

1

2

3

4 Characterization of Sorbitol Dehydrogenase SmoS from *Sinorhizobium meliloti* 1021

5

6

7 MacLean G. Kohlmeier, Ben A. Bailey-Elkin, Brian L. Mark, and Ivan J. Oresnik*

8

9

10

11 Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada

12

13

14

15

16

17

18

19

20

21

22 * Corresponding author

23 E-mail: Ivan.Oresnik@umanitoba.ca

24 Abstract

25 *Sinorhizobium meliloti* 1021 is a Gram-negative alphaproteobacterium with a
26 robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions
27 assist in the survival of the bacterium across a range of environmental niches, and they
28 may also be suitable for use in industrial processes. SmoS is a dehydrogenase that
29 catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol
30 into fructose and tagatose respectively using NAD⁺ as a cofactor. The main objective of
31 this study is to evaluate SmoS using biochemical techniques. The nucleotide sequence
32 was codon optimized for heterologous expression in *E. coli* BL21 (DE3) GOLD cells, the
33 protein was subsequently overexpressed and purified. Size exclusion chromatography and
34 X-ray diffraction experiments suggest that SmoS is a tetrameric peptide. SmoS was
35 crystallized to 2.1 Å in the absence of substrate and 2.0 Å in complex with sorbitol. SmoS
36 was characterized kinetically and shown to have a preference for sorbitol despite a higher
37 affinity for galactitol. Computational ligand docking experiments suggest that galactitol
38 oxidation proceeds slowly because tagatose binds the protein in a more energetically
39 favorable complex than fructose, and is retained in the active site for a longer time frame
40 following oxidation which reduces the rate of the reaction. These results supplement the
41 inventory of biomolecules with the potential for industrial applications and enhance our
42 understanding of metabolism in the model organism *S. meliloti*.

43 **Introduction**

44 Sugar alcohols, also called polyols, are carbohydrate compounds that can be
45 formed by the reduction of an aldo or keto sugar. The first polyols were identified from
46 honeydew, a substance secreted by aphids as they feed on plant sap [1]. The most
47 commonly encountered sugar alcohols in nature are sorbitol, mannitol, and galactitol
48 (also known as dulcitol or melampyrite) [2]. These linear, six carbon polyols were named
49 for the higher plants from which they originated; sorbitol from *Sorbus aucuparia*,
50 mannitol from *Fraxinus ornis* or manna ash, and galactitol from *Melampyrum*
51 *nemorosum* [1].

52 Sugar alcohols and their derivatives have a variety of applications. Sorbitol is
53 commonly included in food products for sweetness, texture, and preservation, and can be
54 present in pharmaceuticals [3, 4]. D-tagatose, a product of galactitol oxidation, is
55 classified as a rare sugar and is being considered as a treatment for diabetes due to its
56 insulin independent metabolism in humans and potential to lower blood glucose levels [5-
57 7]. The concentrations of sugar alcohols in plant tissue are typically too low for chemical
58 extractions to generate sufficient yields, therefor polyols are often synthesized for
59 commercial use via catalytic hydrogenation of more readily available sugars [4].
60 However, biological enzymes can serve as biocatalysts for the generation of sugar
61 alcohols and related molecules at an industrial scale. Some advantages to biocatalysts
62 include high product selectivity and low environmental or physiological toxicity [8]. As
63 an example, galactitol dehydrogenase has been immobilized on gold electrodes for use in
64 electrochemical reactors with the goal of generating precursor molecules for
65 pharmaceuticals via reactions that regenerate reduced cofactors [9-11].

66 Enzymes of microbial origin are ideal with respect to industrial applications as
67 they can be produced in an easy, cost effective, and consistent manner [12]. Carbohydrate
68 metabolism in plant associated soil bacteria has been studied in great detail due to the
69 involvement of carbon utilization in symbiotic establishment and efficiency [13, 14].
70 Transport genes responsible for the uptake of sorbitol, mannitol, and galactitol are
71 induced in the rhizosphere [15]. In bacteria, the initial step of sugar alcohol metabolism is
72 often oxidation into a keto sugar, followed by phosphorylation [16]. The root-nodulating
73 bacterium *Sinorhizobium meliloti* has been shown to produce a D-sorbitol specific
74 dehydrogenase (SDH), which uses NAD⁺ as a cofactor [17]. A mutant lacking fructose
75 kinase activity was unable to grow using sorbitol as a sole carbon source, suggesting that
76 fructose is the product of sorbitol oxidation in *S. meliloti* [18]. A mutation to a gene
77 annotated as a putative sorbitol dehydrogenase *smoS* resulted in a strain with the inability
78 to grow on several sugar alcohols, including sorbitol [19], suggesting that *smoS* encodes
79 the SDH protein. *smoS* was first identified as encoding a SDH in *Rhodobacter*
80 *sphaeroides*, in which it was described as one gene in a novel polyol metabolic operon, as
81 well as a member of the short-chain dehydrogenase/reductase (SDR) family [20]. SDR
82 proteins are typically about 250 amino acids in length and despite having low sequence
83 identity at 20-30%, members of this family share a similar overall three-dimensional
84 structure [21]. Currently there are over 230,000 members of the SDR family in the
85 UniProt database, and a recently devised nomenclature system based on Hidden Markov
86 Models placed SmoS within the SDR196C subfamily [22, 23]. *RsSDH* is dependent on
87 NAD⁺ as a cofactor and has activity on sorbitol and galactitol (Fig. 1) [20]. Structural
88 studies on the protein in the absence of bound substrate were some of the first structures

89 of a bacterial SDH in the SDR family [24]. The purpose of this study is to characterize
90 SmoS from *S. meliloti* with respect to its structure, as well as kinetic and physical
91 properties.

92

93 **Fig 1. Enzymatic reactions catalyzed by SmoS.** Sorbitol or galactitol are oxidized at
94 carbon 2, using NAD⁺ as a cofactor, producing fructose or tagatose respectively, as well
95 as NADH. Both sugar alcohols are viable substrates for SmoS due to the identical
96 orientation of hydroxyl groups about carbons 1, 2, and 3.

97

98 **Results**

99 **Structural characterization of SmSmoS**

100 Size exclusion chromatography of purified SmoS showed two distinct peaks at
101 elution volumes of 49.22 mL and 55.35 mL (Fig. 2A), with the most prominent peak at
102 ~55 mL likely representative of a tetrameric complex of SmoS. To corroborate these
103 results, the column fractions were separated by nondenaturing polyacrylamide gel
104 electrophoresis and stained with Coomassie Brilliant Blue. Fractions 2-4 showed two
105 distinct bands, while fractions 5-9 contain a single band, which mimics the migration
106 distance of the lower band from fractions 2-4 (Fig. 2B). Both protein bands are capable of
107 sorbitol oxidation when the gel is stained for dehydrogenase activity (Fig. 2B), and
108 resolve to a molecular weight of 27 kDa when SDS is included in the gel matrix (Fig.
109 2B), suggesting that both bands observed are due to the presence of SmoS.

110

111 **Fig 2. Size exclusion chromatography of purified SmoS from a Superdex 75 gel**
112 **filtration column and analysis by polyacrylamide gel electrophoresis (PAGE). (A)**
113 UV trace of elutions from the S75 column displaying two peaks at approximately 49 mL
114 and 55 mL. (B) Elutions separated by nondenaturing PAGE stained with coomassie blue
115 (top), elutions separated by nondenaturing PAGE stained for sorbitol dehydrogenase
116 activity (middle), and elutions separated denaturing PAGE and stained with coomassie
117 blue (bottom).

118

119 To further characterize SmoS, the enzyme was crystallized and determined to a
120 resolution of 2.1 Å (Fig. 3; Table 1). Consistent with this observation, SmoS crystallized
121 as a tetramer, with four copies in the asymmetric unit arranged as a dimer of dimers,
122 similarly to a previously determined structure of a *Bradyrhizobium japonicum* D-sorbitol
123 dehydrogenase (Fig. 3A) [25]. These results are consistent with SmoS being present in
124 two distinct conformations in solution, with the majority being tetrameric.

125 **Table 1. Crystallographic and refinement statistics for SmoS and SmoS-sbt**

126 **structures**

Crystal	SmoS	SmoS-sbt
X-ray source	Rigaku MicroMax-007HF	Rigaku MicroMax-007HF
Crystal geometry		
Space group	P 1 2 ₁ 1	P 1 2 ₁ 1
Unit cell (Å)	$a=83.30$ $b=88.30$ $c=87.32$; $\alpha=90.00^\circ$ $\beta=117.39^\circ$ $\gamma=90.00^\circ$	$a=83.30$ $b=88.30$ $c=87.32$; $\alpha=90.00^\circ$ $\beta=117.39^\circ$ $\gamma=90.00^\circ$
Crystallographic data		
Wavelength (Å)	1.5419	1.5419
Resolution range (Å)	43.70-2.10 (9.62-2.10)*	39.60-2.0 (10.0-2.0)
Total observations	223880 (15515)	224791 (13489)
Unique reflections	65492 (4602)	74395 (4478)
Multiplicity	3.4 (3.4)	3.0 (3.0)
Completeness (%)	99.8 (99.9)	98.0 (99.7)
R_{merge}	0.117 (0.586)	0.139 (0.522)
CC1/2	0.99 (0.71)	0.98 (0.82)
I/σI	8.7 (2.2)	5.4 (2.0)
Wilson B-factor (Å ²)	19.11	20.80
Refinement statistics		
Reflections in test set	3314	3581
Protein atoms	7608	7588
Solvent molecules	737	914
$R_{\text{work}}/R_{\text{free}}$	0.192 / 0.252	0.194 / 0.249
RMSDs		
Bond lengths/angles (Å/°)	0.0081 / 1.464	0.0146 / 1.927
Ramachandran plot		
Favored/allowed (%)	97.44 / 2.17	97.15 / 2.26
Average B factor (Å ²)		
Macromolecules	25.09	20.64
Solvent	29.46	27.66

127 *Values in parentheses refer to the highest resolution shell

128 The SmoS monomer adopts a structural fold similar to other previously
129 determined Zn-independent SDR enzymes, comprising of an NAD-binding Rossman fold
130 centralized around a core 7-stranded parallel β -sheet, and an extended α -helical clamp-
131 like lobe formed by helices α 7 and α 8 involved in substrate binding [24] (Fig. 3B). A
132 DALI search [26] to identify structural homologues of SmoS identified a previously
133 determined *SmSmoS* structure (deposited by the New York Structural Genomic
134 Consortium), and a *R. sphaeroides* sorbitol dehydrogenase (81% sequence amino acid
135 identity), which aligned to *SmSmoS* with an RMSD of 0.7 Å over 256 C_α atoms, and
136 adopted a nearly identical structural fold [24].

137

138 **Fig 3. Crystal structure of SmoS from *S. meliloti* 1021.** (A) Cartoon representation of
139 the SmoS quaternary structure. SmoS forms a homotetramer; the individual monomers
140 are colored magenta, green, blue, and yellow. (B) Cartoon representation of the SmoS
141 monomer (grey). Secondary structure elements are labeled numerically (α , α -helix; β , β
142 strand; π , π helix; η , 3_{10} helix).

143

144 In an attempt to uncover the residues involved in substrate binding, SmoS was
145 also crystallized in the presence of sorbitol and a structure determined to 2.0 Å (Fig. 3;
146 Table 1). Consistent with other described Zn-independent SDR enzymes, conserved
147 active site residues Tyr153, Lys157, Ser140 and Asn111 form the active site (Fig. 4A).
148 Residue Asn111 resides on a π -bulge motif formed by an atypical backbone hydrogen
149 bond disrupting helix α 4. This deformation allows the backbone carbonyl group of
150 Asn111 to form a hydrogen bond with a water molecule likely to be involved in the

151 formation of a proton relay system similar to what has been described for the
152 *Comamonas testosterone* hydroxysteroid dehydrogenase [27, 28]. Clear electron density
153 representing sorbitol was visible near the active site of each of the four monomers in the
154 asymmetric unit, with sorbitol coordinated near the active site through a hydrogen-
155 bonding network mediated by SmoS residues Gln141, Glu147, Gly184 and His190 (Fig.
156 4A and B). A comparison of the apo and sorbitol-bound forms of SmoS reveals a slight
157 change in the position of the clamp domain formed by helices α 7 and α 8, which moves
158 inward during sorbitol binding and allows for the satisfaction of a hydrogen bond
159 between His190 and sorbitol OH1 (Fig. 4C). Interestingly, while clear density for sorbitol
160 was observed in all *Sm*SmoS monomers, the substrate does not appear to be positioned
161 appropriately within in the active site to permit NAD⁺-mediated oxidation at C2. In order
162 for the reaction mechanism to proceed as described, the sorbitol C2 hydroxyl group
163 would need to be positioned within hydrogen bonding distance from Tyr153, to allow for
164 Tyr153-mediated proton abstraction and subsequent oxidation of C2 *via* the nicotinamide
165 moiety of NAD⁺. In the SmoS-sbt structure, the C2 hydroxyl group is situated \sim 5.9 Å
166 away from Tyr153, and points away from the active site residue in an arrangement that
167 would not permit the conversion of sorbitol to fructose.

168

169 **Fig 4. Crystal structure of the SmoS-sbt complex.** (A) Close up on the active site of
170 sorbitol-bound SmoS. Catalytic residues are shown as blue sticks, and residues involved
171 in the coordination of sorbitol are shown as a cyan sticks. Sorbitol is shown as yellow
172 sticks, surrounded by an mF_o - DF_c omit map generated using phenix.polder ([29]; green
173 mesh) contoured to 3.0σ . (B) Two-dimensional representation of the H-bonding network

174 observed in the SmoS-sbt complex. Carbon atoms are black, oxygen atoms are red,
175 nitrogen atoms are blue, H-bonds are shown as green dashed lines with corresponding
176 bond lengths (Å). Figure was generated using LigPlot [30]. (C) Superposition of apo
177 SmoS (grey), and SmoS-sbt (blue) depicted in ribbon diagrams with the movement of
178 helix α 7 indicated by arrows.

179

180 SmoS has a high pH optimum and a preference for sorbitol

181 It has been reported that functionally related enzymes to SmoS have optimum
182 activity at alkaline pH levels [31, 32]. To investigate the pH preference of *S. meliloti*
183 SmoS, sorbitol dehydrogenase assays were conducted across a pH gradient facilitated by
184 several solutions of differed buffering capacities. 1 μ g of SmoS was added to the assay
185 mixture along with 10 mM sorbitol and 1.5 mM NAD $^+$, the buffers included MES,
186 MOPS, TRIS, and CAPS, each at a concentration of 20 mM, which allowed for a pH
187 gradient spanning pH 5.5-12.5. An optimum enzyme activity of 57.8 mM/min/mg was
188 observed at pH 11; activities recorded across the gradient are reported relative to this
189 value (Fig. 5). Fifty percent of this activity was found at pH 9.5. All subsequent activity
190 assays were conducted in a solution buffered with 20 mM CAPS pH 11. This result is
191 consistent with observations made in *R. sphaeroides* [33].

192

193 **Fig 5. Effect of pH on SmoS dehydrogenase activity.** Reactions were carried out
194 with 10 mM sorbitol using 200 mM MES, MOPS, TRIS, or CAPS buffers over their
195 appropriate pH ranges. Activity at the optimal pH was defined as 100%.

196

197 Despite the previous inability to detect galactitol dehydrogenase activity [17],
198 recent work has shown that *S. meliloti* is capable of galactitol oxidation and that SmoS is
199 responsible for this activity [34]. The ability of SmoS to oxidize sorbitol and galactitol is
200 likely due to the stereochemistry of the functional groups about carbon's 1, 2, and 3,
201 which are identical for both substrates (Fig. 1). To determine the substrate preference of
202 the enzyme, reaction rates were determined by measurement of NADH accumulation
203 over time in a spectrophotometer at 340 nm. Saturation curves for sorbitol and galactitol
204 dehydrogenase activities were generated along with double reciprocal plots facilitating
205 the determination of Michaelis-Menten reaction constants (Fig. 6). It was determined that
206 SmoS has a K_M of 2.5 mM for sorbitol, and a K_M of 1.2 mM for galactitol (Table 2),
207 however, the maximum velocity (V_{max}) of the sorbitol oxidation reaction was calculated
208 to be 50.8 mM/min, while galactitol oxidation proceeded at only 6.4 mM/min (Table 2).
209 Despite a higher affinity, the low reaction velocity of galactitol oxidation greatly reduces
210 the overall reaction efficiency (k_{cat}/K_M). We note that L-iditol shares hydroxyl group
211 orientation about carbons 1, 2, and 3, with sorbitol and galactitol, however this substrate
212 was not tested due to lack of availability [24].

213

214 **Fig 6. Kinetic characteristics of analysis of SmSmoS.** Analysis of sorbitol (A) and
215 galactitol (B) oxidation by using Michaelis-Menten and Lineweaver-Burk plots.

216

217 **Table 2. Kinetic properties of SmSmoS**
218

Substrate	K _M (mM)	V _{max} (mM/min)	k _{cat} (s ⁻¹)	V _{max} /K _M (min ⁻¹)	k _{cat} /K _M (mM ⁻¹ s ⁻¹)
Sorbitol	2.5	50.8	25625.6	20.6	10419.7
Galactitol	1.2	6.4	3227.1	5.2	2638.9

219

220

221 **SmoS-tagatose complex is predicted to be in a lower energy**
222 **state than SmoS-fructose complex**

223 Kinetic analysis revealed that galactitol turnover is much less efficient than
224 sorbitol oxidation (Fig. 6, Table 2). This observation was particularly interesting due to
225 the K_M value of galactitol oxidation, which suggested that the enzyme's affinity for
226 galactitol was higher than for sorbitol (Table 2). This led to the hypothesis that tagatose is
227 a poor leaving group in comparison to fructose and the inability of tagatose to quickly
228 leave the active site results in low reaction turnover. This hypothesis is supported by our
229 inability to detect fructose in the active site of SmoS structures determined from crystals
230 grown in the presence of a large concentration (20%) of fructose. To test this hypothesis,
231 computational ligand docking analysis was conducted using the Rosetta Ligand Docking
232 Protocol on the ROSIE server [35-38]. D-fructose and D-tagatose model files were
233 submitted to the ligand dock protocol along with apo SmoS monomer structure, and the
234 outputs were analyzed for indications of the energy state of the complexes. The server
235 generated 200 docking predictions for each SmoS-ligand complex, which were organized
236 via their interface delta scores. The interface delta score represents the total energy of the

237 complex in isolation subtracted from the total energy of the complex with the substrate
238 bound [39]. The ten models with the lowest interface delta score from each complex were
239 selected. The scores from the SmoS-fru model complexes were consistently higher than
240 the scores reported for the SmoS-tag complexes, suggesting that the SmoS-tag complex is
241 in a lower energy state with higher stability than the SmoS-fru complex (Fig. 7A). The
242 data from each SmoS-ligand complex were analyzed for significance via a students *t* test,
243 revealing a *P* value of 1.3×10^{-6} . The entire process from submission to the server through
244 data collection and analysis was repeated independently to evaluate reproducibility; the
245 SmoS-tag complexes were consistently in a lower energy state than the SmoS-fructose
246 complexes. The *P* value for the second trial was 2.4×10^{-6} . An examination of the
247 hydrogen bonding interactions that mediate binding reveals that the SmoS-tag complex
248 forms an additional hydrogen bond that is not present in the SmoS-fru complex, which
249 further stabilizes the tagatose bound structure (Fig. 7B and C). These data suggest that the
250 SmoS-tag complex is a lower energy and more stable complex than the SmoS-fru
251 complex, and that the predicted interface energies from the SmoS-fru complexes and the
252 SmoS-tag complexes are statistically different. They also support the hypothesis that
253 tagatose is a poor leaving group in comparison with fructose and are consistent with
254 observations of the kinetic properties of the enzyme.

255

256 **Fig 7. SmoS-fructose and SmoS-tagatose binding complexes predicted by the Ligand**
257 **docking protocol housed on the ROSIE server.** (A) The distribution of the top ten
258 interface delta scores displayed as box and whisker plots. The tips of the whiskers
259 represent the maximum and minimum values, the horizontal lines represent the first,

260 second, and third quartiles, and the orange dots represent the averages of the data sets. P
261 value of 1.3x10-6. The lowest energy docking prediction for the SmoS-fructose complex
262 (B) and the SmoS-tagatose complex (C). Fructose is shown in magenta and tagatose in
263 blue.

264

265 Discussion

266 *S. meliloti* SmoS appears to be most similar to the sorbitol dehydrogenase from *R.*
267 *sphaeroides*, these enzymes share kinetic characteristics [33], operon structures [20], pH
268 preferences [33], and overall quaternary structure [24]. SmoS can be classified within a
269 group of “high-alkaline enzymes,” which are enzymes with a pH optimum from pH 10-
270 11. These enzymes are useful in industry due to their high durability [40]. Similar to
271 *RsSmoS*, *SmSmoS* was found to have a higher affinity toward galactitol compared to
272 sorbitol, but turned over sorbitol at a faster rate [33].

273 Most of the crystal structures of SmoS related enzymes have reported tetrameric
274 structures found in the crystal packing [24, 25, 41], however reports differ on the
275 structure of the enzyme in solution. *R. sphaeroides* SmoS has been reported as dimeric in
276 solution, on the basis of gel filtration chromatography as well as sucrose gradient
277 centrifugation experiments [33]. However the enzyme was later predicted to function as a
278 tetramer based on predicted surface area exposure [24], and these results were supported
279 by size exclusion chromatography and light scattering experiments [41]. *BjSDH* had been
280 proposed to exist as a trimer in solution [42] but researchers later suggested that a
281 tetramer was more likely [25]. A galactitol dehydrogenase from *Rhizobium*
282 *leguminosarum* 3841 has also been reported to be tetrameric in solution [31]. The data

283 presented clearly shows that SmoS from *S. meliloti* is present as a tetramer in solution but
284 with a small subset seemingly present as a hexamer or an octamer made up of a dimer of
285 tetramers (Fig. 2). Of note, it appears that both the tetrameric as well as the higher
286 oligomeric forms show sorbitol dehydrogenase activity (Fig. 2). Tetrameric
287 configurations are reported most often and likely represent the majority of SDR protein
288 structures in solution [43].

289 The SmoS-sbt structure shows that the hydroxyl group bonded to C1 of sorbitol
290 associating with catalytic residue Tyr153, and that the structure has a subtle difference
291 from the apo structure in that residues His190 and Trp191 in alpha helix 7 are contorted
292 slightly to accommodate the presence of the substrate (Fig. 4C). As well, residues
293 Asn111, Ser140, Tyr153, and Lys157, which have been proposed to be involved in
294 electron transfer, are too distant from the substrate for catalysis (Fig. 4A).

295 If the positioning of Tyr153 were correct, it would imply that sorbitol should be
296 oxidized to glucose. Based on the available genetic and physiological data it is clear that
297 both sorbitol and galactitol catabolism mediated by SmoS generate fructose and tagatose
298 via an enzymatic reaction in which the hydroxyl group on C2 of the substrate is oxidized
299 forming a planar carbonyl carbon [18, 34]. We also note that enzymes catalyzing the
300 oxidation of sorbitol into glucose are known as sorbitol oxidase (SOX) proteins [44, 45].
301 These enzymes are dissimilar to SDH enzymes of the SDR family [46, 47].

302 This anomaly could be due to the absence of NAD⁺ in the binding pocket. NAD⁺ was
303 left out of the crystallization solution because its presence would result in an enzymatic
304 reaction, which would prevent the capture of a substrate-bound complex. However, SDR
305 reactions proceed with the coenzyme binding first and leaving last [48], which may help

306 to explain not only why sorbitol is found in an atypical position, but also why fructose
307 was not found in the active site of the fructose grown crystal structures despite its
308 presence at high concentrations. In addition, modeling of NAD⁺ and sorbitol into the *R.*
309 *sphaeroides* predicted direct contact and a sandwiching of the C2 carbon of sorbitol
310 between the active site tyrosine, and the nicotinamide ring. Taken together these may
311 explain the observed structure.

312 Thermal stability of an enzyme can affect its ability to be exploited in industrial
313 processes [8]. It has been proposed that the increased thermal stability of SDH is due to
314 the abundance of proline residues and the proline to glycine ratio in its primary amino
315 acid sequence [25]. Proline is a rigid residue with low configurational entropy due to its
316 pyrrolidine ring hindrance, there are several studies that suggest protein thermostability
317 can be influenced by proline content [49-51]. *Rs*SDH contains 6 proline residues and a
318 Pro/Gly ratio of 0.22, while *Bj*SDH has 13 prolines with a ratio of 0.86. The melting
319 temperatures were found to be 62°C and 47°C respectively (25, 39). The SmoS from *S.*
320 *meliloti* has 5 proline residues and the Pro/Gly ratio is 0.2, additionally the position of the
321 residues appears to be conserved, indicating that it's thermostability is likely more similar
322 to *Rs*SDH (Fig. 8).

323

324 **Fig 8. Comparison of the position and distribution of proline residues.** *S. meliloti*
325 SmoS (green), *R. sphaeroides* SmoS (blue; PDB ID: 1K2W), and *B. japonicum* SDH
326 (pink; PDB ID: 5JO9), proline residues are shown in orange.

327

328 The structure and characterization of *S. meliloti* SmoS provides a high quality
329 structure with sorbitol within the active site. In addition, the characterization and
330 determination of its affinities for its substrates provides insight into why the growth rate
331 of the organism on what should be two equivalent carbon substrates shows great
332 differences. This information is invaluable for higher order resolution of metabolism in *S.*
333 *meliloti*.

334

335 **Experimental procedures**

336 **Bacterial strains and culture conditions**

337 *E. coli* BL21 (DE3) GOLD cells were grown on Luria Bertani (LB) medium [52]
338 at 37°C; when necessary, kanamycin was added to a final concentration of 10 µg/mL in
339 liquid media.

340

341 **Overexpression and purification of SmoS**

342 *S. meliloti smoS* is a 774 bp gene with a GC content of 64.5%, the overall GC
343 content of *E. coli* K-12 is 50.8% [53]. To accommodate this disparity, the *smoS*
344 nucleotide sequence was codon optimized for expression in *E. coli*. Translation of *smoS*
345 is predicted to generate a 257 amino acid sequence with a molecular weight of 27.2 kDa
346 [54]. *smoS* was cloned into overexpression vector pET-28a as a *Bam*HI-*Hind*III fragment
347 (GenScript, Piscataway, NJ, USA) and this construct was transformed into competent *E.*
348 *coli* BL21 (DE3) GOLD cells.

349 Cultures were grown in 1 L volumes of LB medium at 37°C to an OD₆₀₀ of ~0.6.
350 Induction with 1 mM isopropyl-β-D-galactopyranoside (IPTG) preceded growth
351 overnight, shaking, at 16°C. Cells were pelleted by centrifugation at 10000 rpm for 10
352 min and stored at -80°C. Pellets were resuspended in 30 mL cold lysis buffer consisting
353 of 50 mM Tris pH 8.0, 300 mM NaCl, 2 mM dithiothreitol (DTT), 10 mM imidazole, and
354 lysed by French Press. Cell debris were removed from extracts by centrifugation at 12000
355 rpm for 1 hour at 4°C. The cell free lysate was applied to a nickel nitrilotriacetic acid (Ni-
356 NTA) column, which was washed with 10 column volumes of lysis buffer and followed
357 by a second wash with 10 column volumes of lysis buffer with 25 mM imidazole. Final
358 elution was prompted by washing with 3 column volumes of buffer with 500 mM
359 imidazole. Eluted protein was dialyzed against 20 mM HEPES pH 7.5, 150 mM NaCl,
360 10% (v/v) glycerol, and further purified by gel filtration through a Superdex 75 gel
361 filtration column.

362

363 **SmoS crystallization**

364 Purified SmoS was concentrated to 10 mg/mL and screened by sitting drop
365 vapour diffusion using a Gryphon (Art Robbins Instruments, Sunnyvale, CA, USA)
366 robotic drop setter. Screening was performed using 600 nL drops containing SmoS and
367 crystallization solution at a 1:1 ratio, equilibrated against 50 μL of reservoir solution.
368 Initial crystallization hits were identified in 100 mM HEPES pH 7.4, 50 mM sodium
369 acetate and 20% PEG 3000, and further optimized by hanging-drop vapour diffusion
370 using 48-well VDX plates. Crystals of apo-SmoS were grown in 100 mM HEPES pH 7.4,
371 50 mM sodium acetate and 18% PEG 3000 and crystals of the SmoS-sorbitol complex

372 were grown under the same conditions supplemented with 20% sorbitol, galactitol,
373 tagatose, or fructose. Crystallization with galactitol and tagatose was not pursued due to
374 poor solubility or lack of availability of these respective substrates. Crystals in which
375 sorbitol or fructose were included in the reservoir solution were morphologically
376 indistinguishable from the native crystals.

377

378 **X-ray data collection and structure solution**

379 X-ray data for individual SmoS crystals were collected at 100K on a Rigaku
380 MicroMax 007-HF equipped with a RAXIS IV++ detector. X-ray diffraction images were
381 integrated and scaled using XDS [55], and merged using Aimless [56]. Initial phase
382 estimates for apo-SmoS were determined by molecular replacement within Phaser using
383 the deposited structure of *S. meliloti* SmoS (PDB ID: 4E6P) as a search model, and phase
384 estimates for the SmoS-sbt complex were determined using the refined apo-SmoS
385 structure. Structure refinement and model building were performed using REFMAC [57]
386 and Coot [58], respectively within the CCP4i2 software package. All structure figures
387 were generated using PyMOL [59]. The coordinates and structure factors for the apo
388 SmoS and SmoS-sbt structures have been deposited to the Protein Data Bank under PDB
389 ID 6PEI and 6PEJ, respectively.

390

391 **Enzyme assays**

392 Spectrophotometric dehydrogenase assays were conducted by measuring the
393 reduction of NAD⁺ at 340 nm for 60 seconds. Reaction buffer consisted of 20 mM CAPS
394 pH 11, 1.5 mM NAD⁺, and increasing concentrations of sorbitol or galactitol, in a total

395 volume of 1 mL. 1 μ g SmoS was added per reaction. The optimum pH for enzyme
396 activity was determined by measuring dehydrogenase activity using 200 mM MES,
397 MOPS, TRIS, or CAPS to buffer the reaction mixtures over their appropriate pH ranges.
398 All pH-profiling reactions were initiated with 10 mM sorbitol. Additionally, native gel
399 dehydrogenase assays were performed as previously described [60]. Following elution
400 from the S75 column, fractions were separated by nondenaturing polyacrylamide gel
401 electrophoresis; subsequently the gels were stained for dehydrogenase activity with an
402 assay reagent containing Tris pH 8.0, phenazine methosulfate, nitroblue tetrazolium,
403 NAD⁺, and sorbitol.

404

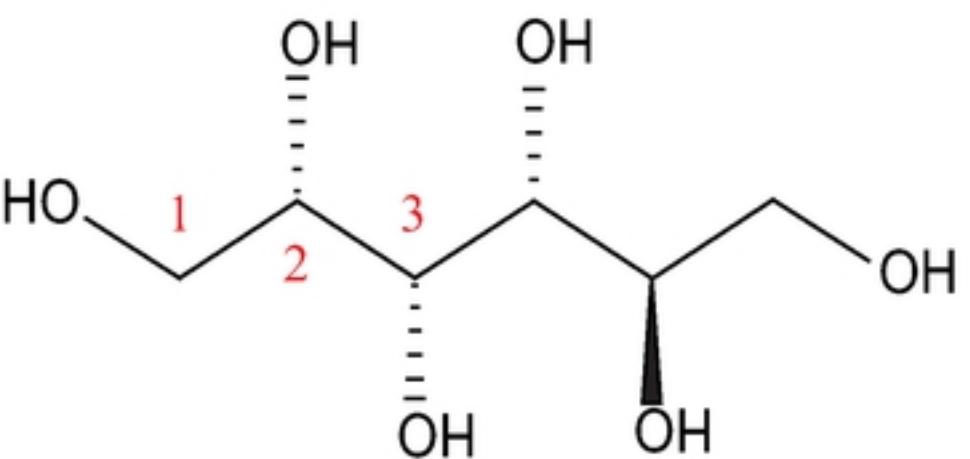
405 **Ligand docking analysis**

406 D-fructose and D-tagatose model files, in SDF file format, were submitted to the
407 Ligand Docking Protocol on the ROSIE server, found at <http://rosie.rosettacommons.org>,
408 along with the apo SmoS monomer structure in PDB file format. The ligand SDF files
409 were downloaded from Research Collaboratory for Structural Bioinformatics Protein
410 Data Bank (RCSB PDB) at <https://www.rcsb.org>. These ligand models were manipulated
411 to within 5 \AA of the SmoS substrate binding pocket using PyMOL [59] prior to
412 submission to add coordinate data to the files. The top ten predicted models with the
413 lowest interface delta scores were collected and the distribution of these data sets was
414 compared with box and whisker plots. A paired *t* test was performed on the score arrays,
415 a *P* value of less than 0.01 was considered significant.

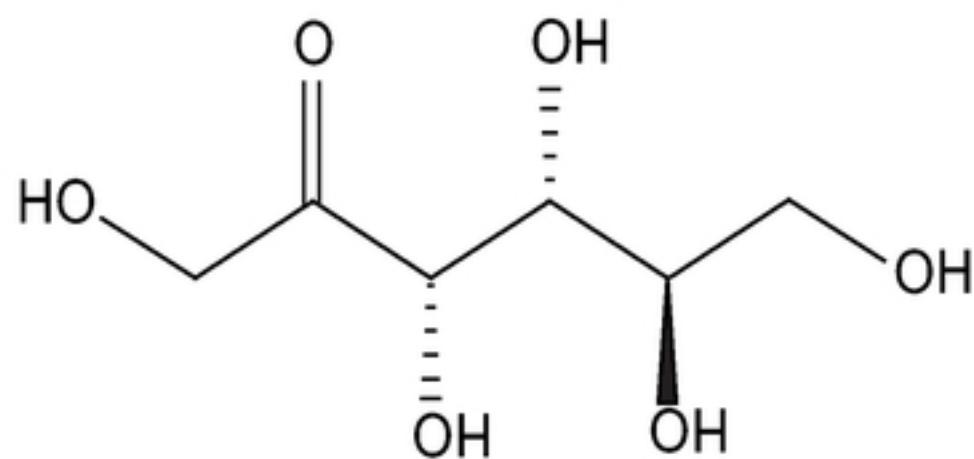
416

417

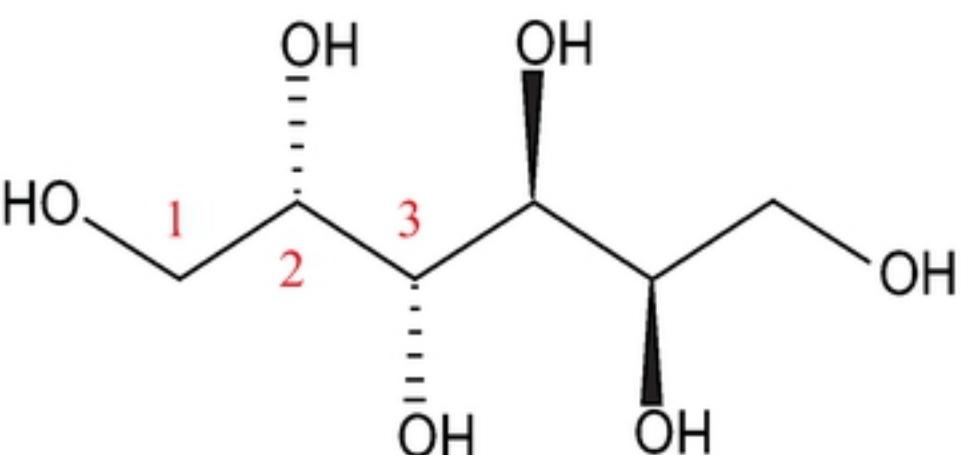
418 References

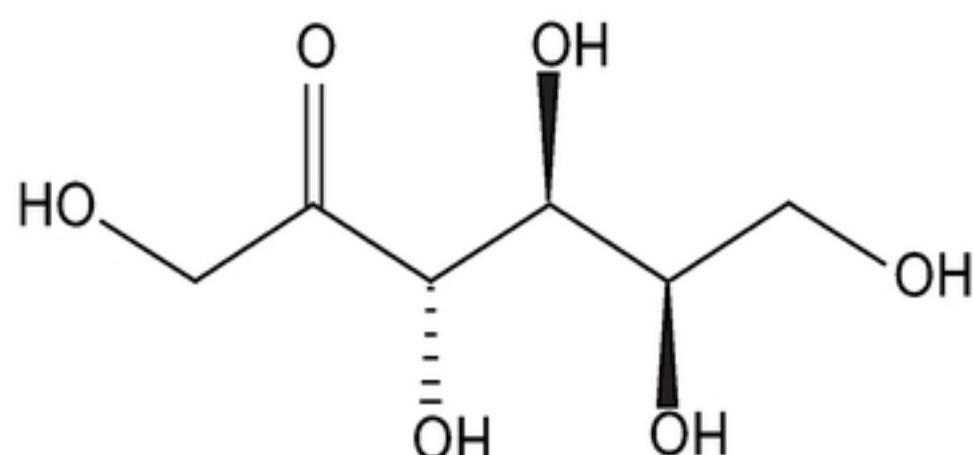

- 419 1. Bielecki RL. Sugar Alcohols. In: Loewus FA, Tanner W, editors. Plant
420 Carbohydrates I: Intracellular Carbohydrates. Berlin, Heidelberg: Springer Berlin
421 Heidelberg; 1982. p. 158-92.
- 422 2. Williamson JD, Jennings DB, Guo W-W, Pharr DM, Ehrenshaft M. Sugar
423 Alcohols, Salt Stress, and Fungal Resistance: Polyols—Multifunctional Plant
424 Protection? *J Am Soc Hortic Sci.* 2002;127(4):467-73.
- 425 3. Silveira M, Jonas R. The biotechnological production of sorbitol. *Appl Microbiol*
426 *Biot.* 2002;59(4):400-8. doi: 10.1007/s00253-002-1046-0.
- 427 4. Rapaille A, Goosens J, Heume M. SUGAR ALCOHOLS. In: Caballero B, editor.
428 Encyclopedia of Food Sciences and Nutrition (Second Edition). Oxford:
429 Academic Press; 2003. p. 5665-71.
- 430 5. Ensor M, Banfield AB, Smith RR, Williams J, Lodder RA. Safety and efficacy of
431 D-tagatose in glycemic control in subjects with type 2 diabetes. *J Endocrinol*
432 *Diabetes Obes.* 2015;3(1):1065. Epub 12/31. PubMed PMID: 27054147.
- 433 6. Espinosa I, Fogelfeld L. Tagatose: from a sweetener to a new diabetic
434 medication? *Expert Opin Investig Drugs.* 2010;19(2):285-94. doi:
435 10.1517/13543780903501521.
- 436 7. Lu Y, Levin GV, Donner TW. Tagatose, a new antidiabetic and obesity control
437 drug. *Diabetes Obes Metab.* 2008;10(2):109-34. doi: doi:10.1111/j.1463-
438 1326.2007.00799.x.
- 439 8. Chapman J, Ismail AE, Dinu CZ. Industrial applications of enzymes: Recent
440 advances, techniques, and outlooks. *Catalysts.* 2018;8(6):238. PubMed PMID:
441 doi:10.3390/catal8060238.
- 442 9. Gajdzik J, Lenz J, Natter H, Kohring G-W, Giffhorn F, Wenz G, et al. Directed
443 immobilisation of modified galactitol-dehydrogenase on gold electrodes for
444 electrochemical cofactor regeneration. *ECS Trans.* 2010;25(28):13-20. doi:
445 10.1149/1.3309673.
- 446 10. Gajdzik J, Lenz J, Natter H, Walcarius A, Kohring GW, Giffhorn F, et al.
447 Electrochemical screening of redox mediators for electrochemical regeneration of
448 NADH. *J Electrochem Soc.* 2011;159(2):F10-F6. doi: 10.1149/2.056202jes.
- 449 11. Kornberger P, Gajdzik J, Natter H, Wenz G, Giffhorn F, Kohring GW, et al.
450 Modification of galactitol dehydrogenase from *Rhodobacter sphaeroides* D for
451 immobilization on polycrystalline gold surfaces. *Langmuir.* 2009;25(20):12380-6.
452 doi: 10.1021/la9010168.
- 453 12. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK,
454 Madhavan A, et al. Applications of microbial enzymes in food industry. *Food*
455 *Technol Biotechnol.* 2018;56(1):16-30. Epub 2018/05/26. doi:
456 10.17113/ftb.56.01.18.5491. PubMed PMID: 29795993; PubMed Central
457 PMCID: PMCPMC5956270.
- 458 13. Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon
459 metabolism in the alphaproteobacterium *Sinorhizobium meliloti*. *Can J Microbiol.*
460 2014;60(8):491-507. doi: 10.1139/cjm-2014-0306.

- 461 14. Udvardi M, Poole PS. Transport and Metabolism in Legume-Rhizobia Symbioses.
462 Annu Rev Plant Biol. 2013;64(1):781-805. doi: doi:10.1146/annurev-arplant-
463 050312-120235. PubMed PMID: 23451778.
- 464 15. Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS. Adaptation
465 of *Rhizobium leguminosarum* to pea, alfalfa and sugar beet rhizospheres
466 investigated by comparative transcriptomics. Genome Biology.
467 2011;12(10):R106. doi: 10.1186/gb-2011-12-10-r106.
- 468 16. Mortlock RP, editor. Microorganisms as Model Systems for Studying Evolution.
469 New York: Plenum Press; 1984.
- 470 17. Martinez De Drets G, Arias A. Metabolism of some polyols by *Rhizobium*
471 *meliloti*. J Bacteriol. 1970;103(1):97-103. PubMed PMID: 5423374.
- 472 18. Gardiol A, Arias A, Cerveñansky C, Gaggero C, Martínez-Drets G. Biochemical
473 characterization of a fructokinase mutant of *Rhizobium meliloti*. J Bacteriol.
474 1980;144(1):12-6.
- 475 19. Jacob AI, Adham SAI, Capstick DS, Clark SRD, Spence T, Charles TC.
476 Mutational analysis of the *Sinorhizobium meliloti* short-chain
477 dehydrogenase/reductase family reveals substantial contribution to symbiosis and
478 catabolic diversity. Mol Plant Microbe In. 2008;21(7):979-87. doi: 10.1094/mpmi.
- 479 20. Stein MA, Schäfer A, Giffhorn F. Cloning, nucleotide sequence, and
480 overexpression of *smoS*, a component of a novel operon encoding an ABC
481 transporter and polyol dehydrogenases of *Rhodobacter sphaeroides* Si4. J
482 Bacteriol. 1997;179(20):6335-40.
- 483 21. Persson B, Kallberg Y. Classification and nomenclature of the superfamily of
484 short-chain dehydrogenases/reductases (SDRs). Chemico-Biological Interactions.
485 2013;202(1):111-5. doi: <https://doi.org/10.1016/j.cbi.2012.11.009>.
- 486 22. Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, et al. The
487 SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature
488 initiative. Chemico-Biological Interactions. 2009;178(1):94-8. doi:
489 <https://doi.org/10.1016/j.cbi.2008.10.040>.
- 490 23. Sola-Carvajal A, García-García MI, García-Carmona F, Sánchez-Ferrer Á.
491 Insights into the evolution of sorbitol metabolism: phylogenetic analysis of
492 SDR196C family. BMC Evolutionary Biology. 2012;12(1):147. doi:
493 10.1186/1471-2148-12-147.
- 494 24. Philippsen A, Schirmer T, Stein MA, Giffhorn F, Stetefeld J. Structure of zinc-
495 independent sorbitol dehydrogenase from *Rhodobacter sphaeroides* at 2.4 Å
496 resolution. Acta Crystallographica Section D. 2005;61(4):374-9. doi:
497 doi:10.1107/S0907444904034390.
- 498 25. Fredslund F, Otten H, Gemperlein S, Poulsen J-CN, Carius Y, Kohring G-W, et
499 al. Structural characterization of the thermostable *Bradyrhizobium japonicum* D-
500 sorbitol dehydrogenase. Acta Crystallographica Section F. 2016;72(11):846-52.
501 doi: doi:10.1107/S2053230X16016927.
- 502 26. Holm L, Laakso LM. Dali server update. Nucleic Acids Res. 2016;44(W1):W351-
503 5. Epub 2016/05/01. doi: 10.1093/nar/gkw357. PubMed PMID: 27131377;
504 PubMed Central PMCID: PMCPMC4987910.
- 505 27. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, et al.
506 Critical residues for structure and catalysis in short-chain

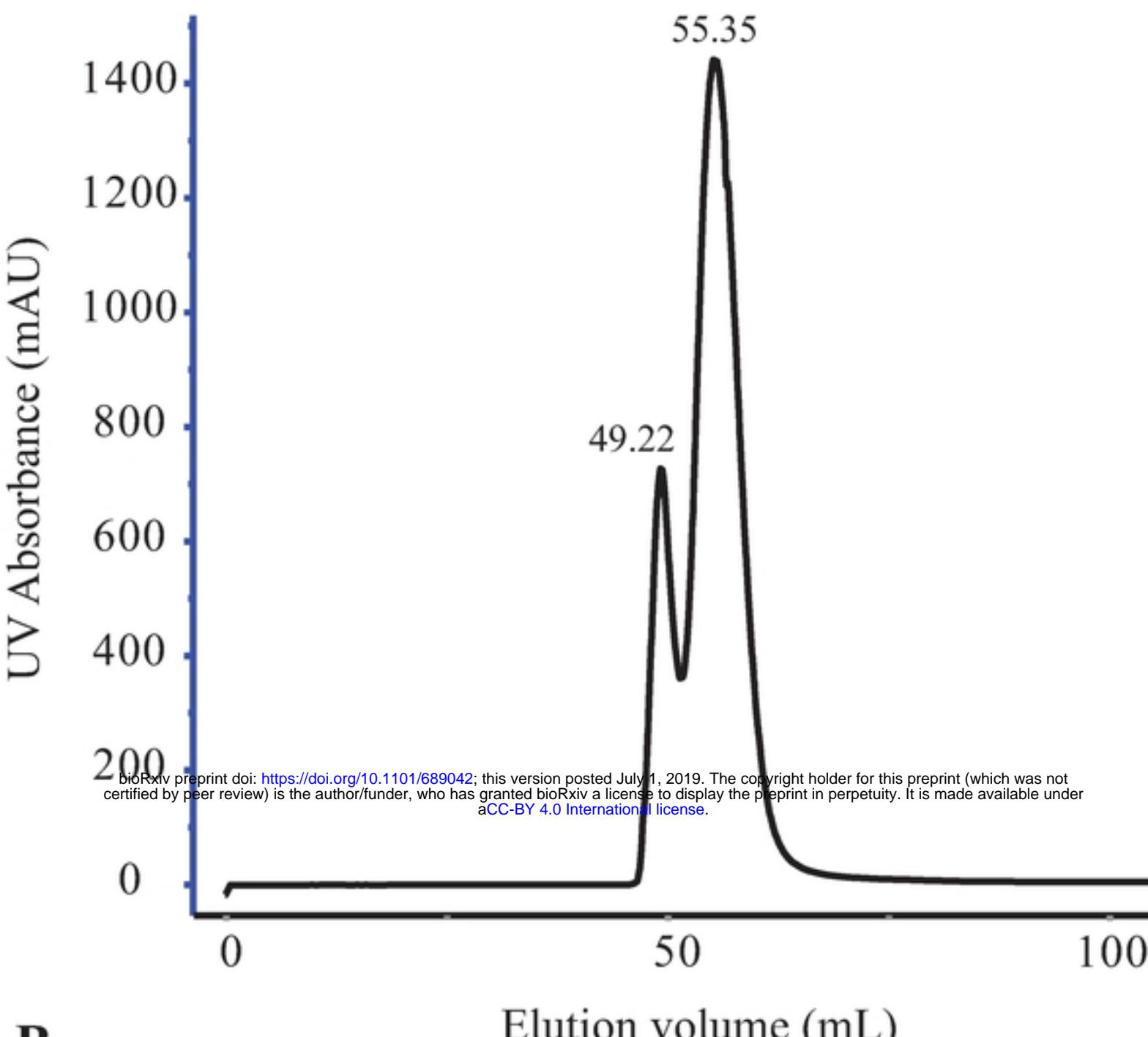

- 507 28. dehydrogenases/reductases. *J Biol Chem.* 2002;277(28):25677-84. Epub
508 2002/04/27. doi: 10.1074/jbc.M202160200. PubMed PMID: 11976334.
- 509 28. Jornvall H, Persson M, Jeffery J. Alcohol and polyol dehydrogenases are both
510 divided into two protein types, and structural properties cross-relate the different
511 enzyme activities within each type. *Proc Natl Acad Sci U S A.* 1981;78(7):4226-
512 30. Epub 1981/07/01. PubMed PMID: 7027257; PubMed Central PMCID:
513 PMCPMC319762.
- 514 29. Liebschner D, Afonine PV, Moriarty NW, Poon BK, Sobolev OV, Terwilliger
515 TC, et al. Polder maps: improving OMIT maps by excluding bulk solvent. *Acta
516 Crystallogr D Struct Biol.* 2017;73(Pt 2):148-57. doi:
517 10.1107/S2059798316018210. PubMed PMID: 28177311; PubMed Central
518 PMCID: PMCPMC5297918.
- 519 30. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate
520 schematic diagrams of protein-ligand interactions. *Protein engineering.*
521 1995;8(2):127-34. Epub 1995/02/01. PubMed PMID: 7630882.
- 522 31. Jagtap SS, Singh R, Kang YC, Zhao H, Lee J-K. Cloning and characterization of a
523 galactitol 2-dehydrogenase from *Rhizobium legumenosarum* and its application in
524 D-tagatose production. *Enzyme and Microbial Technology.* 2014;58-59:44-51.
525 doi: <https://doi.org/10.1016/j.enzmictec.2014.02.012>.
- 526 32. Lee J-K, Koo B-S, Kim S-Y. Cloning and characterization of the *xyll* gene,
527 encoding an NADH-preferring xylose reductase from *Candida parapsilosis*, and
528 Its functional expression in *Candida tropicalis*. *Appl Environ Microb.*
529 2003;69(10):6179-88. doi: 10.1128/aem.69.10.6179-6188.2003.
- 530 33. Schauder S, Schneider K-H, Giffhorn F. Polyol metabolism of *Rhodobacter
531 sphaeroides*: biochemical characterization of a short-chain sorbitol
532 dehydrogenase. *Microbiology.* 1995;141(8):1857-63. doi: doi:10.1099/13500872-
533 141-8-1857.
- 534 34. Kohlmeier MG, White CE, Fowler JE, Finan TM, Oresnik IJ. Galactitol
535 catabolism in *Sinorhizobium meliloti* is dependent on a chromosomally encoded
536 sorbitol dehydrogenase and a pSymB-encoded operon necessary for tagatose
537 catabolism. *Molecular Genetics and Genomics.* 2019. doi: 10.1007/s00438-019-
538 01545-z.
- 539 35. Combs SA, DeLuca SL, DeLuca SH, Lemmon GH, Nannemann DP, Nguyen ED,
540 et al. Small-molecule ligand docking into comparative models with Rosetta.
541 *Nature Protocols.* 2013;8:1277. doi: 10.1038/nprot.2013.074
542 <https://www.nature.com/articles/nprot.2013.074-supplementary-information>.
- 543 36. DeLuca S, Khar K, Meiler J. Fully Flexible Docking of Medium Sized Ligand
544 Libraries with RosettaLigand. *PloS One.* 2015;10(7):e0132508. doi:
545 10.1371/journal.pone.0132508.
- 546 37. Kothiwale S, Mendenhall JL, Meiler J. BCL::Conf: small molecule
547 conformational sampling using a knowledge based rotamer library. *Journal of
548 Cheminformatics.* 2015;7(1):47. doi: 10.1186/s13321-015-0095-1.
- 549 38. Lyskov S, Chou F-C, Conchúir SÓ, Der BS, Drew K, Kuroda D, et al.
550 Serverification of Molecular Modeling Applications: The Rosetta Online Server
551 That Includes Everyone (ROSIE). *PloS One.* 2013;8(5):e63906. doi:
552 10.1371/journal.pone.0063906.

- 553 39. Kaufmann KW, Meiler J. Using RosettaLigand for small molecule docking into
554 comparative models. *PloS One*. 2012;7(12):e50769-e. doi:
555 10.1371/journal.pone.0050769. PubMed PMID: 23239984.
- 556 40. Fujinami S, Fujisawa M. Industrial applications of alkaliophiles and their enzymes-
557 -past, present and future. *Environmental technology*. 2010;31(8-9):845-56. Epub
558 2010/07/29. doi: 10.1080/09593331003762807. PubMed PMID: 20662376.
- 559 41. Carius Y, Christian H, Faust A, Zander U, Klink BU, Kornberger P, et al.
560 Structural insight into substrate differentiation of the sugar-metabolizing enzyme
561 galactitol dehydrogenase from *Rhodobacter sphaeroides* D. *The Journal of*
562 *Biological Chemistry*. 2010;285(26):20006-14. doi: 10.1074/jbc.M110.113738.
563 PubMed PMID: PMC2888412.
- 564 42. Gauer S, Wang Z, Otten H, Etienne M, Bjerrum MJ, Lo Leggio L, et al. An L-
565 glucitol oxidizing dehydrogenase from *Bradyrhizobium japonicum* USDA 110 for
566 production of D-sorbose with enzymatic or electrochemical cofactor regeneration.
567 *Appl Microbiol Biot*. 2014;98(7):3023-32. doi: 10.1007/s00253-013-5180-7.
- 568 43. Zhu L, Wang S, Tian W, Zhang Y, Song Y, Zhang J, et al. Stabilization of
569 Multimeric Proteins via Intersubunit Cyclization. *Appl Environ Microb*.
570 2017;83(18):e01239-17. doi: 10.1128/aem.01239-17.
- 571 44. Hiraga K, Kitazawa M, Kaneko N, Oda K. Isolation and Some Properties of
572 Sorbitol Oxidase from *Streptomyces* sp. H-7775. *Bioscience, Biotechnology, and*
573 *Biochemistry*. 1997;61(10):1699-704. doi: 10.1271/bbb.61.1699.
- 574 45. Yamaki S. A sorbitol oxidase that converts sorbitol to glucose in apple leaf1.
575 *Plant and Cell Physiology*. 1980;21(4):591-9. doi:
576 10.1093/oxfordjournals.pcp.a076034.
- 577 46. Forneris F, Heuts DPHM, Delvecchio M, Rovida S, Fraaije MW, Mattevi A.
578 Structural Analysis of the Catalytic Mechanism and Stereoselectivity in
579 *Streptomyces coelicolor* Alditol Oxidase. *Biochemistry*. 2008;47(3):978-85. doi:
580 10.1021/bi701886t.
- 581 47. Heuts DPHM, van Hellemond EW, Janssen DB, Fraaije MW. Discovery,
582 Characterization, and Kinetic Analysis of an Alditol Oxidase from *Streptomyces*
583 *coelicolor*. *J Biol Chem*. 2007;282(28):20283-91. doi: 10.1074/jbc.M610849200.
- 584 48. Kavanagh K, Jörnvall H, Persson B, Oppermann U. The SDR superfamily:
585 functional and structural diversity within a family of metabolic and regulatory
586 enzymes2008. 3895-906 p.
- 587 49. Matthews BW, Nicholson H, Becktel WJ. Enhanced protein thermostability from
588 site-directed mutations that decrease the entropy of unfolding. *Proc Natl Acad Sci*.
589 1987;84(19):6663-7. doi: 10.1073/pnas.84.19.6663.
- 590 50. Suzuki Y. A General Principle of Increasing Protein Thermostability. *Proceedings*
591 *of the Japan Academy, Series B*. 1989;65(6):146-8. doi: 10.2183/pjab.65.146.
- 592 51. Suzuki Y, Oishi K, Nakano H, Nagayama T. A strong correlation between the
593 increase in number of proline residues and the rise in thermostability of five
594 *Bacillus* oligo-1,6-glucosidases. *Appl Microbiol Biot*. 1987;26(6):546-51. doi:
595 10.1007/bf00253030.
- 596 52. Cold Spring Harbor Protocols. LB (Luria-Bertani) liquid medium. *Cold Spring*
597 *Harb Protoc*. 2006;2006(1):pdb.rec8141. doi: 10.1101/pdb.rec8141.


- 598 53. Riley M, Abe T, Arnaud MB, Berlyn MKB, Blattner FR, Chaudhuri RR, et al.
599 *Escherichia coli* K-12: a cooperatively developed annotation snapshot—2005.
600 Nucleic Acids Res. 2006;34(1):1-9. doi: 10.1093/nar/gkj405. PubMed PMID:
601 PMC1325200.
- 602 54. Gasteiger E, HC, Gattiker A, Duvaud S, Wilkins M.R., Appel R.D., Bairoch A.
603 Protein Identification and Analysis Tools on the ExPASy Server. In: Walker JM,
604 editor. The Proteomics Protocols Handbook: Humana Press; 2005. p. 571-607.
- 605 55. Kabsch W. XDS. *Acta Crystallogr D Biol Crystallogr*. 2010;66(Pt 2):125-32.
606 Epub 2010/02/04. doi: 10.1107/s0907444909047337. PubMed PMID: 20124692;
607 PubMed Central PMCID: PMCPMC2815665.
- 608 56. Evans PR. An introduction to data reduction: space-group determination, scaling
609 and intensity statistics. *Acta Crystallogr D Biol Crystallogr*. 2011;67(Pt 4):282-
610 92. Epub 2011/04/05. doi: 10.1107/s090744491003982x. PubMed PMID:
611 21460446; PubMed Central PMCID: PMCPMC3069743.
- 612 57. Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures
613 by the maximum-likelihood method. *Acta Crystallogr D Biol Crystallogr*.
614 1997;53(Pt 3):240-55. Epub 1997/05/01. doi: 10.1107/s0907444996012255.
615 PubMed PMID: 15299926.
- 616 58. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot.
617 *Acta Crystallogr D Biol Crystallogr*. 2010;66(Pt 4):486-501. Epub 2010/04/13.
618 doi: 10.1107/s0907444910007493. PubMed PMID: 20383002; PubMed Central
619 PMCID: PMCPMC2852313.
- 620 59. Schrodinger L. The PyMOL Molecular Graphics System, Version 1.8. 2015.
- 621 60. Pickering BS, Oresnik IJ. Formate-dependent autotrophic growth in
622 *Sinorhizobium meliloti*. *J Bacteriol*. 2008;190(19):6409-18. doi:
623 10.1128/jb.00757-08.
- 624


sorbitol

fructose



galactitol

tagatose

Figure 1

A**B**

kDa

181.8
82.2

1 2 3 4 5 6 7 8 9

nondenaturing gel w/ coomassie

nondenaturing activity gel

181.8

64.2

37.1

25.9

denaturing gel w/ coomassie

Figure 2

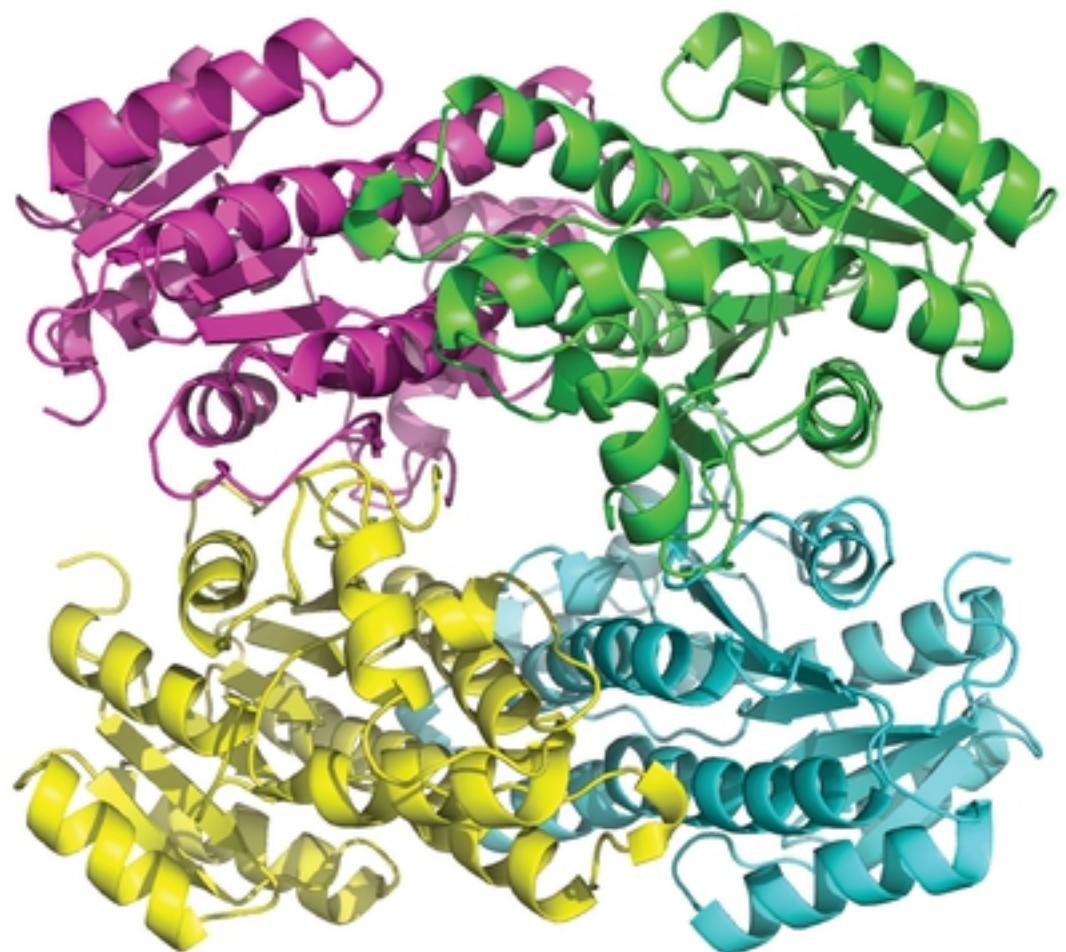
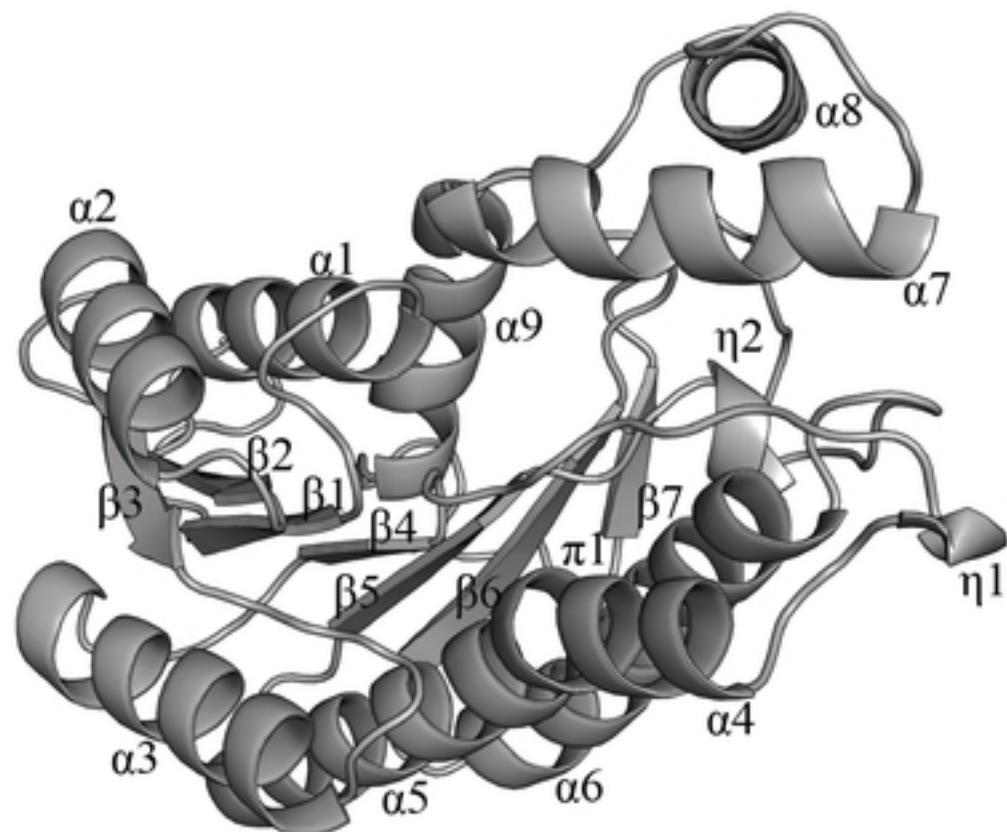


A**B**

Figure 3

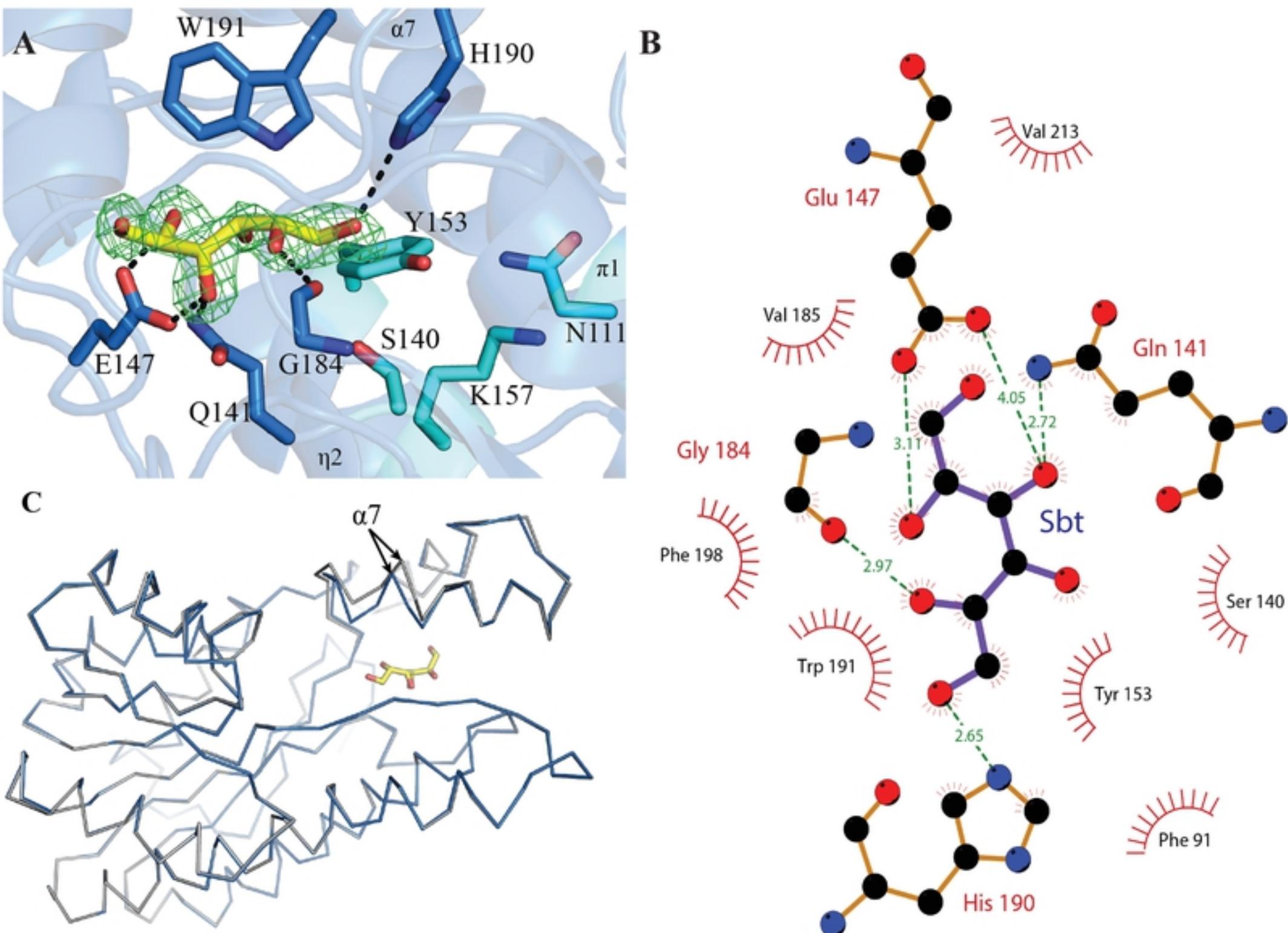


Figure 4

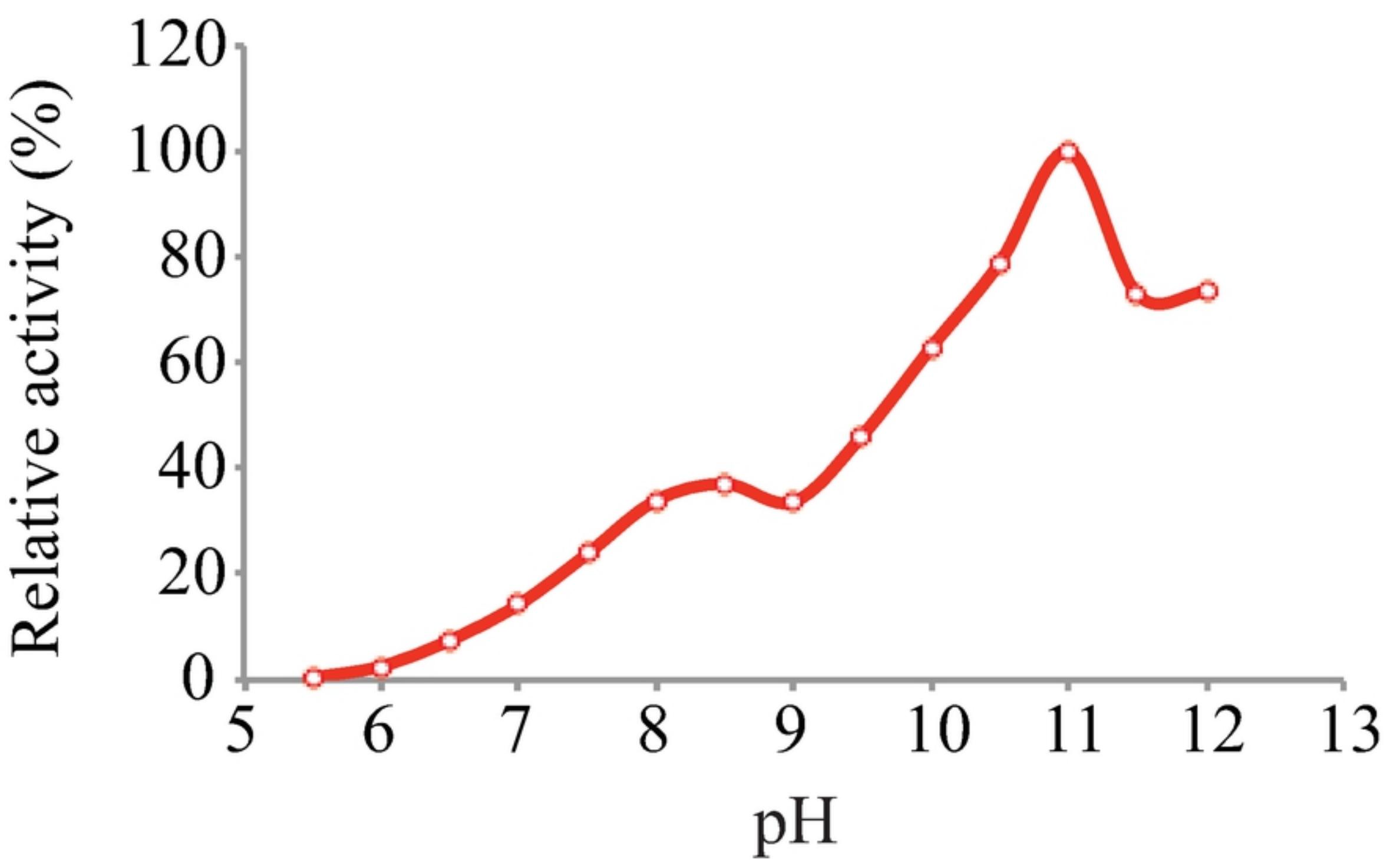
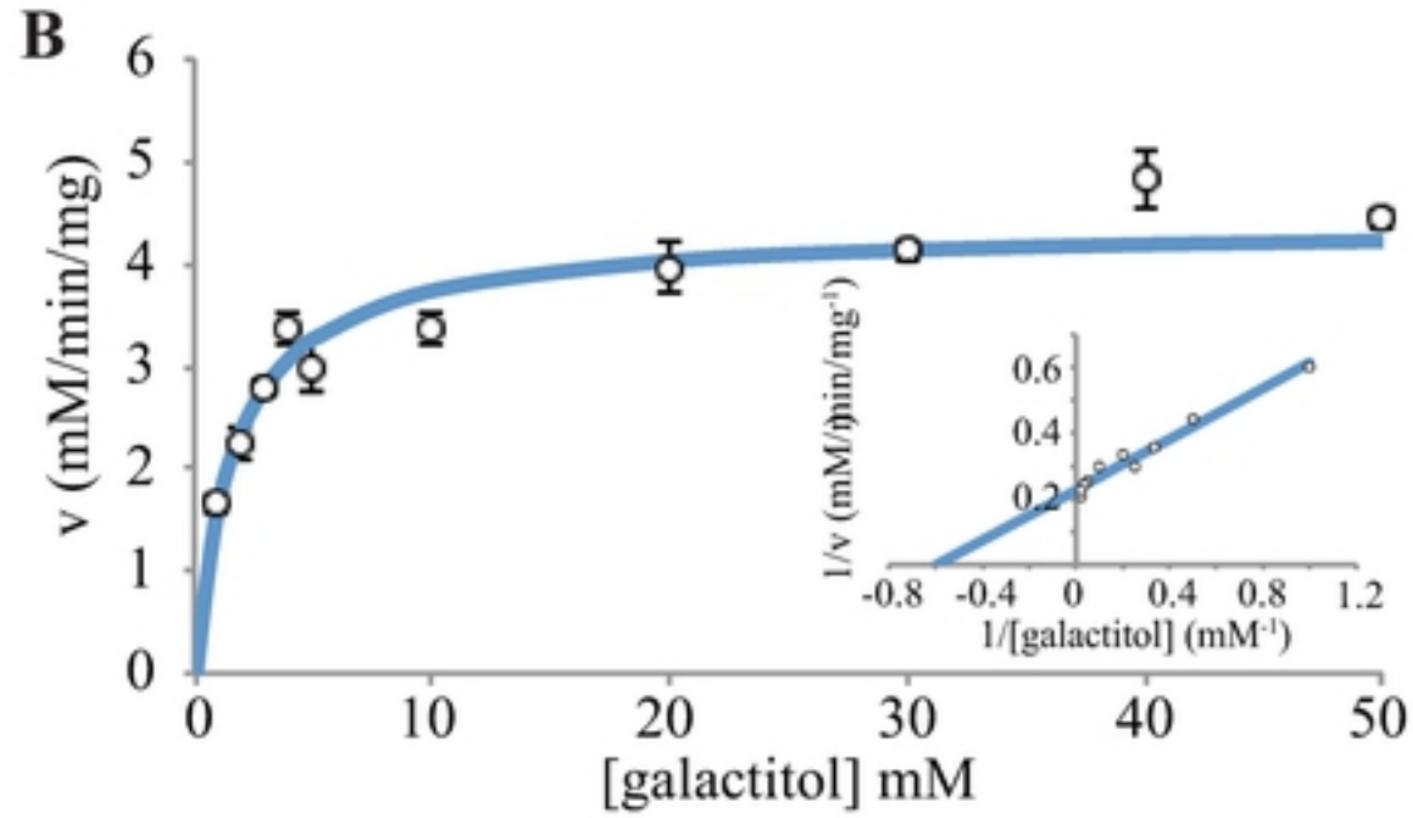
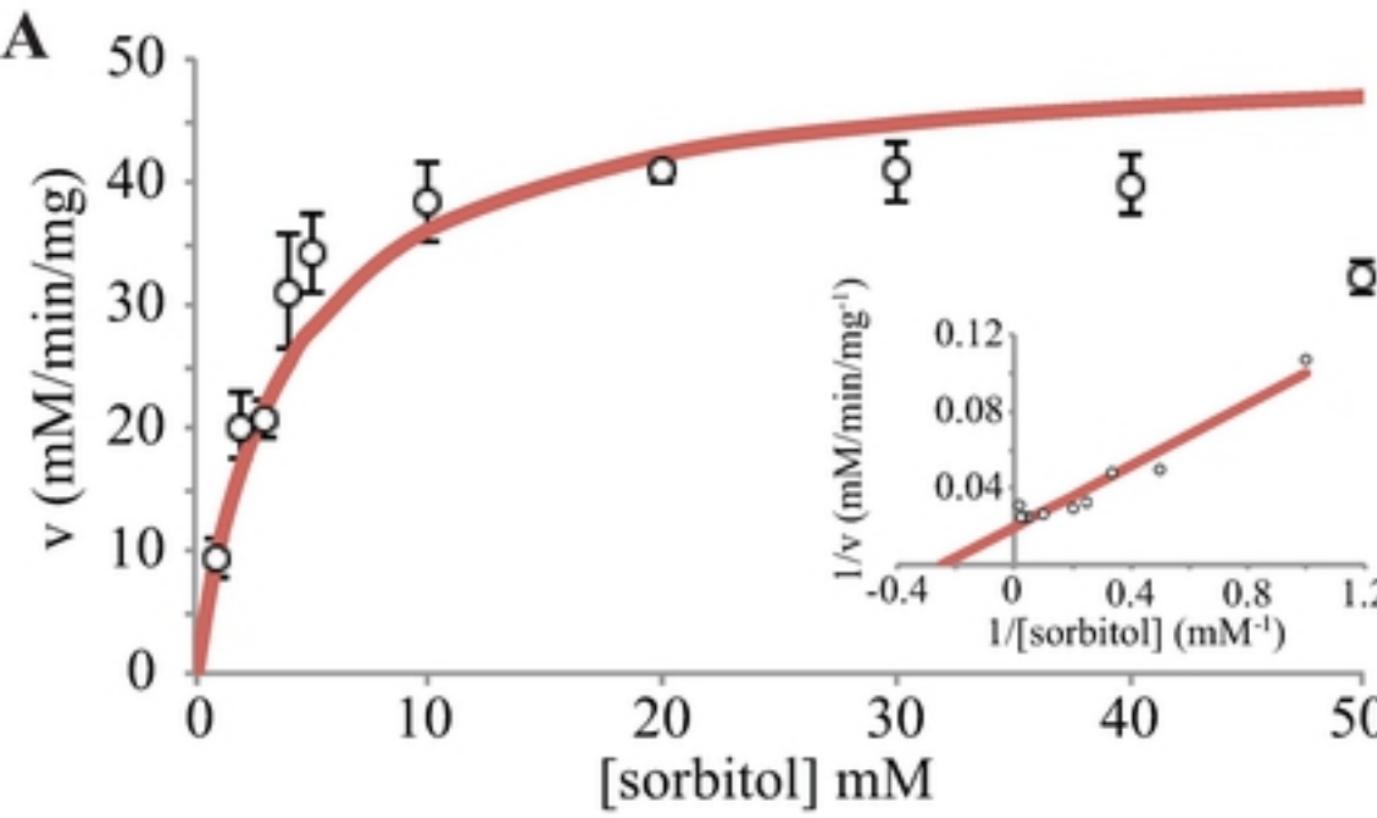
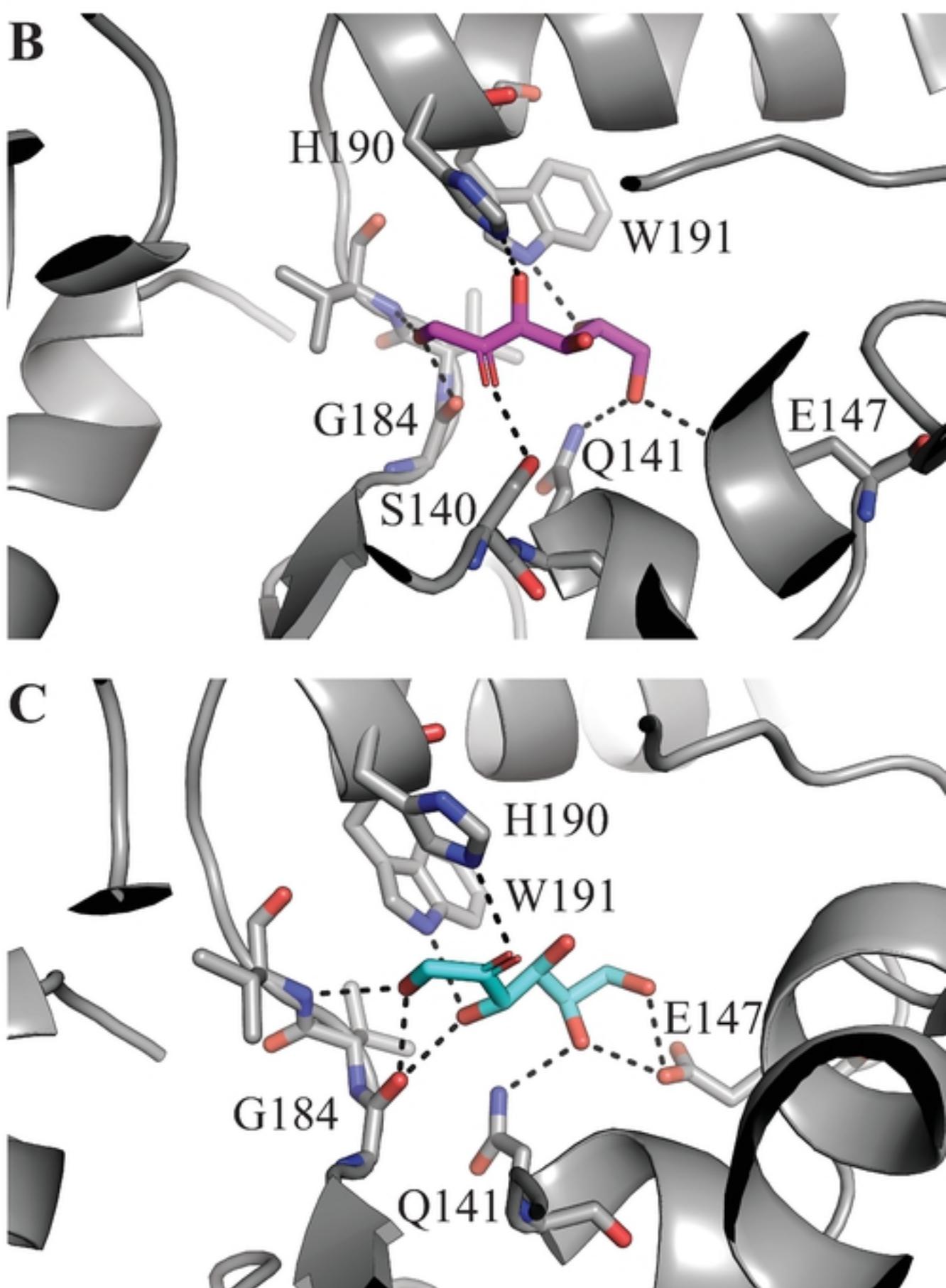
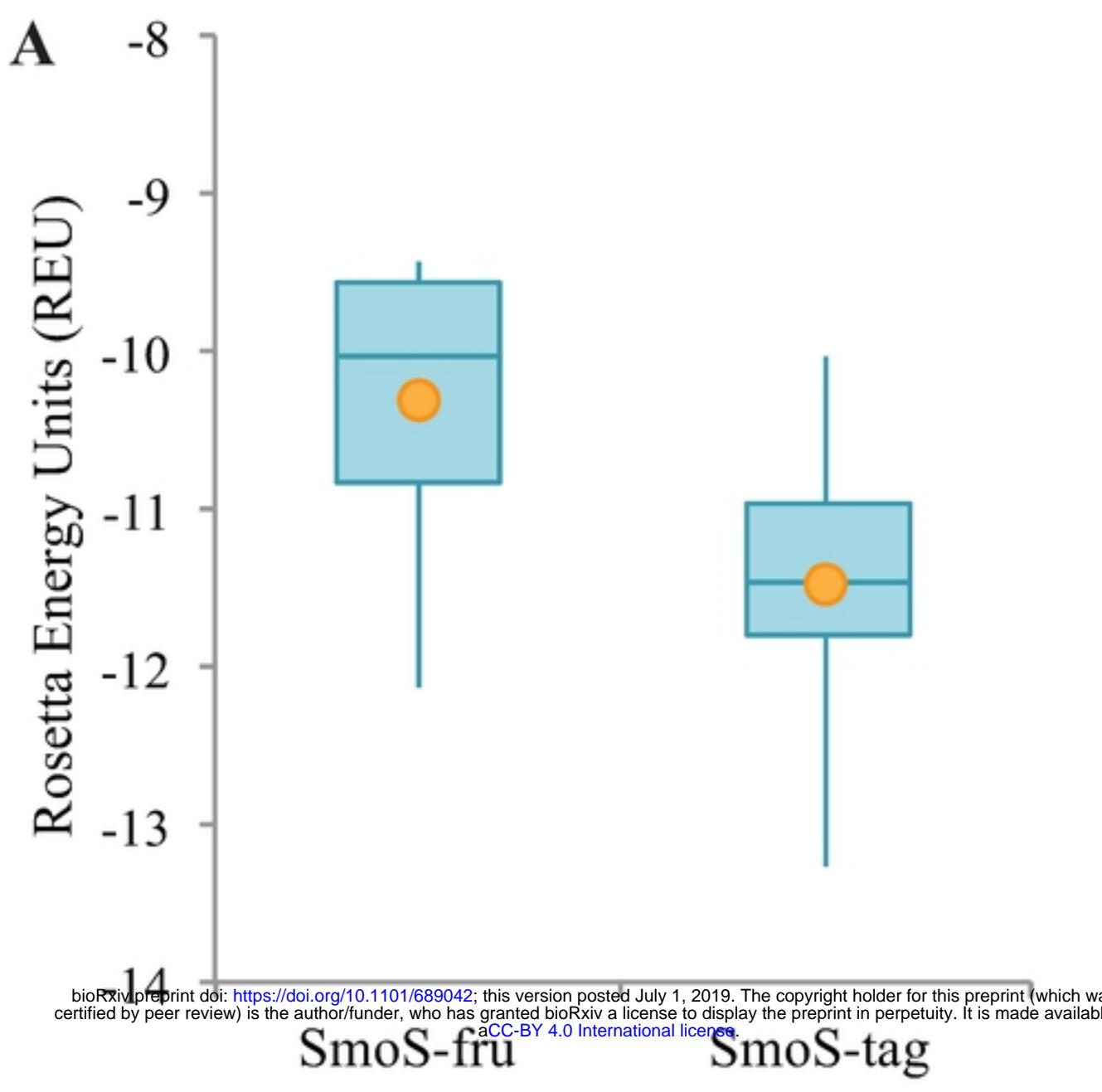
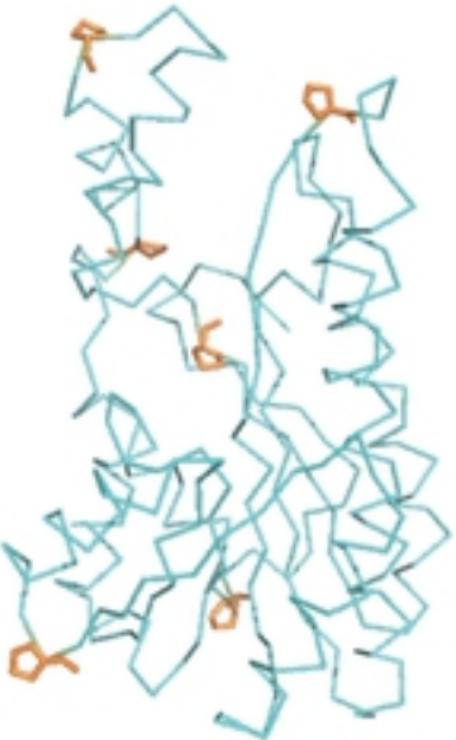
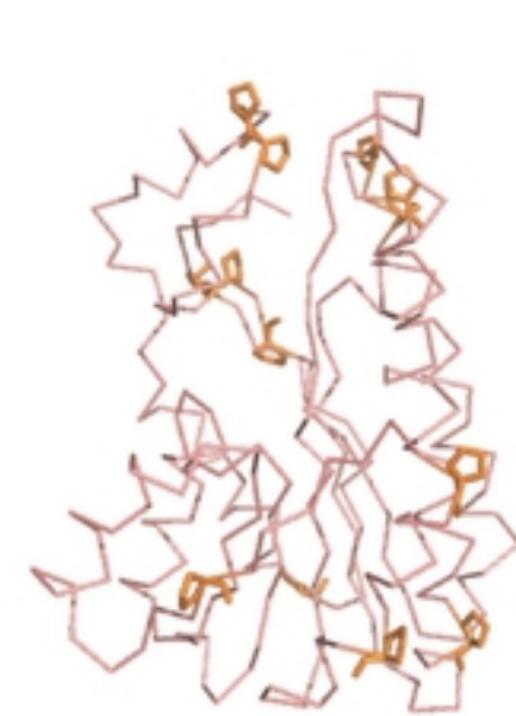


Figure 5



Figure 6


Figure 7

SmSmoS

RsSmoS

BjSDH

Figure 8