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Area compressibility moduli of the monolayer leaflets of asymmetric 

bilayers from simulations  

J. F. Nagle

Abstract 

Extraction from simulations of the area compressibility moduli of the monolayers in a 

bilayer is considered theoretically.  A statistical mechanical derivation shows that the 

bilayer modulus is the sum of the two monolayer moduli, as is often supposed, but 

contrary to a recent study.  Seemingly plausible assumptions regarding fluctuations are 

tested rigorously.  Prospects for future research are discussed. 

Significance 

It is important to describe the properties of both leaflets of generally asymmetric 

Biomembranes. One such property is the area compressibility modulus.  This MS 

rigorously establishes the fundamental theory that corrects a recent BJ paper. The theory 

is straightforward but substantial enough that it was not readily apparent why the 

previous theory was incorrect. This is why this MS should be considered a new paper and 

not just a comment.  Another reason is that this MS points to an alternative method, used 

only once previously, for extracting the leaflet area compressibility modulus from 

simulations.   
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Introduction 

Biomembranes are generally asymmetric, so increasing attention has been paid to 

creating asymmetric model systems, both in vitro and in silico.  Then, it is appropriate to 

consider separately the physical properties of each of the two monolayers in asymmetric 

lipid bilayers.  Separating some of those properties experimentally is difficult, so it is 

appropriate to turn to simulations.  Those simulations that agree with experiment for all 

the properties that experiment can measure can then be considered for extracting 

properties that experiments do not measure (1, 2).  The property of interest in this paper is 

the area compressibility modulus.  There are two well-known methods of extracting the 

bilayer modulus from simulations. This paper focuses on the extraction of the individual 

monolayer moduli.  

An area compressibility modulus k is generally defined as 

TAAk )/(       ,                                         (1) 

where A is the area and  is the surface tension.  This modulus is essentially a spring 

constant.  Assuming that there is negligible coupling between the two monolayers, j=1 

and 2, each monolayer can be thought of as analogous to a spring with modulus kj and the 

bilayer would then be two springs of equal length in parallel subject.  The forces on the 

springs would be Fj = kj x and the force on the two springs would be F12 = F1 + F2 = (k1 + 

k2) x which is then identified as k12 x.    It would then follow by analogy from elementary 

mechanics of springs that the modulus k12 for a bilayer is the sum of the monolayer 

moduli would be 

                     2112 kkk          .                            (2) 

In contrast to Eq. 2, a recent paper derived a rather different equation (3). 
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This equation has two highly unusual features. The first comes from applying it to a 

symmetrical bilayer.  Then the two monolayer moduli must be equal, k1=k2, so Eq. 3 

requires that each monolayer modulus must equal the bilayer modulus k12.  This unusual 

feature was specifically noted and a rationalization was provided (3).  The second 

unusual feature comes from considering a bilayer that is highly asymmetric, for example,  
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monolayer one might consist of gel phase DPPE at room temperature and monolayer two 

might consist of highly fluid DOPC.  In the limit when k1 is very much larger than k2, 

Eq.3 predicts that the bilayer modulus k12 is only twice the smaller monolayer modulus k2.  

This violates the definition in Eq. 1 because the tension 1 to change the area of 

monolayer 1 should be enormous compared to the tension 2 to effect the same change to 

the area of monolayer 2.  A macroscopic analogy would be to construct a bilayer 

consisting of a sheet of rubber on a sheet of steel and claim that the area compressibility 

is unrelated to that of the steel.  As the derivation provided for Eq. 3 has gaps and makes 

unproven assumptions (3), it is appropriate to return to basics. 

After laying the statistical mechanical foundation in the Methods Section, the current 

paper provides a rigorous derivation of Eq. 2 in the first Results subsection. The second 

Results subsection reveals exactly which assumptions employed in (3) are incorrect for 

the case of uncoupled monolayers considered there.  It also allows consideration of 

features not considered theoretically (3) that would nevertheless affect that method of 

analyzing simulations. The Discussion assesses the prospects for applying the small patch 

method of (3) and attention is called to a different simulation method that would not be 

subject to the same artifacts. 

 

Methods 

The Theoretical System 

Consider a bilayer with fluctuating area A and average area <A>=A0.  The monolayer 

fluctuating areas A1 and A2 are necessarily constrained to be equal to the bilayer 

fluctuating area, A1 = A2 = A.  The simulation method proposed in (3) analyses the 

fluctuating areas of small portions of each monolayer j with fluctuating areas aj.  For 

convenience, we will set the average small areas <aj> on both monolayers to be the same 

value a0.  Of course, the fluctuating areas a1 and a2 are not generally equal unless there is 

very strong coupling between the two monolayers.  A schematic of this setup is shown in 

Fig. 1. 

Assuming that there is also no coupling between these small fluctuating areas and 

between the remaining Bj = Aj - aj areas in each monolayer leads, via the equipartition 

theorem, to the monolayer moduli 
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 2
00 )(/ aaTakk jBj                    (4) 

where kB is Boltzmann’s constant and kBT is thermal energy. This equation is well 

established as one of the two main ways to obtain k12 when bilayer areas A and A0 replace 

aj and a0 (4, 5).  The interesting issue is how k12 is related to the k1 and k2 that are obtained 

from Eq. 4.  For this, we return to the same statistical mechanics used to derive the 

equipartition theorem, but we now have to realize that, even if the two monolayers are 

uncoupled locally, there is the global constraint A1 = A2 = A.   

 

 

 

 

 

 

 

 

 

Fig. 1   A schematic of fluctuations of the patches in two monolayers in a bilayer. 

 

The formal description of the system begins by writing the basic fluctuation energy 

for the small patches and also for the remaining large areas Bj  - B0.  
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Of course, analysis of simulations would analyse many small patches in order to obtain 

better statistics, but there is no loss of generality in a derivation that considers small 

patches one at a time, each embedded in a reservoir that consists of the remaining small 

patches considered as a group.  Each of the four terms in Eq. 5 has the conventional 

harmonic form for the fluctuation energy with monolayer moduli kj.   This equation looks 

like it has four independent fluctuating variables, but there are only three because aj + Bj 

= Aj = A.  We therefore replace (Bj – B0) by (A – A0) – (aj – a0) in Eq. 5.  It will be 
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convenient to condense the notation in subsequent equations by writing the three 

independent fluctuating variables as x = A – A0 and yj = aj – a0. Then, Eq. 5 becomes  
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As is often the case in statistical mechanics, it is advantageous to formally distinguish 

nominally identical terms, such as has been done for the kj' in the first term in Eq. 6, and 

to add terms to the basic energy as follows,   
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The first term in Eq. 7 is crucial because it will enable finding the relation between the 

bilayer k12 and the monolayer moduli kj by taking the derivative of the partition function 

with respect to w and then setting w=0.  The h12 term provides for coupling between the 

two monolayers.  For h12>0, the coupling energy increases when the areas of the small 

patches are correlated.  With the usual volume conservation assumption, such correlated 

fluctuations correspond to total bilayer thickness fluctuations (sometimes called 

peristaltic modes); h12>0 therefore suppresses thickness fluctuations whereas h12<0 

enhances them.  The hj terms provide a kind of coupling between the small patches and 

the large patches in the monolayers; even more importantly, that term will enable finding 

the correlation functions that were previously presumed to be zero (3).   

 

Statistical Mechanical Derivation 

The partition function for this system is defined as  

  12)](exp[ dydxdyEEZ addbasic     ,                           (8) 

where  = 1/kBT.   The result of the integrations is    
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Defining R = (B0/a0) and r=(B0/A0)  the f’s are 
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)( 210 rwkkf       ,                                                      (10) 

and for j=1 and 2 

)/)((2 0
2

12
' fhkRhhkRkf jjjjjj              (11) 

and 

)/)))((( 02211123 fhkhkRhf  .                           (12) 

The evaluation of the partition function in Eq. 8 was performed by first grouping all the 

exponential factors involving x
2
 and x.  Completion of the square in the form (ax -c)

2
- c

2 

provides a Gaussian x integral which gives the factor 2kT/B0f0 in Eq. 9.  The factors 

involving y1
2
 and y1, including those in the c


factor left over from the x integration were 

then similarly treated, finally ending with a Gaussian integral over y2.  The results of the 

y1 and y2 integrations together give the remaining factor in Eq. 9.  

 

Results 

Thermodynamic relations 

Derivatives of the partition function in Eq. 9 give thermodynamic quantities of 

interest.  First, consider the average energy  

TkZE B)2/3(/ln    ,                                      (13) 

defined by the first equality in Eq. 13.   The calculation using Eq. 9 gives the second 

equality.  This recovers the usual equipartition result for three classical harmonic degrees 

of freedom.   

The most interesting derivative is of ln Z with respect to the parameter w.  By 

definition of the partition function in Eq. 8 and the definition of Eadd in Eq. 7, this 

derivative gives the first identity in the following equation.   
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The second equality is just the identity for the bilayer modulus k12 as in Eq. 4. The last 

equality is the result of taking the derivative in Eq. 9 and then setting w=0 as well as 

hj=h12=0; this returns the energy to the basic terms in Eq. 6. Eq. 14 is a primary result 
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that confirms Eq. 2 that was suggested in the Introduction by analogy to springs. This 

fully rigorous result proves that Eq. 3 is incorrect.   

When h12 is non-zero, there are corrections to Eq. 14 which, however, are of order r 

and therefore vanish in the small subsystem limit a0<<A0. This is consistent with the 

infinitely strong h12 limit which is independently calculable because then y1=y2 is 

constrained and the tightly coupled monolayers reduce to a single layer with modulus 

k1+k2.  However, the h12 coupling between the monolayers is far from innocuous for the 

interpretation of small patch fluctuations. These fluctuations are obtained by taking a 

derivative with respect to kj' and setting hj=0=w, designated by 0' in the first term in the 

following equation 

            
121

1
0

2
01

'0
'
1

11)(ln
2

hkkTka

aa

k

Z

app
B 






















  .             (15) 

The first equality in Eq. 15 follows simply from Eqs. 7 and 8.  The second equality in Eq. 

15 defines the apparent monolayer modulus k1
app

 that the small patch simulation method 

would report.  The last equality in Eq. 15 shows the result of the calculation using Eq. 9.  

Importantly, k1
app

 is not the true monolayer modulus k1, but becomes k1+ h12.  

Encouragingly, one could determine h12 = ½ (k1
app 

+ k2
app

 – k12) and thence obtain k1 and 

k2 using the final equality in Eq. 15.   However, this assumes that the only coupling is 

between patches on opposite monolayers.    

Although the hj terms might appear to provide the in-plane coupling equivalent to the 

h12 out of plane term, there is a difference that makes the hj terms unsatisfactory for 

determining k1 and k2.  For either sign of hj some fluctuations decrease the hj energy term; 

that even leads to instability of the system for modest values of hj.  However, it may be 

noted that these terms decrease k1
app

 and k12, but only proportional to hj
2
 and to r = a0/A0.  

A better model for in-plane coupling might involve adding terms like (a-a0)
2
(B-B0)

2 
to the 

energy but this would introduce quartic terms which, even if calculable, would 

complicate an already complicated derivation of the partition function.  

Correlations 
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It is interesting to see exactly how plausible assumptions for correlations between the 

patches fail due to the A1 = A2 = A constraint.  Let us begin with the following identity, 

alluded to in (3) that follows from A = ½ (A1+A2). 
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The left hand side is just A0kBT/k12.  Expanding the right hand side gives 
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W was previously assumed to be zero (3), but it is trivially equal to ½ <(A-A0)
2
> by 

inspection.   

Eq. 17 can now be rewritten as 
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If there is no specific coupling between patches, application of Eq. 4 shows that <(aj – 

a0)
2
> + <(Bj – B0)

2
> = A0kBT/kj, so Eq. 20 can be further rewritten as 
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If Q1+Q2 were zero, then this would be a derivation of Eq. 3.  However, the Qj are 

straightforwardly determined to be non-zero by taking derivatives of the partition 

function with respect to hj. The result for Q1 is 
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and the result for Q2 simply exchanges the indices 1 and 2, so Q1+Q2 is not zero.  The 

product Q1Q2 depends only upon the sum k1+k2, but the ratio Q1/Q2=(k2/k1)
2
 shows that 

the Qj  have quite different values for asymmetric bilayers with larger values of Qj for the 
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softer monolayer than for the stiffer one. Finally, combining 2Qj in Eq. 22 with the kj 

terms in Eq. 21 gives, for both j=1 and 2, the result ½A0kBT/(k1+k2) thereby giving 


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which again confirms that the bilayer modulus k12 is the sum of the monolayer moduli as 

in Eq. 2.  Figure 2 plots the terms in Eq. 21 as the relative stiffness of the two monolayers 

varies.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  The terms in Eq. 21 are normalized to A0kBT/(k1+k2).  The algebraic sum of 

the four terms on the right hand side of Eq. 21 equal 1/k12 = 1 since k1+k2  is 

normalized to 1. 

 

It is interesting that the simple constraint that both monolayers have the same area has 

such a large effect on the Qj and W correlations.  Comparing to a system consisting of a 

single monolayer, W is not defined and the only defined Q1 is zero as one would expect 
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from the assumption that the small patch is uncoupled from the large patch reservoir.  It 

is also interesting to note that W+Q1+Q2=0 for symmetric bilayers, but only for 

symmetric bilayers. 

Discussion 

It is a reasonable prospect that the fluctuations in small patches will reveal differences 

in the monolayer moduli in asymmetric bilayers.  If there is no coupling of the patches 

with the remainder of the bilayer, then the theory says that this analysis will give the 

monolayer moduli quantitatively.  However, if the sum of the apparent monolayer 

obtained from small patches k1
app

 +k2
app

 does not equal the well determined bilayer 

modulus k12, then there must be coupling. If the coupling is only between patches on 

opposite monolayers, then the analysis using h12 allows extraction both of the coupling 

and the individual kj.  Unfortunately, one could also have equality with coupling if the in-

plane coupling competes with the h12 coupling, and we do not have a good theory for the 

effect of coupling within each monolayer.  

The simulations previously reported (3) gave k1
app

 +k2
app

 = 2k12, indicating strong 

coupling.  However, the method employed there to convert area fluctuations to thickness 

fluctuations may have been flawed by the assumption that the volume was constant in a 

region consisting of only about half the hydrocarbon region as it was determined by the 

location of specific methylenes.  A similar assumption has been found to be false in a 

recent analysis of the Poisson ratio.(6) 

Given these problems with the small patch analysis method, it is appropriate to 

consider a second method that stems from the second method that has routinely been 

employed to obtain the bilayer modulus k12.  This second method simply plots the area A 

versus surface tension  to obtain the area compressibility modulus directly from its 

definition in Eq. 1. This method was noted in (3), but it was apparently not realized that it 

could also be used to obtain the kj moduli separately.  For each value of  in the 

simulation one would first calculate the average lateral pressure profile (z) = -(z) of 

the bilayer (5, 7, 8).  The integral of (z) along z across the whole bilayer is the value of .  

The idea is that one may also choose to integrate only over each monolayer separately to 

obtain 1 and 2.  Then, one would calculate the separate 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2019. ; https://doi.org/10.1101/689679doi: bioRxiv preprint 

https://doi.org/10.1101/689679
http://creativecommons.org/licenses/by-nd/4.0/


 11 

Tjj AAk )/(                                   (24) 

using the average <A> for each value of j. The only assumption in this method, as in the 

proposed method (3), is that it makes sense to separate the bilayer into two monolayers.  

One might argue that it does not sense to apply it to bilayers with fully interdigitated 

hydrocarbon chains, but it does appear to be a reasonable conceptual division for most 

bilayers that have only mini-interdigitation (9) of the monolayers near the center of the 

bilayer. Furthermore, one does not have to just separate k12 into two monolayer values. 

Indeed, k12 has already been further refined into a modulus k12(z) that varies with depth z 

for a coarse grained simulation of a symmetric bilayer (10).  When applied to an 

asymmetric bilayer that method would provide an even more detailed view than just 

obtaining k1 and k2.  As noted (3), this second method would require more simulations at 

different surface tensions and the lateral pressure profiles would probably be subject to 

more noise.  However, this method would not be subject to the difficulties involved in the 

small patch method. 

Finally, it may also be noted that (3) tackled the thorny issue of the relation between 

the area compressibility modulus KA (=k12) and the bending modulus KC.  It focused on 

the appropriate thickness t to use in  

                           AC KtK 2

24

1
                                             (12) 

 

rather than on the factor of 24 that comes from the polymer brush formulation that 

assumes independent monolayers (11).  The choice of the total hydrocarbon thickness for 

t has worked rather well (2, 11). However, the most significant exception was found 

when cholesterol was added to lipid bilayers and a large change in the definition of t was 

proposed (12).  In agreement with (3), further analysis using reliable determinations of 

both KA and KC, both from experiment and from simulations, are indeed needed to refine 

what effectiveness thickness t is appropriate to relate the mechanical properties of 

specific lipid bilayers.  

 

Conclusion 
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The statistical mechanical relation of the leaflet area compressibility moduli to that of 

the bilayer has been rigorously derived.  Coupling between the two leaflets has been 

incorporated theoretically, and that can be addressed using the small patch simulation 

method.  However, an alternative method is likely to be superior for obtaining more, and 

more reliable, information about the area compressibility of asymmetric membranes.  
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