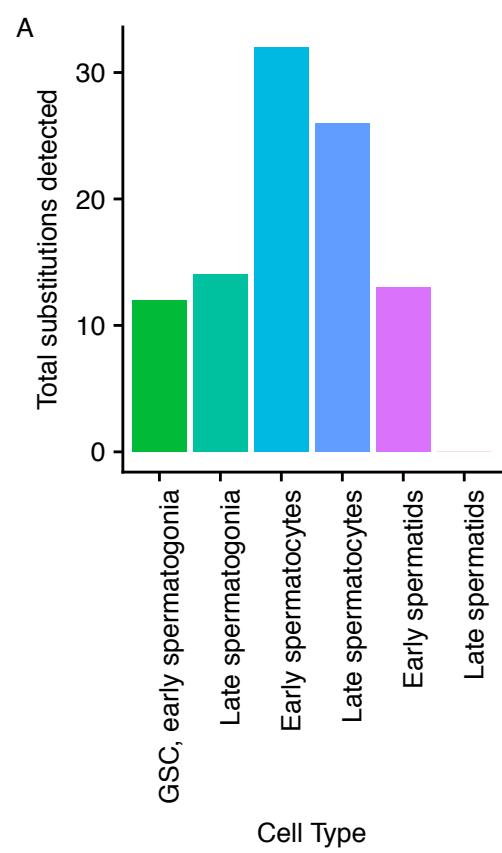
925

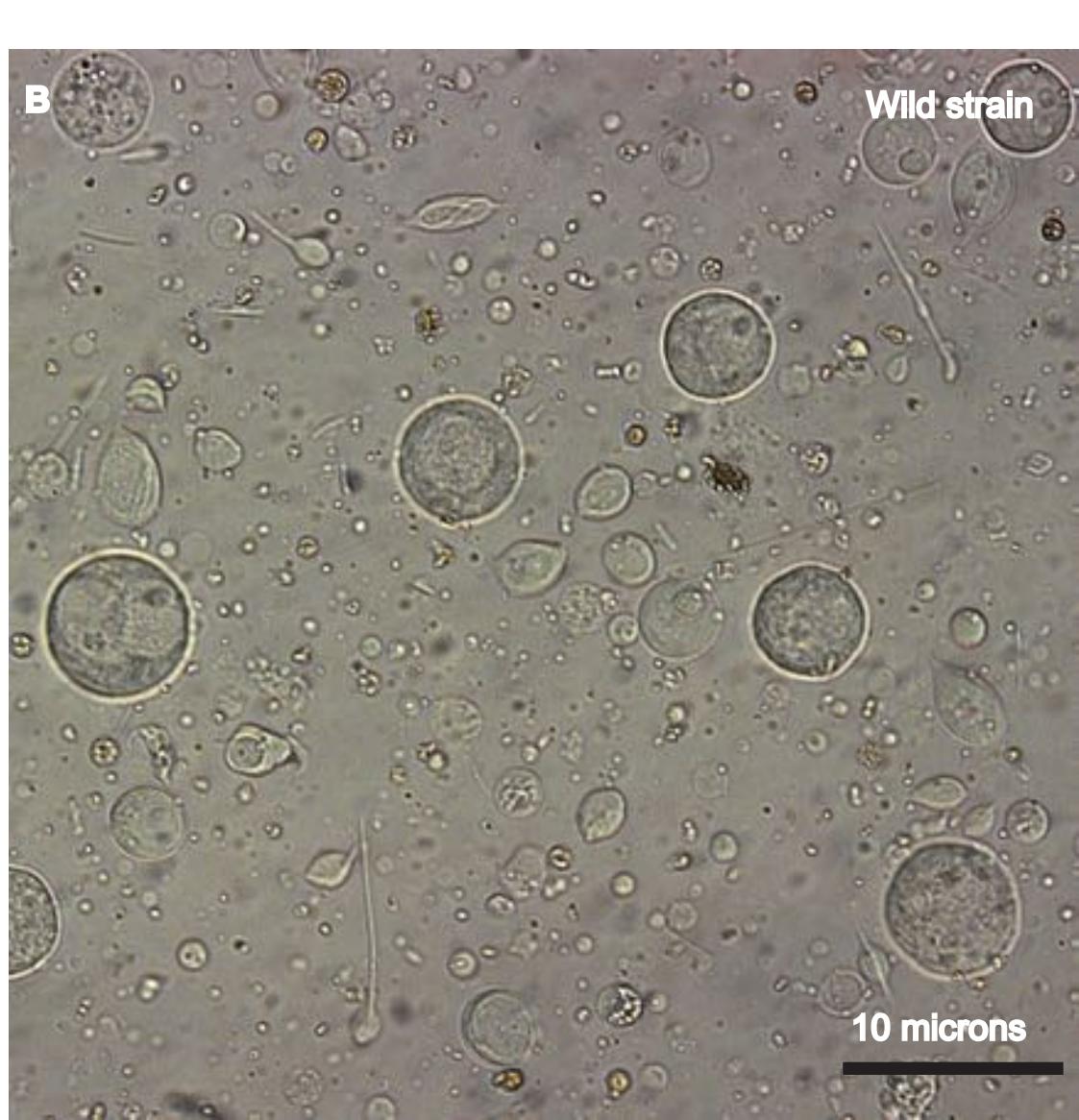
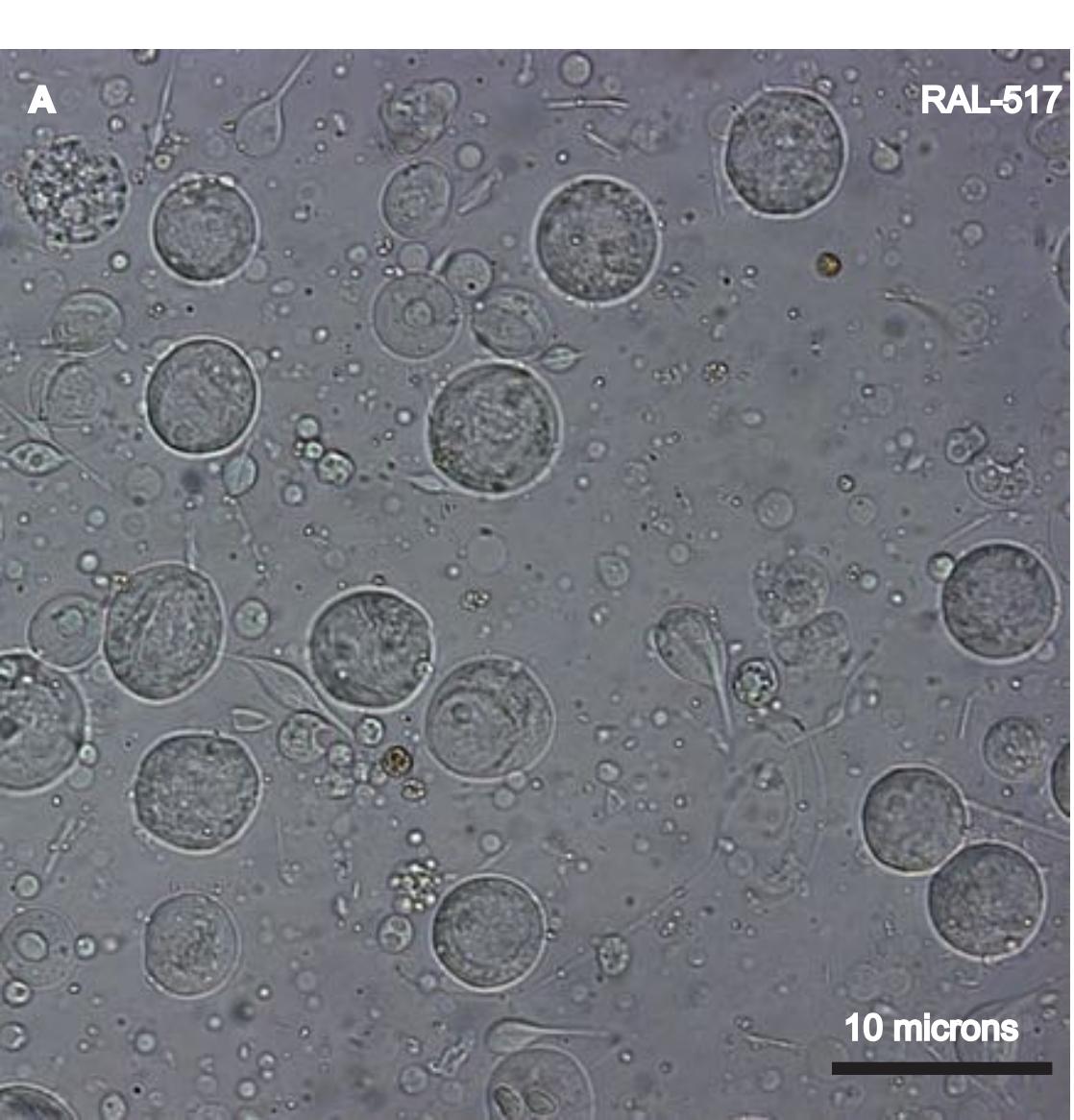


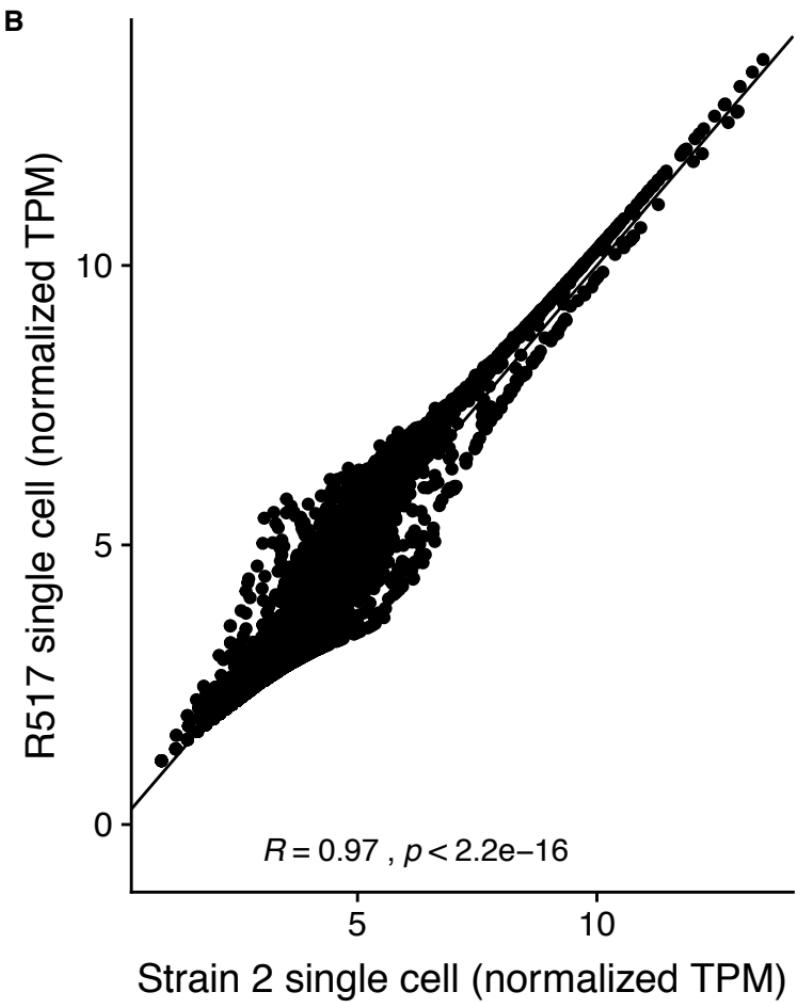
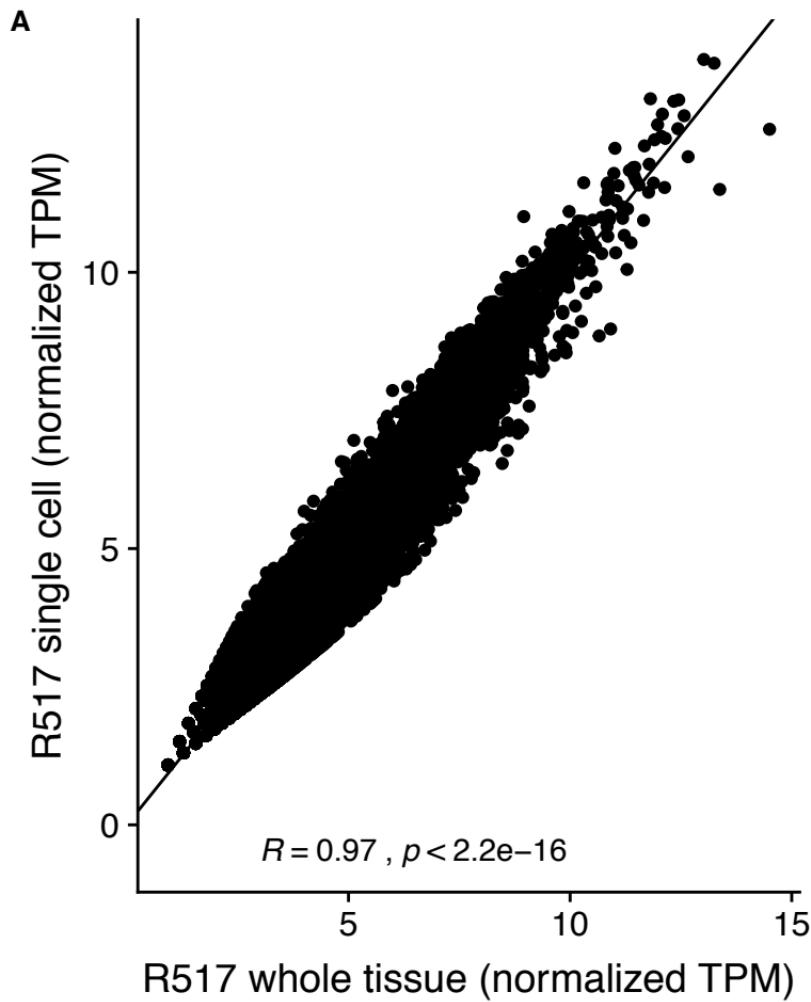








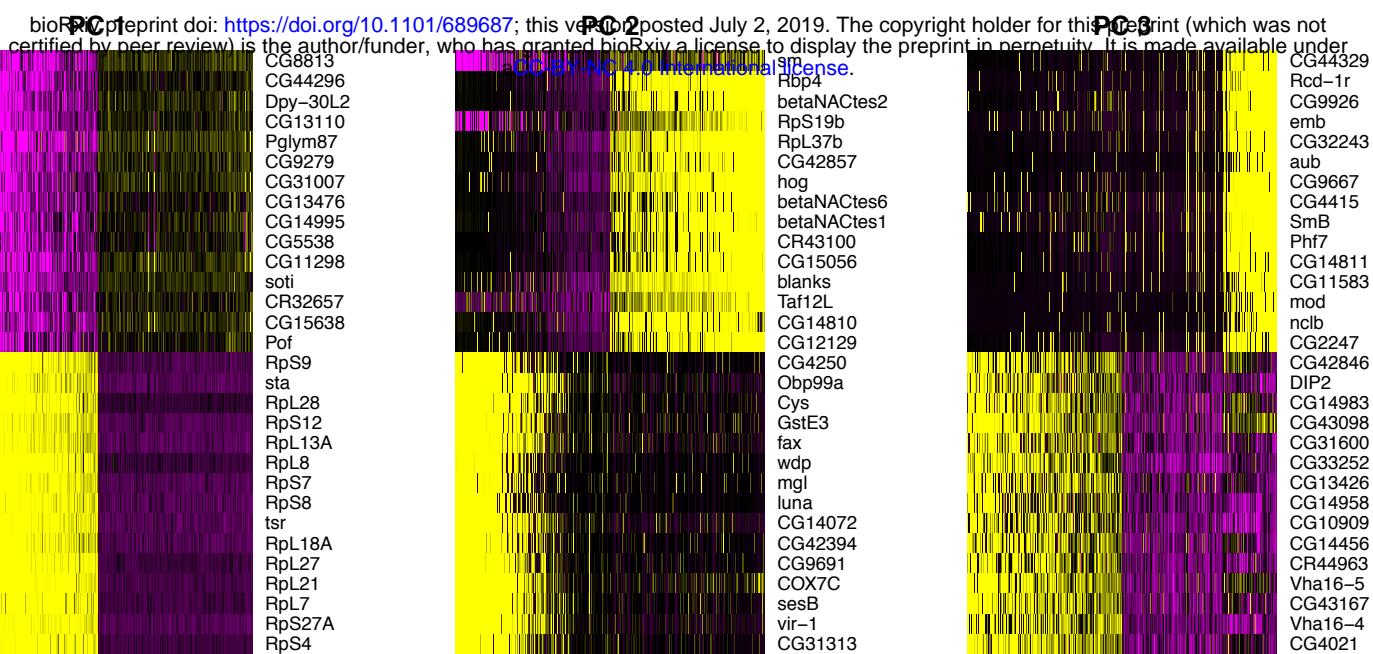
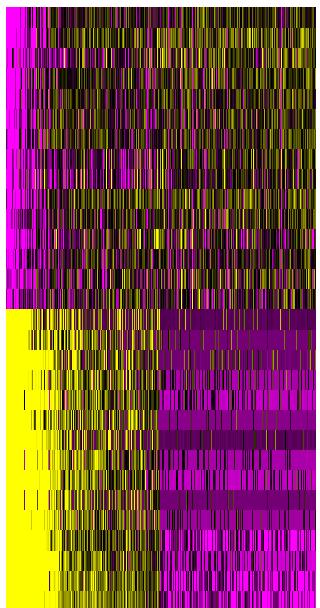
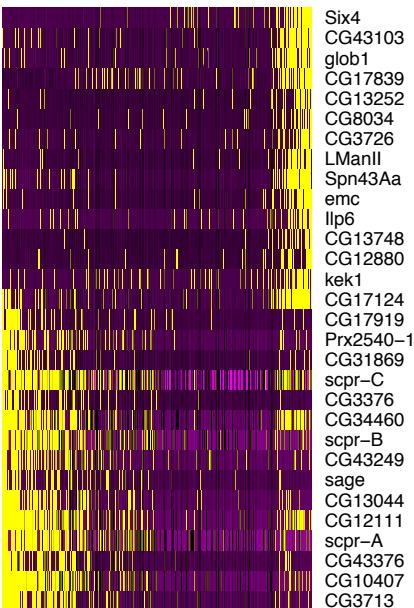
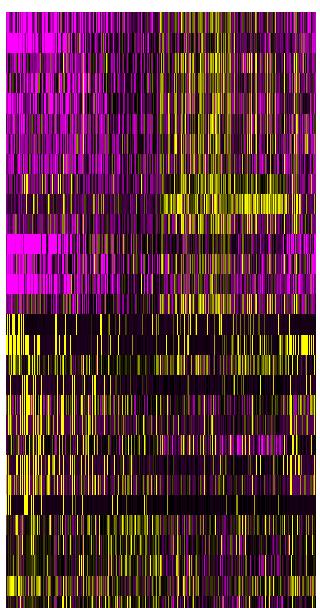
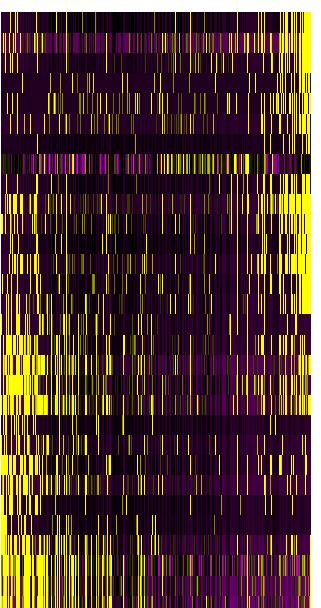
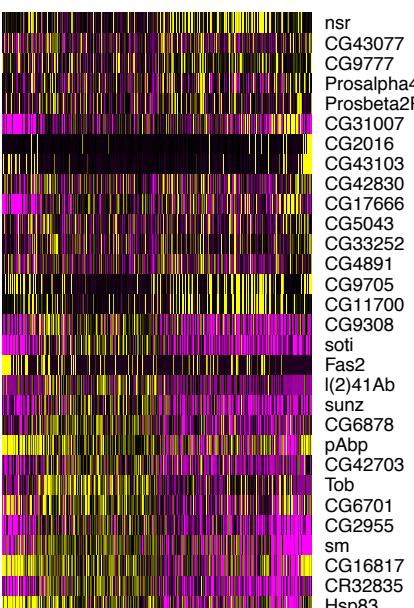







A

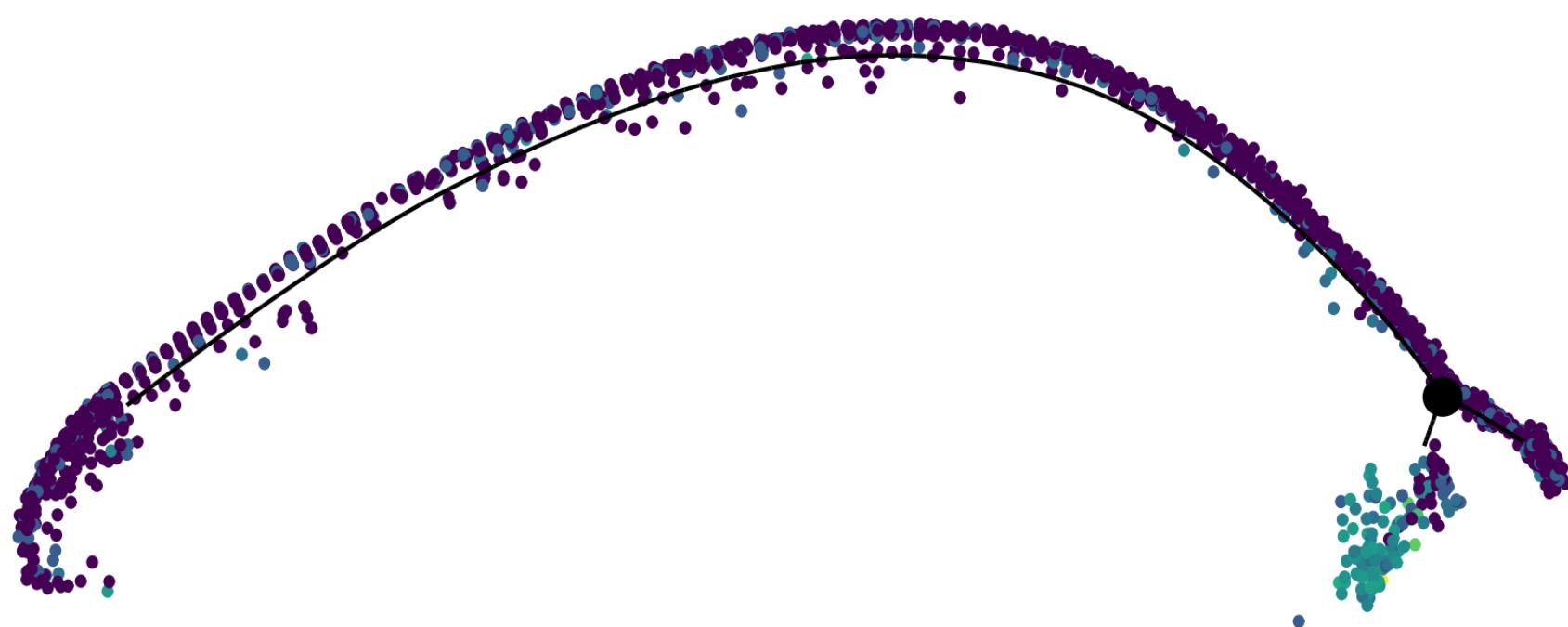
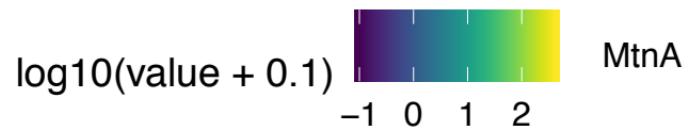


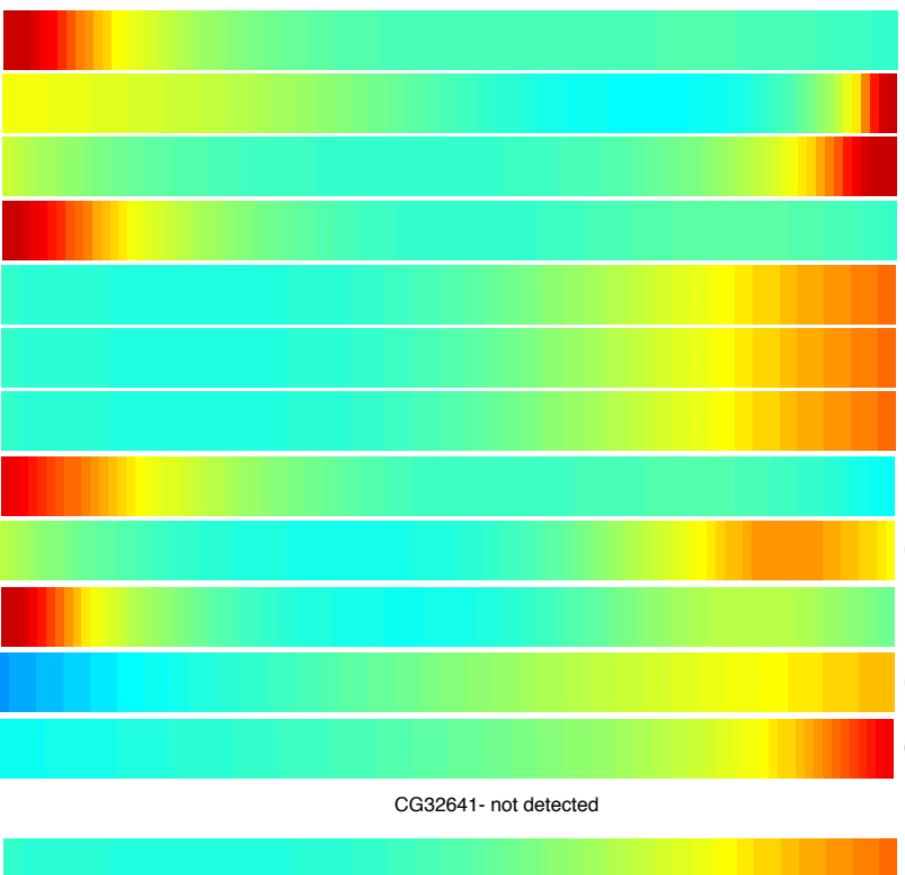




B

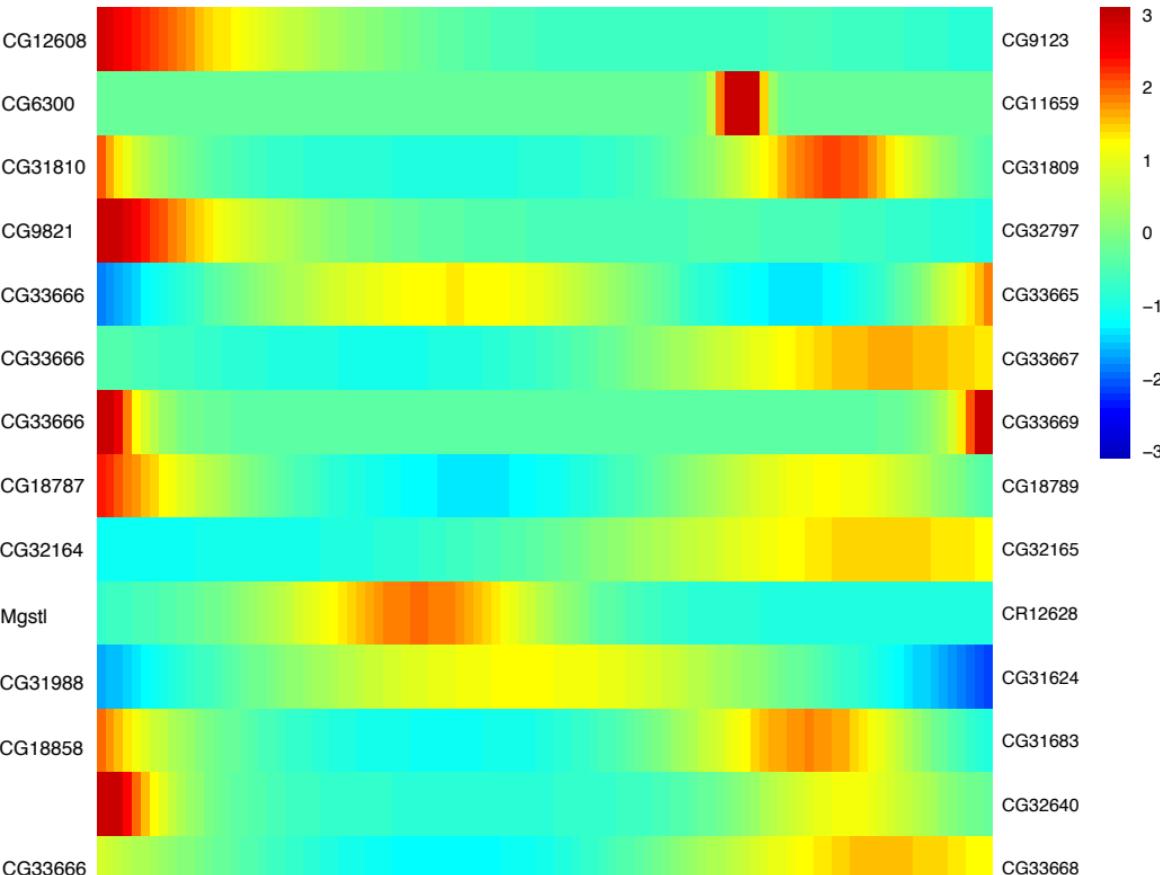


Marker genes







Fixed *de novo* genesSegregating *de novo* genes

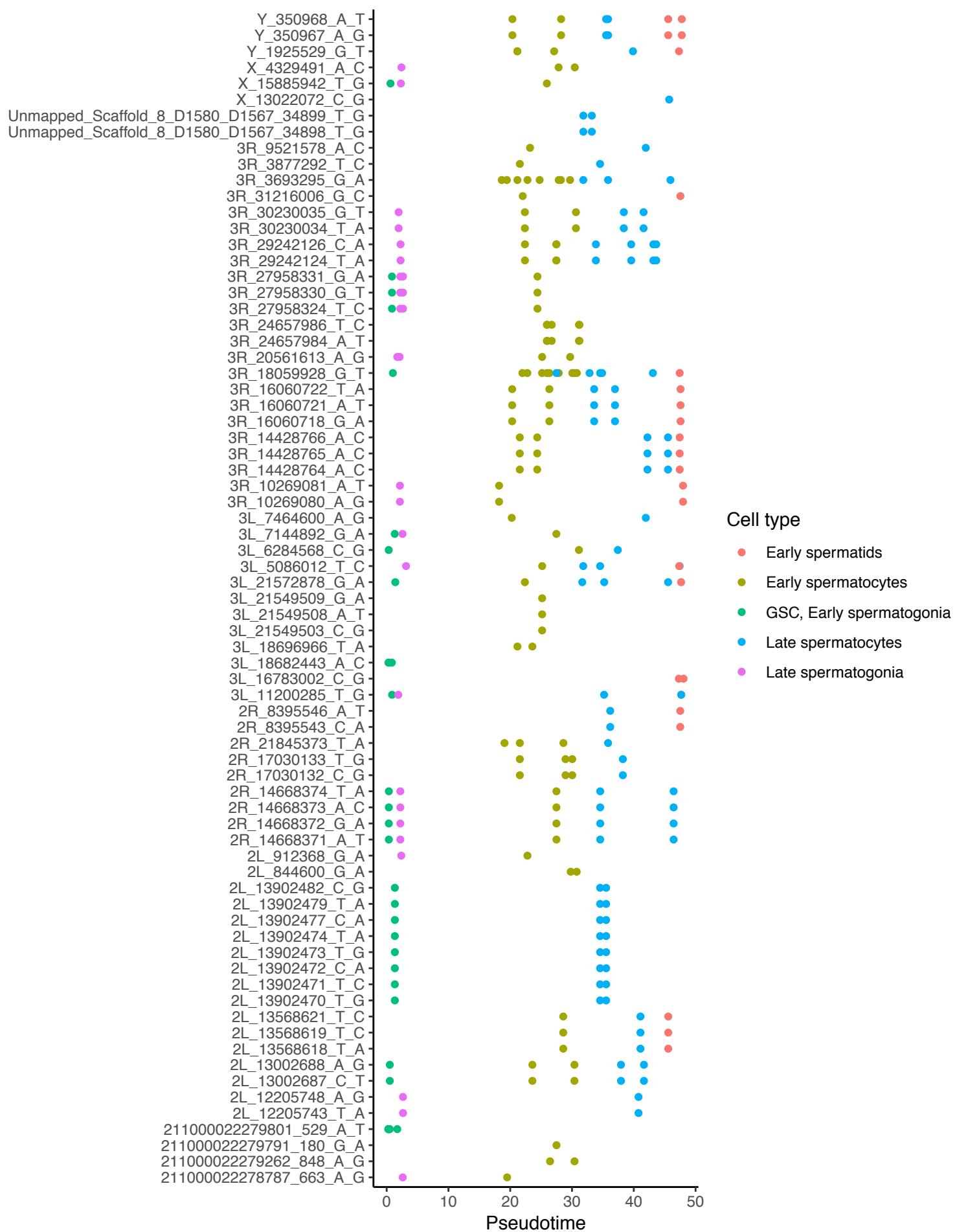





A**PC 4****PC 5****PC 6****PC 7****PC 8****PC 9**



A


Parental genes

B

"Child" duplicated genes

SNPs

