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Area compressibility moduli of the monolayer leaflets of asymmetric
bilayers from simulations

J. F. Nagle

Abstract

Extraction from simulations of the area compressibility moduli of the monolayers in a
bilayer is considered theoretically. A statistical mechanical derivation shows that the
bilayer modulus is the sum of the two monolayer moduli, as is often supposed, but
contrary to a recent study. Seemingly plausible assumptions regarding fluctuations are

tested rigorously. Prospects for future research are discussed.

Significance

It is important to describe the properties of both leaflets of generally asymmetric
Biomembranes. One such property is the area compressibility modulus. This MS
rigorously establishes the fundamental theory that corrects a recent BJ paper. The theory
is straightforward but substantial enough that it was not readily apparent why the
previous theory was incorrect. This is why this MS should be considered a new paper and
not just a comment. Another reason is that this MS points to an alternative method, used
only once previously, for extracting the leaflet area compressibility modulus from

simulations.
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Introduction

Biomembranes are generally asymmetric, so increasing attention has been paid to
creating asymmetric model systems, both in vitro and in silico. Then, it is appropriate to
consider separately the physical properties of each of the two monolayers in asymmetric
lipid bilayers. Separating some of those properties experimentally is difficult, so it is
appropriate to turn to simulations. Those simulations that agree with experiment for all
the properties that experiment can measure can then be considered for extracting
properties that experiments do not measure (1, 2). The property of interest in this paper is
the area compressibility modulus. There are two well-known methods of extracting the
bilayer modulus from simulations. This paper focuses on the extraction of the individual
monolayer moduli.

An area compressibility modulus k is generally defined as

k =A@0yIo~NT (1)

where A is the area and y is the surface tension. This modulus is essentially a spring
constant. Assuming that there is negligible coupling between the two monolayers, j=1
and 2, each monolayer can be thought of as analogous to a spring with modulus k; and the
bilayer would then be two springs of equal length in parallel subject. The forces on the
springs would be F; = k; x and the force on the two springs would be Fi, = F; + Fo = (ky +
k2) x which is then identified as ki, x. It would then follow by analogy from elementary
mechanics of springs that the modulus ki, for a bilayer is the sum of the monolayer
moduli would be
kip =Ky +ks . (2)
In contrast to EQ. 2, a recent paper derived a rather different equation (3).
o e AR
12 1 2
This equation has two highly unusual features. The first comes from applying it to a
symmetrical bilayer. Then the two monolayer moduli must be equal, ki=k;, so Eq. 3
requires that each monolayer modulus must equal the bilayer modulus ki,. This unusual
feature was specifically noted and a rationalization was provided (3). The second

unusual feature comes from considering a bilayer that is highly asymmetric, for example,
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monolayer one might consist of gel phase DPPE at room temperature and monolayer two
might consist of highly fluid DOPC. In the limit when k; is very much larger than ko,
Eq.3 predicts that the bilayer modulus ki, is only twice the smaller monolayer modulus k.
This violates the definition in Eq. 1 because the tension y; to change the area of
monolayer 1 should be enormous compared to the tension vy to effect the same change to
the area of monolayer 2. A macroscopic analogy would be to construct a bilayer
consisting of a sheet of rubber on a sheet of steel and claim that the area compressibility

is unrelated to that of the steel. As the derivation provided for Eq. 3 has gaps and makes
unproven assumptions (3), it is appropriate to return to basics.

After laying the statistical mechanical foundation in the Methods Section, the current
paper provides a rigorous derivation of Eg. 2 in the first Results subsection. The second
Results subsection reveals exactly which assumptions employed in (3) are incorrect for
the case of uncoupled monolayers considered there. It also allows consideration of
features not considered theoretically (3) that would nevertheless affect that method of
analyzing simulations. The Discussion assesses the prospects for applying the small patch
method of (3) and attention is called to a different simulation method that would not be

subject to the same artifacts.

Methods

The Theoretical System

Consider a bilayer with fluctuating area A and average area <A>=A,. The monolayer
fluctuating areas A; and A; are necessarily constrained to be equal to the bilayer
fluctuating area, A; = A, = A. The simulation method proposed in (3) analyses the
fluctuating areas of small portions of each monolayer j with fluctuating areas ;. For
convenience, we will set the average small areas <4> on both monolayers to be the same
value 4. Of course, the fluctuating areas «; and «, are not generally equal unless there is
very strong coupling between the two monolayers. A schematic of this setup is shown in
Fig. 1.

Assuming that there is also no coupling between these small fluctuating areas and
between the remaining Bj = A, - 4; areas in each monolayer leads, via the equipartition

theorem, to the monolayer moduli
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kj=kgTag/<(aj—ag)* > (4)

where kg is Boltzmann’s constant and KgT is thermal energy. This equation is well
established as one of the two main ways to obtain ki, when bilayer areas A and Ay replace
« and 4o (4, 5). The interesting issue is how ki is related to the k; and k that are obtained
from Eq. 4. For this, we return to the same statistical mechanics used to derive the

equipartition theorem, but we now have to realize that, even if the two monolayers are

uncoupled locally, there is the global constraint A; = A, = A
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Fig. 1 A schematic of fluctuations of the patches in two monolayers in a bilayer.

The formal description of the system begins by writing the basic fluctuation energy

for the small patches and also for the remaining large areas B;j - Bo.
Epasic = Zk (aj aO) + zk (B (5)

Of course, analysis of simulations would analyse many small patches in order to obtain
better statistics, but there is no loss of generality in a derivation that considers small
patches one at a time, each embedded in a reservoir that consists of the remaining small
patches considered as a group. Each of the four terms in Eq. 5 has the conventional
harmonic form for the fluctuation energy with monolayer moduli k;. This equation looks

like it has four independent fluctuating variables, but there are only three because «; + B;

= Aj= A. We therefore replace (Bj — Bo) by (A — Ao) — (4 —«0) in Eq. 5. It will be
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convenient to condense the notation in subsequent equations by writing the three

independent fluctuating variables as X = A — Ag and y; = «— 4. Then, Eq. 5 becomes

2

1
Ebasiczaz jyj Zk (X— yj - (6)

As is often the case in statistical mechanics, it is advantageous to formally distinguish
nominally identical terms, such as has been done for the k;' in the first term in Eq. 6, and

to add terms to the basic energy as follows,

W 2 h12 2 1 2
E = X<+ - —-—>» hiy(a—ap)(B-Bp) . 7
add =, 28 (y1—Y2) 2 21 j@a—ag)( 0) )

The first term in Eq. 7 is crucial because it will enable finding the relation between the

bilayer ki» and the monolayer moduli k; by taking the derivative of the partition function
with respect to w and then setting w=0. The hj, term provides for coupling between the
two monolayers. For h1,>0, the coupling energy increases when the areas of the small
patches are correlated. With the usual volume conservation assumption, such correlated
fluctuations correspond to total bilayer thickness fluctuations (sometimes called
peristaltic modes); h1,>0 therefore suppresses thickness fluctuations whereas h;,<0
enhances them. The h; terms provide a kind of coupling between the small patches and
the large patches in the monolayers; even more importantly, that term will enable finding

the correlation functions that were previously presumed to be zero (3).

Statistical Mechanical Derivation

The partition function for this system is defined as
Z = [[[exp[~B(Epasic + Eaga)ldxdyodys (8)
where 3 = 1/kgT. The result of the integrations is

(27KT 1 Bg)®
fo(fofo - f5)
Defining R = (Bo/ap) and r=(Bo/Ao) the f’s are

72 =

(9)
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fo=(k +ko +rw) (10)
and for j=1 and 2

fj =Rk +kj +2hj +Rhyp —((kj +hj)?/ fp) (11)
and

f3 = Rhyp +((ky +hy)(kz +h2))/ fp) . (12)

The evaluation of the partition function in Eq. 8 was performed by first grouping all the
exponential factors involving x* and x. Completion of the square in the form (ax - ¢)- ¢?
provides a Gaussian x integral which gives the factor 22kT/Bof, in Eg. 9. The factors

involving y;% and y1, including those in the c¢* factor left over from the x integration were
then similarly treated, finally ending with a Gaussian integral over y,. The results of the

y1 and y, integrations together give the remaining factor in Eq. 9.

Results

Thermodynamic relations

Derivatives of the partition function in Eq. 9 give thermodynamic quantities of
interest. First, consider the average energy

<E>=-0InzZ/0p=(3/2)kgT , (13)
defined by the first equality in Eq. 13. The calculation using Eqg. 9 gives the second
equality. This recovers the usual equipartition result for three classical harmonic degrees
of freedom.

The most interesting derivative is of In Z with respect to the parameter w. By
definition of the partition function in Eq. 8 and the definition of E,qq in Eq. 7, this

derivative gives the first identity in the following equation.

2
_2(8Inzj _<(A-A))> 1 1 (14)
0

ow AokBT k12 B kl+k2 .
The second equality is just the identity for the bilayer modulus ki as in Eq. 4. The last

equality is the result of taking the derivative in Eq. 9 and then setting w=0 as well as

hj=h1,=0; this returns the energy to the basic terms in Eq. 6. Eq. 14 is a primary result
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that confirms Eq. 2 that was suggested in the Introduction by analogy to springs. This
fully rigorous result proves that Eg. 3 is incorrect.

When hy; is non-zero, there are corrections to Eq. 14 which, however, are of order r
and therefore vanish in the small subsystem limit «<<A,. This is consistent with the
infinitely strong hy, limit which is independently calculable because then y;=y, is
constrained and the tightly coupled monolayers reduce to a single layer with modulus
ki+k,. However, the h;, coupling between the monolayers is far from innocuous for the
interpretation of small patch fluctuations. These fluctuations are obtained by taking a
derivative with respect to k;' and setting h;=0=w, designated by 0' in the first term in the
following equation

Y
o .Z _<(@-a)">_ 1 1 : (15)
o ), agkgT kPP kgt

The first equality in Eq. 15 follows simply from Egs. 7 and 8. The second equality in Eq.
15 defines the apparent monolayer modulus k;*® that the small patch simulation method
would report. The last equality in Eq. 15 shows the result of the calculation using Eq. 9.
Importantly, ki* is not the true monolayer modulus k;, but becomes ky+ hs,.
Encouragingly, one could determine hy, = %2 (ki*® + k,*® — ky2) and thence obtain k; and
ko using the final equality in Eq. 15. However, this assumes that the only coupling is
between patches on opposite monolayers.

Although the h; terms might appear to provide the in-plane coupling equivalent to the
h1, out of plane term, there is a difference that makes the h; terms unsatisfactory for
determining k1 and k. For either sign of h; some fluctuations decrease the h; energy term;
that even leads to instability of the system for modest values of h;. However, it may be
noted that these terms decrease k;*® and ki, but only proportional to hj2 and to r = 4/Ao.
A better model for in-plane coupling might involve adding terms like («-4)(B-Bg)° to the
energy but this would introduce quartic terms which, even if calculable, would
complicate an already complicated derivation of the partition function.

Correlations
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It is interesting to see exactly how plausible assumptions for correlations between the
patches fail due to the A; = A, = A constraint. Let us begin with the following identity,
alluded to in (3) that follows from A = %2 (A1 +A)).

< (A~ Ag)? >=< (%é[(aj ~a0)+(Bj B> . (1)
The left hand side is just AogksT/ki2. Expanding the right hand side gives
< (A= Ag)? >=%zj(< (@j—a9)® >+<(Bj —Bp)? »)+Q +Q +W , (17)
where
Q) =3 <(aj ~20)(Bj ~Bo) > (18)
and
W = % <[(ag —ag) +(By — Bo)ll(az —ag) + (B2 —Bp)] > . (19)

W was previously assumed to be zero (3), but it is trivially equal to % <(A-Ag)*> by
inspection.

Eq. 17 can now be rewritten as
1
<(A-Ag)? >=2 (< (a ~a9)” >+<(Bj —Bp)® >)+2Q; +2Q, . (20)

If there is no specific coupling between patches, application of Eq. 4 shows that <(«; —

40)>> + <(Bj — Bg)®> = Aok T/k;, so Eq. 20 can be further rewritten as

AokgT _ 1| AgkgT AokgT

Kpp 2L Kk Kz

+2Q; +2Q, ) (21)

If Q:+Q2 were zero, then this would be a derivation of Eq. 3. However, the Q; are
straightforwardly determined to be non-zero by taking derivatives of the partition
function with respect to h;. The result for Q; is

ko kgT
Q -—f2_¥sTh (22)

kp 4(ky +k2)
and the result for Q, simply exchanges the indices 1 and 2, so Q;+Q; is not zero. The
product Q:Q, depends only upon the sum ky+ks, but the ratio Q1/Q,=(kz/k;)* shows that

the Q; have quite different values for asymmetric bilayers with larger values of Q; for the
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softer monolayer than for the stiffer one. Finally, combining 2Q;in Eq. 22 with the k;
terms in Eq. 21 gives, for both j=1 and 2, the result %2AoksT/(k1+k>) thereby giving

kT kT kT
Aokp :% AokgT . Aokp (23)
P k; +ko kg +k,

which again confirms that the bilayer modulus ki is the sum of the monolayer moduli as
in Eq. 2. Figure 2 plots the terms in Eq. 21 as the relative stiffness of the two monolayers

varies.

Normalized correlations

T
0.0 0.5 1.0

k. /(k,+k,)

Figure 2. The terms in Eq. 21 are normalized to AokgT/(ki+kz). The algebraic sum of
the four terms on the right hand side of Eq. 21 equal 1/ki, = 1 since ki +k; is

normalized to 1.

It is interesting that the simple constraint that both monolayers have the same area has
such a large effect on the Q; and W correlations. Comparing to a system consisting of a

single monolayer, W is not defined and the only defined Q; is zero as one would expect


https://doi.org/10.1101/689679
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/689679; this version posted July 5, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

from the assumption that the small patch is uncoupled from the large patch reservoir. It
is also interesting to note that W+Q;+Q,=0 for symmetric bilayers, but only for
symmetric bilayers.

Discussion

It is a reasonable prospect that the fluctuations in small patches will reveal differences
in the monolayer moduli in asymmetric bilayers. If there is no coupling of the patches
with the remainder of the bilayer, then the theory says that this analysis will give the
monolayer moduli quantitatively. However, if the sum of the apparent monolayer
obtained from small patches k;®* +k,*" does not equal the well determined bilayer
modulus ki, then there must be coupling. If the coupling is only between patches on
opposite monolayers, then the analysis using h;, allows extraction both of the coupling
and the individual k;. Unfortunately, one could also have equality with coupling if the in-
plane coupling competes with the h;, coupling, and we do not have a good theory for the
effect of coupling within each monolayer.

The simulations previously reported (3) gave k;** +k,* = 2k, indicating strong
coupling. However, the method employed there to convert area fluctuations to thickness
fluctuations may have been flawed by the assumption that the volume was constant in a
region consisting of only about half the hydrocarbon region as it was determined by the
location of specific methylenes. A similar assumption has been found to be false in a
recent analysis of the Poisson ratio.(6)

Given these problems with the small patch analysis method, it is appropriate to
consider a second method that stems from the second method that has routinely been
employed to obtain the bilayer modulus ki,. This second method simply plots the area A
versus surface tension y to obtain the area compressibility modulus directly from its
definition in Eq. 1. This method was noted in (3), but it was apparently not realized that it
could also be used to obtain the k; moduli separately. For each value of y in the
simulation one would first calculate the average lateral pressure profile I1(z) = - y(z) of
the bilayer (5, 7, 8). The integral of y(z) along z across the whole bilayer is the value of y.
The idea is that one may also choose to integrate only over each monolayer separately to

obtain y; and y,. Then, one would calculate the separate

10
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kJ = —A(@]/J /6A)T (24)

using the average <A> for each value of y;. The only assumption in this method, as in the
proposed method (3), is that it makes sense to separate the bilayer into two monolayers.
One might argue that it does not sense to apply it to bilayers with fully interdigitated
hydrocarbon chains, but it does appear to be a reasonable conceptual division for most
bilayers that have only mini-interdigitation (9) of the monolayers near the center of the
bilayer. Furthermore, one does not have to just separate ki, into two monolayer values.
Indeed, ki, has already been further refined into a modulus ki»(z) that varies with depth z
for a coarse grained simulation of a symmetric bilayer (10). When applied to an
asymmetric bilayer that method would provide an even more detailed view than just
obtaining ki and k.. As noted (3), this second method would require more simulations at
different surface tensions and the lateral pressure profiles would probably be subject to
more noise. However, this method would not be subject to the difficulties involved in the
small patch method.

Finally, it may also be noted that (3) tackled the thorny issue of the relation between
the area compressibility modulus Ka (=ki2) and the bending modulus Kc. It focused on
the appropriate thickness t to use in

1

2
Ke =—1t°K 12
C 24 A (12)

rather than on the factor of 24 that comes from the polymer brush formulation that
assumes independent monolayers (11). The choice of the total hydrocarbon thickness for
t has worked rather well (2, 11). However, the most significant exception was found
when cholesterol was added to lipid bilayers and a large change in the definition of t was
proposed (12). In agreement with (3), further analysis using reliable determinations of
both Ka and K¢, both from experiment and from simulations, are indeed needed to refine
what effectiveness thickness t is appropriate to relate the mechanical properties of

specific lipid bilayers.

Conclusion
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The statistical mechanical relation of the leaflet area compressibility moduli to that of
the bilayer has been rigorously derived. Coupling between the two leaflets has been
incorporated theoretically, and that can be addressed using the small patch simulation
method. However, an alternative method is likely to be superior for obtaining more, and

more reliable, information about the area compressibility of asymmetric membranes.
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