

1    **A bibliometric analysis of Soil remediation Based on Massive research literature data During**  
2    **1988-2018**

3

4    **Ya Hu<sup>1,2,3,4</sup>, Jichang Han<sup>1,2,3,4\*</sup>, Zenghui Sun<sup>1,2,3,4</sup>, Huanyuan Wang<sup>1,2,3,4</sup>, Xiang Liu<sup>1,2,3,4</sup>, Hui**  
5    **Kong<sup>1,2,3,4</sup>**

6

7    1Shaanxi Provincial Land Engineering Construction Group, Xi'an 710075, China, Xi'an 710075,  
8    China;2Key Laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry  
9    of Land and Resources, Xi'an 710075, China;3Institute of Land Engineering and Technology,  
10   Shaanxi Provincial Land Engineering Construction Group., Xi'an 710075, China;4Shaanxi  
11   Provincial Land Consolidation Engineering Technology Research Center, Xi'an 710075, China;  
12   5Xi'an Jiaotong University,710048, China

13

14   \*Corresponding Author: Jichang Han, Email: hanjc\_sxdj@126.com

15

16   Short title: Bibliometric analysis of Soil remediation During 1988-2018

17

18 **Abstract**

19 Soil is an important part of the ecosystem with significant roles that help human population sustain.  
20 Research on prevention and remediation of soil pollution has been carried out when 1985. This study  
21 analyzed the 1988–2018 soil remediation dataset in the Web of Science database by bibliometric  
22 methods to illustrate the current research trends and hot topics of quantitative analysis and soil  
23 remediation in the world. To further identify the major soil contamination topics, we employed  
24 social network analysis. The results indicate that the field of soil remediation has entered a stage of  
25 rapid progress. The United States has a strong overall strength with the largest number of published  
26 articles and larger impact. China ranks second. We identified Journal of hazardous materials as the  
27 most influential journal and Chinese academy of sciences as the most influential institution.  
28 Academic cooperation showed an increasing trend at the author, institutional, and national levels  
29 with an average level of cooperation of 3.57, 1.66, and 1.16, respectively. However, the growth rate  
30 of cooperation at the national level is relatively low. In addition, the frequency and co-word analyses  
31 of keywords revealed the important research topics. “heavy metals” , “PAH”,  
32 “bioremediation” ,“Phytoremediation” and “Electrokinetic remediation” were identified as the hot  
33 topics. The findings of this study will help researchers understand the status of soil remediation as  
34 well as provide guidance for future research.

35

## 36      **Introduction**

37      Soil is an important dependence of human survival. contaminated soil which polluted by heavy  
38      metals, agricultural inputs and solid waste, deteriorates the environment and restricts human  
39      development[1-3]. Soil contamination and remediation are global problems that have attracted the  
40      attention of governments and researchers[4]. In order to protect soil and prevent further deterioration,  
41      various studies have been conducted on remediation of contaminated soil. Many soil remediation  
42      technologies have been developed during the past few decades on different aspects such as  
43      chemistry, biology, agroecology, and electrodynamics[5,6]. During this period, new research ideas,  
44      methods, and means were introduced, and the remediation technology system was improved. At the  
45      same time, the intersection of discipline such as soil, engineering, chemistry and new materials  
46      promoted the rapid progress in soil remediation research[7]. However, the future of soil remediation  
47      technologies is uncertain and the need for multidisciplinary research is high. To gain research  
48      progress in soil remediation, we should focus on the key processes in soil remediation and break  
49      through the bottlenecks. We should explore new remediation technologies and perform a  
50      quantitative analysis of the relevant information in the field.

51      Bibliometrics can explores structures, characteristics, and laws of science and technology [8]. We  
52      used bibliometric method to analyze current research and the development trends in the field of soil  
53      remediation including total number of articles, countries' performances, productive journals,  
54      performances of authors and institutios, citation, and extent of academic collaboration. This work  
55      will fill the gap in the field of soil remediation. Using frequency analysis and co-occurrence analysis  
56      of high-frequency keywords will help other researchers grasp the essence of advanced topics in this

57 field. Based on the analysis, potential limitations and directions were derived to provide guidance to  
58 plan and implement future research.

59

## 60 **Materials and methods**

### 61 **Data source**

62 Data used in this study were taken from the Web of Science (WOS) core collection including  
63 Science Citation Index Expanded, Social Sciences Citation Index, Conference Proceedings Citation  
64 Index-Science, Conference Proceedings Citation Index-Social Science & Humanities, and Emerging  
65 Sources Citation Index. We searched the title, abstract, and keywords of 13891 published articles  
66 using 1988–2018 as the time phase, “soil remediation” as the keyword, and “subject” as the field.

67 The search date is January 18, 2019. The WOS derived document records included titles, authors,  
68 abstracts, and keywords. These indicators were analyzed using BibExcel, Ucinet and VOSviewer.

69 A general statistical analysis was performed on national distribution, journals, topics, authors,  
70 institutions, and citations. In addition, impact factor, academic cooperation, and national  
71 comprehensive strength were used to reflect the current academic impact of a country and of an  
72 author. Research and development in the field of soil remediation was analyzed, which will help  
73 researchers and policy makers attain an overall understanding of the subject.

74

### 75 **Impact factor**

76 As the most commonly used assessment tool in bibliometrics, impact factor helps assess the merit of  
77 journals, authors, institutions, and countries [9]. We collected the impact factors from the ISI Journal  
78 Citation Reports to evaluate the quality of the journals.

79

## 80 **Academic cooperation**

81 Cooperation in scientific research is improving at all levels and in all areas, and this is a common  
82 indicator to measure closeness of collaboration in scientific research [10]. The indicators at all levels  
83 (author, institution, and nation) were used to calculate the degree of academic cooperation in the  
84 field of soil remediation. Equations used for calculation are as follows:

85 (1) Author cooperation: 
$$G_A = \frac{\sum_{i=1}^N \alpha_i}{N}$$

86 (2) Institutional cooperation: 
$$G_I = \frac{\sum_{i=1}^N \beta_i}{N}$$

87 (3) National cooperation: 
$$G_C = \frac{\sum_{i=1}^N \gamma_i}{N}$$

88 Where,  $G_A$ ,  $G_I$ , and  $G_C$  represent the degree of cooperation by author, institution, and country,  
89 respectively;  $\alpha_i$ ,  $\beta_i$ , and  $\gamma_i$  represent the number of authors, institutions, and countries contributing to  
90 each paper, respectively;  $N$  represents the total number of articles in the field.

91

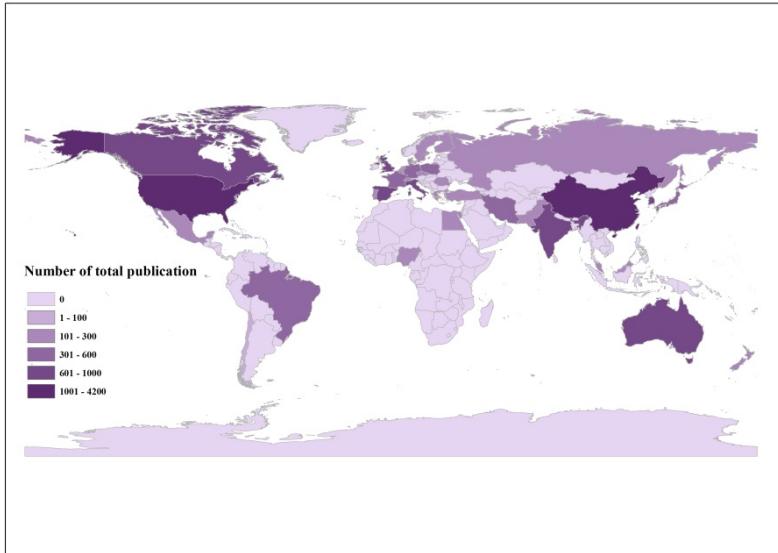
## 92 **Academic scale**

93 Academic influence and academic competitiveness reflect a country's comprehensive research  
94 strength. Four indicators were selected to assess national comprehensive research strength: (1) total  
95 number of articles (2) total citations (3) number of authors, and (4) number of research institutions.  
96 By calculating the standard scores of these four indicators, the combined score of each country was  
97 obtained, and the formulae used for calculation are as follows:

$$98 \quad (4) \text{ Standard score: } T_{ij} = \frac{x_{ij} - \bar{x}_{ij}}{\sqrt{\sum_j (x_{ij} - \bar{x}_j)^2}} + 1$$

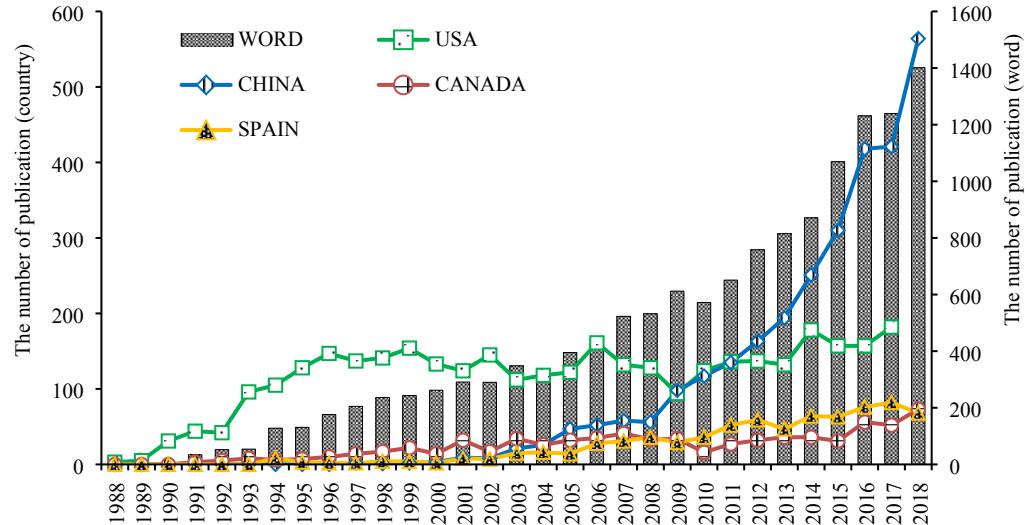
$$99 \quad (5) \text{ Comprehensive score: } T_i = \sum_j T_{ij}$$

100 Where,  $T_{ij}$  represents the standard score of indicator  $j$  in country  $i$ ;  $x_{ij}$  represents the original  
101 score of indicator  $j$  in country  $i$ ;  $\bar{x}_{ij}$  represents its average score;  $T_i$  represents the sum of the standard  
102 scores in country  $i$ ; and  $M$  represents the number of countries.


103

## 104 **Results**

### 105 **Contribution of country**


106 The number of articles in a specific area is an important indicator to assess development trend.  
107 Analysis revealed that a total of 13,891 journal articles were retrieved from 148 countries and  
108 regions including England, Scotland, Wales, and Northern Ireland; China included only mainland  
109 China, and Hong Kong, Macao, and Taiwan were analyzed as separate regions. Different colors  
110 represent the number of articles in different geographical regions(**Fig 1**), the darker the color, the

111 more the number of articles. The articles on soil remediation were mainly from the United States,  
112 China, Spain, and Canada. Research in this field was also prominent in Korea, Italy, and Australia.



113  
114 **Figure 1** World map showing the distribution of research articles

115 The number of articles in the soil remediation field has grown rapidly over time (**Fig 2**), and the  
116 growth happened in three phases. Only a few developed countries such as the United States and  
117 Canada published few articles in the early beginning phase (1988 to 1998). In order to improve the  
118 quality of cultivated soil, healthy human living environment, many countries began to pay attention  
119 and study soil issues in the stable development phase (1998 to 2008) . China's soil remediation  
120 research is developing rapidly in the rapid growth phase (2008 to 2018).



121  
122 **Figure 2 Distribution of major publishing countries**

123  
124 **Productive institutions**

125 6637 institutions contributed to the soil remediation field. Among developing countries, four  
126 institutions among the 10 most published research institutions were in China (**Table 1**), the Chinese  
127 Academy of Sciences and the University of Chinese Academy of Sciences ranked first and third.  
128 Other research institutions were from developed countries, four from the United States and two from  
129 France. The Chinese Academy of Sciences contributed 706 articles (56.54% of the total number of  
130 Chinese articles). This indicates that Chinese Academy of Sciences is in a leading position in the  
131 field of soil remediation.

132 **Table 1 Productive institutions during 1988-2018.**

| RANK | Institution                                     | Country | TP  | TPRW(%) |
|------|-------------------------------------------------|---------|-----|---------|
| 1    | Chinese Academy of Sciences                     | China   | 706 | 5.1     |
| 2    | United states department of energy doe          | USA     | 369 | 2.7     |
| 3    | University of chinese academy of sciences       | China   | 234 | 1.7     |
| 4    | Centre national de la recherche scientifique    | France  | 230 | 1.7     |
| 5    | Consejo Superior de Investigaciones Cientificas | France  | 227 | 1.6     |
| 6    | university of california system                 | USA     | 206 | 1.5     |
| 7    | Institute of soil science                       | China   | 204 | 1.5     |

|    |                                         |       |     |     |
|----|-----------------------------------------|-------|-----|-----|
| 8  | Zhejiang University                     | China | 179 | 1.3 |
| 9  | United states department of agriculture | USA   | 177 | 1.3 |
| 10 | State University System of Florida      | USA   | 175 | 1.3 |

133 Note: TP is the number of total articles; TPRW(%) is the ratio of the number of journal's  
134 publications in which institution to the total number of articles.

135

## 136 **Productive authors**

137 32534 authors contributed to the soil remediation field. The authors with the most recent articles  
138 were from Denmark, and the productive authors were from other developed countries such as South  
139 Korea, United States, Australia, and Spain among the top 10 authors in the field of soil  
140 remediation(**Table 2**).

141 **Table 2 Productive authors during 1988-2018.**

| Rank | Authors     | Country   | TP | TC   | CPP   |
|------|-------------|-----------|----|------|-------|
| 1    | Ottosen LM  | Denmark   | 82 | 1574 | 19.2  |
| 2    | Beak K      | Korea     | 70 | 1091 | 15.59 |
| 3    | Reedy KR    | USA       | 70 | 2347 | 33.53 |
| 4    | Naidu R     | Australia | 66 | 1032 | 15.64 |
| 5    | Canizares P | Spain     | 59 | 766  | 13.15 |
| 6    | Rodrigo MA  | Spain     | 59 | 736  | 12.47 |
| 7    | Tsang DCW   | Hong Kong | 57 | 981  | 11.21 |
| 8    | Luo YM      | China     | 56 | 1173 | 20.95 |
| 9    | Lestan D    | Slovenia  | 52 | 1485 | 28.56 |
| 10   | OK YS       | Korea     | 52 | 1732 | 33.31 |

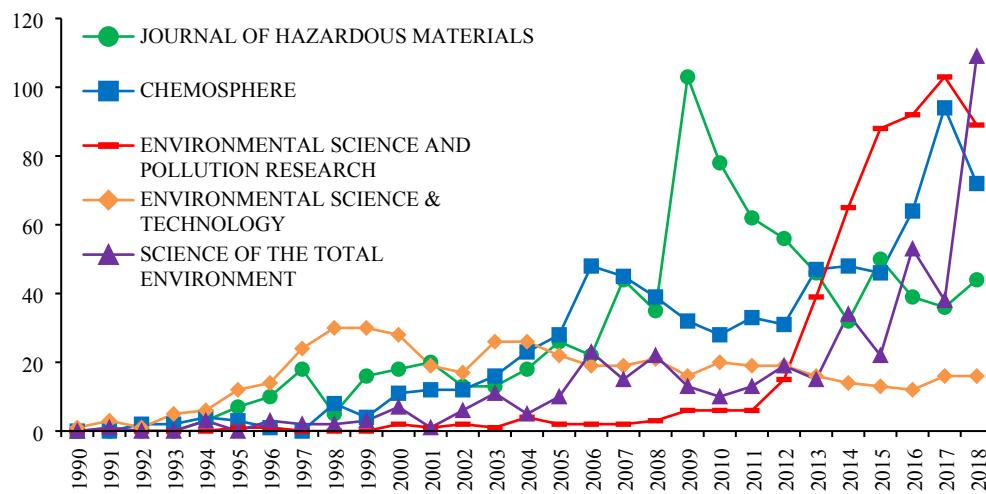
142 Note: TP is the number of total articles; TC is the number of total citations; CPP is citations per  
143 publication.

144 The most productive author was Ottosen LM (Denmark) has contributed to 82 articles. He mainly  
145 studied the use of electrodialysis technology and the use of electricity to deal with copper, lead, zinc,  
146 and chromium in industrial and mining fields [11,12]. Reddy K R (United States) was the highest

147 cited author, whose articles has been cited 2347 times and mainly about electrodynamic remediation  
148 of heavy metals in soil [13]. Baek K (South Korea)was the most productive author in Asia with 70  
149 articles. He analyzed the effect of electrolyte regulation of acidic and alkaline solutions on  
150 electroremediation of contaminated soil [14].

151

## 152 **Journals performance**


153 1423 academic journals retrieved in the soil remediation field. These articles related to  
154 environmental science , soil contamination and botany. Journal of hazardous materials had 822  
155 articles (5.9%)was the most published journal (**Table 3**).Chemosphere had 758 articles (5.5%) was  
156 the second most published journal. Environmental science and technology ranked fourth among all  
157 publications in all journals, however it has the largest impact factor (6.653) and had the most  
158 citations (27199).

159 **Table 3 Top fifteen productive journals during 1998-2018.**

| Rank | Journal                                      | TP  | TPR(%) | IF    | TC    |
|------|----------------------------------------------|-----|--------|-------|-------|
| 1    | Journal of hazardous materials               | 822 | 5.92   | 6.434 | 24491 |
| 2    | Chemosphere                                  | 758 | 5.46   | 4.427 | 21607 |
| 3    | Environmental science and pollution research | 529 | 3.81   | 2.8   | 3985  |
| 4    | Environmental science technology             | 482 | 3.47   | 6.653 | 27199 |
| 5    | Science of the total environment             | 400 | 2.88   | 4.61  | 9032  |
| 6    | Water air and soil pollution                 | 369 | 2.66   | 1.769 | 5574  |
| 7    | Environmental pollution                      | 303 | 2.18   | 4.358 | 12079 |
| 8    | International journal of phytoremediation    | 239 | 1.70   | 4.005 | 3371  |
| 9    | Journal of environmental management          | 223 | 1.61   | 1.886 | 2592  |
| 10   | Journal of contaminant hydrology             | 206 | 1.48   | 2.405 | 7230  |

160 Note: TP is the number of total articles; TPR(%) is the ratio of the number of journal's publications

161 to the total number of articles; IF is impact factor in 2018;TC is the number of total citations.  
162 Among the top five journals, Journal of hazardous materials maintained a leading position in the  
163 number of articles from 2008 to 2013 (**Fig 3**). However, the number of articles in Environmental  
164 science and pollution research showed a rapid growth with an average growth rate of 30% per year  
165 after 2013. Science of the total environment showed short-term fluctuations but maintained high  
166 growth rate after 2013. Meanwhile, Journals related to this field from other journals showed  
167 relatively low growth rates.



168  
169 **Figure 3 Trend of top five journals**

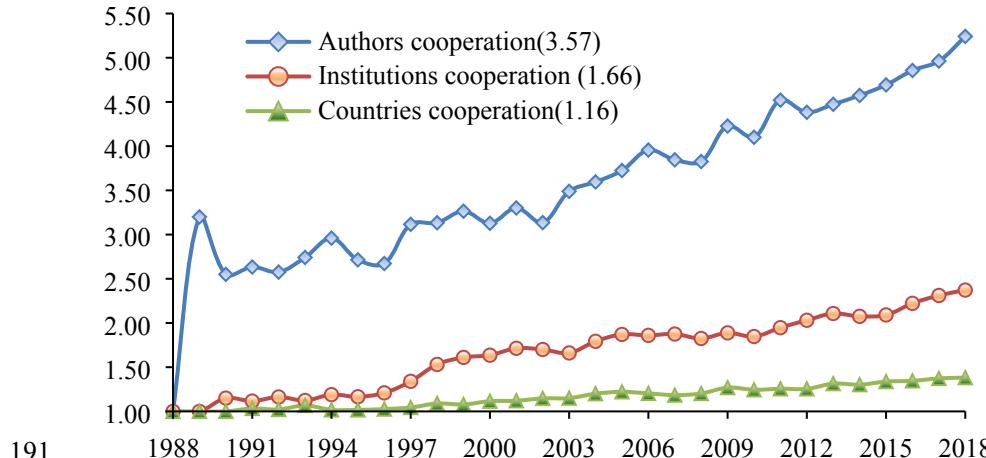
170

## 171 **Subjects performance**

172 Lists Environmental sciences ecology was the most popular subject with 8550 articles (61.5%)  
173 followed by Engineering and Water resources (29.1% and 11.6%) among the top 10 subjects closely  
174 related to the field of soil remediation(**Table 4**). Articles in this field focused on natural science  
175 subjects especially environmental science, ecology, geology, and meteorology and few social  
176 science subjects such as business and economics. Some domain-specified subjects including

177 chemistry, agriculture, plants, and toxicology also published numerous articles because of their  
178 sensitivity to soil remediation.

179 **Table 4 Distribution of subjects during 1988-2018.**


| Rank | Subject                            | TP   | TPR(%) |
|------|------------------------------------|------|--------|
| 1    | Environmental sciences ecology     | 8550 | 61.5%  |
| 2    | Engineering                        | 1043 | 29.1%  |
| 3    | Water resources                    | 1612 | 11.6%  |
| 4    | Agriculture                        | 1348 | 9.7%   |
| 5    | Chemistry                          | 1176 | 8.4%   |
| 6    | Geology                            | 863  | 6.2%   |
| 7    | Biotechnology applied microbiology | 781  | 5.6%   |
| 8    | Meteorology atmospheric sciences   | 434  | 3.1%   |
| 9    | Science technology other topics    | 433  | 3.1%   |
| 10   | Toxicology                         | 404  | 2.9%   |

180 Note: TP is the number of total articles; TPR(%) is the ratio of the number of journal's publications  
181 to the total number of articles.

182

183 **Academic collaboration**

184 The degree of academic cooperation reflects the degree of academic research in scientific research in  
185 this field. The degree of cooperation between authors, institutions, and countries was calculated  
186 using formulae (1), (2), and (3). Authors, institutions, and countries had cooperation levels of 3.57,  
187 1.66, and 1.16, respectively, which indicate that 3.57 authors, 1.66 institutions, and 1.16 countries  
188 contributed to each article (Fig 4). The level of cooperation constantly improved, and the authors'  
189 cooperation was significant (3.57). Growth in national cooperation was slow due to the soil  
190 contamination problems are more concentrated in individual countries.



191  
192 **Figure 4 Academic cooperation during 1988-2018**

193

194 **Research hot points**

195 **Keyword clustering and frequency analysis**

196 Keywords reflect the aim of research and summarize the key contents of the paper. We analyzed  
197 1039 keywords used in 13891 articles through BibExcel. The keyword “remediation” demonstrated  
198 the highest frequency of occurrence (4372 times). According to the formula  $n = 0.749 \times \sqrt{m_{max}}$  where  
199  $m_{max} = 4372$ . In this study,  $n=50$  implies that the keywords which are cited more than 50 times are the  
200 core of the soil remediation field. We further classified 63 core keywords into 5 categories and  
201 labeled the number of occurrence for each keyword (**Table 5**).

202 **Table 5 Frequency of keywords in soil remediation during 1988-2018.**

| Category                  | Representative keywords                                                                                                                                                                                                                                             | frequency |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Inorganic pollution       | Heavy metals(816),Cadmium(300),Heavy metal(273),Arsenic(270),Lead(261),Metals(141),Chromium(133),Copper(129),Zinc(104),Toxicity(96),mercury(92),Salinity(76),Persulfate(57),Phytotoxicity(57),Nickel(55),Uranium(55),Hexavalent chromium(54),Acid mine drainage(53) | 3022      |
| Bioremediation technology | Phytoremediation(719),Bioremediation(633),Biodegradation(347),Biochar(262),Bioavailability(223),Bioaugmentation(115),biosurfactant(106),Bacteria(62),Microbial community(59),Bioaccumulation(59)                                                                    | 2585      |

|                                       |                                                                                                                                                                                                                                                               |      |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Physical<br>remediation<br>technology | Soil washing(223),Adsorption(202),Electrokinetic remediation(181),Sorption(166),<br>Immobilization(161),Electrokinetics(129),Desorption(117),<br>Leaching(107),Electrokinetic(102),Remote sensing(76),Kinetics(71),<br>Stabilization(61),Activated carbon(56) | 1712 |
| Organic<br>pollution                  | Polycyclic aromatic hydrocarbons(162),PAHs(160),phenanthrene(110),PAH(88),<br>Petroleum hydrocarbons(85),Hydrocarbons(81),Crude oil(69),Pyrene(65),<br>Petroleum(57),Polycyclic aromatic hydrocarbons (PAHs)(50),Diesel(50)                                   | 1139 |
| Chemical<br>remediation<br>technology | Surfactant(156),EDTA(136),Sequential extraction(98),Surfactants(69),<br>extraction(69),Chemical oxidation(63),pH(55),<br>Hydrogen peroxide(53),Oxidation(53),zero-valent iron(51),citric acid(51)                                                             | 1056 |

203 **Inorganic pollution**

204 Heavy metals entered the soil with the rapid development of the global economy. Anthropogenic  
205 activities such as mining, industrial production, agriculture, and transportation are the major sources  
206 of heavy metals in soil. They cannot be completely removed from the soil by degradation and has  
207 caused soil contamination problems in many countries [15]. So “heavy metal” was a prominent  
208 keyword in soil contamination. Cadmium, arsenic, lead, chromium, and zinc have been the focus of  
209 remediation research followed by toxicity and salinization [16].

210 **Bioremediation remediation technology**

211 Bioremediation uses plants, animals, and microorganisms in the soil to absorb, degrade, and  
212 transform the soil Contaminants. “Phytoremediation” and “bioremediation” have been the focus of  
213 scholars after 2010 [17]. Bioremediation degrades Contaminants in situ at a low cost of remediation  
214 and with no secondary pollution. Due to the limitations of single remediation techniques, joint  
215 remediation techniques such as co-bioremediation remediation, physical-biological remediation, and  
216 chemical-biological remediation have been considered by some scholars.

217 **Physical remediation technology**

218 In situ soil washing, adsorption, immobilization, and other electric methods are the most studied  
219 physical methods [18]. Soil washing remediation mainly improves extraction efficiency by finding  
220 new eluents. Electrokinetic remediation was the most concerned chemical remediation technologys.

221 In addition to new electrode technology which was represented by electrolyte optimization and  
222 approaching anode, Combined technology was represented by electric-permeable wall began to  
223 appeared and developed rapidly.

224 **Organic pollution**

225 Currently, more attention is paid polycyclic aromatic hydrocarbons, tocrude oils and petroleum  
226 hydrocarbons in organic pollution [19]. Pollution form Atrazine, chlorpyrifos and  
227 dichlorodiphenyltrichloroethane were maily in China, and explosive chemicals were mainly in the  
228 USA. With the increasing consumption of US military explosives, greatly studied researched on the  
229 soil organic pollution of military bases. China, India, Spain, and Canada foured on the topic of  
230 petroleum, crude oil, and Petroleum hydrocarbons.

231 **Chemical remediation technology**

232 The main research in the field of chemical remediation technology was based on the chemical  
233 properties of pollutants or contaminated media. This method changed the chemical properties by the  
234 application of various chemical reagents, and separates the pollutants. Surfactants solubilize and  
235 elute soil contaminants, and EDTA complexes with the salts of heavy metals and increase the  
236 transport rate of heavy metals in soil. Thus, surfactants and EDTA were the most concerned  
237 chemical remediation technologys [4].

238

## 239 Co-occurrence and network analysis of keywords

240 Co-occurrence analysis of high frequency keywords was performed using VOSviewer. The common  
241 keyword “remediation” was deleted in case it affected the display of other keywords.



**Figure 5 Co-occurrence map of keywords in the field of soil remediation**

244 Each keyword is represented by a circle in the visualization result of keyword average time  
245 distribution (Fig 5). The diameter of the circle and the size of the label indicate the appearance of  
246 keywords. The bigger the circle, the more the number of occurrences of the keyword [20]. The  
247 distance between the circles indicates the proximity of the two keywords. The color of the circle  
248 represents the average publication year of the keywords. Lines represent co-occurrence links  
249 between two keywords. The thicker the line between two keywords, the more frequently they appear  
250 together.

251 Heavy metals have more links to other keywords. This means that heavy metals have the maximum  
252 connection and reflects its central position in research. Large-scale keywords such as  
253 “bioremediation”, “phytoremediation”, and “removal” play an important role in the research

254 network. Among all these keywords, the number of connections between “heavy metals”,  
255 “cadmium”, and “removal” was the most. This indicates their relevance and these three keywords or  
256 two of them usually appear together in the same research and most scholars focused on these issues.  
257 Another keyword group including “phytoremediation”, “bioremediation”, and “contaminated soil”  
258 also showed strong correlation, which indicates their relevance in soil remediation research.  
259 Change in color indicates the trend in hot topics in this field. Blue represents the keywords that were  
260 released before 2009, such as “removal”, “grandwater”, “polycyclic aromatic-hydrocarbons” and  
261 “phenanthrene”. These words focused on PAH pollution and the migration mechanism of  
262 contaminants in soil. Green represents the keywords around 2011. Increase in soil contamination  
263 threatens the living environment and food security. Therefore, scholars have been paying more  
264 attention to soil contamination and remediation. The research techniques used were mainly  
265 bioremediation technologies including phytoremediation. As an important source of soil  
266 contamination, heavy metals continue to receive widespread attention. Studies have focused on  
267 “biochar”, “China”, “sewage”, and other specific topics and regions since 2013, rather than abstract  
268 and macro themes. These trends indicate that major research in the field of soil remediation is  
269 shifting from a contamination mechanism to technology application.

270

## 271 **Conclusions**

272 Based on the WOS core database, the overall research development in the field of soil remediation  
273 from 1988 to 2018 was analyzed using bibliometric methods.  
274 Soil remediation field has developed rapidly since 2008. The continuous increase in number of

275 articles indicates that soil remediation is receiving increasing attention. At the national level, the  
276 United States had high overall strength with the largest number of articles and greater academic  
277 influence. As a representative of developing countries, China's institutions and authors performed  
278 well by contributing more number of articles. The top five most published journals contributed 21.5%  
279 of all articles in the field in which Journal of hazardous materials was the most published journal. In  
280 addition, soil remediation included multidisciplinary fields, and environmental science ecology,  
281 engineering, and water resources were the top three subjects that published the most articles. Ottosen  
282 LM (Denmark), Reddy KR (the United States) and Baek K (Korea) were the authors with the more  
283 number published articles in this field. Academic cooperation showed an increasing trend at the  
284 author, institutional, and national levels with an average level of cooperation of 3.57, 1.66, and 1.16,  
285 respectively.

286 Cluster analysis and frequency analysis of the keywords indicate that the hot topics in this field were  
287 heavy metals, phytoremediation, bioremediation, electrodynamics, cadmium, leaching, solidification,  
288 and polycyclic aromatic hydrocarbons. According to the co-word analysis, "heavy metals" keyword  
289 had the maximum connection among all keywords and often appeared simultaneously with other  
290 keywords reflecting heavy metals as the core issue in the field. Trends in the hot topics in this field  
291 were discussed through the analysis of the keywords in published works. We found that research  
292 focus is shifting from the mechanism of pollutant transport in contaminated soils to the application  
293 of comprehensive repair technologies such as bioremediation technology and electric remediation.  
294 Meanwhile, research focused on specific micro-level issues and quantitative analysis in areas and  
295 regions. This study will help researchers understand the development trends in soil remediation  
296 research and provide guidance for future research.

297 However, this study only explores the overall theme changes of soil remediation research in the past  
298 30 years from the time dimension. In order to further analyze the mature and declining process of  
299 prominent keywords, it is necessary to further classify and analyze the keywords on a case-by-case  
300 basis and summarize the development and decline process of keywords.

301

## 302 **Acknowledgement**

303 This work was Supported by the Scientific Research Item of Shaanxi Provincial Land Engineering  
304 Construction Group (DJNY-2019-26),and the Fund Project of Shaanxi Key Laboratory of Land  
305 Consolidation (2018-TD02).

306

## 307 **Reference**

- 308 1. Chen, H., Teng, Y., Lu, S., Wang, Y., Wang, J. (2015). Contamination features and health risk of  
309 soil heavy metals in China. *Science of the Total Environment*, 512-513,143-153.
- 310 2. Ni, Z., Wang, S. (2015). Economic development influences on sediment-bound nitrogen and  
311 phosphorus accumulation of lakes in China. *Environmental Science and Pollution Research*, 22,  
312 18561-18573.
- 313 3. Khatri, N., Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and  
314 groundwater quality in rural and urban areas. *Frontiers in Life Science*, 8, 23-39.
- 315 4. Pietro, P., Falciglia, D. M., Vagliasindi, F. G.A. (2016). Removal of mercury from marine  
316 sediments by the combined application of a biodegradable non-ionic surfactant and complexing

317 agent in enhanced-electrokinetic treatment. *Electrochimica Acta*, 222, 1569-1577.

318 **5.** Guarino, C., Sciarrillo, R. (2017). Effectiveness of in situ application of an Integrated  
319 Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily  
320 multi-contaminated soils. *Ecological Engineering*, 99, 70-82.

321 **6.** Ait Ahmed, O., Derriche, Z., Kameche, M., Bahmani, A., Souli, H., Dubujet, P., Fleureau, J.M.  
322 (2015). Electro-Remediation of Lead Contaminated Kaolinite: An Electro-Kinetic Treatment.  
323 *Chemical Engineering and Processing: Process Intensification*, S0255270115301537.

324 **7.** Mao, G., Shi, T., Zhang, S., Crittenden, J., Guo, S., Du, H. (2018). Bibliometric analysis of  
325 insights into soil remediation. *Journal of Soils and Sediments*, 18, 2520-2534.

326 **8.** Garousi, V., Mantyla, M. V. (2016). Citations, research topics and active countries in software  
327 engineering: A bibliometrics study. *Computer Science Review*, 19, 56-77.

328 **9.** Paulus, F. M., Rademacher, L., Schäfer, T., Müller-Pinzler, L., Krach, S. (2015). Journal Impact  
329 Factor Shapes Scientists' Reward Signal in the Prospect of Publication. *Plos One*, 10, 0142537.

330 **10.** Wei, Y. M., Yuan, X. C., Wu, G., Yang, L. X. (2014) Climate Change Risk Assessment:A  
331 bibliometric Analysis Based on Web of Science. *Bulletin of National Natural Science  
332 Foundation of China*, 5, 347-356.

333 **11.** Jakobsen, M. R., Fritt-Rasmussen, J., Nielsen, S., Ottosen, L. M. (2004). Electrodialytic removal  
334 of cadmium from wastewater sludge. *Journal of Hazardous Materials*, 106, 127-132.

335 **12.** Jensen, P. E., Ottosen, L. M., Pedersen, A. J., Speciation Of Pb In Industrially Polluted Soils.  
336 *Water, Air, and Soil Pollution*, 107, 359-382.

337 **13.** Reddy, K. R., Parupudi, U. S., (1997). Devulapalli S N , et al. Effects of soil composition on the  
338 removal of chromium by electrokinetics. *Journal of Hazardous Materials*, 55, 135-158.

339 **14.** Baek, K., Kim, D. H., Park, S. W., Ryu, B. G., Bajargal, T., Yang, J. (2009). Electrolyte  
340 conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. *Journal*  
341 of Hazardous Materials, 161, 457-462.

342 **15.** Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., Zhang, J. (2015). Bioremediation of soils  
343 contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and  
344 heavy metals by composting: Applications, microbes and future research needs. *Biotechnology*  
345 *Advances*, 33, 745-755.

346 **16.** Toth, G., Hermann, T., Da Silva, M. R, Montanarella, L. (2016). Heavy metals in agricultural  
347 soils of the European Union with implications for food safety. *Environment International*, 88,  
348 299-309.

349 **17.** Hussain, I., Aleti, G., Naidu, R., Puschenreiter, M. (2018). Microbe and plant  
350 assisted-remediation of organic xenobiotics and its enhancement by genetically modified  
351 organisms and recombinant technology: A review. *Science of The Total Environment*, 628,  
352 1582-1599.

353 **18.** Derakhshan, N., Z , Jung, M. C., Kim, K. H. (2017). Remediation of soils contaminated with  
354 heavy metals with an emphasis on immobilization technology. *Environmental Geochemistry*  
355 and Health, 40, 927-953

356 **19.** Ivshina, I., Kostina, L., Krivoruchko, A. Kuyukina, M., Peshkure, T., Anderson, P. et al.  
357 (2016). Removal of polycyclic aromatic hydrocarbons in soil spiked with model mixtures of

358 petroleum hydrocarbons and heterocycles using biosurfactants from *Rhodococcusruber* IEGM

359 231. *Journal of Hazardous Materials*, S0304389416302229.

360 **20.** Wang, Z., Zhao, Y., Wang, B. (2018). A bibliometric analysis of climate change adaptation

361 based on massive research literature data. *Journal of Cleaner Production*, 199, 1072-1082.

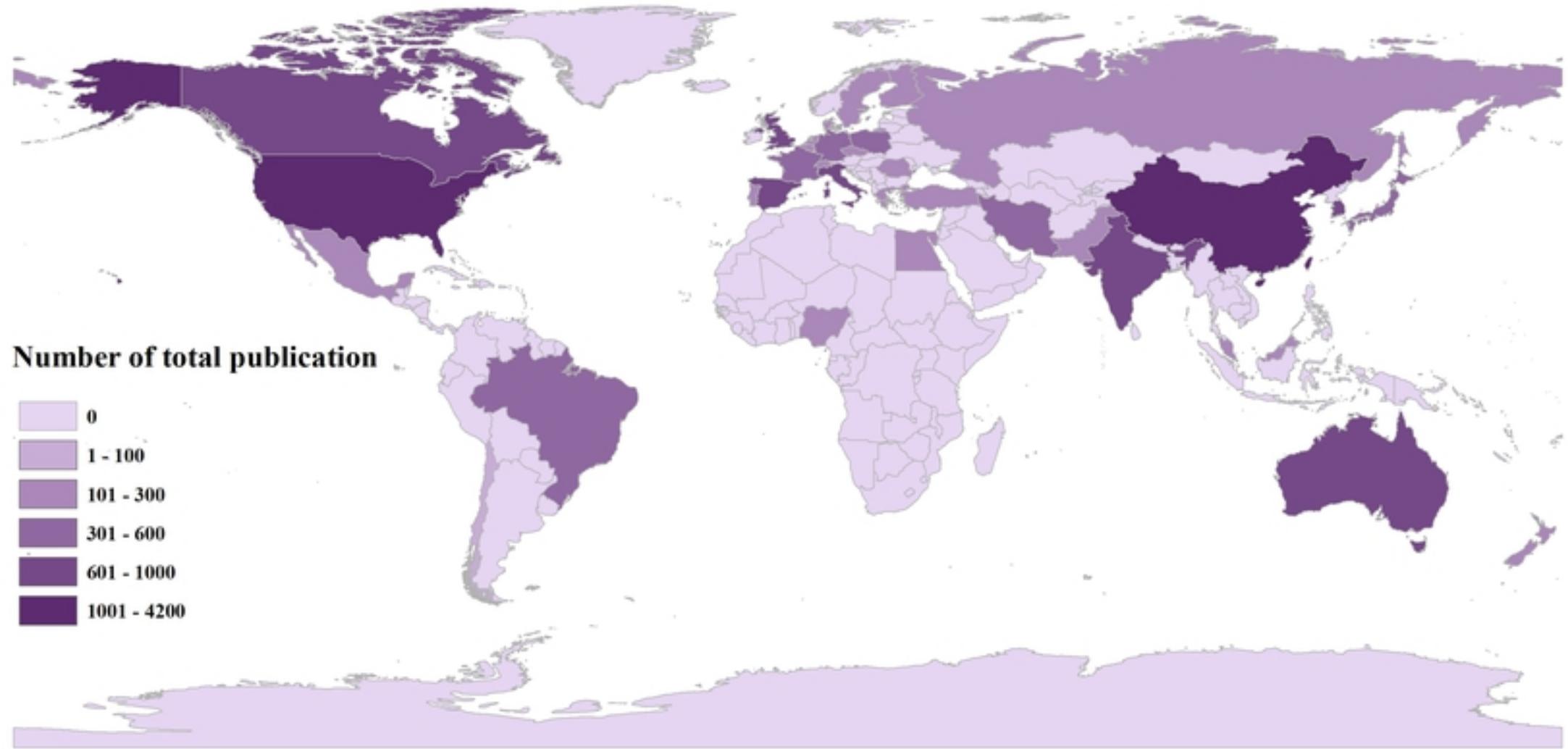



Figure 1



Figure 2

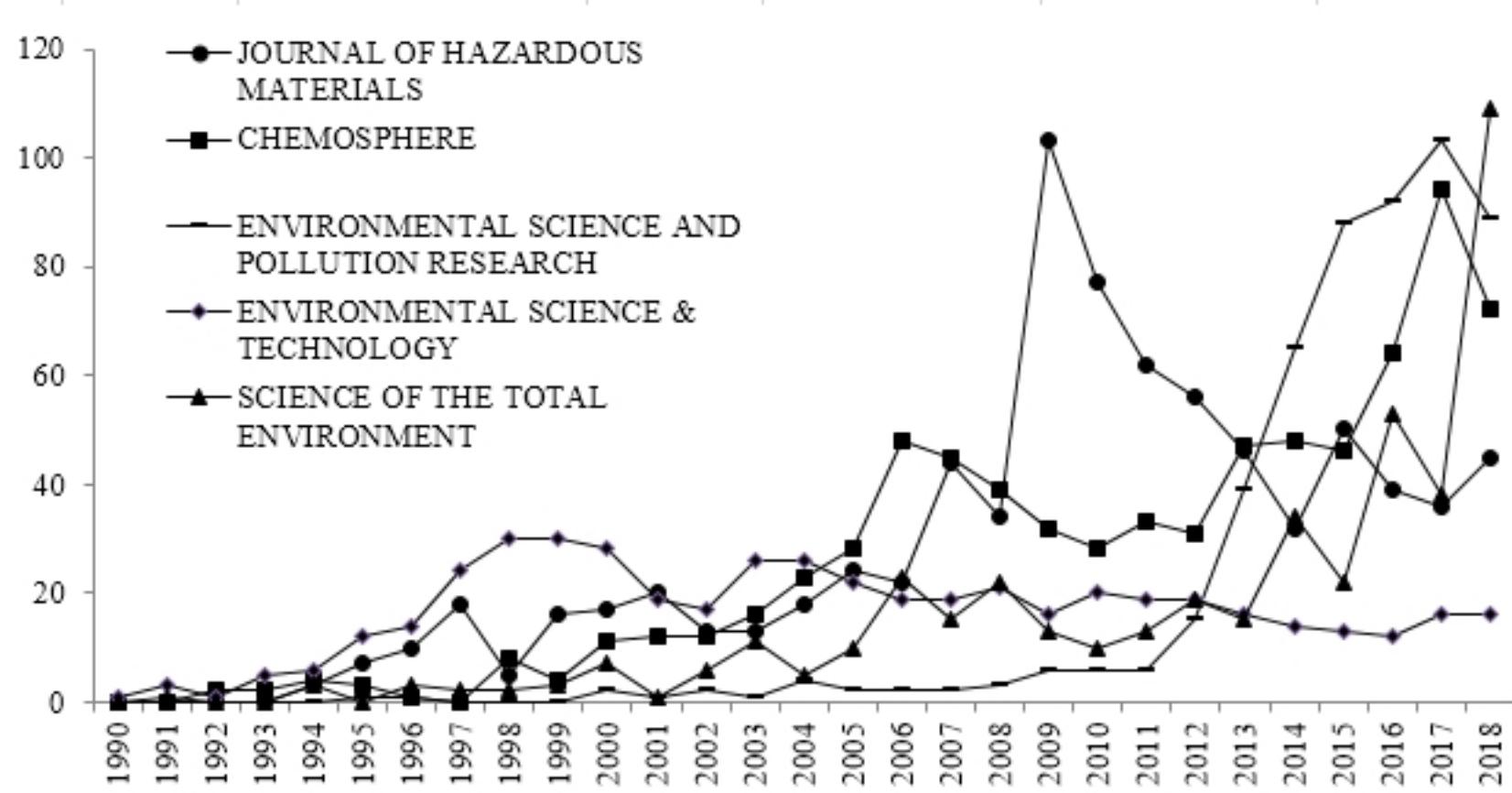



Figure 3

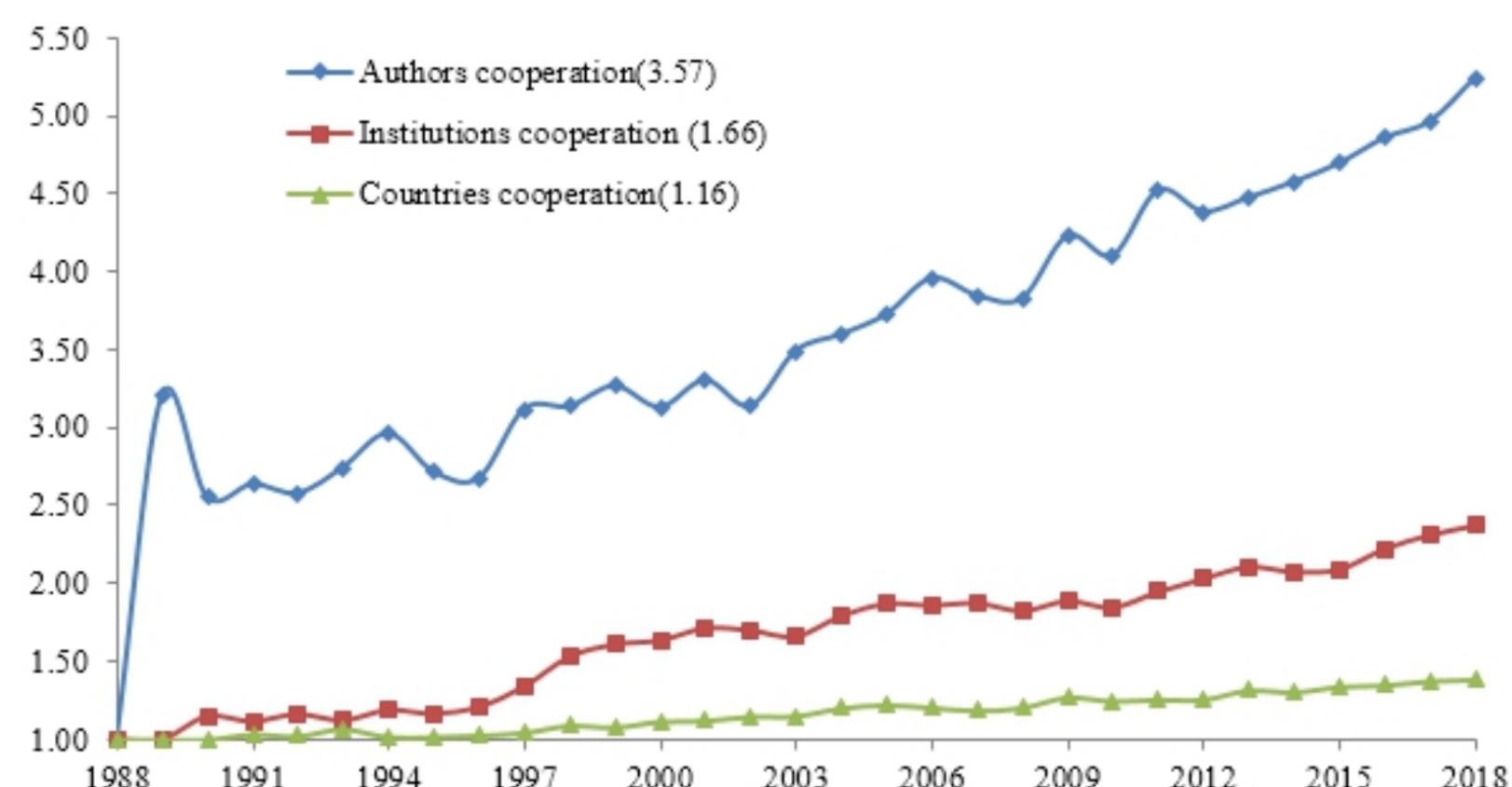



Figure 4

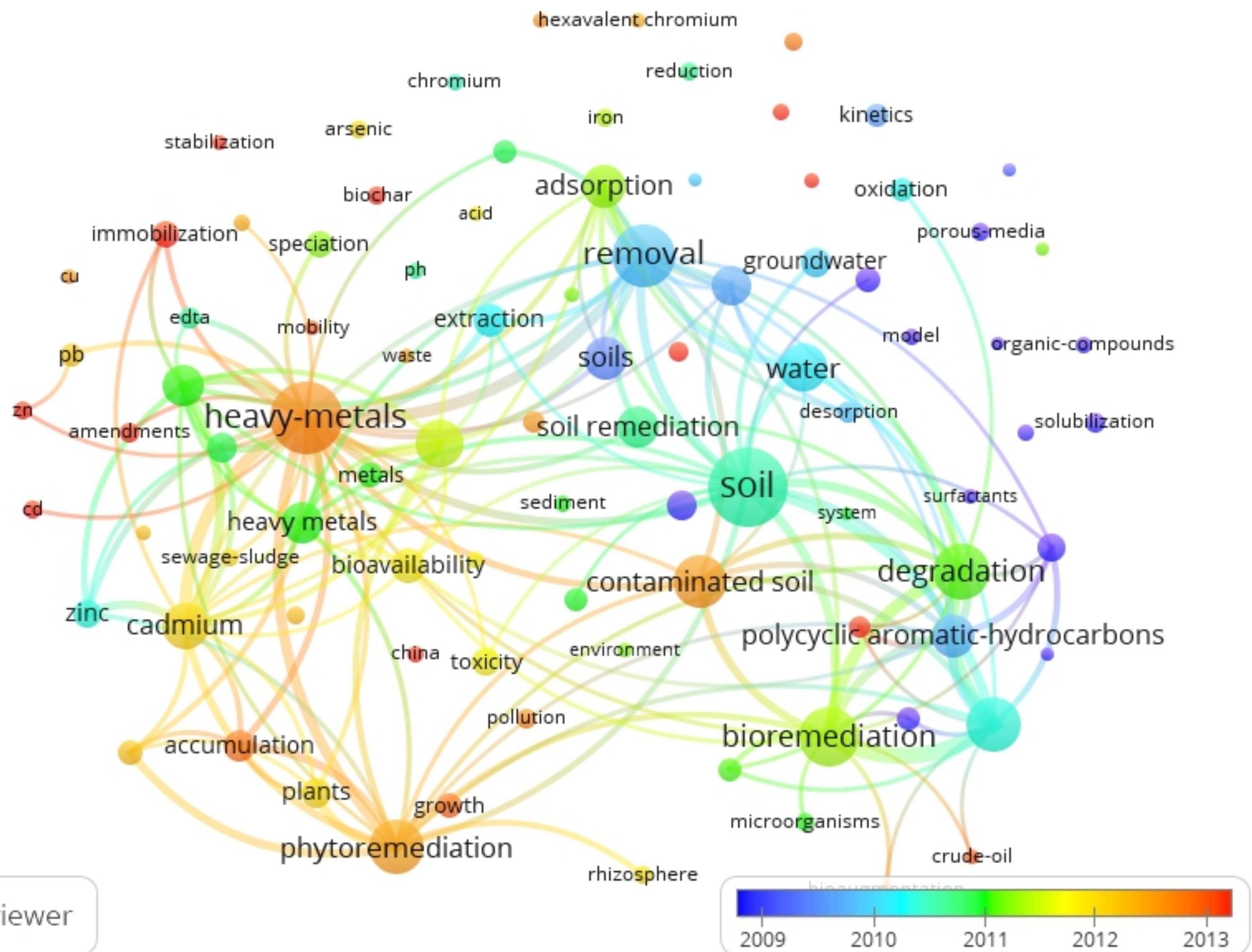



Figure 5