

1 **Epstein Barr virus genomes reveal population structure and type 1 association with**
2 **endemic Burkitt lymphoma**

3
4 Yasin Kaymaz¹, Cliff I. Oduor^{2,3}, Ozkan Aydemir³, Micah A. Luftig⁴, Juliana A. Otieno⁵, John
5 Michael Ong'echa², Jeffrey A. Bailey^{3*}, Ann M. Moormann^{6*}

6
7 ¹ Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical
8 School, Worcester, MA USA

9
10 ² Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya

11
12 ³ Department of Pathology and Laboratory Medicine,
13 Warren Alpert Medical School, Brown University, Providence, RI, USA

14
15 ⁴ Department of Molecular Genetics and Microbiology and Center for Virology, Duke University
16 School of Medicine, Durham, NC USA

17
18 ⁵ Jaramogi Oginga Odinga Teaching and Referral Hospital, Ministry of Health, Kisumu, Kenya

19
20 ⁶ Division of Infectious Diseases and Immunology, Department of Medicine, University of
21 Massachusetts Medical School, Worcester, MA

22
23 *shared last authorship

24
25 †Corresponding authors: Ann Moormann, PhD, MPH
26 Department of Medicine
27 Division of Infectious Diseases and Immunology
28 University of Massachusetts Medical School
29 364 Plantation Street, LRB 313
30 Worcester, MA 01605 USA
31 Office: 508-856-8826
32 Email: ann.moormann@umassmed.edu

33
34 Jeffrey A Bailey, MD, PhD
35 Department of Pathology and Laboratory Medicine
36 Warren Alpert Medical School
37 Brown University
38 Providence, Rhode Island
39 Office: 401-446-4652
40 Email: jeffrey_bailey@brown.edu

41
42
43 **Key words:** Epstein Barr virus, malaria, genome sequencing, genetic variation, endemic Burkitt
44 Lymphoma, EBV type 1, EBV type 2.

45 Abstract: 237 words
46 Text: 3,982 words
47 Number of figures: 3
48 Number of tables: 2
49 Number of references: 50
50
51

52 **Key Points**

53

- 54 • **EBV type 1 is more prevalent in eBL patients compared to the geographically**
55 **matched healthy control group.**
- 56 • **Genome-wide association analysis between cases and controls identifies 6 eBL-**
57 **associated nonsynonymous variants in EBNA1, EBNA2, BcLF1, and BARF1**
58 **genes.**
- 59 • **Analysis of population structure reveals that EBV type 2 exists as two genomic**
60 **sub groups.**

61

Abstract

62 Endemic Burkitt lymphoma (eBL), the most prevalent pediatric cancer in sub-Saharan
63 Africa, is associated with malaria and Epstein Barr virus (EBV). In order to better understand the
64 role of EBV in eBL, we improved viral DNA enrichment methods and generated a total of 98
65 new EBV genomes from both eBL cases (N=58) and healthy controls (N=40) residing in the
66 same geographic region in Kenya. Comparing cases and controls, we found that EBV type 1
67 was significantly associated with eBL with 74.5% of patients (41/55) versus 47.5% of healthy
68 children (19/40) carrying type 1 (OR=3.24, 95% CI=1.36 - 7.71, $P=0.007$). Controlling for EBV
69 type, we also performed a genome-wide association study identifying 6 nonsynonymous
70 variants in the genes EBNA1, EBNA2, BcLF1, and BARF1 that were enriched in eBL patients.
71 Additionally, we observed that viruses isolated from plasma of eBL patients were identical to
72 their tumor counterpart consistent with circulating viral DNA originating from the tumor. We also
73 detected three intertypic recombinants carrying type 1 EBNA2 and type 2 EBNA3 regions as
74 well as one novel genome with a 20 kb deletion resulting in the loss of multiple lytic and virion
75 genes. Comparing EBV types, genes show differential variation rates as type 1 appears to be
76 more divergent. Besides, type 2 demonstrates novel substructures. Overall, our findings
77 address the complexities of EBV population structure and provide new insight into viral
78 variation, which has the potential to influence eBL oncogenesis.

79

Introduction

80 EBV infects more than 90% of the world's population and typically persists as a chronic
81 asymptomatic infection.¹ While most individuals endure a lifelong infection with minimal effect,
82 EBV is associated with ~1% of all human malignancies worldwide. EBV was first isolated from
83 an endemic Burkitt lymphoma (eBL) tumor which is the most prevalent pediatric cancer in sub-
84 Saharan Africa.² Repeated *Plasmodium falciparum* infections during childhood appear to drive
85 this increased incidence.³ Malaria causes polyclonal B-cell expansion and increased expression
86 of activation-induced cytidine deaminase (AID) dependent DNA damage leading to the hallmark
87 translocation of the *MYC* gene under control of the constitutively active immunoglobulin
88 enhancer.⁴⁻⁶ How EBV potentiates eBL is incompletely understood, however, the clonal
89 presence of this virus in almost every eBL tumor suggests a necessary role.

90 EBV strains are categorized into two types based on the high degree of divergence in
91 the *EBNA2* and *EBNA3* genes.⁷⁻⁹ This long standing evolutionary division is also present in
92 orthologous primate viruses,¹⁰ yet remains unexplained. While EBV type 1 has been extensively
93 studied,^{11,12} because it causes acute infectious mononucleosis and other diseases in the
94 developed world, type 2 virus studies have not kept pace since infected individuals are less
95 frequent and found primarily in sub-Saharan Africa. While several recent studies have reported
96 both types of EBV circulating in western countries,^{13,14} the African context provides a better
97 opportunity to examine viral variation because type 1 and type 2 are found in both eBL patients
98 as well as healthy individuals.^{8,15,16} Viral variation has been shown to impact differential
99 transformation and growth, and capacity to block apoptosis or immune recognition.^{7,17,18}
100 However, studies focusing on only certain genomic regions/proteins potentially miss disease
101 associations of other loci.^{19,20} Although new studies have been conducted,^{21,22} genome-wide
102 examinations in case-control studies are few and often lack typing the virus.

103 To address this shortfall, whole genome sequencing of EBV is now attainable from
104 tumor, blood, or saliva using targeted viral DNA capture methods.²³⁻²⁸ However, studying EBV
105 from the blood of healthy individuals remains challenging due to low viral abundance relative to
106 human DNA (1-10 EBV copy/ng blood DNA). In addition, EBV's GC-rich genome is inefficiently
107 amplified using conventional library preparation methods. Here, we present improved methods
108 for EBV genome enrichment that allow us to sequence virus directly from eBL patients and
109 healthy children. Leveraging these samples, we sought to define the viral population structure
110 and characterize viral subtypes collected from children hailing from the same region of western
111 Kenya. Additionally, we performed the first genome wide association study to identify viral
112 variants that correlate with eBL pathogenesis.

113 **Materials and Methods**

114 **Ethical approval and sample collection**

115 For this study, we recruited children between 2009 and 2012 with suspected eBL,
116 between 2-14 years of age, undergoing initial diagnosis at Jaramogi Oginga Odinga Teaching
117 and Referral Hospital (JOOTRH; Kisumu), which is a regional referral hospital for pediatric
118 cancer in western Kenya.²⁹ We obtained written informed consent from children's parents or
119 legal guardians to enroll them in this study. Ethical approval was obtained from the Institutional
120 Review Board at the University of Massachusetts Medical School and the Scientific and Ethical
121 Review Unit at the Kenya Medical Research Institute. For this study, primary tumor biopsies
122 were collected using fine needle aspirates (FNA) and transferred into RNAlater at the bedside,
123 prior to induction of chemotherapy. In addition, peripheral blood samples were collected and
124 fractionated by centrifugation prior to freezing into plasma and cell pellets. All samples were
125 stored at -80°C prior to nucleic acid extraction.

126 **Improved enrichment of GC-rich EBV in low abundance samples**

127 We used Allprep DNA/RNA/Protein mini kit (Qiagen) for DNA isolations from FNAs and
128 QIAamp DNA Kit for blood and plasma. We developed an improved multi-step amplification and
129 enrichment process for the GC-rich EBV genome, particularly in samples with low viral copies.
130 We used EBV-specific whole genome amplification (sWGA) to provide sufficient material and
131 targeted enrichment with hybridization probes after the library preparation. For this, we designed
132 3'-protected oligos following the instructions from Leichty et al.³⁰ (detailed in Supplemental
133 Methods). For low viral load samples, we added a multiplex long-range PCR amplification
134 (mlrPCR) step, comprising two sets of non-overlapping EBV-specific primers³¹ tiling across the
135 genome. We improved the amplification yield for low copy EBV input (**Supplemental Table 1**)
136 by optimizing buffers and reaction conditions (**Supplemental Figure 1A and 1B**).

137 **Sequencing library preparation and hybrid capture enrichment**

138 Illumina sequencing library preparation steps consisted of DNA shearing, blunt-end
139 repair (Quick Blunting kit, NEB), 3'-adenylation (Klenow Fragment 3' to 5' exo-, NEB), and
140 ligation of indexed sequencing adaptors (Quick Ligation kit, NEB). We PCR amplified libraries to
141 a final concentration with 10 cycles using KAPA HiFi HotStart ReadyMix and quantified them
142 using bioanalyzer. We then pooled sample libraries balancing them according to their EBV
143 content and proceeded to target enrichment hybridization using custom EBV-specific
144 biotinylated RNA probes (MyBaits, Arbor Biosciences). We sequenced the libraries using
145 Illumina sequencing instruments with various read lengths ranging from 75bp to 150bp.

146 **Sequence preprocessing and de novo genome assembly**

147 We checked the sequence quality using FastQC (v0.10.1) after trimming residual adapter and
148 low quality bases (<20) using cutadapt (v1.7.1)³² and prinseq (v0.20.4),³³ respectively. After
149 removing reads that mapped to the human genome (hg38), we de novo assembled the
150 remaining reads into contigs with VelvetOptimiser (v2.2.5)³⁴ using a kmer search ranging from
151 21 to 149 to maximize N50. We then ordered and oriented the contigs guided by the reference
152 using ABACAS, extended with read support using IMAGE,³⁵ and merged the overlapping
153 contigs to form larger scaffolds (using in-house scripts). By aligning reads back to scaffolds, we
154 assessed contig quality requiring support from ≥ 5 unique reads. We created a final genome by
155 demarcating repetitive and missing regions due to low coverage with sequential ambiguous “N”
156 nucleotides. We excluded minor variants (<5% of reads) in final assemblies. Deposited
157 genomes can be accessed from GenBank ([accession #](#)) and raw reads can be downloaded
158 from SRA ([SRA accession #](#)).

159 **Diversity and variant association analysis**

160 We used Mafft (v7.215)³⁶ for multiple sequence alignment (msa) of genomes, and
161 constructed phylogenetic neighbor-joining trees with Jukes-Cantor substitution model using
162 MEGA (v6.0).³⁷ We determined variant sites relative to consensus using snp-sites (v2.3.2)³⁸
163 then projected variant loci on EBV type 1 reference. For principal coordinate analysis (PCoA),
164 we used dartR (v1.0.5).³⁹ We calculated dN/dS rates per gene using SNAP (v2.1.1) after
165 excluding frameshift insertions and ambiguous bases.⁴⁰ For variant association analysis, we
166 used 'v-assoc' function from PSEQ/PLINK. To control for multiple testing, we calculated
167 empirical p-values with one million permutations (pseq proj v-assoc --phenotype eBL --fix-null --
168 perm 1000000) with EBV type stratification which permutes within types (--strata EBVtype).

169

Results

170

Study participant characteristics

171

The objective of this study was to examine EBV genetic variation in a region of western Kenya with a high incidence of eBL²⁹ and determine if any variants are associated with eBL pathogenesis. We leveraged specimens from eBL patients and healthy children residing in the same geographic area (**Figure 1A**).²⁹ We sequenced the virus isolated from 58 eBL cases and 40 healthy Kenyan children, as controls. Patients aging between 1 and 13 years were predominantly male (74%), consistent with the sex ratio of eBL (**Table 1**).²⁹ Healthy controls had similar levels of malaria exposure based on previous epidemiologic studies.⁴¹ Control samples ranged in age from 1 to 6 years. This difference in age was necessary due to the finding that younger, healthy yet malaria-exposed children have higher average viral loads compared to older children who have developed immune control over this chronic viral infection.⁴²

181

Sequencing and assembly quality

182

EBV is a large GC-rich double stranded DNA virus with 172 kb genome of which ~20% is repetitive sequence. For the majority of eBL patients, we prepared sequencing libraries directly from tumor DNA followed by hybrid capture enrichment. For low copy viral samples, such as eBL plasma and healthy control blood, we designed and implemented additional viral whole genome amplification and enrichment prior to library preparation and sequencing (**Figure 1A; Supplementary Figure 1**). We generated a study set of 114 genomes including replicates from cell lines and primary clinical samples, representing 98 cases and controls. In addition, we sequenced 20 technical replicates for quality control purposes such as estimation of re-sequencing error or sWGA bias, and sensitivity of detection of mixed infections. The baseline re-sequencing error rate was limited to ~1.1x10⁻⁵ bases when our assemblies are compared with high-quality known strain genomes⁴³ (**Supplemental Table 2**). The mean error rate was

193 ~2.1x10⁻⁵ bases for sWGA with GenomiPhi, while it is ~1.1x10⁻⁴ bases when we used more
194 sensitive mlrPCR-sWGA (Methods). We obtained an average of ~5 million reads, resulting in an
195 average 9,688 depth of coverage across assemblies (**Supplemental Table 3**). De novo
196 sequence assembly created large scaffolds covering non-repetitive regions, except three
197 isolates with low coverage, yielded a median of 137,887bp genomes (ranging 47,534bp -
198 146,920bp). We determined the types of each isolate by calculating the nucleotide distance to
199 both reference types in addition to read mapping rates against type-specific regions. Despite our
200 ability to experimentally detect mixed types at levels as low as 10% (**Supplemental Figure 2A**),
201 we found no evidence of mixed infections in our cases and controls. Also, to ensure that our
202 sample inclusion was unbiased when selecting healthy individuals with high enough viremias to
203 sequence, we compared the viral loads and found no significant difference between type 1 and
204 2 ($P=0.126$, **Supplemental Figure 2B**).

205 **Equivalence of tumor and plasma viral DNA in eBL cases**

206 The viral genomes from eBL cases included virus reconstructed from plasma and tumor
207 samples. We confirmed that viral DNA in the plasma was representative of the virus in the tumor
208 cells by sequencing plasma-tumor pairs from 6 eBL patients (**Figure 1B**). Accounting for the
209 sequencing errors, the pairs appeared to be identical. Besides these plasma-tumor pairs, we
210 further confirmed identical EBV types with additional pairs from 8 separate patients using type-
211 specific PCRs. Overall, these findings demonstrate that viral DNA isolated from plasma
212 represents the tumor virus.

213 **Structural variation and intertypic recombinants**

214 First, we looked for large deletions within our viral genomes, but did not detect any of the
215 previously described deletions in EBNA, even though we were able to detect, as positive
216 controls, EBNA3C deletion in Raji and the EBNA2 deletion in Daudi cell lines. However, in one
217 sample we did detect a novel 20kb deletion, spanning from 100 kb to 120 kb in the genome

218 (Figure 1C), which contains lytic phase genes *BBLF1/2*, *BBLF1/3*, *BGLF1/2/3/4/5*, and
219 *BDLF2/3/4*. Interestingly, none of the latent genes were affected by this deletion.

220 Next, we interrogated our isolates by comparing the pairwise similarities of each genome
221 against EBV type 1 and type 2 references. By traversing through the genome with a window, we
222 were able to delineate regions that were more similar to one type over the other (Figure 1D). As
223 expected, Jijoye, a type 2 strain, displayed less similarity against type 1 reference around its
224 *EBNA2* and *EBNA3* genes, the most divergent region between types, while Namalwa as a type
225 1 strain shows the same pattern of dissimilarity against type 2 reference around the same
226 regions. Interestingly, we found three patient-derived genomes, eBL-Tumor-0012, eBL-Tumor-
227 0033, and eBL-Plasma-0049, with mixed similarity trends. Similar to a previously detected
228 recombinant strain (LN827563.2_sLCL-1.18),⁴³ all of the intertypic isolates carried type 1
229 *EBNA2* and type 2 *EBNA3* genes. Although not significant ($P=0.268$), these new intertypic
230 hybrids were all isolated from eBL patients while we did not detect any in healthy controls.

231 **Genomic population structure is driven by type differences with distinct
232 substructure in type 2 viruses.**

233 Our samples present a unique opportunity to study population structure of EBV types
234 and their co-evolution within a geographically defined region. As expected, the major bifurcation
235 within the phylogenetic tree based on the entire genome occurs between type 1 and type 2
236 viruses (Figure 2A). Viruses from eBL patients as well as healthy controls appeared to be
237 intermixed almost randomly within the type 1 branch. Interestingly, within type 2 genomes 8
238 eBL-associated isolates formed a sub-cluster. The hybrid genomes clustered with type 2s,
239 which is consistent with type 2 EBNA3s representing a greater amount of sequence than type 1
240 EBNA2 region.

241 We further explored viral population structure with principal coordinate analysis (PCoA)
242 of variation across the genome. While the first three components cumulatively explain 57.2% of

243 the total variance, the first component, which solely accounted for 43.9% of the variance,
244 separates genomes based on type 1 and type 2 (**Figure 2B, upper plot**). Similar to the
245 phylogenetic tree, intertypic genomes positioned more closely to type 2s. Interestingly, the
246 second and predominantly third components separate type 2 viruses into two distinct clusters,
247 group A and B (**Figure 2B, lower plot**). These clusters were reflected, although not as
248 distinctly, in the structure of the tree as well. The PCoA loading values, which accounts for
249 37.1% of the variance between the type 2 groups, are predominantly driven by correlated
250 variation spanning 70kb upstream of EBNA3C (**Supplemental Figure 3A and B**). Together
251 these findings suggest that there are two EBV type 2 strains circulating within this population.
252 We also examined viral variation from the perspective of LMP1. Interestingly, the vast majority
253 of viruses were grouped into Alaskan and Mediterranean strains (**Supplemental Figure 4**). For
254 all available LMP1 type 2 sequences, group A and group B correlated with Mediterranean and
255 Alaskan, respectively.

256 **EBV type 2 has less diversity compared with type 1**

257 We further explored the pattern and nature of genomic variation across the genome
258 comparing and contrasting EBV type 1 and type 2. Examining the pairwise divergence of coding
259 genes for all viral genomes, we found that the divergence was the highest in the type-specific
260 *EBNA* genes (*EBNA2* and *EBNA3s*), in particular, with *EBNA2* showing the greatest divergence
261 ($d=0.1313 \pm 2.3 \times 10^{-3}$) (**Figure 2C, upper panel**). Investigating each type separately, the
262 diversity within types was low for *EBNA2* and *EBNA3Cs*, consistent with type 1 and 2 being
263 separated by many fixed differences (**Figure 2C, middle panel**). In both types, intra-type
264 divergence was greatest for *EBNA1* and *LMP1*. Most remarkable was the fact that type 2
265 generally showed lower levels of divergence across the genome ($0.0047 \pm 3.7 \times 10^{-3}$ and 0.0025
266 $\pm 2.7 \times 10^{-3}$ for type 1 and type 2, respectively). Overall, these measures suggest that EBV gene
267 evolutionary rates differ by types.

268 To explore signatures of evolutionary selection, we examined the dN/dS ratios within
269 coding sequences (**Figure 2C, lower panel**). Overall most genes showed signals of purifying
270 selection, as indicated by $\omega < 1.0$, except *LMP1*, *BARF0*, and *BKRF2* (only type 2).
271 Interestingly, with dN/dS measures, *EBNA2*, *BSLF1*, *BSLF2*, and *BLLF2* genes had relatively
272 higher rates in type 2 compared to type 1 suggestive of differential evolutionary pressure.
273 Overall, the magnitude of average nonsynonymous and synonymous changes per gene,
274 normalized by gene length, reflect the high-level diversity accumulated in certain genes
275 (**Supplemental Figure 5**). Latency-associated genes generally have the highest non-
276 synonymous variant rates, but they also have the highest synonymous rates consistent with
277 longstanding divergence (**Figure 2D**). Other functional categories, including lytic genes, have
278 relatively low levels of nonsynonymous mutations suggesting stronger purifying selection.

279 **Global context of Kenyan viruses**

280 To more broadly contextualize our viral population from western Kenya, we examined
281 the phylogeny of the Kenyan viruses along with other publicly available genomes from across
282 the world (**Supplemental Table 4**). Among all isolates, the most polymorphic genomic regions
283 appeared to be around *EBNA2* and *EBNA3* genes (**Supplemental Figure 6A**). Phylogenetic
284 tree shows that the major types, type 1 and type 2, are the main demarcation point regardless of
285 the source or geographic location. The three intertypic genomes from our sample set neatly
286 cluster with the previously isolated intertypic hybrid, sLCL-1.18 (**Supplemental Figure 6B**).
287 Type 1 genomes from our study were split into two groups, with one forming a sub-branch only
288 with Kenyan type 1, including Mutu, Daudi, and several Kenyan LCLs. The second group
289 interspersed with other African (Ghana, Nigeria, North Africa) and non-African isolates. In
290 addition, a few of our genomes from healthy carriers clustered with a group of mainly Australian
291 isolates, however; none of them clustered with South Asian group. Our Kenyan EBV type 2s
292 generally intermixed with other type 2 genomes.

293 **Viral Genomic Variants and Associations with eBL**

294 After excluding the intertypic hybrids, we compared type frequencies of EBV genomes
295 isolated from eBL patients and healthy controls. We observed a significant difference in
296 frequencies with 74.5% of eBLs carrying type 1 while only 25.5% carried type 2 infections. In
297 contrast, 47.5% vs. 52.5% of type 1 and type 2, respectively were found in healthy controls.
298 EBV type 1 was associated with eBL (OR=3.24, 95% CI=1.36 - 7.71, $P = 0.007$, Fisher's exact)
299 (**Figure 3A**), independent of age and gender (all $P > 0.05$, **Supplemental Figure 7**). We then
300 expanded the association analysis to all 2198 non-synonymous single nucleotide variations
301 across the entire genome (**Figure 3B**). We did an initial association test for each
302 nonsynonymous variant and detected 133 significant associations (**Supplemental Table 5 &**
303 **Methods**). The vast majority of these variants were located within the type1-type2 region given
304 the highly correlated nature of this region. We then stratified by type to detect variation
305 independent of viral type. This yielded 6 variants solely associated with eBL (**Table 2**,
306 **Supplemental Table 5**). Variant 37668T>C represents a serine residue change to a proline at
307 the C-terminus of *EBNA2* (S485P) which is carried by 24/54 eBL cases; while this variant was
308 present in only 2/36 healthy controls. Two variants in *EBNA1* at 95773A>T and 95778T>G
309 (N38Y and H39Q, respectively) were both observed in 3/57 eBL isolates while their
310 corresponding frequencies were 11/36 and 12/37 among healthy controls.

311 Nucleotide variants in non-coding and promoter regions can affect regulation of viral
312 gene expression and activity within host cell. *BZLF1* is a regulator gene of lytic reactivation and
313 classified based on its promoter as prototype Zp-P (B95-8) and Zp-V3 (M81 strain).⁴⁴ We
314 determined variants at seven positions in the upstream promoter region of *BZLF1*
315 (**Supplemental Table 6**). Interestingly, all of the Kenyan viruses carried C at positions both -525
316 and -274 (as in Zp-P) regardless of promoter type. We also found that -532 and -524 are
317 variable in our isolates while these two are not variant in both promoter types. Our results show
318 that only 12.5% (5/40) type 1 promoter sequences fully resembled Zp-V3 in eBL group as

319 opposed to 22% (2/9) healthy genomes, while all of the type 2 genomes, without exception,
320 carried Zp-V3 type promoter regardless of disease status.

321

Discussion

322 In this study, we investigated genomic diversity of EBV by sampling virus from children
323 in western Kenya where eBL incidence is high.⁴¹ Our improved methods allowed us to
324 sequence asymptotically infected healthy controls with relatively low peripheral blood viral
325 loads, and thereby examine the virus in the population at large.⁴² We performed the first
326 association study comparing viral genomes from eBL patients and geographically matched
327 controls, without the need for viral propagation in LCLs; thus showing that type 1 EBV, as well
328 as potentially several non-type specific variants, are associated with eBL. Furthermore, as the
329 first study that characterized significant numbers of EBV type 2, we were able to compare and
330 contrast both types and explore the viral population, thus discovering novel differences including
331 population substructure in EBV type 2.

332 Our sequencing data demonstrated that EBV from plasma is representative of the tumor
333 virus in eBL patients. This is consistent with the premise that peripheral EBV DNA originates
334 from apoptotic tumor cells given that cell-free EBV DNA in eBL patients are mostly unprotected
335 against DNase⁴⁵, as opposed to being encapsidated during lytic reactivation, and that plasma
336 EBV levels are associated with tumor burden and stage.⁴⁶ These findings support the use of
337 plasma viremia as a surrogate biomarker and the development of plasma-based prognostic
338 tests with predictive models that could be used during clinical trials.⁴⁶ The lack of mixed
339 infections observed in our healthy controls could be due to the limit of detection in blood
340 compared to virus isolated from saliva.¹⁴ Further studies are needed to understand the
341 coevolution and dynamics of both EBV types.

342 In addition, we detected three intertypic recombinant EBV genomes solely found within
343 our eBL patients; similar to those previously described in other cancers.⁴⁷ It is unclear whether
344 the intertypic genomes represent a common event with subsequent mutation and recombination
345 or multiple independent events. If the latter is true, it supports more frequent mixed-type

346 infections given that both parents have to be present in the same cell.⁴⁸⁻⁵⁰ It is interesting that all
347 four intertypics observed to date carry the same type *EBNA2/EBNA3* combinations with the type
348 2 genes being so closely related (**Supplemental Figure 8**). Thus, if multiple events have
349 generated these viruses, it suggests that certain strains may have a greater proclivity to
350 recombine. Further studies will be needed to better define the intertypic population, their origins
351 and their association with disease.

352 Importantly, we were able to explore EBV population genetics and compare and contrast
353 type 1 and type 2 because of their co-prevalence in Africa. As well described, the major
354 differentiation in terms of genetic variability was the variation correlated with type 1 and type 2
355 viruses. These viral types showed distinct population characteristics with type 1 harboring
356 greater diversity especially in functionally important latent genes. Combined with the observed
357 nucleotide diversity, latency genes appear to have long standing divergence that has
358 accumulated significant synonymous changes (as opposed to recent sweeps on
359 nonsynonymous changes that would erase synonymous variants). Global phylogenetic analysis
360 emphasizes this diversity by providing two main subgroups for type 1 genomes in our
361 sequencing set. One group represents core local Kenyan viruses while the second group is a
362 mixture of viruses from across the globe, with the exception of South Asian viruses that group
363 apart. While previously sequenced type 2 viruses intermingle with western Kenya isolates, the
364 majority of these originated from East Africa with only a few from West Africa. Interestingly,
365 intermingling is also true for type 2 as we observed two distinct groups. This is more apparent in
366 PCA where type 2 virus forms 2 clusters. Examination via PCA, the loading values are
367 determined by a broad stretch of the genome from the end of *EBNA3C* to *LMP1*, where
368 Mediterranean and Alaskan designations correlate. It remains to be determined whether this
369 substructure might be due to the introduction of previously geographically isolated viruses or
370 distinct evolutionary trajectories within the population. Further study is needed with broader

371 samplings to understand its significance but our findings suggest that there may be significant
372 epistasis potentially including *LMP1*.

373 By sequencing virus directly from healthy controls, we were able to address the question
374 of relative tumorigenicity between type 1 and 2. We tested the long-standing hypothesis that
375 type 1 virus is more strongly associated with eBL, in contrast to type 2. Our work was able to
376 more definitely answer this question as we were not reliant on LCLs from healthy controls where
377 type 1 bias in transformation might explain the lack of previous associations. We earlier
378 demonstrated, by mutational profiling of EBV positive and negative eBL tumors, that the virus,
379 especially type 1, might mitigate the necessity of certain driver mutations in the host genome.¹⁶ In
380 addition, our genome-wide results controlling for viral type substantiates investigations of non-
381 type associated variation that could also impart oncogenic risk, as we found suggestive trends
382 for several nonsynonymous variants as well. Only a small subset of type 1 viruses from eBL
383 patients carried *BZLF1* promoter variant, which leads to a gain of function,⁴⁴ while all type 2
384 viruses carried this variant suggesting this promoter might be beneficial for type 2 but makes it
385 unlikely to be a driver of oncogenesis.

386 Overall, this population-based study provides the groundwork to unravel the complexities
387 of EBV genome structure and insight into viral variation that influences oncogenesis. Genomic
388 and mutational analysis of BL tumors identified key differences based on viral content
389 suggesting new avenues for the development of prognostic molecular biomarkers and the
390 potential for antiviral therapeutic interventions.

391 **Acknowledgements**

392 This work was supported by the US National Institutes of Health, National Cancer
393 Institute R01 CA134051, R01 CA189806 (A.M.M., J.A.B, C.I.O, Y.K.) and The Thrasher
394 Research Fund 02833-7 (A.M.M.), UMCCTS Pilot Project Program U1 LTR000161-04 (Y.K.,
395 J.A.B., and A.M.M.), Turkish Ministry of National Education Graduate Study Abroad Program
396 (Y.K.). We would like to thank the Kenyan children and their families who participated in this
397 study. Patrick Marsh for helping with EBV genotyping assays, Mercedeh Movassagh for sharing
398 genotyping primers. This publication was approved by the Director of KEMRI.

399 **Authorship Contributions**

400 Contribution: Y.K., C.I.O., and O.A. designed and performed experiments; Y.K. and
401 C.I.O analyzed and interpreted results; Y.K. made the figures; Y.K., J.A.B. and A.M.M. designed
402 the research and wrote the paper, C.I.O, J.A.O., J.M.O., and A.M.M. organized clinical sample
403 acquisition.

404 **Disclosure of Conflicts of Interest**

405 The authors declare no competing financial interests. The current affiliation for Yasin
406 Kaymaz is FAS Informatics and Scientific Applications, Harvard University, Cambridge, MA

407 **References**

- 408 1. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. *Nat. Rev. Cancer.*
409 2004;4(10):757–768.
- 410 2. Crawford DH. Biology and disease associations of Epstein-Barr virus. *Philos. Trans. R.*
411 *Soc. Lond. B Biol. Sci.* 2001;356(1408):461–473.
- 412 3. Moormann AM, Bailey JA. Malaria—how this parasitic infection aids and abets EBV-
413 associated Burkitt lymphomagenesis. *Curr. Opin. Virol.* 2016;
- 414 4. Torgbor C, Awuah P, Deitsch K, et al. A multifactorial role for *P. falciparum* malaria in
415 endemic Burkitt's lymphoma pathogenesis. *PLoS Pathog.* 2014;10(5):e1004170.
- 416 5. Simone O, Bejarano MT, Pierce SK, et al. TLRs innate immunoreceptors and *Plasmodium*
417 *falciparum* erythrocyte membrane protein 1 (PfEMP1) CIDR1 α -driven human polyclonal B-
418 cell activation. *Acta Trop.* 2011;119(2-3):144–150.
- 419 6. Robbiani DF, Deroubaix S, Feldhahn N, et al. Plasmodium Infection Promotes Genomic
420 Instability and AID-Dependent B Cell Lymphoma. *Cell.* 2015;162(4):727–737.
- 421 7. Cohen JI, Wang F, Mannick J, Kieff E. Epstein-Barr virus nuclear protein 2 is a key
422 determinant of lymphocyte transformation. *Proc. Natl. Acad. Sci. U. S. A.*
423 1989;86(23):9558–9562.
- 424 8. Rowe M, Young LS, Cadwallader K, et al. Distinction between Epstein-Barr virus type A
425 (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear
426 proteins. *J. Virol.* 1989;63(3):1031–1039.
- 427 9. Damaugh T, Hennessy K, Chamnankit L, Kieff E. U2 region of Epstein-Barr virus DNA
428 may encode Epstein-Barr nuclear antigen 2. *Proc. Natl. Acad. Sci. U. S. A.*
429 1984;81(23):7632–7636.
- 430 10. Cho YG, Gordadze AV, Ling PD, Wang F. Evolution of two types of rhesus
431 lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus. *J. Virol.*
432 1999;73(11):9206–9212.
- 433 11. Zimber U, Adldinger HK, Lenoir GM, et al. Geographical prevalence of two types of
434 Epstein-Barr virus. *Virology.* 1986;154(1):56–66.
- 435 12. Apolloni A, Sculley TB. Detection of A-Type and B-Type Epstein-Bart Virus in Throat
436 Washings and Lymphocytes. *Virology.* 1994;202(2):978–981.
- 437 13. Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L. Detection of a second
438 widespread strain of Epstein-Barr virus. *Lancet.* 1989;2(8666):761–765.
- 439 14. Correia S, Palser A, Elgueta Karstegl C, et al. Natural variation of Epstein-Barr virus genes,
440 proteins and pri-miRNA (revised). *J. Virol.* 2017;
- 441 15. Young LS, Yao QY, Rooney CM, et al. New type B isolates of Epstein-Barr virus from
442 Burkitt's lymphoma and from normal individuals in endemic areas. *J. Gen. Virol.* 1987;68 (Pt 11):2853–2862.
- 442 16. Kaymaz Y, Oduor CI, Yu H, et al. Comprehensive Transcriptome and Mutational Profiling of
443 Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences. *Mol. Cancer Res.*
444 2017;15(5):563–576.
- 445 17. Lucchesi W, Brady G, Dittrich-Breiholz O, et al. Differential gene regulation by Epstein-Barr
446 virus type 1 and type 2 EBNA2. *J. Virol.* 2008;82(15):7456–7466.
- 447 18. Kaye KM, Izumi KM, Kieff E. Epstein-Barr virus latent membrane protein 1 is essential for
448 B-lymphocyte growth transformation. *Proc. Natl. Acad. Sci. U. S. A.* 1993;90(19):9150–
449 9154.
- 450 19. Wohlford EM, Asito AS, Chelimo K, et al. Identification of a novel variant of LMP-1 of EBV
451 in patients with endemic Burkitt lymphoma in western Kenya. *Infect. Agent. Cancer.*
452 2013;8(1):34.
- 453 20. Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. The extent of genetic diversity

456 of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. *Virus*
457 *Res.* 2009;143(2):209–221.

458 21. Chiara M, Manzari C, Lionetti C, et al. Geographic Population Structure in Epstein-Barr
459 Virus Revealed by Comparative Genomics. *Genome Biol. Evol.* 2016;8(11):3284–3291.

460 22. Zhou L, Chen J-N, Qiu X-M, et al. Comparative analysis of 22 Epstein-Barr virus genomes
461 from diseased and healthy individuals. *J. Gen. Virol.* 2017;98(1):96–107.

462 23. Depledge DP, Palser AL, Watson SJ, et al. Specific capture and whole-genome sequencing
463 of viruses from clinical samples. *PLoS One.* 2011;6(11):e27805.

464 24. Kwok H, Wu CW, Palser AL, et al. Genomic diversity of Epstein-Barr virus genomes
465 isolated from primary nasopharyngeal carcinoma biopsy samples. *J. Virol.*
466 2014;88(18):10662–10672.

467 25. Liu Y, Yang W, Pan Y, et al. Genome-wide analysis of Epstein-Barr virus (EBV) isolated
468 from EBV-associated gastric carcinoma (EBVaGC). *Oncotarget.* 2016;7(4):4903–4914.

469 26. Wang S, Xiong H, Yan S, Wu N, Lu Z. Identification and Characterization of Epstein-Barr
470 Virus Genomes in Lung Carcinoma Biopsy Samples by Next-Generation Sequencing
471 Technology. *Sci. Rep.* 2016;6:26156.

472 27. Lei H, Li T, Li B, et al. Epstein-Barr virus from Burkitt Lymphoma biopsies from Africa and
473 South America share novel LMP-1 promoter and gene variations. *Sci. Rep.* 2015;5:16706.

474 28. Parras-Moltó M, López-Bueno A. Methods for Enrichment and Sequencing of Oral Viral
475 Assemblages: Saliva, Oral Mucosa, and Dental Plaque Viromes. *Methods Mol. Biol.*
476 2018;1838:143–161.

477 29. Buckle G, Maranda L, Skiles J, et al. Factors influencing survival among Kenyan children
478 diagnosed with endemic Burkitt lymphoma between 2003 and 2011: A historical cohort
479 study. *Int. J. Cancer.* 2016;139(6):1231–1240.

480 30. Leichty AR, Brisson D. Selective whole genome amplification for resequencing target
481 microbial species from complex natural samples. *Genetics.* 2014;198(2):473–481.

482 31. Kwok H, Tong AHY, Lin CH, et al. Genomic sequencing and comparative analysis of
483 Epstein-Barr virus genome isolated from primary nasopharyngeal carcinoma biopsy. *PLoS*
484 *One.* 2012;7(5):e36939.

485 32. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
486 *EMBnet.journal.* 2011;17(1):10–12.

487 33. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets.
488 *Bioinformatics.* 2011;27(6):863–864.

489 34. Consortium VB, Others. Velvetoptimiser. Available: bioinformatics.net.au/software/velvetoptimiser.shtml. Accessed. 2012;22.:.

490 35. Swain MT, Tsai IJ, Assefa SA, et al. A post-assembly genome-improvement toolkit (PAGIT)
491 to obtain annotated genomes from contigs. *Nat. Protoc.* 2012;7(7):1260–1284.

492 36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7:
493 improvements in performance and usability. *Mol. Biol. Evol.* 2013;30(4):772–780.

494 37. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version
495 7.0 for Bigger Datasets. *Mol. Biol. Evol.* 2016;33(7):1870–1874.

496 38. Page AJ, Taylor B, Delaney AJ, et al. SNP-sites: rapid efficient extraction of SNPs from
497 multi-FASTA alignments. *Microb. Genom.* 2016;2(4):e000056.

498 39. Gruber B, Unmack PJ, Berry OF, Georges A. dartr: An r package to facilitate analysis of
499 SNP data generated from reduced representation genome sequencing. *Mol. Ecol. Resour.*
500 2018;18(3):691–699.

501 40. Ganeshan S, Dickover RE, Korber BT, Bryson YJ, Wolinsky SM. Human immunodeficiency
502 virus type 1 genetic evolution in children with different rates of development of disease. *J.*
503 *Virol.* 1997;71(1):663–677.

504 41. Rainey JJ, Mwanda WO, Wairumu P, et al. Spatial distribution of Burkitt's lymphoma in
505 Kenya and association with malaria risk. *Trop. Med. Int. Health.* 2007;12(8):936–943.

507 42. Moormann AM, Chelimo K, Sumba OP, et al. Exposure to holoendemic malaria results in
508 elevated Epstein-Barr virus loads in children. *J. Infect. Dis.* 2005;191(8):1233–1238.

509 43. Palser AL, Grayson NE, White RE, et al. Genome diversity of Epstein-Barr virus from
510 multiple tumor types and normal infection. *J. Virol.* 2015;89(10):5222–5237.

511 44. Bristol JA, Djavadian R, Albright ER, et al. A cancer-associated Epstein-Barr virus BZLF1
512 promoter variant enhances lytic infection. *PLoS Pathog.* 2018;14(7):e1007179.

513 45. Mulama DH, Bailey JA, Foley J, et al. Sickle cell trait is not associated with endemic Burkitt
514 lymphoma: An ethnicity and malaria endemicity-matched case-control study suggests
515 factors controlling EBV may serve as a predictive biomarker for this pediatric cancer.
International Journal of Cancer. 2014;134(3):645–653.

516 46. Westmoreland KD, Montgomery ND, Stanley CC, et al. Plasma Epstein-Barr virus DNA for
517 pediatric Burkitt lymphoma diagnosis, prognosis and response assessment in Malawi. *Int.*
519 *J. Cancer.* 2017;

520 47. Cho S-G, Lee W-K. Analysis of Genetic Polymorphisms of Epstein-Barr Virus Isolates from
521 Cancer Patients and Healthy Carriers. *J. Microbiol. Biotechnol.* 2000;10(5):620–627.

522 48. Burrows JM, Khanna R, Sculley TB, et al. Identification of a naturally occurring recombinant
523 Epstein-Barr virus isolate from New Guinea that encodes both type 1 and type 2 nuclear
524 antigen sequences. *J. Virol.* 1996;70(7):4829–4833.

525 49. Yao QY, Tierney RJ, Croom-Carter D, et al. Isolation of intertypic recombinants of Epstein-
526 Barr virus from T-cell-immunocompromised individuals. *J. Virol.* 1996;70(8):4895–4903.

527 50. Skare J, Farley J, Strominger JL, et al. Transformation by Epstein-Barr virus requires DNA
528 sequences in the region of BamHI fragments Y and H. *J. Virol.* 1985;55(2):286–297.

529 **Tables:**

530 **Table 1. Characteristics of children included in EBV sequencing analysis.**

		eBL Patients (N=58)	Healthy Controls (N=40)
Age at collection, N (%)	<6 (yrs)	16 (27.6)	39 (97.5)
	7 - 13 (yrs)	42 (72.4)	1 (2.5)
Sex, N (%)	Female/Male	15/43 (25.9/74.1)	20/20 (50.0/50.0)
Obtained Specimen, N (%)	Tumor biopsy	41 (41.8)	-
	Blood	-	40 (100.0)
	Plasma	14 (14.2)	-
	New cultured eBL	3 (3.0)	-

531

532

533 **Table 2. Single nucleotide variants associated with eBL.**

Gene	Position	Ref	Alt	AA Change	eBLs		Healthy Controls		P	OR
					Genotypes*	Alt Count	Genotypes*	Alt Count		
EBNA2	37668	T	C	S485P	54	24	36	2	0.000328	0.1
EBNA1	95773	A	T	N38Y	57	3	36	11	0.001322	6.67213
EBNA1	95778	T	G	H39Q	57	3	37	12	0.000538	7.16129
BcLF1	124703	T	G	K159T	56	1	34	7	0.003178	12.7377
BcLF1	124709	G	A	A157V	56	1	34	7	0.003092	12.7377
BARF1	165131	T	C	V29A	57	36	36	10	0.004082	0.349462

534 Single nucleotide variant association test results with $P < 0.01$ after type stratification. Table

535 summarizes the statistically significant single nucleotide variant associations and their effects in the

536 coding regions. Reference is the genotype based on the consensus of all genomes in the sequencing

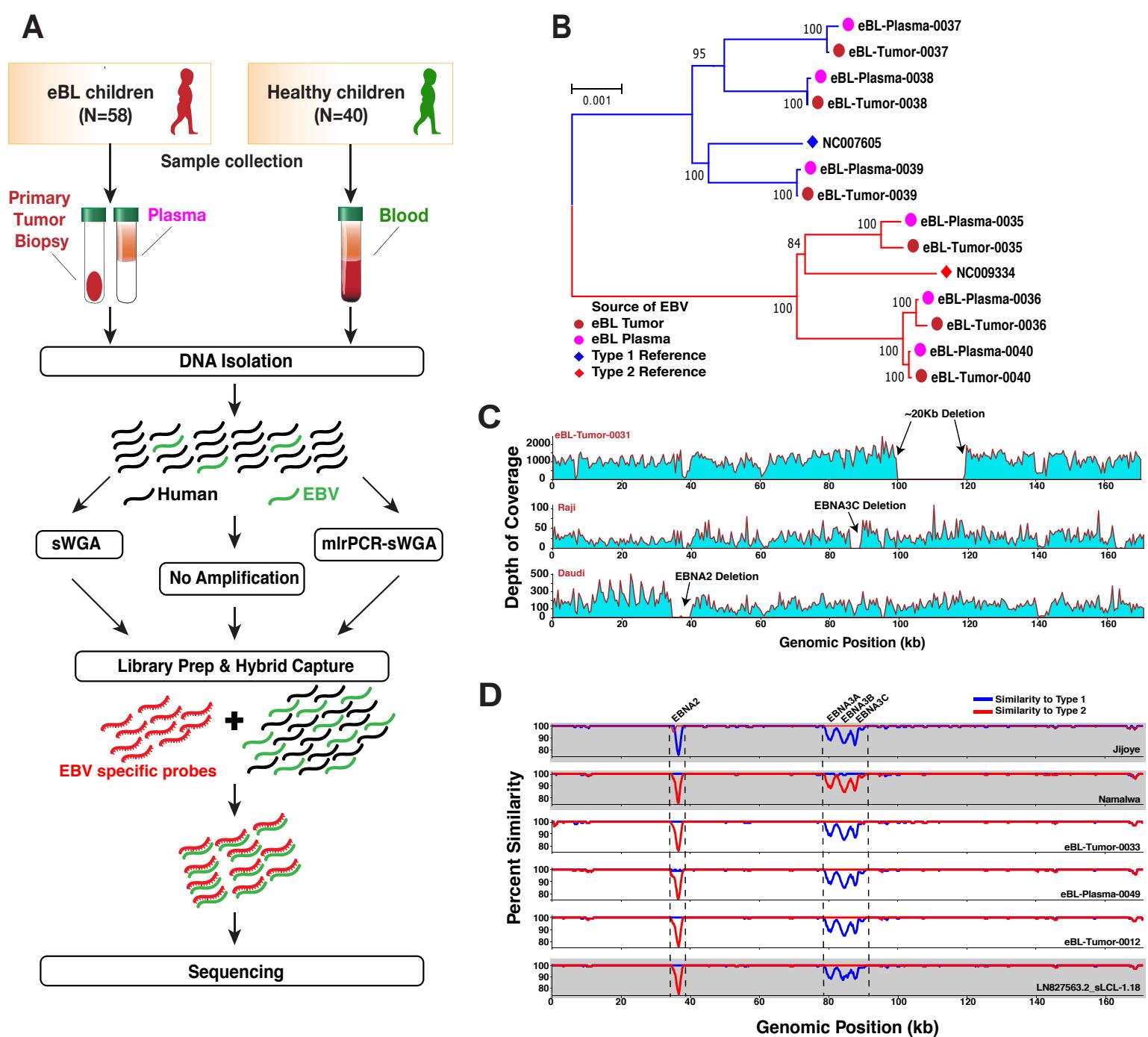
537 set and variant position denotes the projection to type 1 reference genome (NC_007605). The
538 association test has been performed for every variant position comparing the frequency of reference
539 and alternative (minor allele) bases among eBL patient and healthy control children (Fisher's exact
540 test). Empirical p values were based on one million permutations. *Genomes with missing data (Ns,
541 lack of coverage) were excluded. Ref: reference allele, Alt: alternative/variant allele, AA: amino acid, P:
542 p-value, OR: odds ratio.

543 **Figure Legends**

544 **Figure 1. EBV genome sequencing from tumors and primary clinical samples.**

545 **A)** Overview of sample collection and methods for sequencing virus from Kenyan children
546 diagnosed with eBL and healthy children as controls. Hybrid capture was universally performed
547 along with additional amplification and enrichment steps to overcome low amounts of virus and
548 input DNA. mlrPCR-sWGA; multiplexed long range PCR - specific whole genome amplification.
549 **B)** Comparison of virus from paired tumor (brown circles) and plasma samples (pink circles) at
550 diagnosis shows viral DNA circulating in the peripheral blood represents the virus in the tumor.
551 The neighbor-Joining tree is scaled (0.001 substitutions per site) and includes standard
552 reference genomes for type 1 (NC007605, blue diamond) and type 2 (NC009334, red diamond).
553 **C)** The depth of coverage showing an absence of reads from approximately 100 kb to 120 kb is
554 indicative of a large deletion in the virus from an eBL tumor (top panel). In the middle and lower
555 panels, although we did not detect any in our tumor or control viruses, we had the power to
556 detect deletions previously described in tumor lines including EBNA3C deletion in Raji and
557 ENBA2 deletion in Daudi strains. **D)** Three intertypic viruses were detected by scanning across
558 the genomes for percent identity in 1kb windows to both type 1 and type 2 references
559 (NC_007605, NC_009334, respectively). Top two graphs (grey) represent controls, Jijoye and
560 Namalwa, followed by 3 intertypic viruses from this study and one publicly available intertypic
561 virus (LN827563.2_sLCL-1.18 in grey).

562 **Figure 2. Diversity analysis of EBV genomes and coding genes in Kenyan population.**


563 **A)** Phylogenetic tree of the Western Kenya EBV genomes demonstrating the major type 1 and
564 type 2 demarcation (blue and red branches, respectively). Pairwise distance calculations were
565 based on Jukes-Cantor nucleotide substitution model, and the tree was constructed with the
566 simple Neighbor-Joining method. Genomes are colored based on sample type: healthy children

567 blood (green squares), eBL tumors (brown circles), plasma of eBL children (pink circles), and
568 new and previous cell lines (brown and yellow triangles, respectively). Low coverage genomes
569 are excluded. **B)** Principal coordinates analysis plots of nucleotide variations among whole
570 genome sequences with first and second axes (upper plot, colored by sample type), and second
571 and third axes (lower plot, colored by EBV subtype and shapes represent case and control). **C)**
572 Genetic distance metrics of each EBV gene calculated based on Kimura-2-parameter method
573 averaged across all genomes (upper panel) or type 1 / type 2 separately (middle panel). Lower
574 panel shows nonsynonymous to synonymous change (dN/dS) ratios of viral protein coding
575 genes averaged across all pairwise comparisons with in each group separately. Error bars
576 represent standard error of mean. (Three intertypic genomes are excluded). **D)** Average
577 synonymous and non-synonymous variants in genes are summarized as functional categories
578 of genes. Variant level represents the number of variants per gene normalized by gene length in
579 kb.

580 **Figure 3. Significant associations of EBV type 1 genomes and single nucleotide variants**
581 **with eBL.**

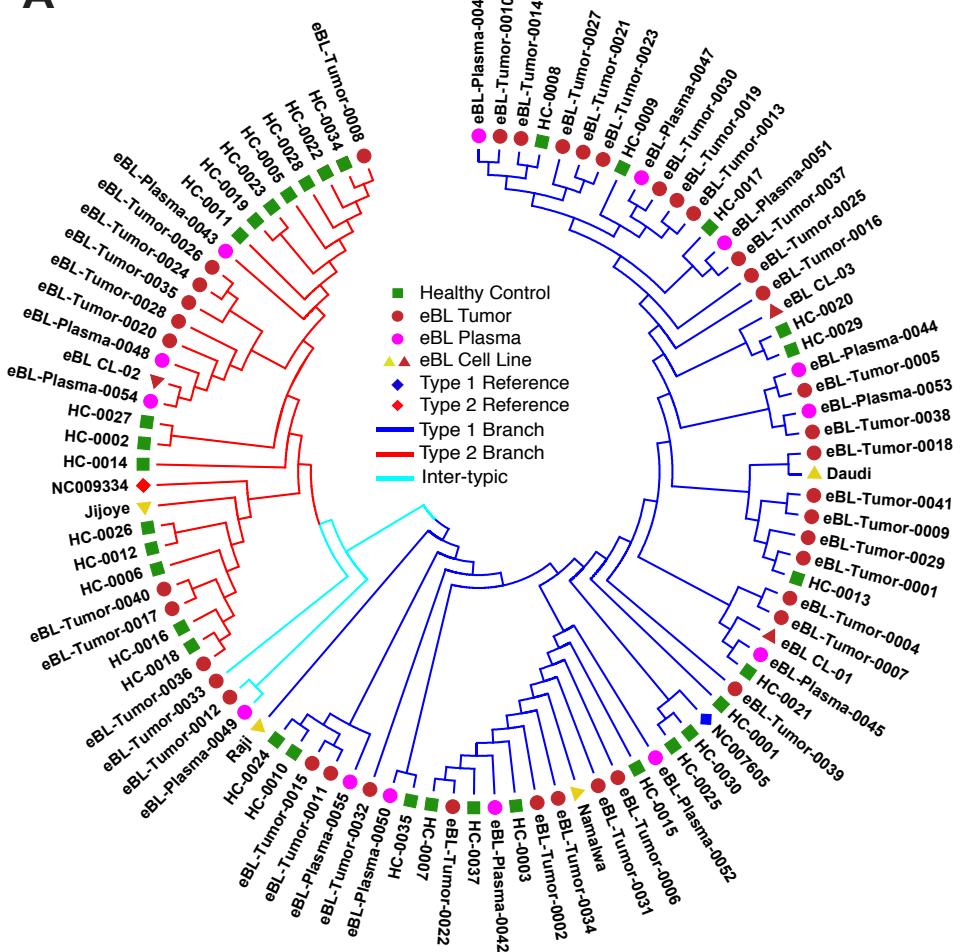

582 **A)** The frequency of type 1 and type 2 genomes identified from eBL patients and healthy control
583 children (excluding the three intertypic hybrid genomes is significantly different ($P=0.007$,
584 Fisher's exact). **B)** Manhattan plot for genome-wide associations of non-synonymous single
585 nucleotide variants tested for frequency differences between cases and controls controlling for
586 type specific variants. The significance of each locus association is represented with an
587 empirical p-value (negative log10 scale) that was calculated by 1 million permutations with
588 random label swapping. Permutations were stratified for EBV genome type and adjusted for the
589 missing genotypes due to lack of coverage. All significant variants associated with eBL cases
590 are shown in red ($P < 0.01$). Nucleotide positions are according to type 1 reference genome.

Figure 1

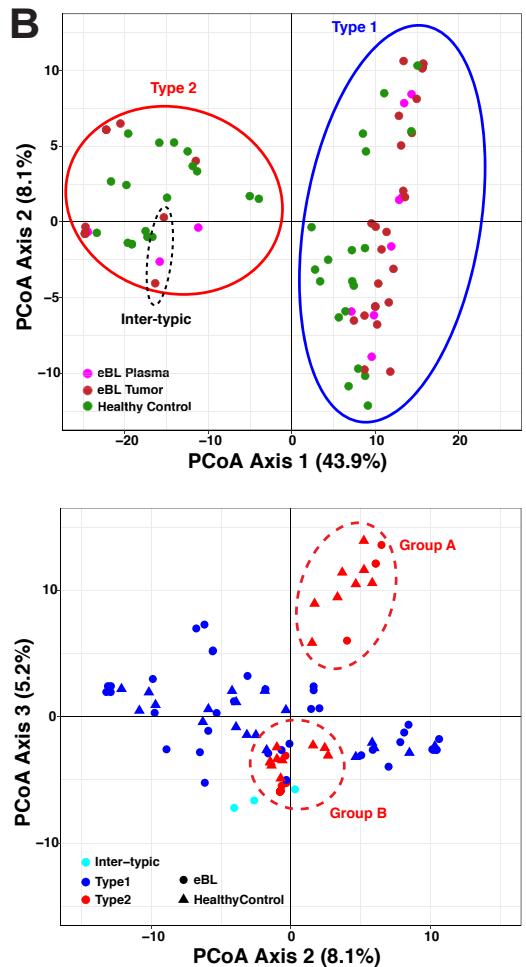
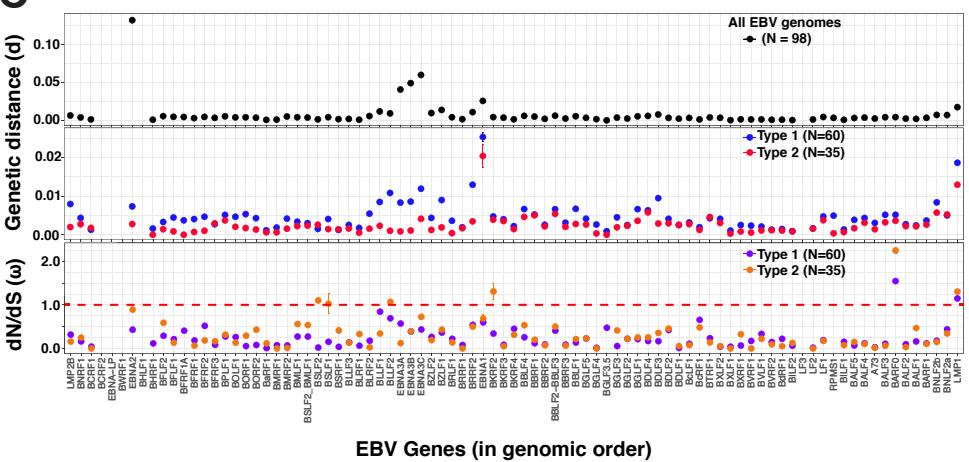
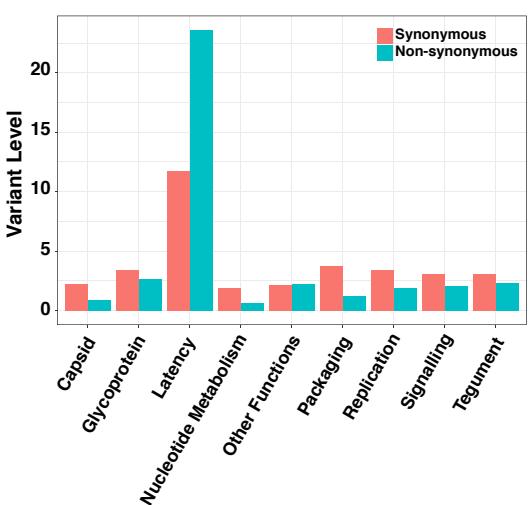
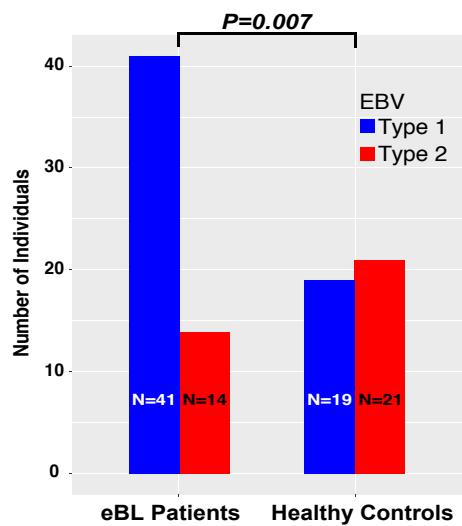


Figure 2


A


B

C



D

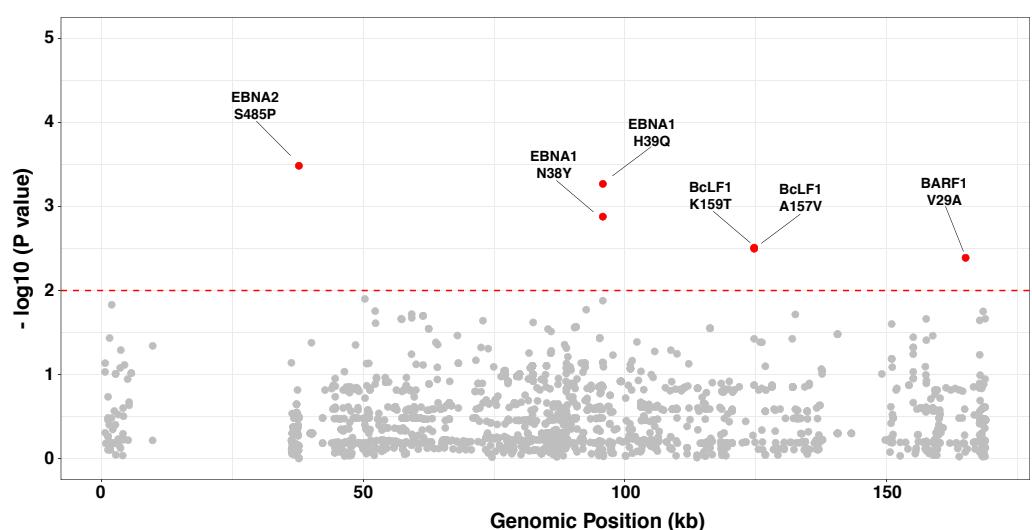


Figure 3

A

B

