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Abstract: Bayesian and Maximum Entropy approaches allow for a statistically sound and 

systematic fitting of experimental and computational data. Unfortunately, assessing the relative 

confidence in these two types of data remains difficult as several steps add unknown error. Here 

we propose the use of a validation-set method to determine the balance, and thus the amount of 

fitting. We apply the method to synthetic NMR chemical shift data of an intrinsically disordered 

protein. We show that the method gives consistent results even when other methods to assess the 

amount of fitting cannot be applied. Finally, we also describe how the errors in the chemical shift 

predictor can lead to an incorrect fitting and how using secondary chemical shifts could alleviate 

this problem. 
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1. Introduction 

Intrinsically Disordered Proteins (IDPs) do not fold into stable conformations, because their free 

energy landscapes possess many shallow local minima. Some of these may correspond to 

conformations rich in secondary structure and α-helices appear to be the most common of these 

regular structures. Their ability to fold into different conformations allows IDPs to interact with 

different binding partners and tuning their populations by post-translational modifications can 

allow for the regulation of important cellular functions. An accurate description of the secondary 

structures adopted by IDPs, as well as of their populations, can therefore help us understand the 

cellular behaviour of this important class of proteins. 

Several methods exist to generate ensembles of configurations representing the conformational 

heterogeneity of IDPs, including all-atom molecular dynamics simulations [1], implicit-solvent 

Monte Carlo simulations [2] and other sampling approaches [3–5]. As the time evolution of the 

conformations is not relevant in the types of ensemble reweighting we here consider, from now on 

we loosely refer to molecular dynamics as any simulation method that can produce an ensemble of 

conformations. In practice, the simulated ensembles differ from the true ensembles for three main 

reasons. First, because the simulation conditions may not be exactly the same as the experimental 

ones —for example, different ionic strength, salts or pH may be used. Second, because equilibrium 

sampling of the IDPs conformational space is challenging to achieve, mainly due to its enormous 

size. And third, because all energy functions used in molecular simulations describe particle 

interactions with limited accuracies. This is particularly so for water-protein interactions, that are 

prevalent in IDPs due to their large solvent-accessible surface area [1,6–10]. Also, because of their 
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“flat” energy landscapes, IDPs may be particularly prone to even minor inaccuracies in energy 

functions. Thus, it would be desirable to correct the simulated ensembles by improving their 

agreement to measured experimental data. 

Some experimental data produce properties that depend on the molecular structure, and 

therefore can be used to correct simulated ensembles [11–13]. However, the resolution of the 

experimental data is lower than that of molecular dynamics so that determining conformational 

ensembles from experiments needs to deal with experimental uncertainties [14,15]. There are 

basically two different approaches to compare experiments and simulations. Either molecular 

coordinates are produced from the experimental data, as is done with X-ray crystallography or NMR 

models [16], and these can then be compared against the simulated structures; or the experimental 

observable is generated from the simulated conformations and compared directly to the 

experimentally measured quantities [17]. The first approach inevitably introduces some models and 

assumptions to generate a higher resolution model (molecular coordinates) from a lower resolution 

one (experimental outcome). Therefore, the second approach is less model dependent as long as the 

observable quantities can be calculated from the molecular coordinates. The latter is achieved with a 

predictor also known as a forward model. The need for fast and (relatively) accurate predictors is a 

limitation of these second approach but they exist for several nuclear magnetic resonance (NMR) 

techniques. 

NMR chemical shifts (CS) are extremely useful to give insight into the secondary structure of 

IDPs [18–23]. CS measured by NMR are determined mainly by the type of residue but, for a given 

residue, some atoms will give different CSs depending on the local geometry of the residue, as 

quantified for example by its location in the Ramachandran map [23]. CS for a given protein 

conformation can also be predicted with a low computational cost. Therefore, CS can be used to 

benchmark conformational ensembles produced by molecular dynamics simulations and, if 

necessary, to fit them to experiment. 

Maximum Entropy or Bayesian approaches are powerful tools to fit simulated ensembles to 

experimental CSs. Maximum Entropy produces the minimum perturbation to the original ensemble 

so that it fits the experimental data. In a pure Maximum Entropy approach, experimental and 

prediction errors are not taken into account. This limitation can be overcome by reformulating the 

Maximum Entropy approach within a Bayesian reasoning [24–26]. In this work, we will use the 

algorithm called Bayesian/Maximum Entropy (BME) put forward by Bottaro et al. [26], which is 

based on work by Hummer and Köfinger [25]. The CS calculated from a simulated conformational 

ensemble can be considered the prior distribution in a Bayesian formulation. Even if the 

experimental error is known, errors in the prior are difficult to quantify, including force field 

accuracy, lack of full convergence of the simulations and errors in the forward model used to 

calculate CS from the ensemble. In the BME reasoning, we can tune the confidence in the prior with 

respect to the likelihood of the data with a subjective hyper-parameter θ (see Eq. 1 in Methods). 

The choice of the confidence parameter θ is far from trivial. θ defines how much we rely on the 

simulated results compared to the experimental data; i.e. how much we want to reweight the 

simulated data to fit the experimental ones.[12,27] Here we suggest a new technique to determine 

this number when fitting simulated ensembles of an IDP using CS. 

Protein CS have previously been used in Bayesian approaches to structure determination 

[28–33]. Purely Bayesian methods require parameter sampling and are computationally expensive. 

Therefore, they cannot easily be applied directly to ensembles of thousands of structures. The 

ensembles are usually clustered into a much smaller set, but, as clustering of IDPs is far from trivial, 

here we use BME which can deal with tens of thousands of structures and their experimental 

observables. The calculations reported in this work took at most a few minutes to run - depending 

on the number of θ values scanned - in a python Jupyter notebook running on a workstation. 

As an example of an IDP we will use the protein ACTR [34]. ACTR consists of 71 residues, and 

was recently used as a benchmark system in a series of molecular dynamics simulations with 

different force fields [35]. We here focus on the simulations with three force fields: 

AMBER99SB-disp, AMBER03ws, and CHARMM36m (respectively named a99SBdisp, a03ws and 
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C36m hereafter). As previously described [35], different force fields predict different helical content 

for different regions of the protein sequence (Figure 1) These force fields represent some of the 

newest versions of two popular force field families [1]. However, our aim here is not to evaluate 

their strengths or weaknesses, but to use them as three possible conformational ensembles. 

 
Figure 1. Amount of helical content in the ACTR trajectories simulated using different force fields. 

The a99SBdisp is taken as the target ensemble and the C36m and a03ws as the simulated trajectories 

to reweight. 

Methods to test approaches to combine experiments and simulations are often hampered by the 

fact that we generally do not know the true target ensemble, and thus it is then not clear what an 

accurate result would be. Thus, to gain full control of the reweighting procedure and to know the 

desired outcome, we here use synthetic data. This is an approach that has proved powerful for 

discovering the impact of experimental uncertainties in structure determination that we and others 

have previously used [36–41]. In particular, we consider the a99SBdisp as a reference ensemble for 

generating synthetic data (i.e. we treat calculated CS from this ensemble as the experimental data). 

To clarify that these structures and their predicted CS are not actually experimental, we call this 

ensemble target ensemble. Then we will fit the predicted CS of other ensembles to the CS of the target 

ensemble. Namely, we will fit the a03ws and the C36m trajectories, which correspond to different 

conformational ensembles. We will also fit the a99SBdisp derived CS into the target ensemble, i.e. 

into itself, to evaluate the effect of the errors of the CS predictor (see Methods section).  

The use of CS derived from a target ensemble which is known will allow us to compare the 

reweighted distribution of CS to the target-ensemble distribution, which would not be accessible 

from an actual NMR experiment. The CS from an NMR experiment depend on the time-scale of 

exchanging conformations. If, as it is for IDPs, this time-scale is fast, the measured CS is a time and 

ensemble average of all conformations. Thus we only get the first moment (the mean) of the 

distribution of CS in the conformational ensemble. In cases when the experiment reports 

distributions or higher distribution moments, several approaches can extend the Maximum Entropy 

method to those cases [42–44]. 
Even if the experiment only produces the mean of the distribution, the goal of reweighting is to 

obtain an ensemble that better reproduces the experimental ensemble of structures, not only its 

(measured) mean. By using synthetic data, we can compare how the distribution of CS during the 

reweighting approaches the target distribution. After all, the BME procedure guarantees that we can 

systematically approach the mean value, but at some point, overfitting could lead to a distribution 

that deviates from the target ensemble distribution instead of approaching it. 
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In this work we will explore how similar the target and reweighted ensembles are during a 

reweighting procedure using the distance between the distributions (see Methods section). We will 

also compare the behaviour of the average value of these distributions. From that, we will propose 

some rules to assess the amount of reweighting (determining θ) in real situations where the target 

distribution is unknown because only the experimental average value is available. 

2. Methods  

The MD trajectories with different force fields were generated as part of a recent study aimed at 

developing and benchmarking force fields [35] and were kindly shared by the authors. In this work 

we use the trajectories generated with the Amber ff03ws force field used with the TIP4P/2005 water 

model and with scaled protein-water interactions (a03ws) [6], the CHARMM36m (C36m) force field 

with its native TIP3P water model [45], and Amber ff99SB-disp with its native TIP4P-D-based water 

model (a99SBdisp) [35]. All the simulations are 30 µs long and contain N = 29777 frames. In this 

work we take the a99SBdisp as the target distribution and we will fit the a03ws and the C36m to this 

one, using CS. In the main text we focus on the a03ws results, but all the analysis is reproduced for 

the C36m ensemble as supplementary figures. 

CS can be used to reweight IDP ensembles because they are sensitive to local secondary 

structure conformations. Indeed, experimentally derived CS indices allow for the quantification of 

secondary structure based on the CS values [46,47]. Although one might use the predicted secondary 

structures from these algorithms to reweight simulated ensembles this would introduce unnecessary 

model bias, and we instead computed the CSs from the ensembles and calculate the primary data 

directly. For that, we used existing algorithms and software to predict CS from structures. 

Methods to calculate CS can introduce both systematic and random errors in their predicted 

values, but because we do not have experimental CS for our target ensemble, but predicted ones, we 

need a procedure to model these errors, that would be present in an actual experiment. The use of a 

predictor with perfect precision and accuracy can give some insight into the information content of 

CS, as we also explore below, but it does not reflect an experimental setting. Although we could 

have arbitrarily introduced random and systematic error to the predicted CS of the target ensemble, 

we preferred an alternative approach where the errors came from using two different predictors. We 

believe that that magnitude of the introduced errors will be more realistic than chosen arbitrarily. 

We used Sparta+ [48] and PPM [49] to simulate the target a99SBdisp CS and only PPM [49] to 

simulate the reweighted distributions. When not stated otherwise, the target CS come from Sparta+ 

and we therefore do not expect that reweighting will lead to perfect agreement with the CSs 

predicted from the ensembles using PPM. PPM was specifically designed to calculate CS for 

individual frames in a conformational ensemble, i.e. it does not include in its training the thermal 

fluctuations around a given structure that others methods implicitly absorb into the predicted 

values. We have used as the error for the PPM predictor the reported errors of the validation set 

(table 3 in [49]), namely 1.06 for Cα, 1.23 for Cβ and 1.32 for the carbonyl C. This choice is based on 

the fact that the experimental error in the CS is negligible compared to the error of the forward 

model, and thus that the main uncertainty when determining whether a predicted average CS is 

“close” to the experimental measurement comes from the error of the forward model. We note also 

that the estimated error of the CS predictors come from analyses of a much more heterogeneous set 

of structures and might be an overestimate compared to the relatively narrow distribution of CS in 

IDPs. Our set of CS contained 69 Cα chemical shifts, 64 Cβ chemical shifts and 69 C chemical shifts, 

totalling m=202 chemical shift data. 

The application of the BME approach is equivalent to the minimization of the following 

objective function: 

� � �
� ����� ��� � ��� � 	
�	
��� � ���           (1) 

Where wi are the reweighted weights, N is the number of structures in the ensemble and m the 

number of experimental observables. �����  measures the degree of fitting:  

����� � �
�∑ �∑ 
�������������

��� �
	

��	
�
���                (2) 
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Where �
�� is the chemical shift of atom i in structure j and �
	���  is the target value. And the 

relative entropy, defined as 
�	
 � � ∑ �� log �
�
�
�
�
���  measures the deviation from the initial 

weights, ��� , in our case taken as 1 �⁄ . SREL is closely related to the effective sample size, Neff, a 

useful measure of how much reweighting has taken place (see Eq. 3). 

In the calculation of ����� we divide by the number of CS data, assuming completely 

independent data. Each �� is equated to the error of the PPM predictor reported above, as errors in 

the convergence of the simulations and the accuracy of the force fields are difficult to quantify. 

Because of these assumptions, the absolute value of �����  is of limited utility and it should be merely 

interpreted as a normalized measure of the residuals. 

The effective sample size varies from 1 when all structures have the same weight, i.e. before the 

reweighting; to 0, in case a single structure gets 100% of the weight. There are different definitions on 

the effective sample size, one commonly used was put forward by Kish [50], but here we use the 

definition based on relative entropy, as it fits better within the BME paradigm: 

���� � exp �
�	
�                    (3) 

The optimization of Eq. 1 can be performed with a set of auxiliary Lagrange parameters λ, 

which allow writing the optimal weights as [24,51,52]: 

�� � �
� exp�� ∑ ���
���

��� �              (4) 

Where Z is a normalization constant. This expression highlights two important aspects of the 

BME approach. First, the N weights are determined by optimizing the values of m λ parameters. As 

N, the number of structures in the ensemble, is usually much larger than the number of experimental 

data m, this reduces overfitting. Second, the fitting consists of adding a linear term to the free energy 

associated to each observable. This linear term can be seen as the minimal perturbation needed to tilt 

the distribution of the computed ensemble so that its average shifts towards the experimental value. 

Indeed, a purely Bayesian approach introducing a linear term to the energy [53] leads to results that 

are equivalent to a Maximum Entropy approach including an error term [54]. The strength of the 

reweighting is directly determined by the values of λ, and not by θ. In other words, a given θ may 

lead to different λ, and thus different reweightings for two different ensembles fitted to the same 

target values. (see Fig. S7)   

After each of the fittings, we compared the average values with Eq. 2 and the distribution of 

values between the reweighted and the target distribution with the Wasserstein distance, as 

implemented in the Python package SciPy [55]. As each pair of reweighted and target CS 

distributions produces a Wasserstein distance value, thus we used the mean of all these m values as 

a measure of the similarity between two sets of distributions. 

Secondary CSs were calculated for the target and reweighted ensemble in the same way. The 

secondary structure of each conformation was determined with the DSSP [56] implementation in 

MDTraj [57]. Then, the averaged CS for residues in coiled conformations represents the random coil 

reference. The secondary CS is the result of subtracting the random coil reference to the CS. 

3. Results 

The first step in a reweighting procedure is to ensure that the ensemble can be reweighted. 

Ideally, the ensemble should contain values around the target value. Figure S1 shows that this is the 

case for the two fitted ensembles discussed in this work.  If the target value lies outside the 

distribution of the calculated ensemble values, the convergence of the reweighting is compromised. 

In that case one should check if there are systematic errors in the predictor, the experiment, or the 

simulation. Alternatively increasing the sampling could populate the less probable regions of the 

distribution. Sampling of these regions can also be achieved by running simulations with restraints 

[33,52,58–62]. 

The improvement of the fit resulting from the reweighting can be measured with the �����  

explained in the Methods section. Lower values of �����  indicate a better fitting. As reweighting 

takes place, some conformations gain weight while others lose it. This leads to a reduced entropy 

compared to the original ensemble, which can be converted to an effective sample size, Neff, ranging 
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from 1 to 0. As the amount of reweighting increases to fit the data more accurately, Neff, decreases. In 

some systems, the shape of the  vs. Neff curve allows for the determination of a critical value 

from which no further reweighting is necessary [26,63]. However, in fitting CS of ACTR we find a 

relatively homogeneous decrease of , which makes it difficult to decide when to stop fitting(see 

Figure 2). A second common procedure is the Wald-Wolfowitz run test [64] for the residuals, where 

one checks that they are mutually independent. Long stretches of residues with the same sign 

indicate that more reweighting is possible. However, when using BME, decreasing θ decreases the 

size of the residuals, but not their signs (see Figure S2), i.e. each reweighted CS approaches its target 

CS from the same side as θ is decreased. This renders the Wald-Wolfowitz run test procedure 

inadequate.  

We note here that Figure 2 shows a low  even at the start of the fitting procedure. A  

below one may suggest that the fit is good enough, but can also reflect problems in estimating errors 

in both experiments and forward models, and in the statistical independence of the data. The  

used in the calculation corresponds to the PPM error for a heterogeneous set of structures and their 

experimental CS. When compared to Sparta+ ACTR chemical shifts, the errors are much smaller (See 

Figure S3). Because of this error underestimation, the absolute value of  is of limited use. If we 

use the PPM CS for the target ensemble, we are effectively using a predictor without error. In that 

case,  is ill-defined, but we get a curve very similar to Figure 2 (see figure S4). This suggests that 

the CS difference reflects more the different structural composition of the ensemble (Figure 1) than 

the errors of the predictor.  

Indeed, the lack of a clear target value for  is one key reason why we need to determine the 

parameter θ.  Independently of the origin of the small  the ensembles described by the three 

force fields are different (Figure 1) and should be distinguishable by their differences in CS. For 

many residues the CS differences are small because they present a random coil structure, but the 

region where the target and simulated ensembles show different helical content, the CS show larger 

differences (Figure 3 and S5). This trend is more clear for the a03ws force field than for the C36m 

(Figure S5). This suggests that reweighting would improve the simulated ensembles by rendering 

them closer to the target ensemble. But traditional methods do not always provide a clear answer to 

how to choose θ to avoid over-fitting but have enough reweighting. 

 
Figure 2. Evolution of with the effective sample size (Neff), showing the lack of an L-shaped 

curve. The a99SBdisp is taken as the target ensemble and the C36m and a03ws as the simulated 

trajectories to reweight. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 3, 2019. ; https://doi.org/10.1101/689083doi: bioRxiv preprint 

https://doi.org/10.1101/689083
http://creativecommons.org/licenses/by/4.0/


 7 of 17 

In this work we suggest using a validation set to determine the relative weights of the 

experimental data and the simulation prior when reweighting, i.e. determine an optimal value of θ. 

A similar idea was used by Cesari et al. to find the optimal balance between the distribution arising 

from the force field and the experimental data [65]. Here, we put forward the following procedure: 

1. Split the frames of the trajectory into a training set (t) and a validation set (v) of the same 

size. We used odd and even frames for the training and validation set respectively. We use 

sets of the same size because we aim to compare average values and distributions, not 

individual conformations of the validation set. A validation set as large as the test set is 

therefore needed to minimize the standard error of the mean and discretization errors of the 

distribution. We here chose to use an interleaved training and validation set after confirming 

that the two sets have highly uncorrelated CSs as frames are sampled only once every 1 ns. 

2. Fit the BME for a range of θ values to the training set and apply the optimized Lagrange 

parameters λ to reweight the validation set. 

3. For each of the θ values, evaluate the following properties 

a.  (Eq. 2) of the training ( ) and the validation set ( ). 

b. Average distance between the training and the validation sets (D(t,v)). 

c. Average distance between the training set and the target (goal) distribution (D(t,g)), 

and average distance between the validation set and the target (goal) distribution 

(D(v,g)).  

Note that step 3c is only possible in the case of synthetic data and is used as a benchmark for a 

selection procedure. Ideally we would like to reweight as long as the validation set distribution 

approaches the target distribution, i.e., we want to minimize D(v,g). In a real case scenario, as the 

target distribution is not known, we cannot measure this distance. Therefore we need to see if any of 

the accessible measures can give us information about D(v,g). 

 
Figure 3. CS difference between the target CS and the a03ws CS for the three atoms used (C, CA, and 

CB) compared to the difference in helicity for these two ensembles (in red). Although for many 

residues the difference lies below the error of the predictor, for some regions it does not. Besides, the 

helicity is correlated with the CA and the CB CS difference
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Fig. 4 plots all the values described in the previous procedure. As expected, the BME produces 

an average CS that approaches the target CS, so that it systematically reduces . At θ≈3 the 

validation set fits best the target CS and then  starts increasing. This is a sign of overfitting. 

Interestingly the behaviour of these averaged values is followed very similarly by the distributions, 

as represented by the shape of D(t,g) and D(v,g). The fact that the distributions, which are what we 

aim to fit, and the average values have parallel behaviours is very positive as this tells us that we can 

use the average value as a proxy of the distribution. At a value close to θ ≈ 3, D(t,v) has a high 

curvature and starts growing. The training and the validation distributions, which had been very 

similar for values θ > 3, start diverging. This confirms that at this point, overfitting occurs. The fit to 

the C36m ensemble shows a very similar trend (Fig. S6). A different measure also suggests the start 

of the overfitting regime. Fig. S7 shows the root mean square of the Lagrange λ terms that the BME 

introduces for the fit (see Eq. 4). At θ < 2 the λ parameters start growing at a much faster speed, 

showing that from this point the reweighting becomes very strong and very sensitive to the θ value. 

 
Figure 4. Behaviour of different quantities during the reweighting procedure of the a03ws ensemble. 

The quantities defined as thin lines would not be measurable in a real case scenario, but their 

behaviour can be inferred from the quantities in thick lines. 

To evaluate the importance of the error introduced by the predictor and whether this was 

leading to overfitting, we reproduced the same analysis with target CS coming from the PPM 

predictor, i.e. excluding the predictor error. As Figure S8 depicts, the behaviour of the different 

quantities is equivalent to Figure 4, with the only difference than the difference in distributions 

D(t,g) and D(v,g) and shifted to lower values, as expected from the use of the same predictor. The 

two distributions are more similar, because the predictor error is missing, and they become 

diverging at a slightly smaller value of θ, as  also does. This shows that the stochastic error of 

the predictor averages out and that BME is robust to it. Systematic errors in the predictor could be 

important, as will be shown below, but in this case their influence is much smaller than the 

differences in CS arising from conformational differences. 

Once an optimal value for θ has been determined, other properties of the ensemble can be 

calculated. As an example, here we calculate the α-helical content and plot it in Figure 5 and S9. We 

stress that the reweighting improves the fit, but does not lead to a perfect agreement. There are 

several sources for the disagreement. The major source of the disagreement is the fact that the 

predictor (PPM software) has an error in the prediction with respect to the target value (Sparta+ 

software). Even for the same ensemble of configurations predicted and target CS differ, thus leading 

to a disagreement between secondary structure content as is discussed below Further although the
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two are tightly related, there is not a one-to-one relationship between the secondary structure and 

the CS values. Also, the reweighted ensemble may not contain structures with the optimal α-helical 

content. For example, the a03ws ensemble contains a negligible amount of α-helical structures 

around residue number 60, therefore, even after the reweighting, the helicity of this region cannot 

increase and remains too low. Finally, as long as the experimental data does not uniquely specify the 

target distribution, procedures such as this will always be affected by the choice of a reference (prior) 

distribution and will thus not give the exact target distribution. 

 
Figure 5. α-helical content for the reweighted and target ensembles. For the reweighted ensembles 

the train (a03ws-t) and validation (a03ws-v) sets are shown. The original ensembles before the 

reweighting is also shown. 

When we examine the α-helical content of the validation ensemble after reweighting we find 

that it is further away from the initial ensemble than the training ensemble. This makes sense as we 

are using a Maximum Entropy algorithm, which ensures minimal perturbation of the training 

ensemble from the original one. The minimal perturbation, expressed as minimization of the 

Kullback-Leibler divergence, is true only for the training ensemble. Therefore, the parameters of the 

training ensembles applied to the validation ensemble lead to a further divergence from the original 

ensemble. Consequently, the described procedure should be used to determine the optimal θ, but 

once it is known, one should re-fit the complete ensemble with that optimal θ. 

Figure 5 and S9 show that the reweighting changed the helicity the most in the region between 

residues 30 and 45. This is because CSs are not only sensitive to local residue conformations, but also 

to neighbouring residue conformations. This results in the calculated data in long helical stretches 

differing most from a random coil than short helices. Consequently, the reweighting is able better to 

‘see’ long helices and reweight those regions accordingly.  

The reweighting will only improve properties that are sensitive to the experimental data used. 

In this case, the CS of different atoms are sensitive to the helical conformations to a different degree. 

Thus, reweighting leads to an ensemble with improved helical content. Other properties, such as the 

radius of gyration (Rg), are sensitive to the global mass distribution of the conformations. For 

expanded ensembles, an increase of helicity leads to more collapsed ensembles, as helical structures 

are compact [66,67]. For the a03ws, reweighting leads to an overall decrease of helicity (Fig. S10), and 

therefore to a larger Rg. For the C36m, the slight increase in helicity does not correlate with the Rg, 

presumably because the initial ensemble is already rather compact. As also emphasized by Best as 

co-workers, both local (such as secondary structure) and global (such as Rg) properties should be 

used to characterize IDPs ensembles, and one should not expect the reweighting based on one set of 
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these properties to improve the other [1]. Using these other properties as cross-validation, as it is 

sometimes done, may lead to an incorrect perception of the amount of reweighting needed. As an 

example, the C36m fitting shows a minimum that could suggest that the evolution of Rg could be 

used as a cross-validating property, but the a36m shows a monotonic increase, for the reasons 

previously mentioned. If several experimental data are known, they should be included in the 

reweighting to obtain more realistic ensembles with improved local and global properties. 

A good way to estimate the effect of the predictor error is to fit the target ensemble to itself. In 

that case, the disagreement between predicted and target CS comes exclusively from the use of 

different predictors. We will refer to predictor error as the difference between the predictor used for 

the reweighting ensemble (PPM) and the predictor used as a target (Sparta+) without any 

assumption of which one gives CS closer to the true experimental ones. 

If the predictor error was a Gaussian noise with zero mean, it would average to zero for an 

ensemble of tens of thousands of structures. However, the predictor has systematic deviations that 

depend on the residue type and its conformation (Fig S11).  The systematic deviations also 

correspond to what higher helical content would give: negative C and CA and positive CB (see Fig. 

3). This suggests that the reweighting will tend to decrease the helical content. 

By following the same procedure as before, we obtain an optimal value of θ ≈ 2 (Fig. S12). It 

may seem surprising that when the reweighted ensemble matches exactly the target ensemble the θ 

value is lower than when fitting the a03ws and C36m ensembles. Two things need to be considered. 

First, the amount of disagreement between the CSs is not much lower than when fitting the a03ws or 

the C36m ensembles. This shows that the predictor is a major source of errors, but even with 

considerable unknown systematic errors in the predictor, the reweighting of the a03ws and C36m 

ensembles gave consistently improved ensembles. Second, θ values between ensembles are not 

comparable because θ does not determine the strength of the reweighting. The strength of the 

reweighting is determined from the optimized values of the weights, which themselves arise from 

the optimized values of the Lagrange (λ) parameters (see Eq. 4). For a given θ, the reweighting is 

weaker for the current a99SBdisp ensemble than for the a03ws and C36m (see Fig. S7). As Fig. 6 

shows, even after the reweighting with θ = 2, the helicity has changed, by at most ~ 0.05, from 0.31 to 

0.26 in the region of residue 37. For all the other regions the changes in helicity are smaller. After all, 

the reweighting procedure ‘sees’ CSs that would correspond to lower helicity, and therefore results 

in an ensemble with lower helicity. 

 
Figure 6. α-helical content for the reweighted and target ensembles. For the reweighted ensembles 

the train (a99SBdisp-t) and validation (a99SBdisp-v) sets are shown. The original ensembles before 
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the reweighting is also shown and, as expected, it corresponds exactly to the target ensemble as they 
are the same. 

Although the reweighting from the target a99SBdisp ensemble was not large, deviating from 

the initially correct ensemble is not satisfactory. We therefore looked for alternatives to minimize the 

reweighting. One alternative is to improve the matching between calculated and target CS. One 

would be to use the best possible predictor as its accuracy when comparing with actual experimental 

CS should not be overlooked. 

Considering that a source of error in the predictor may come from the baseline CS for each 

residue, we hypothesized that the use of secondary CSs could lead to a cancellation of errors. 

Secondary CS are defined as the difference between measured CSs and CSs from random coil 

conformations [20]. They measure the change of CS when a given residue adopts a secondary 

structure conformation. If predictors are good at describing this change then secondary CS could 

lead to more sensitive reweightings. As secondary structures can be assigned at a residue level for 

each conformation of a computational ensemble, the generation of secondary CS from computed 

ensembles is fast and simple (see Methods section). 

The use of secondary CS leads to essentially no-reweighting. We repeated the optimization 

procedure described above with calculated and target secondary CSs. The optimization of θ leads to 

flat curves (Fig. S13), that at first sight could suggest that the optimal value of θ is difficult to 

determine. To a certain extent this is true, the reason being that the reweighting is mostly insensitive 

to θ. What is more interesting is that the reweighting is negligible even for extremely small values of 

θ, as Fig. S13 shows, so that the reweighted ensemble remains essentially unchanged and thus, close 

to target ensemble as it was desirable. 

As expected, the negligible reweighting does not lead to overfitting. Fig S15 shows that in the 

fitting of secondary CS, the effective sample size stabilizes to a value of 0.42 for θ<10⁻³. A value of Neff 

far from 0 shows that the method is not overfitting. We remind the reader that the amount of 

reweighting is not determined by θ itself but by the Lagrange λ parameters that result from the 

optimization procedure. The result of this procedure tells us that, whatever our relative confidence 

in the computed ensemble and the target CS, the reweighting will be essentially zero.  

The secondary CS before any reweighting already show an excellent agreement with the target 

ones, so that reweighting is not necessary. The ����
�

 before reweighting in one order of magnitude 

smaller for secondary CS than for CS. However, we wanted to test our method in an extreme case. 

We conclude that even when it could easily lead to overfitting, the nature of BME prevents that, 

leading to stable results. But it also shows that when there are alternative methods to reduce the 

errors of the predictors, as the use of secondary CSs, the reweighting becomes simpler (in the sense 

that one does not need to tune θ) and more accurate. 

4. Discussion 

The Maximum Entropy approach is a simple, yet powerful method to fit computed ensembles 

to experimental data [68]. Its extension into a Bayesian approach allows the treatment of 

uncertainties arising from both experiment and computation [17,25,26]. It is often difficult to 

determine the optimal balance between the prior information, encoded in the force field, and the 

experimental data. These difficulties arise in particular because computational errors are difficult to 

assess. They arise from the predictor (the forward model), the convergence of the simulation, the 

accuracy of the force field used and the computational reproducibility of the experimental 

conditions. Also, in many cases it is difficult to determine accurate estimates of experimental errors. 

Together, these effects result in difficulties in determining a unique value of θ, or that a wide range 

of possible θ values appear comparably good. Because of uncertainties in the experimental and 

computational errors it is difficult to choose the level of reweighting simply by the magnitude of 

����
� , thus making it important to find objective and robust criteria to determine the values of θ. 

Here we suggest using a validation set that arises from the same distribution, and therefore 

belongs to the same model as the training set. As we show in the case of comparing results from CS 
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and radius of gyration, the use of other physical observables for cross-validation can sometimes lead 

to a wrong choice of θ. If the observables are strongly correlated to the ones being fitted, it will be 

hard to detect any overfitting, as the overfitted ensemble, even if having a small effective size, will 

also reproduce the correlated observables. On the contrary, if the physical observable is not 

correlated, then there is no reason why the reweighted ensemble should improve its fitting, as we 

showed for the radius of gyration. 

The split of the data between training and validation sets can be done in different ways. The 

two sets would be maximally uncorrelated if the sets arise from the first and the second half of the 

trajectory. But unless each of the halves is fully equilibrated –which is not the case in our trajectory– 

the two sets would correspond to different distributions, and one should not expect that the same 

Lagrange λ parameters should apply to the two sets. For instance, if the first half samples more 

helical conformations than the second, the reweighting could lead to a reduction of helicity for the 

first half and an increase for the second. On the contrary, by using interleaved frames to create 

training and validation sets we ensure they represent samples of the same distribution, whether 

fully equilibrated or not. Therefore, the same Lagrange λ parameters should improve both training 

and test until the moment we start overfitting the training set. Therefore, there is a range of θ values 

before the overfitting that are dependent on the distribution to be fitted but independent of the 

particular structures chosen from that distribution. This is the basis of our selection of the optimal θ 

value. However, if the validation set is strongly correlated to the training set, the overfitting could 

not be detected in the validation set. We therefore recommend checking the correlation between 

neighbouring frames. Alternatively, the reweighting and validation suggested procedure can be 

repeated for a subsample of the trajectory and it should lead to a similar optimal θ value. 

Even if we do not incur in overfitting, a large amount of reweighting indicates either that the 

prior is considerably different from the target distribution or that the predictor has important 

systematic errors. In both cases the reweighted ensemble will still be far from the actual ensemble, 

and one should be especially cautious in not over-interpreting it, especially in extracting structural 

information from it that is not sensitive to chemical shifts, as we have discussed for the radius of 

gyration.  

We also showed that the errors of the predictor should not be underestimated. In the specific 

case of NMR CS, it appears that even when the predictors were designed and parameterized to 

remove systematic errors, they may still arise in applications to a particular system. These unknown 

systematic errors contribute to the reweighting and are a major source of overfitting that our method 

avoids to a certain extent.  

The use of secondary CS seems a promising approach to reduce the errors of the predictors. Its 

calculation from a computational ensemble is simple, but the experimental calculation is not trivial. 

One approach is to use tabulated CS for protein random coils [20], including corrections depending 

on neighbouring residues as well as pH and temperature [69–73]. A more precise but more time 

consuming approach is to completely denature an IDP and measure the resulting CS [74,75]. Both 

approaches introduce some uncertainties that may render the secondary CS less accurate. In future 

work we will explore whether they still remain a better alternative when reweighing computational 

ensembles of IDPs. 

We would like to end this discussion by reminding the reader that the BME and related 

approaches are particularly suited to avoid overfitting. Maximization of the entropy implies that the 

reweighted distribution is minimally perturbed, unlike in other reweighting approaches 

[45,46,46–49,49–53]. One may think that still, small values of θ, which means a strong confidence on 

the experimental data, would lead to an overfit of the finite number of computed structures. 

However, the fitting procedure fits a small number of parameters (equal to the number of CSs), in 

our case m=202, to a much larger number of structures, N=29977. If each weight was fitted 

individually, the procedure would be highly prone to overfitting, with N=29777 parameters. Instead, 

BME determines weights from a much smaller set of parameters, the number of observables (m=202) 

plus θ. The effect of this is that the possibility of overfitting is substantially reduced. 

5. Conclusions 
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In this work we have shown how chemical shifts can be used to improve the configurations 

arising from molecular dynamics simulations of intrinsically disordered proteins. We have 

introduced a systematic method to assess the amount of reweighting (θ) needed to fit the 

experimental chemical shifts based on cross-validation. This approach allows to circumvent the 

difficulty of knowing the errors associated to the simulations and the chemical shift predictors. We 

have also shown how the predictor errors lead to an incorrect reweighting as they include a 

systematic bias. This error seems to be greatly reduced by using secondary chemical shifts, 

something that we will further explore in future work. 

Supplementary Materials: The following are available online. 

Figure S1: Distribution of the difference between the ensemble CS and the average target CS for the 2 ensembles 
discussed in this work. The x-values correspond to a concatenation of C, CA and CB CS. To be able to reweight 
the values should be distributed at both sides of y=0, as is the case.  

Figure S2: Evolution of the CS difference (residuals) for the reweighting procedure for a range of θ values from 
100 (purple values) to 0.1 (yellow values). As the residuals have the same sign for most of the reweighting 
procedure, one cannot use the Wald-Wolfowitz run test to define the amount of reweighting.  

Figure S3: Difference in the chemical shifts predicted with Sparta+ and PPM for the a99SBdisp ensemble. The 
left plots show the value for each residue and the right plots show their distribution for a better visualization of 
their spread and shift. Atom types are CA (top), C (middle) and CB) bottom. 

Figure S4: Evolution of ����
� with the effective sample size (Neff), showing the lack of an L-shaped curve. The 

blue and orange lines are the same as in Figure 1. The NE suffix stands for “no-error”. It corresponds to the 
values where the target CS are calculated with PPM. For the sake of clarity ����

�  uses the same error as in the 
case with errors, even though ����

�  is ill-defined in this case and should be regarded as a scaled 
root-mean-square error. 

Figure S5: The CS difference between the target CS and the computed CS for the C36m ensemble compared to 
the difference in helicity for these two ensembles.  

Figure S6: Behaviour of different quantities during the reweighting procedure of the C36m ensemble.  

Figure S7: Root mean square of the Lagrange parameters λ during the reweighing procedure for all three 
ensembles. See Eq. 4.  

Figure S8: Behaviour of different quantities during the reweighting procedure of the a03ws ensemble with no 
predictive errors (NE suffix). As was done in figure S3, �

���

�  uses the same error as in the case with errors, even 
though �

���

�  is ill-defined in this case and should be regarded as a scaled root-mean-square error. 

Figure S9: Alpha-helical content for the reweighted and target ensembles for the C36m force field. For the 
reweighted ensembles the train (C36m-t) and validation (C36m-v) sets are shown. The original ensembles 
before the reweighting is also shown.  

Figure S10: Evolution of the radius of gyration for different reweightings.  

Figure S11: Error in the predictor (PPM) with respect to the target chemical shift (Sparta+) for different 
secondary structure elements of the a99SBdisp ensemble. For atoms CA and C there is a systematic 
underestimation of the chemical shift, whereas for CB, there is a systematic overestimation. The errors also 
depend on the type of secondary structure.  The codes are the following: ‘C‘: Loops and irregular elements, ‘B’: 
Residue in isolated beta-bridge, ‘E’: Extended strand, participates in beta ladder, ‘G’: 3-helix (3/10 helix), ‘H’: 
Alpha helix, ‘I’: 5 helix (pi helix), ‘S’: bend, and ‘T’: hydrogen bonded turn, as determined by the DSSP 
algorithm implemented in MDtraj.  

Figure S12: Behaviour of different quantities during the reweighting procedure of the a99SBdisp ensemble. The 
quantities defined as thin lines would not be measurable in a real case scenario, but their behaviour can be 
inferred from the quantities in thick lines.  
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Figure S13: Behaviour of different quantities during the reweighting procedure of the a99SBdisp ensemble 
using secondary chemical shifts. The quantities defined as thin lines would not be measurable in a real case 
scenario, but their behaviour can be inferred from the quantities in thick lines. Remark that the ����

�  values are 
very small for all θ values. D(t,g) and D(t,v) have been scaled by 1/20 so that the shape of the curves could be 
seen.  

Figure S14: Alpha-helical content for the reweighted and target ensembles using secondary chemical shifts. For 
the reweighted ensembles the train (a99SBdisp-t) and validation (a99SBdisp-v) sets are shown. The original 
ensembles before the reweighting is also shown and, as expected, it corresponds exactly to the target ensemble 
as they are the same. Figure S12: Evolution of the effective sample size (Neff) with θ for the secondary chemical 
shift fitting of a99SBdisp ensemble to the a99SBdisp target ensemble. 

Figure S15. Evolution of the effective sample size (Neff) with θ for the secondary chemical shift fitting of 
a99SBdisp ensemble to the a99SBdisp target ensemble. 
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