

1 **The fitness landscape of the African *Salmonella* Typhimurium ST313**
2 **strain D23580 reveals unique properties of the pBT1 plasmid**

3

4

5 Rocío Canals^{1*}, Roy R. Chaudhuri², Rebecca E. Steiner^{3,4}, Siân V. Owen^{1,##a}, Natalia
6 Quinones-Olvera⁵, Melita A. Gordon^{6,7}, Michael Ibba^{3,4}, Jay C. D. Hinton¹

7

8 ¹ Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom

9 ² Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom

10 ³ Department of Microbiology, The Ohio State University, Columbus, Ohio, USA

11 ⁴ Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA

12 ⁵ Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA

13 ⁶ Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom

14 ⁷ Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of
15 Medicine, Blantyre, Malawi, Central Africa

16 ^{##a}Current address: Department of Biomedical Informatics, Harvard Medical School, Boston,
17 Massachusetts, USA

18

19 * Correspondence: rcanals@gmail.com

20

21

22

23

24 Abstract

25 We have used a transposon insertion sequencing (TIS) approach to establish the fitness landscape of
26 the African *Salmonella enterica* serovar Typhimurium ST313 strain D23580, to complement our
27 previous comparative genomic and functional transcriptomic studies. We used a genome-wide
28 transposon library with insertions every 10 nucleotides to identify genes required for survival and growth
29 *in vitro* and during infection of murine macrophages. The analysis revealed genomic regions important
30 for fitness under two *in vitro* growth conditions. Overall, 724 coding genes were required for optimal
31 growth in LB medium, and 851 coding genes were required for growth in SPI-2-inducing minimal
32 medium. These findings were consistent with the essentiality analyses of other *S. Typhimurium* ST19
33 and *S. Typhi* strains. The global mutagenesis approach also identified 60 sRNAs and 413 intergenic
34 regions required for growth in at least one *in vitro* growth condition. By infecting murine macrophages
35 with the transposon library, we identified 68 genes that were required for intra-macrophage replication
36 but did not impact fitness *in vitro*. None of these genes were unique to *S. Typhimurium* D23580,
37 consistent with a high conservation of gene function between *S. Typhimurium* ST313 and ST19 and
38 suggesting that novel virulence factors are not involved in the interaction of strain D23580 with murine
39 macrophages. We discovered that transposon insertions rarely occurred in many pBT1 plasmid-
40 encoded genes (36), compared with genes carried by the pSLT-BT virulence plasmid and other
41 bacterial plasmids. The key essential protein encoded by pBT1 is a cysteinyl-tRNA synthetase, and our
42 enzymological analysis revealed that the plasmid-encoded CysRS^{pBT1} had a lower ability to charge
43 tRNA than the chromosomally-encoded CysRS^{chr} enzyme. The presence of aminoacyl-tRNA
44 synthetases in plasmids from a range of gram-negative and gram-positive bacteria suggests that
45 plasmid-encoded essential genes are more common than had been appreciated.

46 Introduction

47 *Salmonella* spp. are important pathogens of humans and animals. In humans, salmonellosis is classified
48 as either a typhoidal or non-typhoidal *Salmonella* (NTS) disease. Typhoidal salmonellosis involves
49 systemic spread through the body that causes enteric fever, and is associated with the *S. enterica*
50 serovars Typhi (*S. Typhi*) and Paratyphi (*S. Paratyphi*). In contrast, NTS disease normally involves a
51 self-limiting gastroenteritis that is transmitted via food, involving approximately 94 million human cases
52 and about 155,000 deaths [1]. The *S. enterica* serovar Typhimurium (*S. Typhimurium*) sequence type

53 ST19 causes the majority of gastroenteritis in immuno-competent individuals worldwide via pathogenic
54 mechanisms that induce mucosal inflammatory responses in the gut. *S. Typhimurium* can thrive in this
55 inflamed gut whilst other key members of the gut microbiota cannot survive [2,3]. The remarkable ability
56 of this pathovariant to enter, survive, and proliferate in mammalian macrophages and epithelial cells in
57 a “*Salmonella*-containing vacuole” (SCV) is responsible for systemic disease in both animals and
58 humans [4].

59 The HIV epidemic in sub-Saharan Africa has been implicated in the evolution of new clades of NTS
60 strains that cause bacteraemia in humans. Specifically, the HIV virus impairs the immunity of adults, a
61 phenomenon that occurred concurrently with the development of NTS strains able to cause a systemic
62 disease, invasive non-typhoidal salmonellosis (iNTS) [5–9]. In children, malaria and malnutrition are
63 also risk factors for iNTS [10]. The *S. Typhimurium* and *S. Enteritidis* isolates responsible for invasive
64 NTS isolates have a multi-drug-resistant phenotype, necessitating the replacement of conventional
65 therapies with alternative antibiotics [6,11,12].

66 In sub-Saharan Africa, *S. Typhimurium* strains belonging to sequence type ST313 have been
67 associated with the majority of systemic disease, causing hundreds of thousands of deaths in 2010
68 [13]. The genome sequence of one representative of ST313, D23580, was published in 2009 [14], and
69 was recently updated [15].

70 To date, genome-wide functional genomic studies have focused on the fitness of *S. Typhimurium*
71 and *S. Typhi* in several *in vitro* growth conditions, and within eukaryotic cells and animal infection
72 models [16]. The recent development of transposon-insertion sequencing (TIS) technology combines
73 global mutagenesis and high-throughput sequencing to functionally characterize bacterial genes.
74 Transposon insertion libraries are constructed in a strain of interest, in which nonessential genes for a
75 particular growth condition (input library) are dispensable and contain insertions. This library of random
76 transposon insertion mutants can be used to identify genes “required” for fitness under that particular
77 environmental condition (output library). The relative proportion of each mutant in the input and the
78 output libraries is determined by high-throughput sequencing, a strategy that enables the fitness
79 contribution of each gene to be quantified in environmental conditions of interest [17,18]. The first study
80 that used this technology in *Salmonella* described a new TIS strategy: Transposon-Directed Insertion
81 Site Sequencing (TraDIS) [19]. Subsequently, various TIS-based strategies have been used for
82 functional genomic analysis of *Salmonella* serovars Typhimurium and Typhi [20–22].

83 Here we report the TIS-based identification of the genes of *S. Typhimurium* ST313 D23580
84 responsible for growth and survival inside murine macrophages, and the genetic requirements of this
85 strain to grow and survive in laboratory conditions (summarized in Figure 1).

86 **Results and Discussion**

87 **Transposon insertion profile of a *S. Typhimurium* D23580 Tn5 library**

88 A transposon library was constructed in the *S. Typhimurium* ST313 lineage 2 representative strain
89 D23580. The pool of transposon mutants was grown in LB (input) and successively passaged three
90 times in two different laboratory growth media: a rich medium, LB (output); and an acidic phosphate-
91 limiting minimal medium that induces *Salmonella* pathogenicity island (SPI) 2 expression, designated
92 InSPI2 (Figure 1). Genomic DNA from the input and output samples was purified and prepared for
93 Illumina sequencing of the DNA adjacent to the transposons (Materials and Methods). Table S1 shows
94 the number of sequence reads obtained, the sequence reads that contained the transposon tag
95 sequence, and the sequence reads that were uniquely mapped to the *S. Typhimurium* D23580 genome.

96 Sequence analysis of the input sample identified 797,000 unique transposon insertion sites in *S.*
97 *Typhimurium* D23580, equating to an average of one transposon integration every six nucleotides. All
98 data are available for visualization in a Dalliance genome browser [23] which shows the transposon
99 insertion profile of the chromosome and the four plasmids (pSLT-BT, pBT1, pBT2, pBT3) in *S.*
100 *Typhimurium* D23580: <https://hactar.shef.ac.uk/D23580>. The number of reads, transposon insertion
101 sites, insertion index, and “requirement” call per gene are summarized in Table S2. The insertion index
102 was calculated as described in Materials and Methods and allowed the genetic requirements of *S.*
103 *Typhimurium* D23580 for growth to be determined after a single passage in LB. The genes designated
104 “required” included essential genes and genes that contributed to fitness in this particular environmental
105 condition. Some genes were called “ambiguous” when they could not be robustly assigned as either
106 required or dispensable by the analysis (Materials and Methods). A total of 596 genes were required in
107 the *S. Typhimurium* D23580 genome: 558 were located in the chromosome, two in the pSLT-BT
108 plasmid, and 36 in the pBT1 plasmid (Figures 2A and B).

109 To establish common themes amongst closely-related bacteria, the *S. Typhimurium* D23580
110 chromosomal genes that were required for growth were compared with the genetic requirements of

111 other strains of *S. Typhimurium* (14028, a derivative of SL1344 called SL3261, and LT2) and *S. Typhi*
112 (Ty2, and a derivative of Ty2 named WT174) (Figure 3A, Table S3) [19,20,24–26]. After the comparison
113 with these five other *Salmonella* isolates, we found that a total of 101 genes were only required in
114 D23580, including one D23580-specific gene encoding the CI^{BTP5} repressor of the BTP5 prophage
115 (*STMMW_32121*) [27]. To add context, a Clusters of Orthologous Groups (COG) analysis identified 32
116 genes that were predominantly assigned to two functional categories of transcription (nine genes) and
117 amino acid transport and metabolism (six genes). Additionally, at least 21 of the 101 genes were
118 associated with virulence: 16 were located in *Salmonella* pathogenicity island (SPI) regions, and five
119 encoded associated effectors that were located elsewhere in the genome.

120 To identify chromosomal genes that are required for growth in *S. Typhimurium* D23580 and other *S.*
121 *Typhimurium* pathovariants, a comparison with the individual strains was performed (Figure S1A, Table
122 S4) [20,24]. A total of 250 genes were required in all *S. Typhimurium* and *S. Typhi* strains [19,20,24].
123 While searching for serovar-specific required genes, we found six genes that were only required by
124 D23580 and the two *S. Typhimurium* strains 14028 and SL3261, but not by *S. Typhi*, namely: *ssaT*, a
125 SPI-2 gene; *STMMW_16291*, encoding a putative amino acid transporter; *hnr*, encoding a regulator;
126 *pth*, encoding a peptidyl-tRNA hydrolase; *STMMW_18451*, with unknown function; and *ddhB* (*rfbG*), an
127 O-antigen gene involved in the biosynthesis of CDP-abequose. Intriguingly, *hns* was only required in *S.*
128 *Typhimurium* D23580 and 14028 but not in SL3261. In contrast, no genes that were only required by
129 *S. Typhimurium* D23580 and the two *S. Typhi* strains Ty2 and WT174 were found. We conclude that
130 there is a high level of conservation of genes that contribute to fitness during *in vitro* growth of *S.*
131 *Typhimurium* and *S. Typhi*. Because D23580 is much more closely related to other strains of *S.*
132 *Typhimurium* than to *S. Typhi*, it is not surprising to see that there is a greater overlap of required genes
133 between the *Typhimurium* strains than with the *Typhi* isolates.

134 Seven genes previously reported to be required in *S. Typhimurium* were not included in the D23580
135 gene requirements (Figure S1B, Table S4), prompting a more detailed investigation. Analysis of two
136 other input samples described later in this work showed that two of these genes were consistently
137 identified as dispensable in D23580: *cysS*, encoding a cysteinyl-tRNA synthetase; and *folA*, involved in
138 biosynthesis of tetrahydrofolate. There were 20 genes that had been previously reported in TIS studies
139 to be required in *S. Typhi* but not in D23580 (Figure S1C, Table S4) [19,20]. Seven out of the 20 genes
140 were consistently found to be dispensable in the two other D23580 input samples analyzed later in this

141 work, and one of them was *cysS*. The cysteinyl-tRNA synthetase is essential for bacterial growth [28].
142 The dispensability of *cysS* (*cysS^{chr}*) in D23580 reflects the fact that the pBT1 plasmid of *S. Typhimurium*
143 D23580 carries the paralogous gene *cysS^{pBT1}*, and we published the transposon insertion profiles of
144 these two genes previously [15]. In summary, only the plasmid copy *cysS^{pBT1}* was required for growth
145 in LB in D23580, whereas *cysS^{chr}* was dispensable.

146 **Certain dispensable genes were designated required in the essentiality analysis**

147 Several genes required for *in vitro* growth of D23580 have previously been reported to be dispensable
148 for growth in other *Salmonella* strains in laboratory conditions, including 12 genes located in the SPI-2
149 pathogenicity island and six genes in the O-antigen biosynthetic cluster. Here, the low number or
150 absence of transposon insertions could reflect a limitation of the TIS technique. Although a previous
151 study using a similar strategy for Tn5 transposon library construction did not find bias in the insertion
152 sites [20], a preference of Tn5 for G/C pairs in the target sequence has been reported [29]. Motifs for
153 preferential Tn5 integration have been investigated previously [20,30].

154 Searching for transposon insertion bias in previously published work, we found that the transposition
155 of the Mu element was lower in highly transcribed regions of the chromosome [31,32]. To correlate the
156 level of transcription with the number of Tn5 transposon insertions, we assessed the absolute
157 expression values of the required genes using our published *S. Typhimurium* D23580 RNA-seq data,
158 grown in LB to mid-exponential phase (MEP) (Figure 3B, Table S3) [15]. In this dataset, the level of
159 expression of each gene is expressed as Transcripts Per Million (TPM). We found that 80% of the most
160 highly expressed genes (TPM >3000) were required for growth. Of these, 86% were involved in
161 translation, ribosomal structure and biogenesis. We conclude that fewer Tn5 transposon insertions
162 occurred in highly expressed genes and most of these genes are involved in functions that are essential
163 for bacterial growth.

164 The histone-like nucleoid structuring (H-NS) protein, encoded by the *hns* gene, preferentially binds
165 to A/T-rich regions in bacterial genomes [33,34]. It has been proposed that H-NS-bound DNA could be
166 protected from being a target of transposition and so receive fewer transposon integrations [35]. To
167 investigate whether H-NS-binding explained the low number of transposons found in *Salmonella* genes
168 that are dispensable for growth in laboratory conditions, the reported H-NS-binding sites of *S.*
169 *Typhimurium* SL1344 [36] were cross-referenced with the list of required genes in D23580 (Figure 3C,

170 Table S3). A total of 108 genes designated as required in D23580 also contained an H-NS binding site
171 in SL1344 (Table S3), including 36 genes located in SPI regions and associated effectors. We conclude
172 that only a minority of *S. Typhimurium* D23580 genes are likely to be protected from transposition by
173 H-NS, as discussed below.

174 Transposon insertions were seen more rarely in SPI pathogenicity island-related *S. Typhimurium*
175 D23580 genes than other parts of the chromosome. Specifically, the *hilC* (SPI-1) and *ssrA* (SPI-2)
176 genes were designated as required in our study. To investigate whether the deletion of these genes
177 had a fitness cost for D23580, we compared the growth of the individual D23580 deletion mutants with
178 the D23580 wild-type (WT) strain in LB (Figure S2A, Tables S4 and S5). Similar mutants that retained
179 the kanamycin (Km) resistance cassette were also examined, in case the strong promoter of the *aph*
180 gene played a role. The deletion of *ssrA* included the removal of *ssrB*, the two genes encode the two-
181 component regulatory system of SPI-2. Two mutants that lacked genes involved in the biosynthesis of
182 the lipopolysaccharide (LPS), in *waaL* (lack of O-antigen) and *waaG* (absence of O-antigen and part of
183 the LPS core), were also investigated as examples of genes containing H-NS-binding sites and allowing
184 a high proportion of transposon insertions.

185 No significant differences were observed in the growth rate of any of the SPI-2 and the SPI-1-
186 defective mutants compared to the WT strain. We observed that the SPI-1 mutant grew to a slightly
187 greater culture density than the WT strain (OD₆₀₀ for the WT was 4.55, and was 4.86 for D23580
188 Δ *hilC::frt*). This small fitness cost of expressing *hilC* and other SPI-1 genes has already been reported
189 in *S. Typhimurium*, explaining why SPI-1 mutants outcompete the WT strain [37,38]. Both LPS mutants
190 grew slower in LB compared to WT, consistent with previous findings concerning the deletion of the *S.*
191 *Typhimurium* *waaL* gene [39]. These results suggest that the binding of the H-NS protein to the SPI-1
192 and SPI-2 regions could explain the low number of transposons in these regions, as no fitness cost for
193 growth in LB of the respective mutants was detected. The high number of transposon insertions found
194 in the LPS genes, which were reported to contain H-NS-binding sites in *S. Typhimurium* SL1344, and
195 the fact that mutations in these genes had an effect on fitness, indicated that a low number or absence
196 of transposon insertions do not always correlate with the presence of H-NS.

197 **Genetic requirements for *S. Typhimurium* D23580 growing in rich and SPI-2-
198 inducing media**

199 To build on our previous identification of genes required for survival after a single passage in LB, we
200 studied *in vitro* fitness during growth in nutrient rich and minimal media by comparing the pools of
201 transposon mutants recovered after further passages of the D23580 transposon library in LB
202 (designated as “output”), and the acidic phosphate-limiting minimal medium (PCN, phosphate carbon
203 nitrogen) that induces SPI-2 expression (InSPI2) in *S. enterica*. These data were used to assign an
204 insertion index to each gene (Table S2).

205 After three passages in LB, 724 genes were required, which included essential genes and genes
206 that contributed to fitness for *in vitro* growth: 683 genes in the chromosome, 2 genes in the pSLT-BT
207 plasmid, and 39 genes in the pBT1 plasmid. A total of 851 genes were required for optimal growth after
208 three passages in InSPI2: 816 genes in the chromosome, 2 genes in the pSLT-BT plasmid, and 33
209 genes in the pBT1 plasmid. Genes that had previously been found to be indispensable for growth in the
210 input sample in this study were removed from the lists of required genes (Figure 4A, Table S3).

211 There were 54 *S. Typhimurium* D23580 genes that were required for growth after three passages in
212 LB, but not in InSPI2, including the pBT1-encoded *pBT1-0401* and *pBT1-0781*. The gene list included
213 two genes reported to be required by *S. Typhimurium* 14028 after three passages in LB [21], namely
214 *sdhA*, encoding a succinate dehydrogenase flavoprotein subunit; and *sapG* (*trkA*), encoding a
215 potassium transporter. The identification of these particular *S. Typhimurium* genes in multiple TIS
216 studies highlights the importance of *sdhA* and *sapG* for fitness in this environment. The genes *sdhCD*,
217 involved in the conversion of succinate to fumarate (with *sdhAB*), and *fumA*, involved in the conversion
218 of fumarate to malate (with *fumBC*), were also required after three passages in LB in our *S. Typhimurium*
219 D23580 study. Overall, most of the required genes were either involved in energy production and
220 conversion (17%), carbohydrate transport and metabolism (9%) or inorganic iron transport and
221 metabolism (9%).

222 A total of 191 genes were needed for optimal growth of *S. Typhimurium* D23580 after three passages
223 in the InSPI2 minimal medium. These genes included: *dksA*, that is required for growth on minimal
224 medium [40]; *hfq*, encoding an RNA chaperone that facilitates base-pairing of ~100 small RNAs
225 (sRNAs) to the their target mRNAs [41,42]; and genes involved in thiamine, coenzyme A, biotin, and

226 LPS biosynthesis. The majority of the genes were included in the following functional categories: amino
227 acid transport and metabolism (27%), cell envelope biogenesis and outer membrane (7%), inorganic
228 iron transport and metabolism (7%), and nucleotide metabolism (7%).

229 There were 91 genes designated required in both LB and InSPI2 (Figure 4A, Table S3). Among
230 them, we found two D23580-specific genes: *pBT1-0081*, in the pBT1 plasmid; and *c^lBTP1*, encoding the
231 BTP1 prophage repressor [27]. Most of the genes encoded products involved in energy production and
232 conversion (22%), oxidative phosphorylation (12%), and translation, ribosomal structure and biogenesis
233 (10%). These genes reflect the biological needs of *S. Typhimurium* D23580 for growth in laboratory
234 conditions.

235 **The intergenic regions and sRNAs that increase fitness of *S. Typhimurium* 236 D23580**

237 The high level of saturation of the transposon library allowed the transposon insertion profiles of sRNAs
238 and intergenic regions of ≥ 100 bp in the chromosome, and the pSLT-BT and pBT1 plasmids, to be
239 investigated to identify the role of these regions in fitness [14,15]. The pBT2 (~2.5 kb) and pBT3 (~2 kb)
240 plasmids were considered as intergenic regions due to the absence of annotation [15]. An insertion
241 index was calculated for each intergenic region and sRNA in the input and LB and InSPI2 output
242 samples as previously described (Table S6).

243 A total of 286 intergenic chromosomal regions, 13 intergenic plasmid regions (all in pBT1), and 40
244 sRNAs were required in the input sample, being essential or contributing to fitness. Thirty-two intergenic
245 regions were important for fitness after three passages in LB, while 48 were only required for growth
246 after three passages in InSPI2 (Figure 4B, Table S3). Additionally, 34 intergenic regions increased
247 fitness in both LB and InSPI2. Most of the adjacent genes of the intergenic regions that were important
248 for fitness were involved in translation, ribosomal structure and biogenesis (11%), and energy
249 production and conversion (9%). The coding genes required for optimal growth after three passages in
250 LB and InSPI2 also belonged to these two functional categories (Table S2). The fitness defects of
251 mutants carrying transposon insertions in intergenic regions might be due to disruption of the promoter
252 region of one of the flanking genes, or could reflect mutation of unannotated coding regions.

253 Seven sRNAs were only required for growth after three passages in LB, but not in InSPI2 minimal
254 media (Figure 4C, Table S3). In contrast, six sRNAs were identified as being important for fitness after

255 three passages in InSPI2. In total, seven sRNAs that enhanced fitness in both LB and InSPI2 were
256 identified, namely tp2, STnc2010, RyjB, STnc2030, SdsR, STnc3080, and SraG. Among them, SdsR
257 is widely conserved in enterobacteria [43], targeting important global regulators with biological
258 relevance in stationary phase and stress conditions [44] and shown to be required for fitness of *S.*
259 *Typhimurium* in stationary phase [45]. The fact that inactivation of SdsR has already been described to
260 have a fitness cost in stationary phase helps to validate our TIS approach. For the future, the regulatory
261 targets of the other six sRNAs that are required for growth in both nutrient and minimal media should
262 be determined.

263 **Intra-macrophage infection with the transposon library reveals the absence of
264 novel virulence factors in *S. Typhimurium* D23580**

265 To build upon our understanding of the *S. Typhimurium* D23580 genes that were required for fitness
266 during growth in nutrient or minimal media, we used the transposon library to investigate the process
267 of intracellular infection of murine RAW264.7 macrophages. To accurately identify genes required for
268 growth with a transposon library, it is important to sequence the input sample as well as the output
269 sample used for each experiment. As confirmed earlier, every time a transposon library is passaged in
270 LB medium, mutants that exhibit reduced fitness will be lost from the library. Therefore, we sequenced
271 two biological replicates of the library that had been grown in LB prior to infection of macrophages (Input
272 1 and Input 2 samples). Proliferation of the transposon library was assessed after a single passage
273 through murine macrophages, as additional passages caused the selection of LPS mutants (Text S1,
274 Figure S3). Accordingly, at 12 h post-infection (p.i.), intracellular bacteria from the two biological
275 replicates were recovered (Macrophage 1 and Macrophage 2 samples) (Figure 1, Text S1). Genomic
276 DNA from the two input and the two output samples was purified and Illumina sequenced. Table S1
277 contains the number of demultiplexed reads, the number of reads with a transposon tag, and the
278 number of uniquely mapped reads. The two input samples contained 660,000 and 928,000 unique
279 insertion sites. Combining these results with the analysis of the previous input dataset (797,000 unique
280 insertion sites), a total of 511,000 unique insertion sites were common to all three datasets, an average
281 of one transposon integration per ten nucleotides.

282 The majority of genes (87%) that were designated “required” in the two new inputs were consistent
283 with the analysis of the previous input sample (Figure S4A, Table S4). Eleven of the genes considered

284 ambiguous in the previous input sample were required in Input 1 and Input 2, including *c^lBTP1*, the
285 repressor of the D23580-specific prophage BTP1 [27]. Prophage repressors are commonly found to be
286 required genes for growth in TIS studies because inactivation leads to prophage de-repression and
287 phage-mediated cell lysis. Among the five complete prophage regions in D23580 (BTP1, Gifsy-2^{D23580},
288 ST64B^{D23580}, Gifsy-1^{D23580}, and BTP5) [27], only the repressors of the two D23580-specific prophages,
289 BTP1 and BTP5, were designated as required in our analyses.

290 The data were used to identify genes that contributed to fitness of *S. Typhimurium* D23580 during
291 macrophage infection. Specifically, genes important for intracellular growth and survival in murine
292 macrophages were identified by comparing the two macrophage output samples with the two input
293 samples (Materials and Methods). Transposon insertions in 206 D23580 genes caused attenuation in
294 the macrophage infection model (\log_2 fold-change <-1 , *P*-value <0.05) (Table S7). Many of these genes
295 correlated well with previous high-throughput studies of *S. Typhimurium* ST19 in different animal
296 infection models (Figures S5A and S5B), including five well-characterized regulatory systems that
297 control *Salmonella* virulence: the *phoPQ* two-component regulators; the *ssrAB* regulators of SPI-2 gene
298 expression; *dam*, DNA adenine methylase; *hfq*; and *ompR*, an element of the two-component regulatory
299 system *ompR-envZ*. Three D23580-specific genes, two in the pBT1 plasmid (*pBT1-0081* and *pBT1-*
300 *0401*) and *c^lpBT1*, had already been identified as important for fitness after three passages in LB in our
301 study.

302 Inactivation of six D23580 genes increased fitness in the macrophage infection model (\log_2 fold-
303 change >1 , *P*-value <0.05): *nadD*, encoding a nicotinate-nucleotide adenylyltransferase; *STM1674*
304 (*STMMW_16691*), encoding a transcriptional regulator; *barA*, encoding the sensor of the two-
305 component regulatory system SirA/BarA that controls carbon metabolism via the CsrA/CsrB regulatory
306 system; the pSLT-BT plasmid gene *repC*; and the LPS O-antigen biosynthetic genes *abe* (*rfbJ*) and
307 *rmlA* (*rfbA*). Because the *abe* and *rmlA* mutants have short LPS which increases the invasiveness of *S.*
308 *Typhimurium* without affecting intracellular replication [46], it is clear that our TIS strategy in
309 macrophages not only identified mutants with increased fitness in terms of growth and survival inside
310 macrophages but also selected for mutants that are more invasive in the infection model (Text S1).

311 Macrophage-specific *S. Typhimurium* D23580 genes

312 To identify genes important for fitness inside macrophages but not for growth in laboratory media, the
313 206 D23580 genes that showed attenuation in macrophages when disrupted by a transposon insertion
314 were cross-referenced with genes required for growth in the *in vitro* laboratory conditions tested in this
315 study, LB and InSPI2 (Figure S4B, Table S4). We identified 182 “macrophage-associated genes” and,
316 within this group, 68 “macrophage-specific genes” that had reduced fitness during macrophage infection
317 and did not impact upon growth *in vitro*. The macrophage-specific genes included known *Salmonella*
318 virulence genes: *phoPQ*, SPI-2 genes, *dam*, *hfq*, and *ompR*. Most of the 68 genes were involved in
319 functions related to transcription (10%), amino acid transport and metabolism (9%), and translation,
320 ribosomal structure and biogenesis (7%).

321 Analysis of our intra-macrophage transcriptome of *S. Typhimurium* ST19 showed that genes that
322 encoded key virulence factors were macrophage-up-regulated by >3-fold [47]. Our recent D23580 RNA-
323 seq results [15] led us to investigate the function of two genes in the macrophage infection model,
324 *STM2475* and *STM1630*. Only the *STM2475* deletion mutant exhibited decreased intracellular
325 replication, suggesting a putative role in virulence of D23580 (Text S1, Figures S6 and S7).

326 We previously showed that many *S. Typhimurium* virulence genes were both up-regulated within
327 macrophages and required for animal infection [48]. We built on this concept by finding the
328 “macrophage-specific” genes identified by transposon mutagenesis that were also up-regulated within
329 macrophages, using transcriptomic data from Canals and colleagues [15] (Figure 5A). The results
330 showed that the 23 genes that were required for intra-macrophage proliferation and were significantly
331 “macrophage-up-regulated” (fold change >2, FDR <0.001) encoded: 14 SPI-2 proteins; 2 phosphate
332 transport proteins (PtsB and PtsC); two enzymes involved in the arginine biosynthesis pathway (ArgB
333 and ArgC); and the proteins Fis (DNA-binding protein), IolR (repressor of *myo*-inositol utilization), RluD
334 (pseudouridine synthase), Wzx (translocation of the enterobacterial common antigen to the outer
335 membrane), and OmpR. We searched for genes that had not been previously been reported to play a
336 role in virulence in *S. Typhimurium* ST19 [49,50] and found only three: a SPI-2 gene (*sscB*) and *argBC*.

337 To determine if the requirement for the arginine biosynthetic pathway during intra-macrophage
338 replication was a specific feature of the D23580 strain, mutants in the *argA* gene were constructed in
339 D23580 and the ST19 strain 4/74. ArgA is the first enzyme for the biosynthesis of L-arginine from L-

340 glutamate, a pathway that also includes the biosynthesis of L-ornithine [51]. Of the nine genes encoding
341 products involved for the L-arginine biosynthesis, four were in the 68 macrophage-specific gene list:
342 *argA*, *argCB*, *argE*. Furthermore, the encoded products are also involved in the L-ornithine biosynthetic
343 sub-pathway. The individual Δ *argA::frt* mutants of both strains, D23580 and 4/74, showed reduced intra-
344 macrophage replication (Figure 5B). The importance of ArgA for growth inside J774 macrophages has
345 already reported for the *S. Typhimurium* ST19 isolate 14028 [52]. Our results indicate that the
346 requirement for arginine genes inside murine macrophages is not a distinguishing feature of D23580
347 because the same genes were also required by the ST19 isolate 4/74. The decreased ability of the
348 Δ *argA::frt* mutants to proliferate is consistent with previous studies, and suggests that arginine is a
349 limiting factor for *S. Typhimurium* growth inside murine macrophages. The requirement for ArgA for
350 optimal intra-macrophage replication of D23580 validates our TIS-based approach in this infection
351 model.

352 Taken together, the 68 macrophage-specific gene list included many genes that encode *S.*
353 *Typhimurium* ST19 virulence factors, and did not include any D23580-specific genes. We conclude that
354 no novel virulence factors required for intra-macrophage replication of *S. Typhimurium* ST313 were
355 identified in our experiments.

356 **Intergenic regions and sRNAs important for fitness inside murine macrophages**

357 To identify *S. Typhimurium* D23580 intergenic regions and sRNAs that impact upon fitness inside
358 macrophages but not in growth in the laboratory media LB and InSPI2, transposon insertions in short
359 genomic regions were investigated (Materials and Methods). Transposon insertions in ten intergenic
360 regions caused macrophage-specific attenuation (Figure S4C). Four of them were located in the
361 plasmid regions. In pSLT-BT, the intergenic regions included: *spvB-spvA* upstream of *spvB* which
362 encodes an ADP-ribosyltransferase that destabilizes actin polymerization of the host cells [53,54]; *int-*
363 *dhfrI* encodes an integrase and a trimethoprim resistance gene cassette in the Tn21-like element; and
364 the downstream region of *repA* (called *repA_2* in D23580). In the pBT1 plasmid, the intergenic region
365 was located between two genes encoding hypothetical proteins, *pBT1-0171* and *pBT1-0181*. Assuming
366 disruption of promoter regions of the flanking genes, most of the chromosomal intergenic regions were
367 expected to have an effect in fitness inside macrophages: upstream of *dksA*, upstream of a gene located
368 in a SPI-6 associated region, SPI-2, upstream of *pssA* (phosphatidylserine biosynthesis), and upstream
369 of *rpoB* (DNA-directed RNA polymerase subunit beta). An exception was seen upstream of *rmlB*

370 (biosynthesis of O-antigen), where the effects on fitness were likely due to the polarity effects of the
371 insertion of a strong promoter upstream of this gene. Overall, the phenotype of most of these intergenic
372 transposon insertions was supported by previous studies that showed that the particular downstream
373 genes were important for growth and intracellular survival inside macrophages.

374 Only transposon insertions in one sRNA caused attenuation in the intra-macrophage environment
375 but not in the LB and InSPI2 *in vitro* growth conditions, namely AmgR (Figure S4D). This sRNA is an
376 antisense RNA of the *mgtC* gene [55]. AmgR attenuates virulence mediated by decreasing MgtC protein
377 levels [55]. The fact that disruptions in this sRNA attenuate D23580 within macrophages should be
378 interpreted with caution because transposon insertions disrupt both DNA strands and AmgR overlaps
379 the *mgtC* gene, which is known to be critical for macrophage survival [56]. This finding may simply
380 reflect the known role of *mgtC* in macrophage infection and not the involvement of AmgR in modulating
381 MgtC protein levels.

382 **Limitations of this study**

383 As for all global mutagenesis approaches, it is important to consider the limitations of our strategy.
384 First, the relatively large size of the mutant pools generated a highly competitive environment, in which
385 trans-complementation could occur. This phenomenon is characterized by compensating genetic
386 defects in some mutants by the presence of the functional genes in other mutants. Second, because
387 the Tn5 transposon carries an outward facing promoter that drives expression of the Km resistance
388 gene, individual transposon insertions can cause polar effects due to the increased transcription of
389 downstream genes [57,58]. Third, in the case of macrophage infection, although it would be ideal if
390 individual macrophages were only infected by a single Tn5-carrying bacterium, the final multiplicity of
391 infection (M.O.I.) was on average 42:1, meaning that combinations of mutants could have co-localized
392 within the same intra-macrophage vacuole. The genes that contribute to intra-macrophage fitness that
393 were identified here reflected selection for mutants with defects in the ability to replicate and survive
394 inside macrophages, and also selection for mutants lacking certain SPI-1-associated factors such as
395 InvH [59]. The genes required for optimal intra-macrophage fitness of *S. Typhimurium* sequence type
396 ST313 showed substantial overlap with *S. Typhimurium* ST19 genes previously associated to virulence.

397 **S. Typhimurium D23580 has many plasmid-encoded required genes**

398 S. Typhimurium D23580 contains four plasmids: pSLT-BT (~117 kb), pBT1 (~84.5 kb), pBT2 (~2.5 kb),
399 and pBT3 (~2 kb) [14,15]. The pSLT-BT and pBT1 plasmids have published annotations that were used
400 to study gene requirements for growth and survival in this study. Two pSLT-BT plasmid genes were
401 designated as required, *parA* and *parB* (Figure 6A, Table S2), and the same genes were also found to
402 be required for pBT1 plasmid maintenance (Figure 6B, Table S2). The requirement of ParA and ParB
403 for effective plasmid partitioning means that transposon insertions in both *parA* and *parB* caused
404 plasmid loss in previous TraDIS studies [60]. The unexpected discovery of 34 more pBT1-encoded
405 genes that were required, for stable maintenance of the plasmid or optimal fitness of S. Typhimurium
406 D23580, included the *cysS^{pBT1}* gene that has been reported previously [15].

407 The pBT1 plasmid is dispensable for *in vitro* growth of S. Typhimurium D23580 in LB (Figure 7A,
408 Tables S3 and S5) and required for optimal intra-macrophage replication (Text S1, Figure S6) [15]. The
409 fact that our TIS analysis identified so many pBT1-encoded genes that were required suggests the
410 involvement of multiple genes in the maintenance and replication of the plasmid [60,61]. For example,
411 the *repA^{pBT1}* gene, involved in plasmid replication [62], was required for pBT1 in D23580. The high
412 proportion of pBT1 genes (38%) designated required could reflect the presence of particular features
413 in this plasmid, such as toxin/antitoxin systems and/or DNA-binding proteins. We noted that the
414 percentage of AT content of the pBT1 plasmid is particularly high, 56.7%, compared to the S.
415 Typhimurium D23580 chromosome and the pSLT-BT plasmid, which are 47.8% AT and 46.5% AT,
416 respectively. The fact that pBT1 is so AT-rich parallels the AT content of the pSf-R27 plasmid of *Shigella*
417 *flexneri* 2a strain 2457T which was 55%. An H-NS parologue, Sfh, is encoded by pSf-R27 and is
418 responsible for a stealth function that allows the plasmid to be transmitted to new bacterial hosts with
419 minimal effects on fitness [63,64]. Consequently, the introduction of a modified version of the plasmid
420 that lacked *sfh* (pSf-R27 Δ *sfh*) into S. Typhimurium ST19 SL1344 significantly decreased fitness due to
421 interference with the H-NS regulatory network, whereas the wild-type pSf-R27 plasmid itself did not
422 impact upon fitness when introduced into the same strain [65]. This parallel between the pBT1 and pSf-
423 R27 plasmids raises the possibility that pBT1 encodes an H-NS-like protein that has a global impact
424 upon fitness of D23580, but could not be found by sequence identity alone.

425 To investigate pBT1-specific features that could explain the high number of genes with lower amount
426 of transposon insertions than the average amount in the chromosomal and the pSLT-BT plasmid, genes
427 with annotated known functions were studied. The pBT1 plasmid carries a set of conjugative genes and
428 was successfully introduced into 4/74 by conjugation demonstrating the functionality of those genes. At
429 least 11, out of the 36 required genes in pBT1, encoded putative conjugal proteins that are critical for
430 plasmid transfer (*trbAB*, *traK*, *traT*, *traQ*, *traM*, *pilT*, *traL*, *pilO*, *pilR*, *pilM*, *pilT*) [66]. The transposon-
431 induced overexpression of the *traAB* genes in *Incl* plasmids has been reported to cause a growth defect
432 [67]. Additionally, the plasmid contains at least one annotated toxin/antitoxin system: *stbD* (*pBT1-0201*)/
433 *stbE* (*pBT1-0211*). The gene encoding the antitoxin StbD was required, while the gene encoding the
434 toxin StbE was dispensable (Table S2). Two other genes, *relE* (*pBT1-0481*) and *relB* (*pBT1-0521*), are
435 annotated as a toxin and an antitoxin, respectively, and are separated by three genes. Our data showed
436 that the gene encoding the toxin RelE was required, while the gene encoding the antitoxin RelB gave
437 an ambiguous result. The precise role of pBT1-encoded toxin/antitoxin systems upon plasmid biology
438 and the fitness of D23580 merits further investigation.

439 One of the limitations of TIS approaches is that polarity effects can be caused by the introduction of
440 a strong transposon-encoded promoter in a specific genetic context. Such polarity effects could explain
441 the low density of transposons observed in some regions of the pBT1 plasmid, compared with the pSLT-
442 BT plasmid and other plasmids studied in previous TIS studies. Most of the pBT1-encoded genes are
443 hypothetical, and lack a known function. It remains to be determined if the high expression of certain
444 plasmid regions could be toxic to bacterial cells.

445 The finding that curing of pBT1 does not impact upon fitness shows that the plasmid is not in itself
446 essential. Previously, the observation of fitness defects associated with mutations in specific plasmid-
447 encoded genes reflected the essentiality of the entire plasmid [68,69], which is extremely uncommon
448 [70]. Because the fitness defect of the D23580 Δ cysS^{pBT1} mutant could reflect an uncharacterized
449 aspect of pBT1 biology, it was investigated in more detail.

450 **The pBT1-encoded CysRS^{pBT1} is less efficient and stable than the chromosomal-
451 encoded CysRS^{chr}**

452 Cysteinyl-tRNA synthetase (CysRS) is an essential protein in bacteria involved in translation.
453 Recently, we showed that *S. Typhimurium* D23580 expresses high levels of *cysS*^{pBT1} and that *cysS*^{chr}

454 is expressed at very low levels [15]. To investigate why an organism would express a plasmid-based
455 gene instead of a chromosomal copy, recombinant CysRS^{chr} and CysRS^{pBT1} were purified by
456 overexpressing the relevant D23580 genes in *Escherichia coli* (*E. coli*) and used for enzymatic analysis.
457 The steady-state kinetic parameters for activation of cysteine by both CysRS^{chr} and CysRS^{pBT1} were
458 determined using ATP-PP_i exchange. CysRS^{pBT1} had a 3-fold lower catalytic efficiency (k_{cat}/K_m) than
459 CysRS^{chr} (Figure 7B). Additionally, the stability of the enzymes was determined. CysRS^{pBT1} was 10
460 times less stable than CysRS^{chr} after incubation at 37°C for 60 min (Figure 7C). The fact that CysRS^{pBT1}
461 was both less efficient at cysteine activation and more unstable over time raises the possibility that *S.*
462 *Typhimurium* D23580 could be using CysRS^{pBT1} as a trigger to shut down translation during stressful
463 conditions. A less efficient CysRS within the bacterial cell would lead to the accumulation of uncharged
464 tRNAs which could induce the stringent response to help the cell cope with stress [71,72]. We speculate
465 that the preference for expressing the plasmid-encoded *cysS^{pBT1}* could give *S. Typhimurium* D23580
466 the ability to respond to stress conditions at the level of translation.

467 To investigate how widespread plasmid-encoded aminoacyl-tRNA synthetases are in biology, a
468 database containing 13,661 bacterial plasmids was generated (Materials and Methods). A total of 79
469 plasmid gene products were found to contain tRNA synthetase-related functional annotations. Closer
470 inspection of those CDS (coding sequences) revealed two classes: complete aminoacyl-tRNA
471 synthetase CDS (30); and CDS encoding aminoacyl-tRNA synthetase fragments and/or related
472 functions (49) (Table S8). The presence of aminoacyl-tRNA synthetase paralogues and paralogous
473 fragments have been previously reported in eukaryotic and prokaryotic genomes [73]. Our analysis
474 suggests that alternate plasmid-encoded aminoacyl-tRNA synthetases exist, and the molecular function
475 of plasmid-encoded translation-related genes warrants further study.

476 Perspective

477 The significant impact of iNTS disease as a major public health problem in sub-Saharan Africa has led
478 to *S. Typhimurium* ST313 becoming an active focus of research. To understand how African *S.*
479 *Typhimurium* ST313 causes disease, it was important to determine whether this pathovariant carries
480 novel virulence genes that had not previously been found in *S. Typhimurium* ST19. Our transposon
481 insertion sequencing approach during infection of the murine RAW264.7 macrophage infection model
482 suggests that novel virulence factors are not encoded by *S. Typhimurium* ST313 D23580.

483 Here, we present an online resource that allows the candidate genes that impact upon fitness of *S.*
484 *Typhimurium* ST313 strain D23580 to be visualized, both in particular *in vitro* growth conditions and
485 during intra-macrophage replication: <https://hactar.shef.ac.uk/D23580>.

486 In terms of plasmid biology, we conclude that, although pBT1 is not essential, this plasmid contains
487 a high proportion of genes that impact upon bacterial fitness: our data hint at a new role for plasmid-
488 encoded aminoacyl-tRNA synthetases.

489 **Figure legends**

490 **Figure 1. Transposon-insertion sequencing (TIS) in *S. Typhimurium* ST313 D23580.** Schematic
491 representation of the *S. Typhimurium* D23580 transposon library and growth conditions used in this
492 study.

493 **Figure 2. Transposon insertion profile in *S. Typhimurium* D23580.** (A) Transposon insertion
494 indexes are represented in the outer ring of the chromosome and the pSLT-BT and pBT1 plasmids of
495 *S. Typhimurium* D23580. The two inner rings represent annotated genes coloured according to their
496 GC content (blue = low, yellow = intermediate, red = high). (B) Chromosomal region showing a cluster
497 of genes, between *zntR-yhdN* and *hopD-bfr*, that are required for growth in D23580.

498 **Figure 3. *S. Typhimurium* D23580 chromosomal genes required for growth *in vitro*.** (A) *S.*
499 *Typhimurium* D23580 required chromosomal genes for growth that have never been previously
500 identified as required for growth in *S. Typhimurium* (*S. Typhimurium* 14028 [20], SL3261 [24], 14028
501 [74], LT2 [26]), or *S. Typhi* (Ty2 [20], WT174 [19]). For the previously published studies, only genes that
502 shared an ortholog in D23580 were used for the final analysis. (B) Transcriptional levels of expression
503 in LB mid-exponential phase (MEP) of the D23580 required genes for growth (data extracted from
504 Canals and colleagues [15]). The X axis represents groups of absolute TPM values. The Y axis
505 represents the number of required genes in D23580. The second Y axis represents the percentage of
506 required genes with a TPM value within the range showed in the X axis out of the total number of genes
507 showing a TPM value within the same range. (C) Required genes in D23580 with H-NS-binding sites
508 reported in *S. Typhimurium* SL1344 [36]. Only the SL1344 genes that shared an ortholog with D23580
509 were included for the analysis.

510 **Figure 4. Identification of *S. Typhimurium* D23580 required for *in vitro* growth.** The figures
511 represent (A) coding genes; (B) intergenic regions; and (C) sRNAs.

512 **Figure 5. Macrophage-specific genes of *S. Typhimurium* D23580 are required for virulence in**
513 **animal infection models.** (A) Representation of the 45 genes, among the 68 macrophage-specific
514 genes, in *S. Typhimurium* D23580 that showed an RNA-seq fold-change with FDR ≤ 0.05 . The RNA-
515 seq fold-change was calculated comparing transcriptomic data from D23580 recovered from the intra-
516 macrophage environment (8 h post-infection) versus D23580 grown to ESP in LB (extracted from
517 Canals and colleagues [15]). The attenuation score represents \log_2 fold-change of the TIS data obtained

518 comparing the two output Macrophage samples versus the two Input samples. (B) Fold-change
519 replication (15.5 h versus 1.5 h) in murine RAW264.7 macrophages. Average of three independent
520 biological replicates each. Error bars show standard deviation. ****, P -value <0.0001; **, P -value =
521 0.0006; **, P -value = 0.0043.

522 **Figure 6. Identification of required genes encoded on *S. Typhimurium* D23580 pSLT-BT and**

523 pBT1 plasmids. (A) pSLT-BT plasmid; and (B) pBT1 plasmid. Figures were obtained using the
524 Dalliance genome viewer (<https://hactar.shef.ac.uk/D23580>). Coloured arrows at the top represent
525 genes (colour is based on GC content, blue = low, yellow = intermediate, red = high). Each sample is
526 represented by three tracks, in this case the Input is the only sample shown. The first track shows raw
527 data for the Illumina sequencing reads. The second track contains blue and red lines that correspond
528 to transposon insertion sites; red = + orientation of the transposon, same as genes encoded on the plus
529 strand, blue = opposite direction. The third track highlights in red those genes that were considered
530 required for growth in that condition based on an insertion index (Materials and Methods). The names
531 of required genes are indicated at the bottom. The scale on the right represents sequence read
532 coverage.

533 **Figure 7. The pBT1 plasmid-encoded CysRS^{pBT1} is less efficient and stable than the**
534 **chromosomal-encoded CysRS^{chr}.** (A) Growth curves in LB medium of the D23580 WT strain, the
535 pBT1-cured D23580 strain, and the Km resistant (*aph*) and deletion versions (*frt*) of the *cysS^{pBT1}* mutant.
536 The table highlights differences in the lag time between strains. (B) The catalytic efficiency (k_{cat}/K_M) of
537 CysRS^{pBT1} is 3-fold lower than for CysRS^{chr}. Recombinant CysRS^{pBT1} and CysRS^{chr} were purified by
538 overexpression in *E. coli*. ATP-PPi exchange was used to determine the steady-state kinetic parameters
539 for activation of cysteine. (C) CysRS^{pBT1} is 10-fold less stable than CysRS^{chr}. This comparison was
540 performed by incubating the enzymes at 37°C for 60 minutes.

541

542

543

544

545

546 Materials and Methods

547 Bacterial strains and growth conditions

548 LB was obtained by mixing 10 g/L tryptone (Difco), 5 g/L yeast extract (Difco), and 5 g/L NaCl (Sigma).

549 The InSPI2 medium was based on PCN (pH 5.8, 0.4 mM Pi), which was prepared as previously
550 described [75]. When required, the antibiotic Km was added to a final concentration of 50 µg/mL, and
551 tetracycline (Tc) to 20 µg/mL.

552 Bacterial strains used for this study are shown in Table S9. Permission to work with *S. Typhimurium*
553 strain D23580 from Malawi [14] was approved by the Malawian College of Medicine (COMREC ethics
554 no. P.08/4/1614).

555 Construction of a transposon library in *S. Typhimurium* D23580

556 A library of transposon insertion mutants was constructed in *S. Typhimurium* D23580 as previously
557 described with some modifications [20]. Briefly, D23580 was grown in rich medium to logarithmic phase
558 and competent cells were prepared. Transposome mixtures were prepared by mixing the EZ-Tn5
559 <KAN-2> transposon from Epicentre Biotechnologies, EZ-Tn5 transposase and TypeOne restriction
560 inhibitor, and transposomes were transformed into D23580 competent cells. A total of eight
561 electroporations derived from two transposome mixtures were performed and cells were recovered by
562 addition of SOC medium and incubation at 37°C for 1 h. Bacterial mixtures were plated onto LB agar
563 Km at a concentration of 50 µg/mL and incubated at 37°C overnight. The transposon mutants were
564 collected from the plates by adding LB and were joined to grow them together in LB Km 50 µg/mL at
565 37°C overnight.

566 Passages of the *S. Typhimurium* D23580 transposon library in LB and InSPI2

567 The D23580 transposon library was grown in LB Km 50 µg/mL at 37°C 220 rpm for 16 h, and genomic
568 DNA was purified from a fraction of the bacterial culture (input). Another fraction of the bacterial culture
569 was washed twice with PBS and resuspended in LB or InSPI2 media. A dilution 1:100 (~2.5 x 10⁸ cells)
570 was inoculated into 25 mL of LB or InSPI2 media (without antibiotic), respectively, and cultures were
571 incubated at 37°C, 220 rpm for 24 h (passage 1). Two more passages were performed in an InSPI2
572 media. For LB passages, 250 µL were transferred in each individual passage, after two washes with
573 PBS (~1.4 x 10⁹ cells). For InSPI2 passages, 640 µL were transferred into the next passage (~1.7 x 10⁸

574 cells). Genomic DNA was purified from the third passage in LB (output LB) and InSPI2 (output InSPI2).
575 Genomic DNA purifications were performed using the DNeasy Blood & Tissue Kit (Qiagen) following
576 manufacturer's indications for extractions from gram-negative bacteria.

577 **Library preparation and Illumina sequencing for the input and the LB and InSPI2**
578 **output samples**

579 Genomic DNAs were fragmented to 300 bp with a S220/E220 focused-ultrasonicator (Covaris).
580 Samples were prepared using the NEBNext DNA Library Prep Master Mix Set for Illumina for use with
581 End User Supplied Primers and Adapters (New England Biolabs) following manufacturer's instructions.
582 The DNA fragments were end-repaired and an "A" base was added to the 3'ends prior to ligation of the
583 Illumina adapters (*PE Adapters* from Illumina). In order to amplify the transposon-flanking regions,
584 transposon-specific forward oligonucleotides were designed such that the first 10 bases of each read
585 would be the transposon sequence: PE PCR Tn-12, for the input sample (Input); PE PCR Tn-1 and PE
586 PCR Tn-7, for the output sample in LB; and PE PCR Tn-10 and PE PCR Tn-4, for the output sample in
587 InSPI2 (S10 Table). These oligonucleotides were used for PCR amplification with the Illumina reverse
588 primer *PE PCR Primer 2.0*. The primers included the adapters and the sequences necessary for
589 attachment to the Illumina flow cell. Furthermore, a specific 6-base barcode included in the forward
590 primer was incorporated into each of the samples in order to pool them together in a single lane for
591 sequencing. Oligonucleotides ordered were HPLC-purified with a phosphorothioate bond at the 3'end
592 from Eurofins Genomics. The three libraries of amplified products were pooled in equimolar amounts
593 and size-selected to 200-500 bp. After QC assessment, the pool was paired-end sequenced, using the
594 Illumina sequencing primers, in one lane on a HiSeq 2500 at 2x125 bp. 15% of library of the
595 bacteriophage Φ X174 genome, provided by Illumina as a control, was added to the lane to overcome
596 the low complexity of the bases after the barcode in Read 1.

597 **Sequence analysis of the *S. Typhimurium* D23580 transposon library**

598 Cutadapt version 1.8.1 was used to demultiplex the sequence reads based on the 6-base barcode [76].
599 Transposon sequences at the beginning of the reads were removed using the same program. BWA-
600 MEM [77] was used to map the reads against the *S. Typhimurium* D23580 genome sequence
601 (accession: PRJEB28511). Reads with a mapping quality <10 were discarded, as were alignments
602 which did not match at the 5'end of the read (immediately adjacent to the transposon) (Table S1). The

603 exact position of the transposon insertion sites and the frequency of transposons for every annotated
604 gene were determined.

605 An insertion index was calculated for each gene as explained in [19], using the Bio::Tridis toolkit
606 [78]. Genes with insertion index values <0.05 (cut-off determined using Bio::Tridis) were considered
607 as “required” for growth in the Lennox rich medium. Genes with an insertion index between 0.05 and
608 0.075 were considered “ambiguous”, and genes with an insertion index >0.075 were considered “not
609 required”. Table S2 shows the number of reads, transposon insertion sites, insertion index, and
610 essentiality call per gene.

611 **Infection of RAW264.7 macrophages with *S. Typhimurium* D23580**

612 The D23580 transposon library was grown in LB Km 50 µg/mL at 37°C 220 rpm for 16 h, and genomic
613 DNA was purified from two different biological replicates as input samples. Murine RAW264.7
614 macrophages (ATCC TIB-71) were grown in DMEM high glucose (Thermo Fisher Scientific)
615 supplemented with 10% heat-inactivated fetal bovine serum (Thermo Fisher Scientific), 1X MEM non-
616 essential amino acids (Thermo Fisher Scientific) and 2 mM L-glutamine (Thermo Fisher Scientific), at
617 37°C in a 5% CO₂ atmosphere. 10⁶ macrophage cells were seeded on each well of 6-well plates
618 (Sarstedt) 24 h before infection. Bacteria were opsonized with 10% BALB/c mouse serum (Charles
619 River) in 10 volumes of DMEM for 30 min on ice. Macrophages were infected with *Salmonella* at an
620 M.O.I. of approximately 10:1, and infections were synchronized by centrifugation (5 min at 1,000 rpm).
621 After 30 min of infection, macrophages were washed with DPBS (Thermo Fisher Scientific), and DMEM
622 with supplements and gentamicin 100 µg/mL was added to kill extracellular bacteria. After 1 h,
623 macrophages were washed with DPBS, and fresh DMEM with supplements and gentamicin 10 µg/mL
624 was provided for the rest of the incubation time at 37°C with 5% CO₂. In some wells, 1% Triton X-100
625 was added to recover intracellular bacteria and plate dilutions to obtain bacterial counts for the 1.5 h
626 time point. For the rest of the wells, after 12 h from the initial infection, macrophages were washed with
627 DPBS and intracellular bacteria were collected using 1% Triton X-100. Some wells were used for
628 obtaining bacterial counts and calculate the fold-change replication of the intracellular bacteria (12 h
629 versus 1.5 h) (Figure S3B). For the output samples of the D23580 transposon library, 12 wells (of 6-
630 well plates) were pooled for each replicate. The samples of 1% Triton X-100 containing the intracellular
631 bacteria were centrifugated and the supernatants were discarded. Pellets were resuspended in LB and

632 transferred into a flask to grow bacteria for 10 h 220 rpm in LB supplemented with Km. Genomic DNA
633 was extracted from those cultures and prepared for Illumina sequencing, together with the input
634 samples.

635 For macrophage infections with the individual *S. Typhimurium* strains D23580 WT, D23580
636 Δ argA::frt, 4/74 WT, and 4/74 Δ argA::frt, intracellular bacteria were recovered after 1.5 h and 15.5 h.
637 Bacterial counts at the two time points were used to calculate the fold-change replication in the intra-
638 macrophage environment (Figure 5B).

639 **Library preparation and Illumina sequencing for the input and output samples**
640 **of the RAW264.7 macrophage experiment**

641 Genomic DNA samples were prepared for Illumina sequencing following the previously described
642 protocol. The transposon-specific forward oligonucleotides used for amplifying the sequence adjacent
643 to the transposon were: PE PCR Tn-12, for the input biological replicate 1 sample (Input 1); PE PCR
644 Tn-7, for the input biological replicate 2 sample (Input 2); PE PCR Tn-1, for the output biological replicate
645 1 sample (Macrophage 1); and PE PCR Tn-5, for the output biological replicate 2 sample (Macrophage
646 2) (Table S10). In this case, oligonucleotides were ordered HPLC-purified with a phosphorothioate bond
647 at the 3'end from Integrated DNA Technologies (IDT).

648 The four libraries of amplified products were pooled in equimolar amounts with two other libraries
649 and size-selected and QC-assessed. The pool was paired-end sequenced, using the Illumina
650 sequencing primers, in one lane on a HiSeq 4000 at 2x150 bp. In this case, 50% of a library of the
651 bacteriophage Φ X174 genome was added to the lane to overcome the low complexity of the bases
652 after the barcode in Read 1.

653 **Sequence analysis of the *S. Typhimurium* D23580 transposon library**

654 Analysis was performed using DESeq2 and following the same strategy described in [79]. Results are
655 shown in \log_2 fold-change. A cutoff of 2-fold-change and *P*-value ≤ 0.05 was applied (Table S7).

656 **Construction of mutants in *S. Typhimurium* D23580 and 4/74 by λ Red**
657 **recombineering**

658 Mutants were constructed using the λ Red recombination system [80]. Using oligonucleotides Fw-argA-
659 P1 and Rv-argA-P2, a Km resistance cassette was PCR-amplified from plasmid pKD4. The PCR
660 product was transformed by electroporation into D23580 and 4/74 containing the pSIM5-tet plasmid to
661 replace the *argA* gene. Recombinants were selected on LB agar plates supplemented with Km. The
662 4/74 Δ *argA::aph* construction was transduced into WT 4/74 using the generalized transducing
663 bacteriophage P22 HT105/1 *int*-201 as previously described [27]. The antibiotic resistance cassettes
664 from both, the 4/74 Δ *argA::aph* and D23580 Δ *argA::aph*, were removed by the use of the pCP20-TcR
665 plasmid [81]. Strains and plasmids are included in Table S9 and oligonucleotides in Table S10.

666 **CysRS cloning and purification**

667 Genomic DNA from *S. Typhimurium* D23580 was used to PCR amplify both chromosomal and plasmid
668 *cysS* which were then cloned into pET28a(+). Chromosomal and plasmid CysRS were expressed in *E.*
669 *coli* BL21(DE3) with 1 mmol IPTG induction for 4 h. Cells were harvested, lysed by sonication and
670 purified using a TALON metal affinity resin. CysRS was eluted with 250 mM imidazole and fractions
671 containing protein were concentrated and dialyzed overnight in 50 mM Tris pH 7.5, 100 mM KCl, 5 mM
672 MgCl₂, 3 mM 2-mercaptoethanol, 5% glycerol, and then dialyzed 4 h in similar buffer with 50% glycerol
673 for storage. Proteins were stored at -20°C. Oligonucleotides used for cloning and expression are
674 included in Table S10.

675 **CysRS pyrophosphate exchange – steady state kinetics**

676 To determine the *K_M* for Cys, pyrophosphate exchange was completed in a reaction containing 100 mM
677 HEPES pH 7.5, 30 mM KCl, 10 mM MgCl₂ 1 mM NaF, 25 nM CysRS, 50 μ M-2mM Cys, 2 mM ATP, 2
678 mM ³²P-PPi. The reaction without CysRS was incubated at 37°C for 5 min at which point the enzyme
679 was added. Then aliquots were taken at 1-4 min by combining the reaction with quench solution (1%
680 activated charcoal, 5.6% HClO₄, 1.25 M PPi). On a vacuum filter with 3 mm filter discs, filter discs were
681 pre-rinsed with water, charcoal reaction added, washed 3x H₂O and 1x 95% EtOH. Radiation was
682 quantified using liquid scintillation counting. Michaelis-Menton equation was used to determine kinetic
683 parameters.

684 **CysRS thermal stability**

685 To determine the stability of protein, chromosomal and pBT1 CysRS were incubated at 37°C for 0 and
686 60 min and active site titration was used to measure the activity of the protein. Active site titration was
687 completed in 30 mM KCl, 10 mM MgCl₂, 80uM ³⁵S-Cys, 2 mM ATP, pyrophosphatase and CysRS. At
688 0 min, 5 µL of CysRS were added to the reaction mixture and placed at 37°C for 10 min. The reaction
689 was quenched by placing tubes on ice. After 60 min incubation of purified protein at 37°C, 5 µL were
690 combined with the reaction mixture as above. All reactions were placed on a vacuum filtration unit on a
691 Protran BA85 nitrocellulose membrane, washed three times with 1 mL 15 mM KCl and 5 mM MgCl₂
692 and dried. Then 4 mL of liquid scintillation cocktail were added and radiation was quantified using liquid
693 scintillation counting.

694 **Growth curves of the D23580 bacterial strains**

695 To determine the growth rate of the D23580 WT, D23580 ΔpBT1, D23580 ΔcysS^{pBT1}::aph and D23580
696 ΔcysS^{pBT1}::ftt strains in LB, a Growth Profiler 960 was used (EnzyScreen). Bacterial cells grown for 16
697 h in LB, 37°C 220 rpm, were diluted in 250 µl of LB to OD₆₀₀ 0.01 and incubated in the Growth Profiler
698 for 24 h at 37°C, shaking at 224 rpm. The OD₆₀₀ values were measured every 15 min.

699 **Statistical analyses**

700 Graphpad Prism 8.0.1 was used for statistical analyses (GraphPad Software Inc., La Jolla, CA, USA).
701 One-way ANOVA and Tukey's multiple comparison test were used for comparative analyses.

702 **Analysis of conservation of aminoacyl-tRNA synthetases in bacterial plasmids**

703 A plasmid database was generated from the plasmid sub-section of NCBI's Reference Sequence
704 Database (RefSeq) v90 [82], and included 13,924 complete plasmid sequences. The associated
705 taxonomical information was downloaded and non-bacterial sequences were removed to leave 13,661
706 plasmids. The GenPept files were processed to extract the associated coding sequence annotations.

707

708

709

710 **Funding**

711 This work was supported by a Wellcome Trust Senior Investigator award (to JCDH) (Grant
712 106914/Z/15/Z). RC was supported by a EU Marie Curie International Incoming Fellowship (FP7-
713 PEOPLE-2013-IIF, Project Reference 628450).

714 **Acknowledgments**

715 We are thankful to present and former members of the Hinton laboratory for helpful discussions,
716 particularly Xiaojun Zhu and Carsten Kröger, and to Paul Loughnane for his technical assistance. We
717 are grateful to John Kenny for his expertise in library preparation for Illumina sequencing, and thank the
718 Centre for Genomic Research at the University of Liverpool for the use of the Covaris equipment. We
719 appreciated our helpful discussions with Duy Phan concerning the design and analysis of the
720 transposon insertion experiments.

721

722 **References**

- 723 1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, et al. The Global Burden of
724 Nontyphoidal *Salmonella* Gastroenteritis. *Clin Infect Dis.* 2010;50: 882–889. doi:10.1086/650733
- 725 2. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, et al. *Salmonella*
726 *enterica* Serovar *Typhimurium* Exploits Inflammation to Compete with the Intestinal Microbiota.
727 *PLOS Biol.* 2007;5: e244. doi:10.1371/journal.pbio.0050244
- 728 3. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW, et al. Gut
729 inflammation provides a respiratory electron acceptor for *Salmonella*. *Nature.* 2010;467: 426–429.
730 doi:10.1038/nature09415
- 731 4. Fields PI, Swanson RV, Haidaris CG, Heffron F. Mutants of *Salmonella typhimurium* that cannot
732 survive within the macrophage are avirulent. *Proc Natl Acad Sci.* 1986;83: 5189–5193.
733 doi:10.1073/pnas.83.14.5189
- 734 5. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal
735 *salmonella* disease: an emerging and neglected tropical disease in Africa. *The Lancet.* 2012;379:
736 2489–2499. doi:10.1016/S0140-6736(11)61752-2
- 737 6. Gordon M, Banda H, Gondwe M, Gordon S, Boeree M, Walsh A, et al. Non-typhoidal *salmonella*
738 bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence.
739 *Aids.* 2002;16: 1633–1641.
- 740 7. MacLennan CA, Gilchrist JJ, Gordon MA, Cunningham AF, Cobbold M, Goodall M, et al. Dysregulated
741 Humoral Immunity to Nontyphoidal *Salmonella* in HIV-Infected African Adults.
742 *Science.* 2010;328: 508–512. doi:10.1126/science.1180346

743 8. Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, et al. Simian
744 immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes *Salmonella*
745 dissemination from the gut. *Nat Med.* 2008;14: 421–428. doi:10.1038/nm1743

746 9. Lê-Bury G, Niedergang F. Defective Phagocytic Properties of HIV-Infected Macrophages: How
747 Might They Be Implicated in the Development of Invasive *Salmonella* Typhimurium? *Front*
748 *Immunol.* 2018;9. doi:10.3389/fimmu.2018.00531

749 10. Kariuki S, Revathi G, Kariuki N, Kiuru J, Mwituria J, Muyodi J, et al. Invasive multidrug-resistant
750 non-typhoidal *Salmonella* infections in Africa: zoonotic or anthropozoonotic transmission? *J Med*
751 *Microbiol.* 2006;55: 585–591. doi:10.1099/jmm.0.46375-0

752 11. Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, Molyneux E, et al. Epidemics of Invasive
753 *Salmonella enterica* Serovar Enteritidis and *S. enterica* Serovar Typhimurium Infection Associated
754 with Multidrug Resistance among Adults and Children in Malawi. *Clin Infect Dis.* 2008;46: 963–
755 969. doi:10.1086/529146

756 12. Su L-H, Chiu C-H, Chu C, Ou JT. Antimicrobial Resistance in Nontyphoid *Salmonella* Serotypes:
757 A Global Challenge. *Clin Infect Dis.* 2004;39: 546–551. doi:10.1086/422726

758 13. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global Burden of Invasive
759 Nontyphoidal *Salmonella* Disease, 20101. *Emerg Infect Dis.* 2015;21: 941–949.
760 doi:10.3201/eid2106.140999

761 14. Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, et al. Epidemic multiple
762 drug resistant *Salmonella* Typhimurium causing invasive disease in sub-Saharan Africa have a
763 distinct genotype. *Genome Res.* 2009;19: 2279–2287. doi:10.1101/gr.091017.109

764 15. Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY, Lacharme-Lora L, et al. Adding function
765 to the genome of African *Salmonella* Typhimurium ST313 strain D23580. *PLOS Biol.* 2019;17:
766 e3000059. doi:10.1371/journal.pbio.3000059

767 16. Lokken KL, Walker GT, Tsolis RM. Disseminated infections with antibiotic-resistant non-typhoidal
768 *Salmonella* strains: contributions of host and pathogen factors. *Pathog Dis.* 2016;74.
769 doi:10.1093/femspd/ftw103

770 17. van Opijnen T, Camilli A. Transposon insertion sequencing: a new tool for systems-level analysis
771 of microorganisms. *Nat Rev Microbiol.* 2013;11. doi:10.1038/nrmicro3033

772 18. Chao MC, Abel S, Davis BM, Waldor MK. The Design and Analysis of Transposon-Insertion
773 Sequencing Experiments. *Nat Rev Microbiol.* 2016;14: 119–128. doi:10.1038/nrmicro.2015.7

774 19. Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, Haase J, et al. Simultaneous assay of
775 every *Salmonella* Typhi gene using one million transposon mutants. *Genome Res.* 2009;19:
776 2308–2316. doi:10.1101/gr.097097.109

777 20. Canals R, Xia X-Q, Fronick C, Clifton SW, Ahmer BM, Andrews-Polymenis HL, et al. High-
778 throughput comparison of gene fitness among related bacteria. *BMC Genomics.* 2012;13: 212.
779 doi:10.1186/1471-2164-13-212

780 21. Khatiwara A, Jiang T, Sung S-S, Dawoud T, Kim JN, Bhattacharya D, et al. Genome Scanning
781 for Conditionally Essential Genes in *Salmonella enterica* Serotype Typhimurium. *Appl Env*
782 *Microbiol.* 2012;78: 3098–3107. doi:10.1128/AEM.06865-11

783 22. Moraes MH de, Desai P, Porwollik S, Canals R, Perez DR, Chu W, et al. *Salmonella* Persistence
784 in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion
785 Sequencing. *Appl Environ Microbiol.* 2017;83: e03028-16. doi:10.1128/AEM.03028-16

786 23. Down TA, Piipari M, Hubbard TJP. Dalliance: interactive genome viewing on the web.
787 *Bioinformatics.* 2011;27: 889–890. doi:10.1093/bioinformatics/btr020

788 24. Barquist L, Langridge GC, Turner DJ, Phan M-D, Turner AK, Bateman A, et al. A comparison of
789 dense transposon insertion libraries in the *Salmonella* serovars Typhi and Typhimurium. *Nucleic
790 Acids Res.* 2013;41: 4549–4564. doi:10.1093/nar/gkt148

791 25. Knuth K, Niesalla H, Hueck CJ, Fuchs TM. Large-scale identification of essential *Salmonella*
792 genes by trapping lethal insertions. *Mol Microbiol.* 51: 1729–1744. doi:10.1046/j.1365-
793 2958.2003.03944.x

794 26. Thiele I, Hyduke DR, Steeb B, Fankam G, Allen DK, Bazzani S, et al. A community effort towards
795 a knowledge-base and mathematical model of the human pathogen *Salmonella* Typhimurium
796 LT2. *BMC Syst Biol.* 2011;5: 8. doi:10.1186/1752-0509-5-8

797 27. Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, et al. Characterization
798 of the Prophage Repertoire of African *Salmonella* Typhimurium ST313 Reveals High Levels of
799 Spontaneous Induction of Novel Phage BTP1. *Front Microbiol.* 2017;8.
800 doi:10.3389/fmicb.2017.00235

801 28. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of *Escherichia coli*
802 K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol.* 2006;2:
803 2006.0008. doi:10.1038/msb4100050

804 29. Lodge JK, Weston-Hafer K, Berg DE. Transposon Tn5 Target Specificity: Preference for Insertion
805 at G/C Pairs. *Genetics.* 1988;120: 645–650.

806 30. Goryshin IY, Miller JA, Kil YV, Lanzov VA, Reznikoff WS. Tn5/IS50 target recognition. *Proc Natl
807 Acad Sci.* 1998;95: 10716–10721.

808 31. Manna D, Porwollik S, McClelland M, Tan R, Higgins NP. Microarray analysis of Mu transposition
809 in *Salmonella enterica*, serovar Typhimurium: transposon exclusion by high-density DNA binding
810 proteins. *Mol Microbiol.* 2007;66: 315–328. doi:10.1111/j.1365-2958.2007.05915.x

811 32. Manna D, Breier AM, Higgins NP. Microarray analysis of transposition targets in *Escherichia coli*:
812 The impact of transcription. *Proc Natl Acad Sci.* 2004;101: 9780–9785.
813 doi:10.1073/pnas.0400745101

814 33. Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD. H-NS Mediates the
815 Silencing of Laterally Acquired Genes in Bacteria. *PLOS Pathog.* 2006;2: e81.
816 doi:10.1371/journal.ppat.0020081

817 34. Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, et al. Selective Silencing
818 of Foreign DNA with Low GC Content by the H-NS Protein in *Salmonella*. *Science.* 2006;313:
819 236–238. doi:10.1126/science.1128794

820 35. Kimura S, Hubbard TP, Davis BM, Waldor MK. The Nucleoid Binding Protein H-NS Biases
821 Genome-Wide Transposon Insertion Landscapes. *mBio.* 2016;7: e01351-16.
822 doi:10.1128/mBio.01351-16

823 36. Dillon SC, Cameron ADS, Hokamp K, Lucchini S, Hinton JCD, Dorman CJ. Genome-wide
824 analysis of the H-NS and Sfh regulatory networks in *Salmonella* Typhimurium identifies a plasmid-
825 encoded transcription silencing mechanism. *Mol Microbiol.* 2010;76: 1250–1265.
826 doi:10.1111/j.1365-2958.2010.07173.x

827 37. Sturm A, Heinemann M, Arnoldini M, Benecke A, Ackermann M, Benz M, et al. The Cost of
828 Virulence: Retarded Growth of *Salmonella* Typhimurium Cells Expressing Type III Secretion
829 System 1. *PLOS Pathog.* 2011;7: e1002143. doi:10.1371/journal.ppat.1002143

830 38. Ali SS, Soo J, Rao C, Leung AS, Ngai DH-M, Ensminger AW, et al. Silencing by H-NS Potentiated
831 the Evolution of *Salmonella*. *PLoS Pathog.* 2014;10. doi:10.1371/journal.ppat.1004500

832 39. Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R. Effect of Deletion of Genes Involved in
833 Lipopolysaccharide Core and O-Antigen Synthesis on Virulence and Immunogenicity of
834 *Salmonella enterica* Serovar Typhimurium. *Infect Immun.* 2011;79: 4227–4239.
835 doi:10.1128/IAI.05398-11

836 40. Azriel S, Goren A, Rahav G, Gal-Mor O. The Stringent Response Regulator DksA Is Required for
837 *Salmonella enterica* Serovar Typhimurium Growth in Minimal Medium, Motility, Biofilm Formation,
838 and Intestinal Colonization. *Infect Immun.* 2015;84: 375–384. doi:10.1128/IAI.01135-15

839 41. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, et al. Deep Sequencing
840 Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional
841 Regulator, Hfq. *PLOS Genet.* 2008;4: e1000163. doi:10.1371/journal.pgen.1000163

842 42. Holmqvist E, Wright PR, Li L, Bischler T, Barquist L, Reinhardt R, et al. Global RNA recognition
843 patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo.
844 *EMBO J.* 2016;35: 991–1011. doi:10.15252/embj.201593360

845 43. Fröhlich KS, Papenfort K, Berger AA, Vogel J. A conserved RpoS-dependent small RNA controls
846 the synthesis of major porin OmpD. *Nucleic Acids Res.* 2012;40: 3623–3640.
847 doi:10.1093/nar/gkr1156

848 44. Fröhlich KS, Haneke K, Papenfort K, Vogel J. The target spectrum of SdsR small RNA in
849 *Salmonella*. *Nucleic Acids Res.* 2016;44: 10406–10422. doi:10.1093/nar/gkw632

850 45. Lévi-Meyrueis C, Monteil V, Sismeiro O, Dillies M-A, Monot M, Jagla B, et al. Expanding the
851 RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in
852 *Salmonella*. *PLOS ONE.* 2014;9: e96918. doi:10.1371/journal.pone.0096918

853 46. Hölzer SU, Schlumberger MC, Jäckel D, Hensel M. Effect of the O-Antigen Length of
854 Lipopolysaccharide on the Functions of Type III Secretion Systems in *Salmonella enterica*. *Infect*
855 *Immun.* 2009;77: 5458–5470. doi:10.1128/IAI.00871-09

856 47. Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, et al. RNA-seq Brings
857 New Insights to the Intra-Macrophage Transcriptome of *Salmonella Typhimurium*. *PLOS Pathog.*
858 2015;11: e1005262. doi:10.1371/journal.ppat.1005262

859 48. Hammarlöf DL, Canals R, Hinton JC. The FUN of identifying gene function in bacterial pathogens;
860 insights from *Salmonella* functional genomics. *Curr Opin Microbiol.* 2013;16: 643–651.
861 doi:10.1016/j.mib.2013.07.009

862 49. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL, Davies HM, et al. Comprehensive
863 Assignment of Roles for *Salmonella Typhimurium* Genes in Intestinal
864 Colonization of Food-Producing Animals. *PLOS Genet.* 2013;9: e1003456.
865 doi:10.1371/journal.pgen.1003456

866 50. Silva-Valenzuela CA, Molina-Quiroz RC, Desai P, Valenzuela C, Porwollik S, Zhao M, et al.
867 Analysis of Two Complementary Single-Gene Deletion Mutant Libraries of *Salmonella*
868 Typhimurium in Intraperitoneal Infection of BALB/c Mice. *Front Microbiol.* 2016;6.
869 doi:10.3389/fmicb.2015.01455

870 51. Charlier D, Glansdorff N. Biosynthesis of Arginine and Polyamines. *EcoSal Plus.* 2004;1.
871 doi:10.1128/ecosalplus.3.6.1.10

872 52. Köstner M, Schmidt B, Bertram R, Hillen W. Generating Tetracycline-Inducible Auxotrophy in
873 *Escherichia coli* and *Salmonella enterica* Serovar Typhimurium by Using an Insertion Element
874 and a Hyperactive Transposase. *Appl Env Microbiol.* 2006;72: 4717–4725.
875 doi:10.1128/AEM.00492-06

876 53. Guiney DGMD, Fierer JMD. The Role of the *spv* Genes in *Salmonella* Pathogenesis. *Front*
877 *Microbiol.* 2011;2. doi:10.3389/fmicb.2011.00129

878 54. Lesnick ML, Reiner NE, Fierer J, Guiney DG. The *Salmonella* spvB virulence gene encodes an
879 enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. *Mol*
880 *Microbiol.* 2001;39: 1464–1470. doi:10.1046/j.1365-2958.2001.02360.x

881 55. Lee E-J, Groisman EA. An antisense RNA that governs the expression kinetics of a multifunctional
882 virulence gene. *Mol Microbiol.* 2010;76: 1020–1033. doi:10.1111/j.1365-2958.2010.07161.x

883 56. Alix E, Blanc-Potard A-B. MgtC: a key player in intramacrophage survival. *Trends Microbiol.*
884 2007;15: 252–256. doi:10.1016/j.tim.2007.03.007

885 57. Berg DE, Weiss A, Crossland L. Polarity of Tn5 insertion mutations in *Escherichia coli*. *J Bacteriol.*
886 1980;142: 439–446.

887 58. Wang A, Roth JR. Activation of Silent Genes by Transposons Tn5 and Tn10. *Genetics.* 1988;120:
888 875–885.

889 59. Pati NB, Vishwakarma V, Jaiswal S, Periaswamy B, Hardt W-D, Suar M. Deletion of invH gene in
890 *Salmonella enterica* serovar *Typhimurium* limits the secretion of Sip effector proteins. *Microbes*
891 *Infect.* 2013;15: 66–73. doi:10.1016/j.micinf.2012.10.014

892 60. Hancock SJ, Phan M-D, Peters KM, Forde BM, Chong TM, Yin W-F, et al. Identification of IncA/C
893 Plasmid Replication and Maintenance Genes and Development of a Plasmid Multilocus Sequence
894 Typing Scheme. *Antimicrob Agents Chemother.* 2017;61: e01740-16. doi:10.1128/AAC.01740-16

895 61. Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S, Stanton-Cook M, et al. Molecular
896 Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated
897 *Escherichia coli* ST131 Clone. *PLOS ONE.* 2015;10: e0122369.
898 doi:10.1371/journal.pone.0122369

899 62. Llanes C, Gabant P, Couturier M, Bayer L, Plesiat P. Molecular Analysis of the Replication
900 Elements of the Broad-Host-Range RepA/C Replicon. *Plasmid.* 1996;36: 26–35.
901 doi:10.1006/plas.1996.0028

902 63. Deighan P, Beloin C, Dorman CJ. Three-way interactions among the Sfh, StpA and H-NS
903 nucleoid-structuring proteins of *Shigella flexneri* 2a strain 2457T. *Mol Microbiol.* 2003;48: 1401–
904 1416. doi:10.1046/j.1365-2958.2003.03515.x

905 64. Beloin C, Deighan P, Doyle M, Dorman CJ. *Shigella flexneri* 2a strain 2457T expresses three
906 members of the H-NS-like protein family: characterization of the Sfh protein. *Mol Genet Genomics.*
907 2003;270: 66–77. doi:10.1007/s00438-003-0897-0

908 65. Doyle M, Fookes M, Ivens A, Mangan MW, Wain J, Dorman CJ. An H-NS-like Stealth Protein Aids
909 Horizontal DNA Transmission in Bacteria. *Science.* 2007;315: 251–252.
910 doi:10.1126/science.1137550

911 66. Yamaichi Y, Chao MC, Sasabe J, Clark L, Davis BM, Yamamoto N, et al. High-resolution genetic
912 analysis of the requirements for horizontal transmission of the ESBL plasmid from *Escherichia*
913 *coli* O104:H4. *Nucleic Acids Res.* 2015;43: 348–360. doi:10.1093/nar/gku1262

914 67. Poidevin M, Sato M, Altinoglu I, Delaplace M, Sato C, Yamaichi Y. Mutation in ESBL Plasmid from
915 *Escherichia coli* O104:H4 Leads Autoagglutination and Enhanced Plasmid Dissemination. *Front*
916 *Microbiol.* 2018;9. doi:10.3389/fmicb.2018.00130

917 68. Dziewit L, Czarnecki J, Wibberg D, Radlinska M, Mrozek P, Szymczak M, et al. Architecture and
918 functions of a multipartite genome of the methylotrophic bacterium *Paracoccus aminophilus* JCM
919 7686, containing primary and secondary chromids. *BMC Genomics.* 2014;15: 124.
920 doi:10.1186/1471-2164-15-124

921 69. Ebert M, Laaß S, Burghartz M, Petersen J, Koßmehl S, Wöhlbrand L, et al. Transposon
922 Mutagenesis Identified Chromosomal and Plasmid Genes Essential for Adaptation of the Marine

923 924 Bacterium *Dinoroseobacter shibae* to Anaerobic Conditions. *J Bacteriol.* 2013;195: 4769–4777.
doi:10.1128/JB.00860-13

925 926 70. Tazzyman SJ, Bonhoeffer S. Why There Are No Essential Genes on Plasmids. *Mol Biol Evol.* 2015;32: 3079–3088. doi:10.1093/molbev/msu293

927 928 71. Haseltine WA, Block R. Synthesis of Guanosine Tetra- and Pentaphosphate Requires the
929 Presence of a Codon-Specific, Uncharged Transfer Ribonucleic Acid in the Acceptor Site of
Ribosomes. *Proc Natl Acad Sci U S A.* 1973;70: 1564–1568.

930 931 72. Agirrezabala X, Fernández IS, Kelley AC, Cartón DG, Ramakrishnan V, Valle M. The ribosome
932 triggers the stringent response by *RelA* via a highly distorted tRNA. *EMBO Rep.* 2013;14: 811–
816. doi:10.1038/embor.2013.106

933 934 73. Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD, Stathopoulos C, et al. The complex
935 evolutionary history of aminoacyl-tRNA synthetases. *Nucleic Acids Res.* 2017;45: 1059–1068.
doi:10.1093/nar/gkw1182

936 937 74. Knuth K, Niesalla H, Hueck CJ, Fuchs TM. Large-scale identification of essential *Salmonella*
938 genes by trapping lethal insertions. *Mol Microbiol.* 2004;51: 1729–1744. doi:10.1046/j.1365-
2958.2003.03944.x

939 940 75. Kröger C, Colgan A, Srikumar S, Händler K, Sivasankaran SK, Hammarlöf DL, et al. An Infection-
941 Relevant Transcriptomic Compendium for *Salmonella enterica* Serovar Typhimurium. *Cell Host Microbe.* 2013;14: 683–695. doi:10.1016/j.chom.2013.11.010

942 943 76. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal. 2011;17: 10–12. doi:10.14806/ej.17.1.200

944 945 77. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
ArXiv13033997 Q-Bio. 2013; Available: <http://arxiv.org/abs/1303.3997>

946 947 78. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ, Page AJ, et al. The TraDIS toolkit:
948 sequencing and analysis for dense transposon mutant libraries. *Bioinformatics.* 2016;32: 1109–
1111. doi:10.1093/bioinformatics/btw022

949 950 79. Vohra P, Chaudhuri RR, Mayho M, Vrettou C, Chintoan-Uta C, Thomson NR, et al. Retrospective
951 application of transposon-directed insertion-site sequencing to investigate niche-specific virulence
952 of *Salmonella Typhimurium* in cattle. *BMC Genomics.* 2019;20: 20. doi:10.1186/s12864-018-
5319-0

953 954 80. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12
using PCR products. *Proc Natl Acad Sci U S A.* 2000;97: 6640–6645.

955 956 81. Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JCD, van der Woude MW. A BTP1
957 prophage gene present in invasive non-typhoidal *Salmonella* determines composition and length
958 of the O-antigen of the lipopolysaccharide. *Mol Microbiol.* 2015;96: 263–275.
doi:10.1111/mmi.12933

959 960 82. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence
961 (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res. 2016;44: D733–D745. doi:10.1093/nar/gkv1189

962 963 83. Ashton PM, Owen SV, Kaindama L, Rowe WPM, Lane CR, Larkin L, et al. Public health
964 surveillance in the UK revolutionises our understanding of the invasive *Salmonella Typhimurium*
epidemic in Africa. *Genome Med.* 2017;9. doi:10.1186/s13073-017-0480-7

965

966

967 **Supporting information**

968 **Table S1. Number of sequenced reads for each sample at every step.** Only R1 reads are included.

969 The percentages were calculated relative to the previous step with the exception of deduplication, which

970 was calculated relative to the number of mapped reads.

971 **Table S2. Number of reads, transposon insertion sites, insertion index, and essentiality call per**

972 **gene.** Samples included: Input (for LB and InSPI2), LB (output), InSPI2 (output), Input 1 (for

973 Macrophage), Input 2 (for Macrophage), Macrophage 1 (output), and Macrophage 2 (output).

974 **Table S3. Raw data for figures.**

975 **Figure S1. Identification of genes that are required in *S. Typhimurium* D23580 but not in other**

976 ***Salmonella* pathovariants.** (A) Comparative analysis of *S. Typhimurium* D23580 required genes with

977 previously identified required genes in TIS studies in *S. Typhimurium* [20,24], and *S. Typhi* [19,20].

978 SL3261 was derived from SL1344; and WT174 was derived from Ty2. For the previously published

979 studies, only genes that shared an ortholog in D23580 were included for the analysis. Individual Venn

980 diagram analyses including a comparison with only *S. Typhimurium* (B) and *S. Typhi* (C) strains were

981 also generated.

982 **Table S4. Raw data for supporting figures.**

983 **Figure S2. *S. Typhimurium* D23580 genes with reported H-NS binding sites in *S. Typhimurium***

984 **SL1344.** Individual growth curves, in LB medium, of the Km resistant versions (*aph*, $n = 8$) and the

985 deletion versions (*frt*, $n = 7$) of (A) a SPI-1 mutant (*hilC*), a SPI-2 mutant (*ssrAB*), and (B) LPS mutants

986 (*waaL* and *waaG*).

987 **Table S5. Lag time, maximum OD₆₀₀ and maximal growth rate from growth curves for different**

988 ***S. Typhimurium* D23580 mutants and the WT strain.**

989 **Table S6. Number of reads, transposon insertion sites, insertion index, and essentiality call per**

990 **intergenic regions ≥ 100 bp and sRNAs.**

991 **Figure S3. *S. Typhimurium* D23580 transposon library passaged three times in murine RAW264.7**

992 **macrophages.** (A) M.O.I. (number of bacterial cells used to infect 1 macrophage) of the D23580

993 transposon library infecting murine RAW264.7 macrophages for 8 h, used in the first ($n = 1$), second (n

994 = 3) and third infections ($n = 3$). Fold-change replication of the intra-macrophage bacteria (8 h versus

995 1.5 h) of the D23580 transposon library seen after each passage. Error bars show standard deviation
996 ($n = 3$). (B) M.O.I. and fold-change replication of the intra-macrophage bacteria of the D23580
997 transposon library at 12 h p.i. (C) Fold-change replication of the D23580 WT and 4/74 WT strains inside
998 murine RAW264.7 macrophages. M.O.I.s calculated for one of the three biological replicates are
999 indicated at the top of each bar ($n = 3$). (D) The percentage of rough mutants increased after passages
1000 of *S. Typhimurium* D23580 WT in macrophages and LB (first and second infections, $n = 1$; third
1001 infection, $n = 3$; after third passage, $n = 3$); (E) and in *S. Typhimurium* 4/74 WT (first and second
1002 infections, $n = 1$; third infection, $n = 2$; after third passage, $n = 3$).

1003 **Text S1. Supporting results and methods.**

1004 **Figure S4. 206 *S. Typhimurium* D23580 genes cause fitness alteration in macrophages.** (A) 10%
1005 of the *S. Typhimurium* D23580 genes are required for growth in all three LB input mutant pools. (B)
1006 Identification of *S. Typhimurium* D23580 “macrophage-specific” and “macrophage-associated” genes.
1007 The Venn diagram compares the 206 *S. Typhimurium* D23580 genes that showed attenuation in
1008 RAW264.7 macrophages when disrupted by a transposon insertion with required genes in the three
1009 inputs (Inputs), and the LB and InSPI2 outputs. (C) Venn diagrams including only intergenic regions,
1010 and (D) sRNAs.

1011 **Table S7. Analysis of the TIS macrophage data.** Read counts for the two inputs and two outputs
1012 (Macrophage), and \log_2 fold-changes and adjusted *P*-values for the comparative analysis of each
1013 coding gene, noncoding sRNA, and intergenic regions in *S. Typhimurium* D23580.

1014 **Figure S5. Macrophage-attenuated genes of D23580 required for virulence of *S. Typhimurium* in
1015 other infection models.** (A) 63% of the D23580 macrophage-attenuated genes are important for
1016 virulence of *S. Typhimurium* 4/74 in food-related animal infection models [49]. Only orthologous
1017 chromosomal and pSLT plasmid genes were included for the analysis. (B) D23580 macrophage-
1018 attenuated genes compared to *S. Typhimurium* 14028 genes associated to virulence in BALB/c mice
1019 [50]. Only orthologous chromosomal genes were included for the analysis.

1020 **Figure S6. The *S. Typhimurium* D23580 $\Delta STM2475$ mutant and the pBT1-cured strain exhibited
1021 decreased proliferation in the intra-macrophage environment.** (A) Intra-macrophage proliferation
1022 assays of the D23580 WT, D23580 $\Delta STM2475::frt$, D23580 $STM2475^{4/74SNP}$, D23580 $\Delta pBT1$; and 4/74
1023 WT, 4/74 $\Delta STM2475::frt$, 4/74 $STM2475^{D23580SNP}$, 4/74 $\Delta srrAB::frt$. Bars represent average of three

1024 independent biological replicates and standard deviation. Significant differences indicate *P*-value: ***,
1025 0.0002; **, 0.0011; *, 0.0116; ns, not significant. (B) Alignment of the *STM2475* promoter region in four
1026 *S. Typhimurium* strains. (C) Conservation of the nucleotide indel in *S. Typhimurium* ST313 strains.

1027 **Figure S7. The *STM1630* gene is inactivated in *S. Typhimurium* D23580.** (A) Transposon insertion
1028 profile of the *STM1630* region from our D23580 Dalliance genome browser. (B) There were not
1029 significant differences in growth in LB between D23580 WT and the Δ *STM1630* mutants, with or without
1030 the Km resistance cassette. (C) Absolute expression levels of *STM1630* in *S. Typhimurium* D23580
1031 and 4/74 (extracted from Canals and colleagues [15]). Values represent TPM, TPM \leq 10 means no
1032 expression. (D) Disruption of *STM1630* -10 box in the promoter region: two SNP-difference between
1033 4/74 and D23580. (E) The D23580 isoform is conserved in all ST313 genomes analyzed, including
1034 lineage 1 and 2 and UK-ST313 strains described in Ashton and colleagues [83]. BLASTn was used to
1035 identify the genotype of the *STM1630* transcriptional start site -10 region in all genomes and the results
1036 were visualized in the context of the phylogenetic tree from Ashton and colleagues [83]. (F) Intra-
1037 macrophage proliferation assays of the D23580 and 4/74 WT strains, the Δ *STM1630::frt* mutants for
1038 D23580 and 4/74, and the D23580 *STM1630^{4/74SNP}* mutant. Bars represent average of three
1039 independent biological replicates and standard deviation. Significant differences indicate *P*-value: ****,
1040 <0.0001; **, <0.001; ns, not significant.

1041 **Table S8. 79 aminoacyl-tRNA synthetases found in the custom bacterial plasmid database.**

1042 **Table S9. Bacterial strains used in this study.**

1043 **Table S10. Oligonucleotides used in this study.**

Figure 1

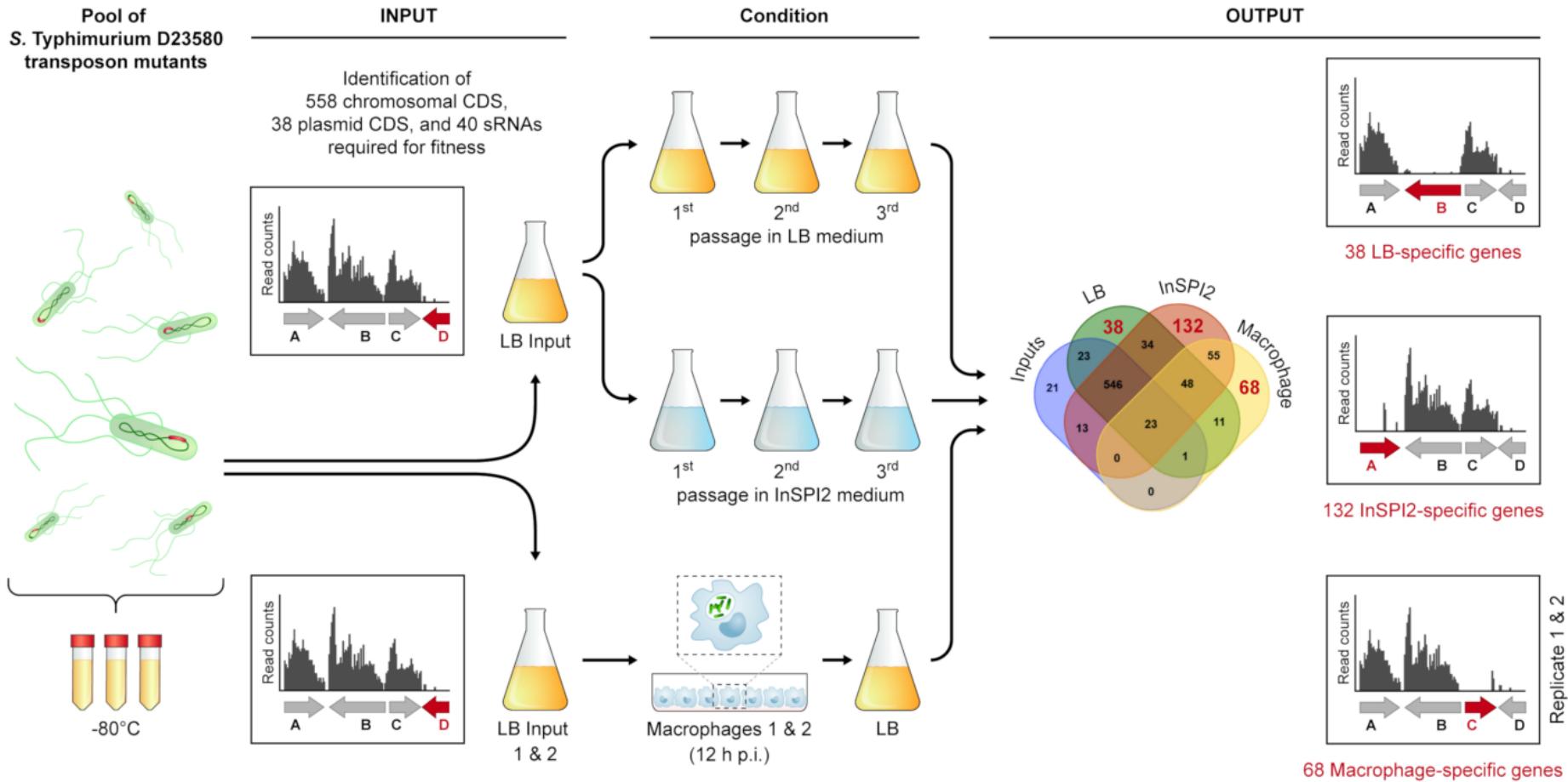
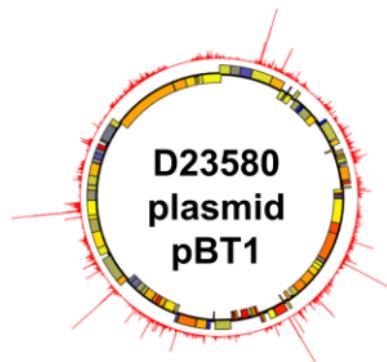
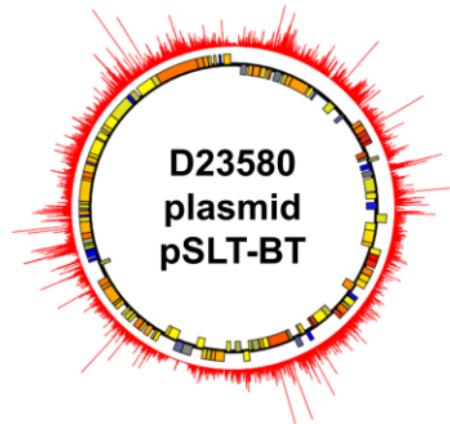
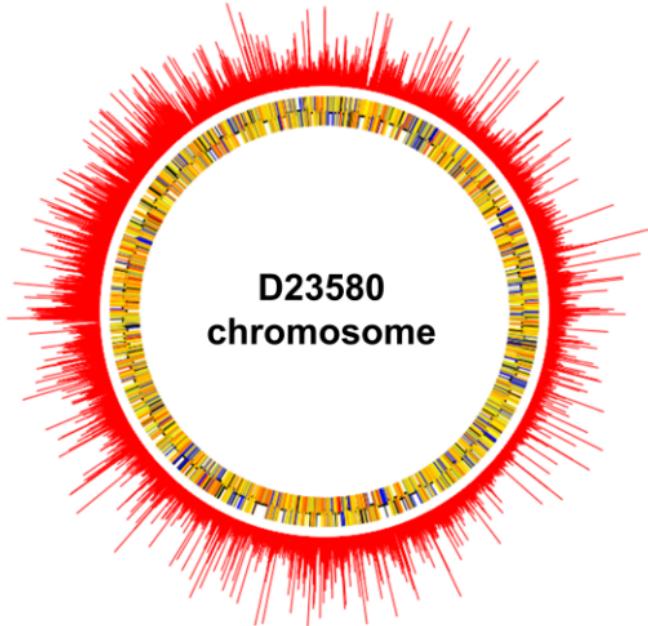





Figure 2

A

B

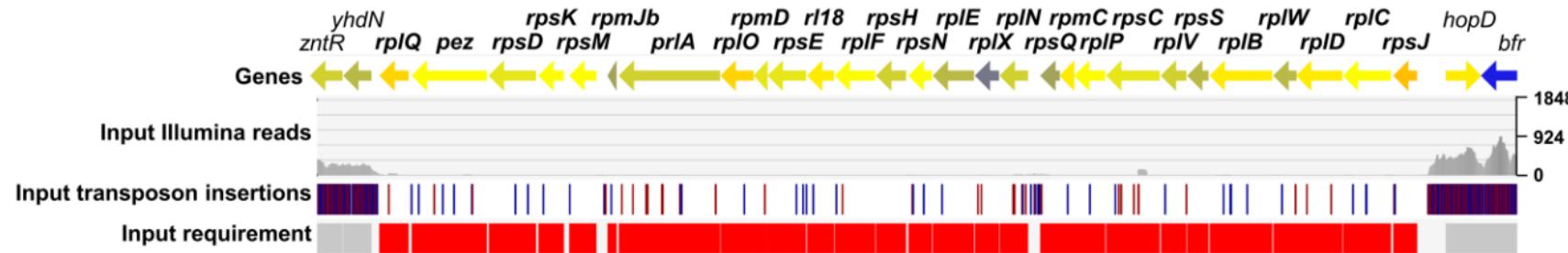
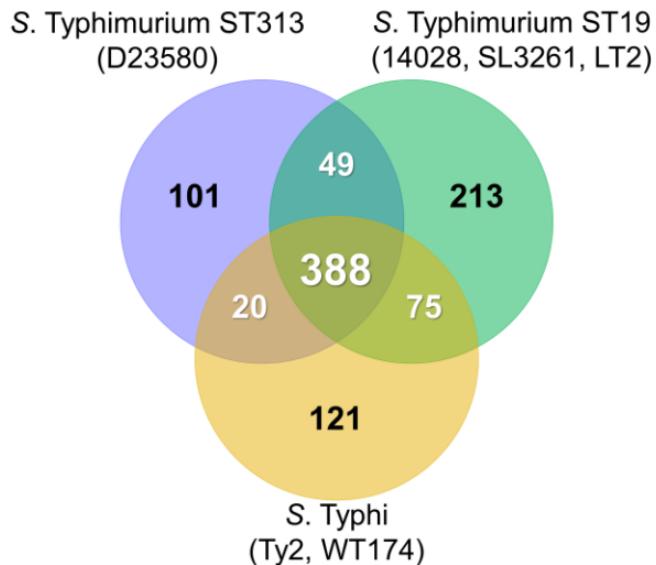
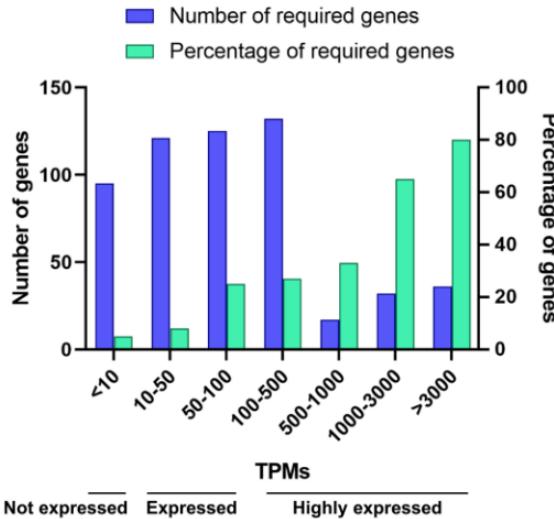
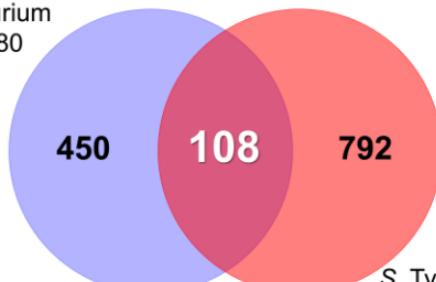




Figure 3

A



B

C

Genes required in *S. Typhimurium*
D23580

S. Typhimurium
SL1344 H-NS-
binding sites

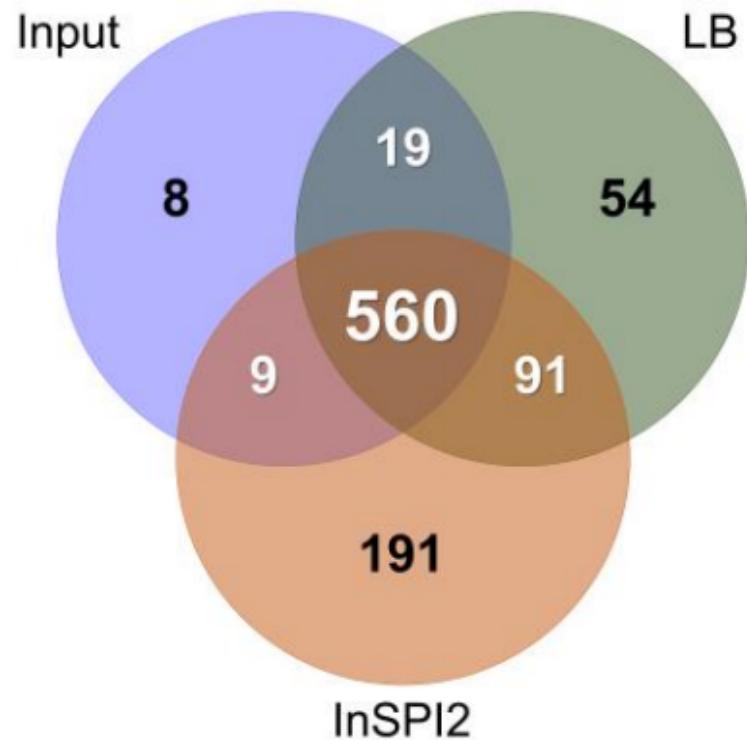
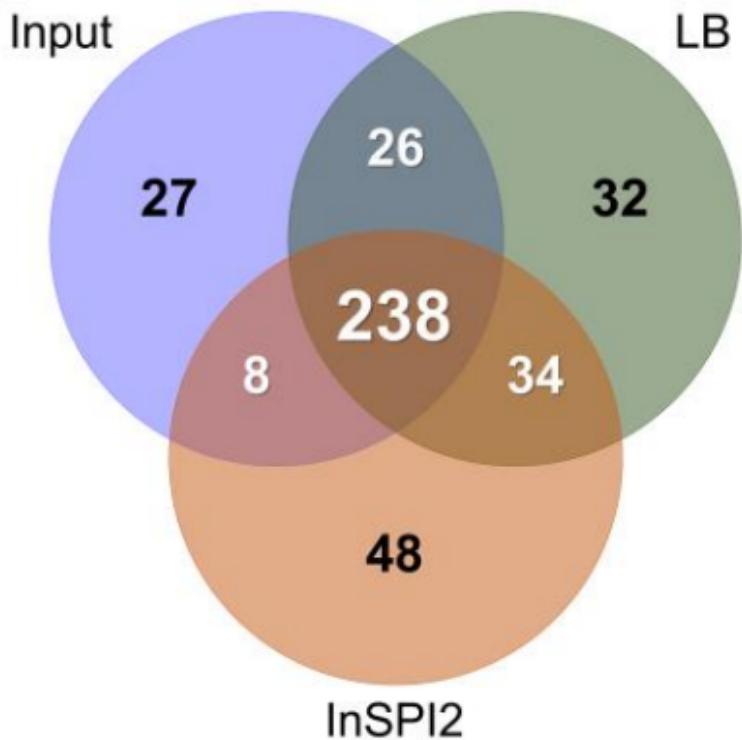
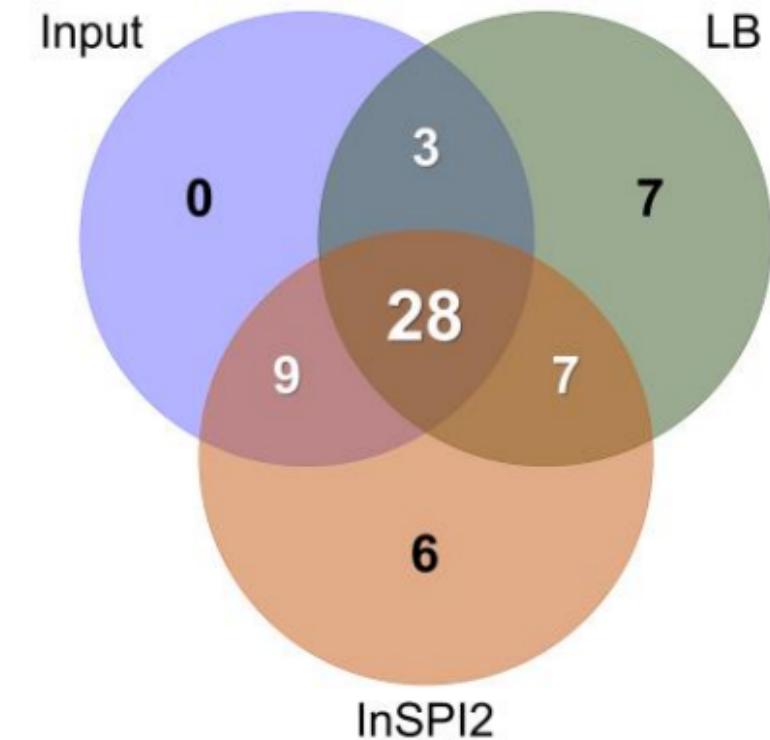



A**Genes****B****Intergenic regions****C****sRNAs**

Figure 4

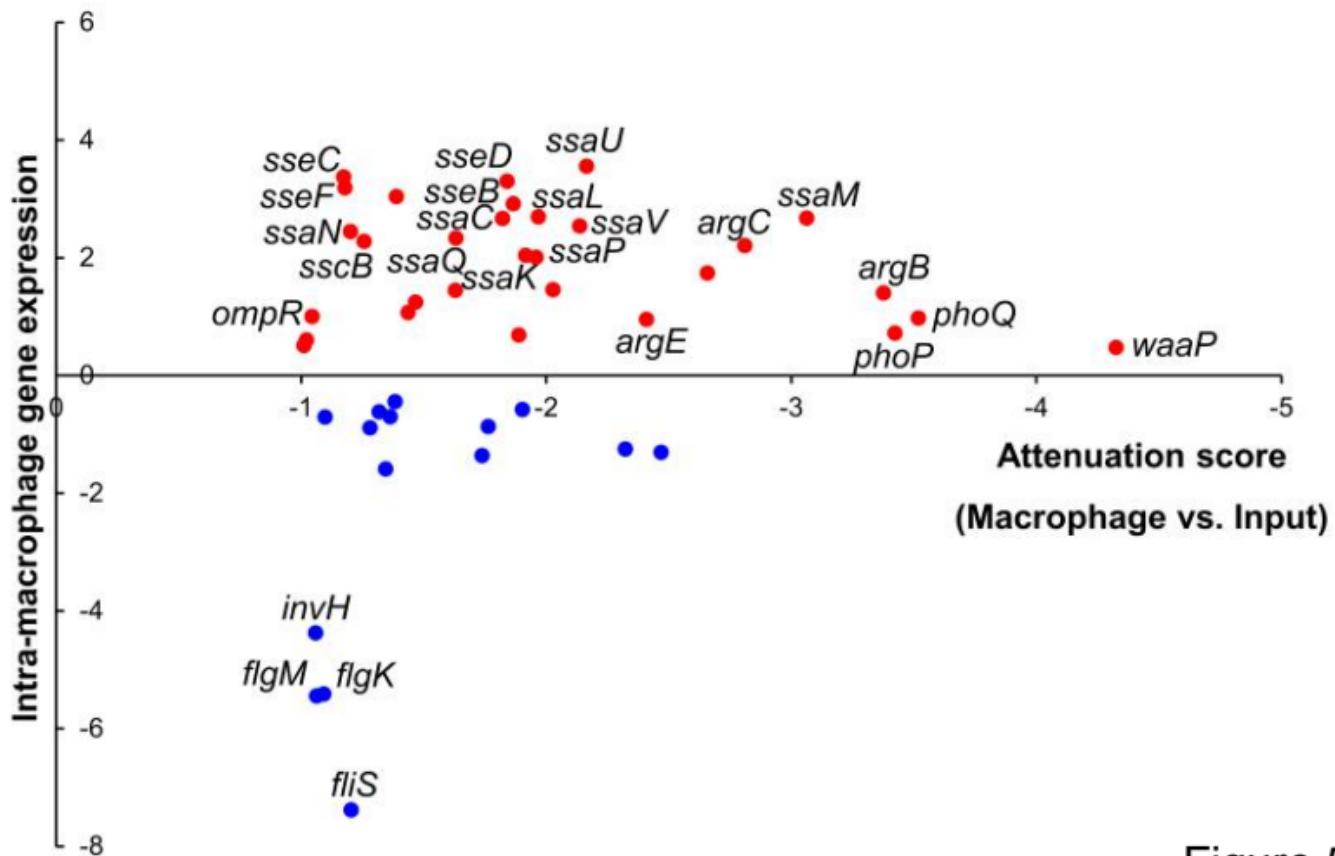
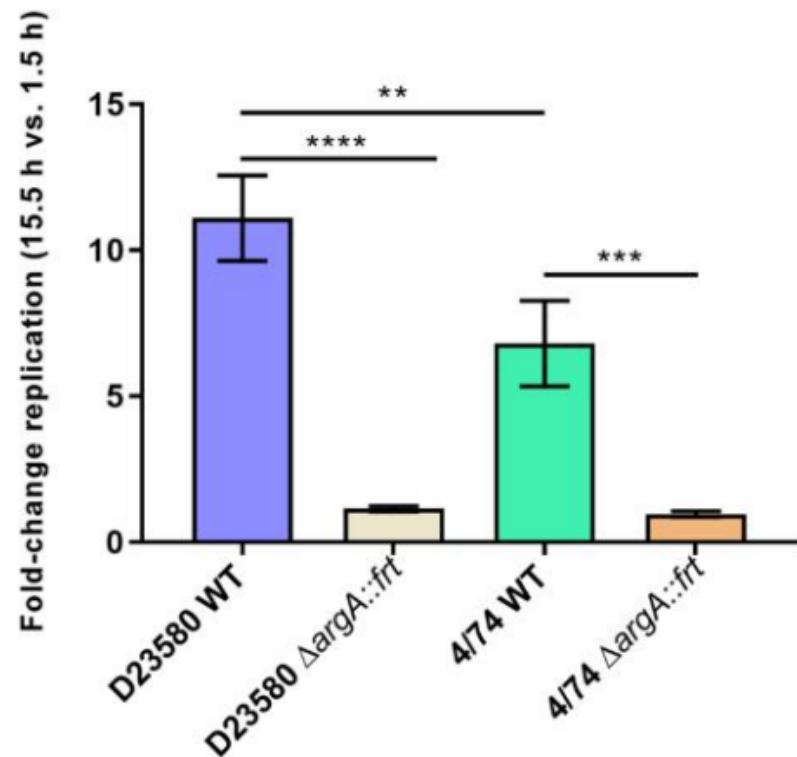
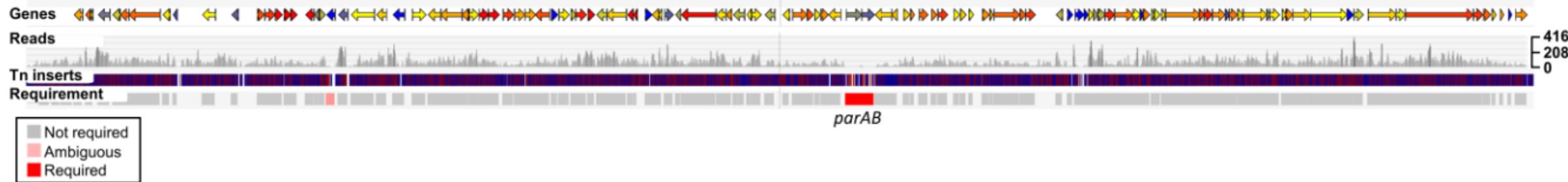
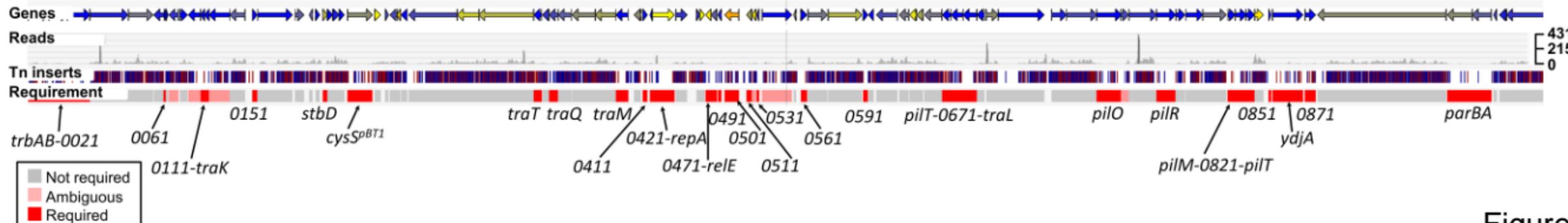
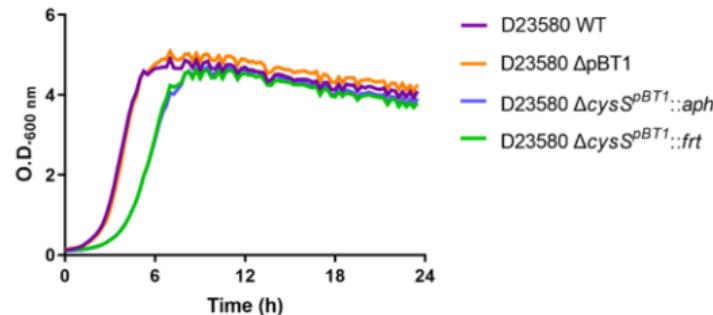
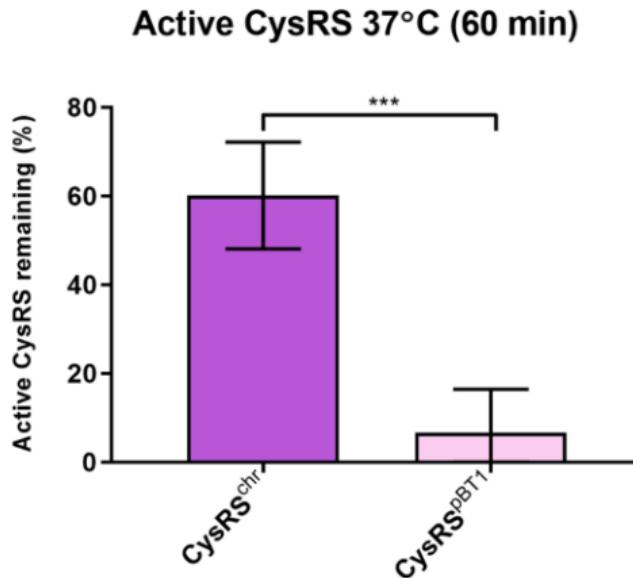


A**B**

Figure 5




A**pSLT-BT****B****pBT1****Figure 6**


Figure 7

A

<i>S. Typhimurium</i> D23580 strains	Lag time (h)
D23580 WT	2.7
D23580 ΔpBT1	2.9
D23580 ΔcysS ^{pBT1} ;aph	4.2
D23580 ΔcysS ^{pBT1} ;frt	4.4

B

<i>S. Typhimurium</i> D23580 proteins	K_M (μM)	k_{cat} (s ⁻¹)	k_{cat}/K_M (s ⁻¹ /μM)
CysRS ^{chr}	14 +/- 3	1.1 +/- 0.2	0.07 +/- 0.006
CysRS ^{pBT1}	21 +/- 1	0.5 +/- 0	0.02 +/- 0.002

C