

1 **Serum miR-379 expression is related to the development and progression of**
2 **hypercholesterolemia in non-alcoholic fatty liver disease**

3

4 **Short title: Serum miR-379 relates hypercholesterolemia in NAFLD**

5

6 Kinya Okamoto^{1*}, Masahiko Koda¹, Toshiaki Okamoto¹, Takumi Onoyama¹, Kenichi
7 Miyoshi¹, Manabu Kishina¹, Tomomitsu Matono¹, Jun Kato¹, Shiho Tokunaga¹,
8 Takaaki Sugihara¹, Akira Hiramatsu², Hideyuki Hyogo³, Hiroshi Tobita⁴, Shuichi Sato⁴,
9 Miwa Kawanaka⁵, Yuichi Hara⁶, Keisuke Hino⁶, Kazuaki Chayama², Yoshikazu

10 Murawaki¹, Hajime Isomoto¹

11

12 ¹ Second Department of Internal Medicine, Tottori University School of Medicine,
13 Yonago, Tottori, Japan

14 ² Department of Gastroenterology and Metabolism, Graduate School of Biomedical and
15 Health Sciences, Hiroshima University, Hiroshima, Hiroshima, Japan

16 ³ Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital,
17 Hatsukaichi, Hiroshima, Japan

18 ⁴ Department of Gastroenterology and Hepatology, Shimane University School of
19 Medicine, Izumo, Shimane, Japan

20 ⁵ Department of General Internal Medicine 2, General Medical Center, Kawasaki
21 Medical School, Okayama, Okayama, Japan

22 ⁶ Department of Hepatology and Pancreatology, Kawasaki Medical School, Kurashiki,
23 Okayama, Japan

24

25 * Corresponding author

26 E-mail: kinyah.okamoto@kje.biglobe.ne.jp

27 **Abstract**

28 **Introduction:** Non-alcoholic fatty liver disease (NAFLD) has a wide spectrum,
29 eventually leading to cirrhosis and hepatic carcinogenesis. We previously reported that
30 a series of microRNAs (miRNAs) mapped in the 14q32.2 maternally imprinted gene
31 region (Dlk1-Dio3 mat) are related to NAFLD development and progression in a mouse
32 model. We examined the suitability of miR-379, a circulating Dlk1-Dio3 mat miRNA,
33 as a human NAFLD biomarker.

34 **Methods:** Eighty NAFLD patients were recruited for this study. miR-379 was selected
35 from the putative Dlk1-Dio3 mat miRNA cluster because it exhibited the greatest
36 expression difference between NAFLD and non-alcoholic steatohepatitis in our
37 preliminary study. Real-time PCR was used to examine the expression levels of
38 miR-379 and miR-16 as an internal control.

39 **Results:** Compared to normal controls, serum miR-379 expression was significantly
40 up-regulated in NAFLD patients. Receiver operating characteristic curve analysis
41 suggested that miR-379 is a suitable marker for discriminating NAFLD patients from
42 controls, with an area under the curve value of 0.72. Serum miR-379 exhibited positive
43 correlations with alkaline phosphatase, total cholesterol, and low-density-lipoprotein
44 cholesterol levels in patients with early stage NAFLD (Brunt fibrosis stage 0 to 1). The
45 correlation between serum miR-379 and cholesterol levels was lost in early stage
46 NAFLD patients treated with statins. Software-based predictions indicated that various
47 energy metabolism-related genes, including insulin-like growth factor-1 (IGF-1) and
48 IGF-1 receptor, are potential targets of miR-379.

49 **Conclusions:** Serum miR-379 exhibits high potential as a biomarker for NAFLD.
50 miR-379 appears to increase cholesterol lipotoxicity, leading to the development and

51 progression of NAFLD, via interference with the expression of target genes, including
52 those related to the IGF-1 signaling pathway. Our results could facilitate future research
53 into the pathogenesis, diagnosis, and treatment of NAFLD.

54 **Introduction**

55 Non-alcoholic fatty liver disease (NAFLD) is an important cause of chronic liver
56 injury, with an increasing incidence worldwide [1]. NAFLD, regarded as a hepatic
57 manifestation of metabolic syndrome, is defined by significant lipid deposition in
58 hepatocytes (excessive numbers of fat-laden hepatocytes are observed by light
59 microscopy), unrelated to excessive alcohol consumption [2]. The prevalence of
60 NAFLD is almost 25% worldwide and expected to increase with increasing incidence of
61 obesity and metabolic diseases such as type 2 diabetes mellitus (T2DM) and
62 hyperlipidemia [3].

63 The mechanism underlying the development of NAFLD has not been fully
64 elucidated. Currently, the multiple parallel hit theory is the most widely accepted
65 mechanism for the progression of NAFLD [4]. This theory suggests that the disease
66 process begins with the development of insulin resistance resulting from excessive
67 energy intake [5]. Insulin resistance in turn leads to hyperinsulinemia, resulting in
68 upregulated hepatic *de novo* lipogenesis and adipose tissue lipolysis. These “primary
69 hits” increase the susceptibility of hepatocytes to multiple pathogenetic factors, such as
70 upregulated expression of pro-inflammatory cytokines and eicosanoids, Fas ligand, and
71 Toll-like receptor ligands; increased reactive oxygen species (ROS) generation; and
72 altered production of adipokines [6]. Whole-body organs such as adipose tissue, the gut,
73 and gut microbiota are also involved in the pathologic process [7, 8]. Collectively, these
74 factors promote hepatocyte apoptosis through mitochondrial dysfunction [9] and an
75 endoplasmic reticulum stress reaction [10]. Such continuous liver tissue injury
76 ultimately leads to fibrosis [11].

77 The clinical status of NAFLD patients is generally classified broadly into one of

78 just two categories: non-alcoholic fatty liver (NAFL) or non-alcoholic steatohepatitis
79 (NASH) [12]. NAFL encompasses most of the NAFLD spectrum and is a benign
80 condition. NASH, on the other hand, is defined as the combination of steatosis with
81 lobular inflammation and hepatocyte ballooning; it can progress to liver fibrosis and
82 result in cirrhosis and cancerous malignancies [12]. In contrast to NAFL, NASH is a
83 life-threatening disease. Indeed, a cohort study showed that 35% of NASH patients die
84 during the 7.6-year average follow-up period, whereas no NAFL patients followed in
85 that study died during the same period [13].

86 Considering the wide disease spectrum of NAFLD, which can result in
87 significant differences in prognosis, it is likely that mechanisms that regulate one or
88 more of these multiple-hit factors exist. Some risk factors for the development of liver
89 fibrosis in NAFLD include age over 50 years, severe obesity, complications associated
90 with T2DM, increased ferritin levels, and patatin-like phospholipase domain-containing
91 3 gene polymorphisms [14, 15]. However, more-sensitive and -reliable biomarkers are
92 urgently needed to predict outcome in NAFLD patients and enable treatment to begin in
93 the early stage.

94 MicroRNAs (miRNAs) are a class of endogenous, noncoding, small RNAs that
95 regulate gene expression [16]. Mature miRNAs are introduced into RNA-induced
96 silencing complexes (RISCs) [17]. A RISC bearing a miRNA binds to a partially
97 complementary mRNA sequence and represses the translation of that mRNA. Because
98 miRNAs cause incomplete base-pair matching with mRNAs, a single miRNA can
99 inhibit the translation of hundreds to thousands of target genes [18]. As such, miRNAs
100 play an important role in many cellular processes, including metabolism, inflammation,
101 and fibrosis [19]. Accumulating evidence from both animal model and human patients

102 indicates that miRNAs contribute to the pathogenesis and progression of NAFLD. For
103 example, the expression levels of miR-29c, miR-34a, miR-155, and miR-200b in mouse
104 model liver and miR-122 and miR-34a in human liver are thought to be involved in the
105 development of NASH [20-22]. Our previous study showed that a series of miRNAs
106 mapped in the 14q32.2 maternally imprinted gene cluster region delineated by the
107 *delta-like homolog 1* and *type III iodothyronine deiodinase* genes (Dlk1-Dio3 mat) are
108 related to NAFLD development and progression in a NAFL/NASH mouse model (fatty
109 liver Shionogi [FLS] and mutated leptin gene transferred FLS *ob/ob*) [23]. Seven
110 miRNAs in the Dlk1-Dio3 mat (miR-127, -136, -376c, -379, -409-3p, -411, and -495)
111 are strongly upregulated in both FLS and FLS *ob/ob* liver tissues. In contrast to
112 previously reported NAFLD-related miRNAs, the expression of these seven miRNAs
113 was higher in NAFL model mice than NASH model mice.

114 Recent studies have clearly indicated that miRNAs are secreted into circulating
115 body fluids from various tissues [24]. A considerable amount of secreted miRNAs are
116 protected from enzymatic and physical degradation by binding to proteins or
117 lipoproteins that are then stored in exosomes [25]. These observations suggest that
118 serum miRNAs are potential biomarkers for NAFLD, as they could reflect various
119 pathologic changes in miRNA expression in the liver. Indeed, our preliminary study in
120 human NAFLD patients indicated that serum levels of the respective human homologs
121 of the candidate Dlk1-Dio3 mat miRNAs are related to NAFLD progression [23]. The
122 aim of the present study was to examine the suitability of circulating 14q32.2 mat
123 miRNA as a human NAFLD biomarker.

124 **Materials and Methods**

125 **Ethics statement**

126 This study was approved by the committee for ethics in medical experiments on
127 human subjects of the medical faculty of Tottori University (protocol no. 2374) and all
128 collaborative medical institutes: Hiroshima University Hospital, JA Hiroshima General
129 Hospital, Kawasaki University Hospital, and Shimane University Hospital. The study
130 was conducted in accordance with the declaration of Helsinki. Written informed consent
131 was obtained from each patient before blood was collected.

132

133 **Patient population and collection of blood samples**

134 Ninety patients were enrolled in this study. The patients were divided into three
135 groups, as follows: 10 patients with asymptomatic gallbladder stones as disease
136 controls, 9 NAFL patients, and 71 NASH patients. In another analysis, NAFLD patients
137 were divided into early stage ($n = 53$) and advanced-stage ($n = 26$) groups. Early stage
138 was defined as Brunt fibrosis stage 0 or 1, and the advanced stage was defined as Brunt
139 fibrosis stage 2 to 4. Patients with asymptomatic gallbladder stones without liver
140 function abnormalities and fatty liver changes by ultrasound imaging were selected as
141 controls. The clinicopathologic features of each patient group are shown in Table 1. All
142 participants were Japanese and underwent continuous clinical follow-up at the Tottori
143 University Hospital or collaborative institutes. Exclusion criteria included chronic
144 hepatitis B or C virus infection, habitual alcohol consumption over 20 g/day,
145 administration of liver steatotic drugs (such as glucocorticoids, tamoxifen, amiodarone,
146 methotrexate, or valproate), primary biliary cirrhosis, or autoimmune liver disease. All
147 patients except controls underwent liver biopsy to confirm the diagnoses of NAFLD,

148 and the histologic grade and NAFLD stage was determined according to the Brunt
149 system [26]. NAFL and NASH were defined by >5% fat-laden hepatocytes in biopsy
150 samples and at least 6 months of continuous blood test results in which alanine
151 aminotransferase (ALT) and aspartate aminotransferase (AST) remained at <2-fold of
152 the normal range or in excess, respectively. Blood sample collection for serum miRNA
153 isolation and clinical blood tests were performed at the same time and within 1 month of
154 liver biopsy. Blood samples were collected in the fasted state. For each sample, blood
155 serum was isolated by refrigerated centrifugation at 4°C and 1500 × g for 10 min and
156 then stored at –80°C until use.

157

158 Table 1. Clinicopathologic features of NAFLD patients and controls.

	Contr ol (CON)	NAF L	NAS H	p value			NAFL D early stage	NAFLD advance d stage	p value		
				NAFL and CON	NAS H and CON	NAFL and NASH			Early stage and CON	Advance d stage and CON	Early stage and advance d stage
Age	59.3 ± 16.6	44 ± 10	50 ± 16	0.080	0.162	0.533	45.4 ± 14.7	55.2 ± 14.9	0.023	0.742	0.021*
Gender M/F	4 / 6	7 / 2	47 / 24	0.170	0.161	0.710	38 / 15	16 / 11	0.071	0.460	0.261
BMI	21.9 ± 5.2	26.4 ± 2.2	29.8 ± 6.3	0.270	0.002	0.259	29.8 ± 5.5	28.4 ± 7.2	0.003	0.024*	0.628
Brunt Stage	-	0.89 ± 0.33	1.58 ± 0.87	-	-	0.041 *	-	-	-	-	-
Brunt Grade	-	1.0 ± 0	1.58 ± 0.67	-	-	0.021 *	1.3 ± 0.6	1.9 ± 0.6	-	-	0.001*

T-Bil.	0.8 ± 0.3	0.9 ± 0.3	1.0 ± 0.4	0.927	0.479	0.805	0.9 ± 0.4	1.2 ± 0.3	0.908	0.071	0.014
Alb	4.3 ± 0.4	4.6 ± 0.4	4.4 ± 0.4	0.123	0.175	0.701	4.5 ± 0.4	4.4 ± 0.4	0.378	0.880	0.470
PT (%)	96.7 ± 9.5	107. 9 ± 12.5	99.2 ± 13.2	0.415	0.187	0.938	104.0 ± 12.6	92.4 ± 11.7	0.578	0.837	0.001*
AST (U/L)	27.8 ± 18.8	40 ± 19	49 ± 19	0.360	0.005	0.404	45.5 ± 16.4	53.3 ± 23.1	0.021	0.002*	0.198
ALT (U/L)	25.5 ± 15.1	72 ± 41	77 ± 40	0.028	0.001	0.923	78.3 ± 39.1	74.5 ± 41.6	0.001	0.002*	0.910
ALP (U/L)	276.5 ± 91.7	259 ± 67	237 ± 84	0.886	0.350	0.752	240.5 ± 73.4	238.6 ± 100.2	0.434	0.451	0.995
GGT (U/L)	47.3 ± 45.6	65 ± 45	62 ± 45	0.667	0.598	0.980	63.7 ± 46.1	61.4 ± 41.6	0.542	0.676	0.976
LDH (U/L)	158.3 ± 45.6	215 ± 84	209 ± 47	0.244	0.226	0.958	216.3 ± 58.4	199.5 ± 32.6	0.144	0.391	0.362
Ch-E (U/L)	348.3 ± 66.2	351 ± 85	379 ± 82	0.997	0.511	0.634	388.9 ± 79.7	352.8 ± 84.8	0.310	0.988	0.150
BUN (mg/dL)	11.0 ± 2.4	13.8 ± 2.5	13.1 ± 2.4	0.216	0.301	0.766	13.1 ± 2.5	13.3 ± 1.9	0.296	0.276	0.955
Cr (mg/dL)	0.56 ± 0.17	0.79 ±	0.75 ±	0.054	0.092	0.638	0.76 ± 0.14	0.74 ± 0.16	0.068	0.109	0.920
UA (mg/dL)	5.7 ± 1.2	6.0 ± 1.1	6.3 ± 1.4	0.973	0.792	0.883	6.3 ± 1.4	6.2 ± 1.4	0.805	0.867	0.985
Ferritin	42.4 ± 33.0	142. 1 ±	210.6 ±	0.723	0.338	0.477	190.6 ±	229.1 ± 186.6	0.439	0.287	0.614
FBS (mg/dL)	93.7 ± 9.7	104. 0 ±	117.6 ±	0.849	0.204	0.621	117.7 ± 47.8	113.9 ± 33.8	0.220	0.394	0.923
HgbA1c %	6.3 ± 1.0	5.9 ± 0.6	6.3 ± 1.5	0.911	0.996	0.658	6.3 ± 1.5	6.2 ± 1.4	0.995	0.999	0.938

IRI (μ U/mL)		17.1 \pm 19.6	18.3 \pm 13.5	-	-	0.820	18.8 \pm 15.0	17.2 \pm 12.8	-	-	0,897
HOMA-IR		4.6 \pm 5.7	5.3 \pm 6.7	-	-	0.767	5.5 \pm 7.4	4.9 \pm 4.5	-	-	0.921
T-Chol (mg/dL)	202 \pm 44	199 \pm 47	204 \pm 35	0.978	0.988	0.913	206.6 \pm 36.7	197.5 \pm 36.3	0.936	0.940	0.936
LDL-C (mg/dL)	134.1 \pm 37.4	130. \pm 3 43.9	131.3 \pm 33.2	0.974	0.978	0.996	135.1 \pm 33.9	122.5 \pm 34.9	0.997	0.709	0.288
HDL-C (mg/dL)	67.2 \pm 34.3	50.9 \pm 6.9	49.4 \pm 9.0	0.033 * *	0.004 * *	0.930	49.1 \pm 7.9	50.6 \pm 10.6	0.003 * *	0.012* 0.629	0.853 0.255
TG (mg/dL)	104.3 \pm 64.8	112. \pm 50.9	149.9 \pm 69.0	0.967	0.139	0.255	154.5 \pm 70.6	128.4 \pm 60.7	0.104	0.629	0.255

159 Early stage NAFLD was defined as Brunt fibrosis stage 0 or 1, and advanced stage was
160 defined as Brunt fibrosis stage 2 to 4. *: p < 0.05 in analysis of variance (ANOVA).
161 T-Bil: total bilirubin, Alb: albumin, AST: alanine aminotransferase, ALT: aspartate
162 aminotransferase, ALP: alkaline phosphatase, GGT: gamma-glutamyl transferase, LDH:
163 lactate dehydrogenase, Ch-E: choline esterase, BUN: blood urea nitrogen, Cr: creatinine,
164 UA: uric acid, T-Chol: total cholesterol, LDL-C: low-density-lipoprotein cholesterol,
165 HDL-C: high-density-lipoprotein cholesterol, TG: triacylglycerol, FBS: fasting blood
166 sugar, HgbA1c: hemoglobin A1c, IRI: immunoreactive insulin, HOMA IR: homeostasis
167 model assessment of insulin resistance.

168

169 miRNA expression analysis with human serum

170 miR-379 was selected from the putative Dlk1-Dio3 mat miRNA cluster because
171 it exhibited the greatest difference in expression between NAFL and NASH in our
172 preliminary study [23]. We selected miR-16 as an endogenous control. miR-16 is one of

173 the most commonly used reference miRNAs in serum miRNA expression analyses [27,
174 28] . To the best of our knowledge, no previous reports have indicated a relationship
175 between liver disease and miR-16. A miRNeasy serum/plasma kit (Qiagen, Venlo,
176 Nederland) was used to extract miRNAs from each 200- μ L serum sample according to
177 the manufacturer's instructions. Real-time polymerase chain reaction (PCR) was used to
178 examine the expression levels of miR-379 and miR-16, and data were analyzed using
179 the $\Delta\Delta CT$ method of relative quantification. Applied Biosystems TaqMan® MicroRNA
180 Assays (Applied Biosystems, Waltham, MA, USA) and an ABI7900HT system
181 (Applied Biosystems) were used for quantitative RT-PCR amplification of serum
182 miRNAs. The hsa-miR-379 and hsa-miR-16 primer sequences were
183 UGGUAGACUAUGGAACGU and UAGCAGCACGUAAAUAUUGGCG,
184 respectively.

185

186 **Predicting miRNA targets**

187 Putative miR-379 targets were predicted using the web-driven software DIANA
188 microT-CDS 5.0 (<http://diana.cslab.ece.ntua.gr/>). The threshold for the target prediction
189 score in DIANA microT-CDS was set to 0.7. Database for Annotation, Visualization,
190 and Integrated Discovery (DAVID) 6.8 (<http://david.abcc.ncifcrf.gov/>) was used for
191 gene ontology (GO) annotation, and the Kyoto Encyclopedia of Genes and Genomes
192 (KEGG) was used for pathway enrichment analysis.

193

194 **Statistical analysis**

195 Statistical analysis was performed using JMP 11.2.1 software (SAS Institute
196 Inc., Cary, NC, USA). Value data are expressed as the mean \pm standard deviation. The

197 statistical significance of differences between groups was determined using the
198 Student's *t* test or ANOVA, followed by Dunnett's test for multiple comparisons.
199 Receiver operating characteristic (ROC) curve analysis was performed to assess
200 NAFLD, NAFL, and NASH diagnostic accuracy. Linear regression analysis was used to
201 examine correlations between miRNA levels and clinicopathologic parameters. Fisher's
202 exact test and the chi-square test were selected depending on the sample size and used
203 to determine distribution differences of categorical variable. Differences were
204 considered statistically significant at a p value < 0.05.

205

206

207 **Results**

208 **Serum miR-379 expression was up-regulated in NAFLD patients**

209 One NASH patient was excluded from this study due to low RT-PCR signal,
210 even after 60 PCR cycles. Compared to controls, serum miR-379 expression was
211 significantly up-regulated in NAFLD patients (Fig. 1). In a subgroup analysis of NAFL
212 and NASH patients, serum miR-379 expression was significantly higher in NAFL
213 patients than normal controls (Fig. 1). We also compared early stage NAFLD (Brunt
214 fibrosis stage 0 to 1) and advanced-stage NAFLD (Brunt fibrosis stage 2 to 4) patients
215 with controls. Patients with early stage NAFLD exhibited significantly higher miR-379
216 expression than controls (Fig. 1). Expression of miR-379 in NASH patients was also
217 higher than in controls, but the difference was not significant ($p = 0.061$) (Fig. 1). There
218 was no significant difference in miR-379 expression between NAFL and NASH
219 patients or between those with early or advanced-stage NAFLD.

220

221 Fig. 1. Relative expression of serum miR-379 in NAFLD patients.

222 Quantitative real-time PCR (qRT-PCR) was used to examine miRNA levels. All
223 qRT-PCR data were normalized to that for serum miR-16, and fold-change was
224 calculated relative to data from normal controls. * $p < 0.05$.

225

226 **Serum miR-379 is a potential NAFLD diagnostic marker**

227 ROC curve analysis revealed that miR-379 is a potential marker for
228 discriminating NAFLD patients from controls (area under the ROC curve [AUROC]:
229 0.72) (Fig. 2). AUROC values for discriminating NAFL, NASH, and early and

230 advanced-stage NAFLD patients from controls were 0.76, 0.72, 0.74, and 0.67,
231 respectively (Fig. 2).

232

233 Fig. 2. Receiver operating characteristic (ROC) curve analysis.

234

235 **Positive correlations were observed between serum miR-379 and alkaline**
236 **phosphatase (ALP) or cholesterol levels in patients with NAFL or early stage**
237 **NAFLD**

238 We analyzed the correlations between clinicopathologic parameters and serum
239 miR-379 levels in NAFLD patients. No significant correlation was identified between
240 serum miR-379 expression in NAFLD patients and any of the parameters examined
241 (Supplemental Fig. 1). However, positive correlations were observed between serum
242 miR-379 expression and ALP, total cholesterol, and low-density-lipoprotein cholesterol
243 (LDL-C) levels in patients with early stage NAFLD (Fig. 3). In contrast, there was no
244 correlation between these parameters and serum miR-379 levels in controls or patients
245 with advanced-stage NAFLD (Fig. 3, Supplemental Fig. 3).

246

247 Fig. 3. Correlation between miR-379 and ALP, T-Chol, and LDL-C levels.

248 Left, middle, and right columns present the results for the normal, early stage NAFLD,
249 and advanced-stage NAFLD groups, respectively. *p < 0.05.

250

251 **Statin treatment weakened the correlation between miR-379 and cholesterol level**

252 Nine of 51 patients with early stage NAFLD were undergoing treatment for
253 hypercholesterolemia with hydroxymethyl glutaryl coenzyme A reductase (HMG

254 CoA-reductase) inhibitors; commonly called statins. Among statin-treated and
255 non-treated patients with early stage NAFLD, serum levels of total cholesterol, LDL-C,
256 and triglycerides were similar (Fig. 4). miR-379 expression levels were higher in the
257 statin-treated group than the non-treated group, but the difference was not significant
258 (5.1 ± 4.4 and 3.2 ± 4.8 log2 folds, respectively. $p = 0.29$). Linear regression analysis
259 showed the non-treated group exhibited a significant positive correlation between total
260 cholesterol and serum miR-379 expression. This trend was also observed in the
261 statin-treated group, but the correlation was not significant ($p = 0.10$) (Fig. 4).

262

263 Fig. 4. Statin treatment and serum miR-379 expression, and correlation with cholesterol
264 levels.

265 * $p < 0.05$.

266

267 **Software-based predictions of miR-379 target genes**

268 We predicted potential target genes of miR-379 using web-based software.
269 Based on the selection criteria, 1423 human genes were identified as candidates. The
270 candidate genes were classified according to GO annotation in *Homo sapiens* (Fig. 5),
271 and 12 GO terms were significantly enriched (Table 2).

272

273 Fig. 5. Simple aggregation of Gene Ontology (GO) terms among putative miR-379
274 target genes.

275 The predicted miR-379 target gene dataset were fed into DAVID, version 6.8. Pie chart
276 slices represent the number of genes associated with each GO term.

277

278 Table 2. GO-term enrichment analysis of predicted miR-379 target genes.

Go Term	Gen e Cou nt	%	Fold enrichmen t	p value
Positive regulation of macromolecule biosynthetic process	176	12.4	1.5	> 0.001*
Positive regulation of RNA metabolic process	156	11.0	1.5	> 0.001*
Positive regulation of gene expression	178	12.5	1.4	0.001*
Positive regulation of nucleobase-containing compound metabolic process	175	12.3	1.4	0.001*
Positive regulation of cellular biosynthetic process	181	12.7	1.4	0.002*
Positive regulation of transcription, DNA-templated	148	10.4	1.5	0.002*
Regulation of cellular macromolecule biosynthetic process	365	25.7	1.3	0.002*
Positive regulation of RNA biosynthetic process	149	10.5	1.5	0.002*
Regulation of macromolecule biosynthetic process	370	26.0	1.2	0.006*
Regulation of gene expression	387	27.2	1.2	0.010*

Cellular protein modification process	342	24.0	1.2	0.034*
Protein modification process	342	24.0	1.2	0.034*

279 Percentages indicate the number of predicted target genes associated with a GO term
280 category compared to all predicted genes examined in the GO-term analysis.
281 Fold-enrichment shows the abundance ratios of predicted miR-379 target genes and
282 DAVID pre-built human genome backgrounds among GO terms. Only statistically
283 significant results ($p < 0.05$) are displayed.

284

285 Next, we explored the KEGG pathway database to determine specific gene
286 functions. Ontology annotation via KEGG pathway mapping showed that biological
287 functions have been identified for 32.8% of the candidate genes (467 of 1423 genes).

288 Function-labeled miR-379 candidate target genes were primarily enriched in clusters
289 associated with nutrition and energy regulation (FOXO and mTOR signaling pathways),
290 cancer (melanoma, prostate cancer, p53 signaling, Hippo signaling, and transcriptional
291 misregulation in cancer), and multi-functional cellular mechanisms or signaling
292 pathways (cGMP-PKG signaling, focal adhesion, Hippo signaling pathway,
293 pluripotency regulation in stem cells, TGF-beta signaling, and ubiquitin-mediated
294 proteolysis) (Table 3).

295

296 Table 3. Enriched KEGG pathways among putative miR-379 target genes.

KEGG pathway	Gene count	%	Fold enrichment	p value
FOXO signaling pathway	21	1.5	2.3	> 0.001*

TGF-beta signaling pathway	15	1.1	2.6	0.001*
Ubiquitin mediated proteolysis	20	1.4	2.2	0.002*
Hippo signaling pathway	19	1.3	1.8	0.013*
Prostate cancer	13	0.9	2.2	0.015*
Transcriptional misregulation in cancer	20	1.4	1.9	0.018*
Signaling pathways regulating pluripotency of stem cells	17	1.2	2.3	0.027*
p53 signaling pathway	10	0.7	1.8	0.036*
cGMP-PKG signaling pathway	18	1.3	1.6	0.038*
Focal adhesion	21	1.5	2.1	0.038*
mTOR signaling pathway	9	0.6	1.7	0.040*
Melanoma	10	0.7	2.2	0.048*

297 Percentages indicate the number of predicted miR-379 target genes associated with a
298 KEGG pathway compared to all predicted genes explored in the KEGG pathway
299 analysis. Fold-enrichment shows the abundance ratios of predicted miR-379 target
300 genes and DAVID pre-built human genome backgrounds among GO terms. Only
301 statistically significant results ($p < 0.05$) are displayed.

302

303 Finally, to identify probable miR-379 target genes related to the pathology of
304 NAFLD, we conducted a keyword search of the U.S. National Library of Medicine
305 database PubMed (<https://www.ncbi.nlm.nih.gov/pubmed>) using the terms “KEGG
306 annotated putative target gene” and “NAFLD” or “NASH”. A total of 27 predicted
307 genes were associated with NAFLD development or progression, including

308 multi-functional cellular mechanisms or signaling pathways (*HDAC2*), fibrosis and
309 inflammation (*CAT*, *CTGF*, *IL10*, *PDGFA*, *PDGFRA*, *SMAD4*, *TGFBR1*, and *THBS1*),
310 cell survival and proliferation (*Bcl2*, *CCNB1*, *HGF*, *PMAIP1*, *PTEN*, and *YAPI*), and
311 energy management, including gluconeogenesis and lipogenesis (*CREB1*, *EIF4E*,
312 *FOXO1*, *INSR*, *IGF1*, *IGF1R*, *ITPR2*, *PRKAA1* and 2, *RICTOR*, *SOCS1*, and *TCF7L2*)
313 (Table 4) [29-54].

314

315 Table 4. Keyword search of the U.S. National Library of Medicine database PubMed to
316 identify KEGG annotated miR-379 putative target genes associated with NAFLD or
317 NASH.

Gene Code	Protein name	Reference
Bcl2	<i>B-cell lymphoma 2</i>	Panasiuk et al. 2006
CAT	<i>Catalase</i>	Kumar et al. 2013
CCNB1	<i>Cyclin B1</i>	Gentric et al. 2015
CREB1	<i>cAMP responsive element binding protein 1</i>	Oh et al. 2013
CTGF	<i>Connective tissue growth factor</i>	Colak et al. 2012
EIF4E	<i>Eukaryotic translation initiation factor 4E</i>	Wang et al. 2014
FOXO1	<i>Forkhead box o1</i>	Pan et al. 2017
HDAC2	<i>Histone deacetylase 2</i>	Kolodziejczyk et al. 2019
HGF	<i>Hepatocyte growth factor</i>	Kosone et al. 2007

INSR	<i>Insulin receptor</i>	Wu et al. 2017
IGF1	<i>Insulin like growth factor 1</i>	Adamek et al. 2018
IGF1R	<i>Insulin like growth factor 1 receptor</i>	Go et al. 2014
IL10	<i>Interleukin 10</i>	Cintra et al. 2008
ITPR2	<i>Inositol 1, 4, 5-trisphosphate receptor type 2</i>	Khamphaya et al. 2018
PDGFA	<i>Platelet derived growth factor subunit A</i>	Hardy et al. 2017
PDGFRA	<i>Platelet derived growth factor receptor A</i>	Abderrahmani et al.
PMAIP1	<i>Phorbol 12-myristate 13-acetate induced protein 1</i>	Kung et al. 2016
PRKAA1	<i>5' AMP-activated protein kinase catalytic subunit alpha 1</i>	Garcia et al. 2019
PRKAA2	<i>5' AMP-activated protein kinase catalytic subunit alpha 2</i>	Garcia et al. 2019
PTEN	<i>Phosphatase and tensin homolog</i>	Matsuda et al. 2013
RICTOR	<i>Rapamycin-insensitive companion of mammalian target of rapamycin</i>	Sydor et al. 2017
SMAD4	<i>Small worm phenotype and mothers against decapentaplegic 4</i>	Qin et al. 2018
SOCS1	<i>Suppressor of cytokine signaling 1</i>	Wang et al. 2017
TCF7L2	<i>Transcription factor 7-like 2</i>	Musso et al. 2009
TGFBR1	<i>Transforming growth factor beta receptor 1</i>	Matsubara et al. 2012
THBS1	<i>Thrombospondin 1</i>	Li et al. 2017
YAP1	<i>yes-associated protein 1</i>	Chen et al. 2018

318

319

320

321 **Discussion**

322 The present study revealed significantly higher serum levels of miR-379 in
323 NAFLD patients compared to controls. Our previous study indicated that miR-379
324 expression in liver tissues of an NAFLD mouse model is strongly upregulated ($>4 \log_2$
325 compared to the normal control group) [23]. miR-379 secretion from liver tissue,
326 probably via exosome particles rich in miR-379, appears to be related, at least in part, to
327 the high circulating level observed in NAFLD patients.

328 Relatively little is known regarding the mechanism regulating miR-379
329 expression. miR-379 has been mapped to the miRNA cluster in the Dlk1-Dio3 mat
330 region. Major regulators of Dlk1-Dio3 locus expression include methylated regulatory
331 regions such as the germline-derived intergenic differentially methylated region and
332 somatic MEG3-differentially methylated region [55, 56]. Moreover, CpG islands that
333 are embedded in or near miRNA-coding regions also regulate the expression of
334 Dlk1-Dio3 mat miRNA [57]. Dai et al. reported that miR-379 expression is directly
335 regulated by DNA methylation [58]. In addition, histone acetylation functions
336 synergistically with DNA methylation to regulate the Dlk1-Dio3 locus [57].

337 With respect to non-DNA methylation regulation, Guia and colleagues reported
338 that the miRNA cluster miR-379/410 is a direct transcriptional target of the
339 glucocorticoid receptor, which promotes insulin resistance and systemic dyslipidemia
340 [59]. Guia et al. also showed that miR-379 is upregulated in liver tissue of obese
341 subjects and that hepatic miR-379 expression in patients with obesity is correlated with
342 both serum cortisol and triacylglycerol (TG) levels [59]. However, in our present study,
343 TG levels in NAFLD patients did not differ significantly from those of controls (Table

344 1), and serum miR-379 expression was not correlated with TG level ($p = 0.738$,
345 Supplemental Fig. 1). This discrepancy may be related to differences between obese
346 patients and NAFLD patients whose diagnosis was confirmed by liver biopsy. The
347 mechanism of serum miRNA expression may also be related to this discrepancy. For
348 example, sorting and selection occur during incorporation of cytosolic miRNAs into
349 exosomes [60]. Because the level of circulating miRNAs is the sum total of miRNAs
350 secreted from tissues/organs throughout the body, other metabolism-related organs may
351 affect the level of circulating miRNA. Chartoumpakis et al. reported that miR-379 is
352 overexpressed in white adipose tissue in an obese mouse model [61].

353 ROC curve analyses showed that miR-379 provides fair diagnostic accuracy for
354 NAFLD. The AUROC of serum miR-379 for NAFLD diagnosis was >0.7 and similar to
355 other single serologic markers for non-invasive detection of NAFLD, such as tumor
356 necrosis factor-alpha, interleukin-6, and ferritin [62]. Most non-invasive NAFLD
357 markers exhibit higher values and diagnostic accuracy in patients with liver fibrosis and
358 cirrhosis [63]. In contrast to the majority of NAFLD diagnostic markers, the serum
359 miR-379 level was significantly increased relative to NAFL, but there was no difference
360 between NAFL and NASH. This distinctive feature of serum miR-379 may confer an
361 advantage for detecting NAFLD in the early stage. For instance, serum miR-379 is a
362 candidate factor for use in NAFLD diagnosis algorithms combining multiple
363 biomarkers as a means of increasing sensitivity for early stage diagnosis [64].

364 Our present study showed that the serum miR-379 level is positively correlated
365 with ALP in early stage NAFLD. Serum ALP is the traditional marker of cholestasis.
366 However, the other cholestasis markers, such as bilirubin and gamma-glutamyl
367 transferase, were not significantly correlated with miR-379 (Supplemental Fig. 2). ALP

368 is a plasma membrane–bound enzyme that catalyzes the hydrolysis of phosphate esters
369 [65]. Though found in most body tissues, ALP is particularly abundant in the liver,
370 bone, kidneys, and intestinal mucosa, with liver and bone serving as the predominate
371 organs supplying ALP to circulating body fluids [65]. Chronic liver diseases, including
372 NAFLD, increase serum ALP levels [66, 67]. Moreover, previous reports indicated that
373 the serum ALP level is an independent marker of NAFLD development and
374 progression. Pantsari et al. showed that a subset of NAFLD patients (elderly females)
375 exhibit isolated elevation in ALP rather than aminotransferases [68]. Kocabay et al.
376 reported that serum levels of ALP, but not gamma-glutamyl transferase, are increased in
377 NAFLD patients with early fibrosis stage (stage 1 to 2) [69]. ALP is richly expressed in
378 the canalicular membrane side of hepatocytes, and previous studies suggested that ALP
379 relates the transport of bile acid, which plays a major role in cholesterol metabolism and
380 excretion [70]. However, details regarding the physiologic functions of ALP are
381 unclear. miR-379 may be related to NAFLD development and progression by directly or
382 indirectly modulating ALP expression.

383 Our present study also showed that the serum miR-379 level is positively
384 correlated with serum cholesterol in early stage NAFLD. The contribution of
385 hypercholesterolemia to the development of NAFLD has not been fully elucidated;
386 however, previous studies showed that hepatic cholesterol synthesis and circulating total
387 cholesterol and LDL are increased in NAFLD [71]. Disruption of hepatic cholesterol
388 homeostasis and free cholesterol (FC) accumulation in liver tissue is related to the
389 pathogenesis of NAFLD [72, 73]. Some studies have shown that hepatic cholesterol
390 synthesis is up-regulated in NAFL and NASH patients due to increased activity of a
391 major regulator of cholesterol synthesis, sterol regulatory element–binding protein 2 and

392 its downstream effector HMG CoA-reductase, which catalyzes a rate-limiting step in
393 cholesterol synthesis [74-76]. Interestingly, Min et al. also reported that up-regulation of
394 cholesterol synthesis was not observed in control obese subjects [74].

395 Regarding other cholesterol-related metabolic functions in the liver of NAFLD
396 patients, cholesterol de-esterification is increased, and cholesterol catabolism to bile
397 acid and cholesterol efflux via the bile duct are attenuated [74]. These NAFLD-specific
398 changes in cholesterol metabolism are believed to increase FC levels in liver tissues. FC
399 accumulation in hepatocytes induces mitochondrial dysfunction, which results in
400 increased production of ROS and leads to the unfolded protein response in the
401 endoplasmic reticulum, leading to localized stress and apoptosis [73]. Mari et al. also
402 reported that FC loading (but not that of fatty acids or triglycerides) into hepatocyte
403 mitochondria membranes sensitizes the hepatocyte to pro-inflammatory cytokines (e.g.,
404 tumor necrosis factor-alpha and Fas) in mouse models, resulting in steatohepatitis [77].
405 Moreover, FC accumulation in non-parenchymal cells in liver tissues such as Kupffer
406 cells and stellate cells promotes activation of these cells [78, 79]. The activated Kupffer
407 cells secrete pro-inflammatory cytokines such as interleukin-1 β and tumor necrosis
408 factor-alpha, and activated stellate cells differentiate into myofibroblasts, which exhibit
409 a high ability to produce extracellular matrix and fibrogenic cytokines, such as
410 transforming growth factor- β [78, 79]. It has been hypothesized that miR-379 promotes
411 the development and progression of NAFLD as a result of continuous
412 over-nutrition—manifested primarily as obesity—by increasing the lipotoxicity of
413 cholesterol. Cirrhosis and hepatocellular carcinoma are the most common liver-related
414 causes of morbidity associated with NAFLD [80]. However, cardiovascular disease is
415 the most common cause of death in NAFLD patients without cirrhosis [13]. Therefore,

416 some reviewers have recommended giving priority to the prevention of cardiovascular
417 or renal diseases over liver-specific treatments in patients with non-aggressive NAFLD
418 [81].

419 miR-379 has also been associated with the risk of cardiovascular disease in early
420 stage NAFLD via up-regulation of the serum cholesterol level, which plays an
421 important role in atherosclerosis development. In the present study, however, no
422 significant correlation between serum miR-379 and cholesterol levels was observed in
423 control subjects and NAFLD patients with advanced fibrosis (Brunt stage 2 to 4). This
424 suggests that such a correlation is pertinent only under limited conditions, such as early
425 stage NAFLD-specific pathophysiologic and nutritional states. The serum miR-379
426 level in controls was significantly lower than that in patients with early stage NAFLD.
427 Normal levels of miR-379 may be insufficient to affect cholesterol metabolism. With
428 respect to advanced-stage NAFLD, it is known that serum cholesterol levels decline
429 with progression of liver fibrosis, independent of the etiology of chronic liver disease
430 [82]. The effect of miR-379 on cholesterol metabolism may be attenuated by decreased
431 hepatic parenchymal function.

432 The present study also demonstrated that the use of statins to treat
433 hypercholesterolemia in NAFLD patients weakens the relationship between serum
434 miR-379 and cholesterol levels. Statins target hepatocytes and inhibit HMG-CoA
435 reductase, which catalyzes the rate-limiting step in the cholesterol biosynthesis
436 pathway, known as the mevalonate pathway [83]. HMG-CoA reductase converts
437 HMG-CoA into mevalonic acid, a cholesterol precursor. Stains have a higher binding
438 affinity for HMG-CoA reductase than HMG-CoA and thus block access to the active
439 site by the substrate [83]. Previous studies indicated that statins improve hepatic

440 steatosis and reduce hepatic inflammation and fibrosis in NAFLD patients [84, 85].
441 Moreover, long-term observations of NAFLD patients indicated that continuous statin
442 treatment reduces rates of liver-related death and liver transplantation [86]. Statins may
443 attenuate the effect of miR-379 on cholesterol biosynthesis, resulting in reduced
444 cholesterol lipotoxicity in NAFLD.

445 GO term annotation analyses showed enrichment of cellular biosynthesis and
446 metabolism-related genes among predicted miR-379 targets. Aberrations in
447 biosynthesis and metabolism play important roles in metabolic disorders such as
448 NAFLD. miR-379 appears to affect the development and progression of NAFLD by
449 interfering with these target genes.

450 KEGG pathway mapping of prospective miR-379 target genes extracted
451 biological functions such as nutrition and energy regulation, the down-regulation of
452 which leads to the development of NAFLD. Searches of PubMed combining keywords
453 with the selected putative target genes identified in the KEGG pathway analysis and
454 NAFLD identified a number of metabolism-, inflammation-, and fibrosis-related genes.
455 Among the selected putative target genes, *IGF1* and *IGF1R* were identified as targets of
456 miR-379 interference in previous studies [87, 88]. IGF-1 is an insulin-like anabolic
457 hormone primarily secreted by hepatocytes, and circulating IGF-1 levels reflect hepatic
458 IGF-1 expression [89]. Previous studies reported that adults with growth hormone
459 deficiency in which hepatic IGF-1 production is impaired exhibit an increased
460 prevalence of NASH; IGF-1 substitution ameliorated NAFLD in a mouse model [90,
461 91]. In NAFLD patients without growth hormone deficiency, serum IGF-1 levels are
462 also significantly reduced [89, 92].

463 The mechanism by which IGF-1 and its signaling pathways protect against

464 NAFLD have been found to involve a variety of biological functions, such as improving
465 insulin sensitivity, decreasing ROS production, and inducing senescence of hepatic
466 stellate cells [93-95]. With respect to lipid metabolism, it has been reported that IGF-1
467 accelerates lipid oxidation and lipolysis [93]. Moreover, several previous studies
468 revealed that serum IGF-1 is inversely correlated with serum levels of total cholesterol
469 and LDL-C [96]. *IGF1* appears to be one of the most significant miR-379 target genes
470 with regard to promoting the development and progression of NAFLD via the
471 enhancement of cholesterol lipotoxicity. Among other keyword-selected putative target
472 genes, B-cell lymphoma 2 (*BCL2*), catalase (*CAT*), and cAMP responsive element
473 binding protein 1 (*CREB1*) are reportedly down-regulated in the liver in NAFLD [30,
474 97, 98]. *BCL2* and *CAT* are major anti-apoptosis genes that function by protecting
475 against mitochondrial outer membrane permeabilization and detoxifying ROS,
476 respectively [30, 97]. Down-regulation of *BCL2* and *CAT* expression in liver tissue
477 drives hepatocyte apoptosis, which is an important pathologic event in the development
478 and progression of NAFLD. *CREB1* is a transcription factor that regulates energy
479 balance by suppressing hepatic fatty acid generation and accumulation via
480 downregulation of hepatic-specific peroxisome proliferator activated receptor- γ and
481 fatty acid transporter CD36 expression [98]. miR-379 may affect the development and
482 progression of NAFLD by interfering with the expression of these target genes, which is
483 reportedly down-regulated in NAFLD.

484 A relationship with NAFLD has also been reported for other miR-379 target
485 genes. For example, 5'-AMP-activated protein kinase catalytic subunit alpha 2
486 (*PRKAA2*) is the catalytic subunit alpha 2 of AMPK, a key sensor of energy status in
487 mammalian cells. In the liver, AMPK phosphorylates and inactivates both

488 acetyl-coenzyme A carboxylase and HMG-CoA reductase [99]. Acetyl-coenzyme A
489 carboxylase regulates the biosynthesis of malonyl-CoA, which is the initial committed
490 intermediate in fatty acid biosynthesis. Malonyl-CoA can inhibit carnitine palmitoyl
491 transferase 1, which controls mitochondrial fatty acid oxidation [100]. Therefore,
492 AMPK downregulation increases fatty acid and cholesterol biosynthesis and inhibits
493 fatty acid oxidation, resulting in hepatic lipid accumulation. Although AMPK appears
494 to be related to NAFLD development, details regarding levels of AMPK in hepatocytes
495 are controversial [101].

496 Previous studies reported the relationship between miR-379 and various
497 diseases. The majority of these studies suggest that miR-379 plays tumor suppressive
498 role in many types of carcinomas, including nasopharyngeal carcinoma, cervical cancer,
499 lung cancer, gastric cancer, hepatocellular carcinoma, bladder cancer, and osteosarcoma
500 [102-107]. With regard to metabolic disorders as described above, de Guia et al.
501 revealed a relationship between miR-379 and lipid homeostasis dysregulation [59].
502 Additionally, patients with a congenital disease known as maternal uniparental disomy
503 for chromosome 14, which causes overexpression of miR-379 of the Dlk1-Dio3 mat
504 miRNA cluster, exhibit characteristic weight gain in early childhood that results in
505 truncal obesity [108].

506 Our study had some limitations associated with sample size and study design.
507 We used software programs to predict target genes of the candidate miRNAs. Although
508 this method is commonly used, it carries a risk of missing some real targets because the
509 software is designed to assess the relative strength of partial sequence complementarity
510 between mRNA and miRNA. Ontology selection was used to select putative targets that
511 might be relevant to cellular functions. However, ontology selection can only identify

512 proteins for which the function has been identified. Notably, our understanding of the
513 detailed mechanisms that promote the development and progression of NAFLD to
514 NASH is still developing, but new insights are being obtained regularly.

515 Moreover, we did not confirm whether any NAFLD candidate miRNA actually
516 interfered with any of the predicted target genes in vivo (mouse model liver) or in vitro,
517 such as direct binding experiments. Complex intracellular regulatory networks influence
518 the tissue-specific function of miRNAs [109]. Therefore, further studies are needed to
519 assess whether the predicted targets are actual targets of these miRNAs.

520 Concerning the correlation between serum ALP and miR-379, we could not
521 definitively conclude that the correlation reflects only liver tissue pathologic changes.
522 Bone is another major ALP-secreting organ, and the serum level of the bone isozyme of
523 ALP is elevated in children, adolescents, and elderly people due to bone tissue turnover
524 [110, 111].

525 Regarding our study participants, all NAFLD patients and control subjects were
526 adults (age ranging from 20 to 76 years), and there was no significant relationship
527 between serum ALP level and age ($R^2 = 0.0286$; $p = 0.115$). Additionally, no pregnant
528 subjects were included. The number of patients in this study was small, at less than 100.
529 Consequently, the statistical power of the human serum data was relatively limited.

530 Our findings from NAFLD mouse models could not be confirmed by miRNA
531 expression profiling in human liver tissue. A parallel examination of microarray
532 analyses of human liver samples would have enhanced the confidence of NAFLD
533 candidate miRNAs. However, we could not conduct miRNA expression profiling in
534 human liver tissues, primarily because we could not obtain liver tissue specimens from
535 controls due to ethical considerations. Larger human population-based studies are

536 needed to confirm and extend our findings.

537 In conclusion, the serum level of miR-379, a member of Dlk1-Dio3 mat miRNA
538 cluster, exhibits high potential as a biomarker for NAFLD. miR-379 also appears to
539 increase cholesterol lipotoxicity, which promotes the development and progression of
540 NAFLD by interfering with the expression of target genes, including those of the IGF-1
541 signaling pathway. To confidently identify more associations between highly complex
542 and interactive miRNAs with NAFLD, future longitudinal studies with greater sample
543 sizes will be necessary.

544

545

546 Supporting Information

547 **Supplemental Fig. 1.** Linear regression analysis of relationships between serum
548 miR-379 and clinical features of NAFLD patients. Normalized relative to serum
549 miR-16; miR-379 values represent fold-difference relative to the normal control.

550 **Supplemental Fig. 2.** Linear regression analysis of the relationships between serum
551 miR-379 and clinical features of early stage NAFLD patients (Brunt fibrosis stage 0 to
552 1). Normalized relative to serum miR-16; miR-379 values represent fold-difference
553 relative to the normal control.

554 **Supplemental Fig. 3.** Linear regression analysis of the relationships between serum
555 miR-379 and clinical features of advanced-stage NAFLD patients (Brunt fibrosis stage
556 2 to 4). Normalized relative to serum miR-16; miR-379 values represent fold-difference
557 relative to the normal control.

558 **References**

559 1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global
560 epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of
561 prevalence, incidence, and outcomes. *Hepatology*. 2016;64(1):73-84. Epub 2015/12/29.
562 doi: 10.1002/hep.28431. PubMed PMID: 26707365.

563 2. Willner IR, Waters B, Patil SR, Reuben A, Morelli J, Riely CA. Ninety
564 patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and
565 severity of disease. *The American journal of gastroenterology*. 2001;96(10):2957-61.
566 Epub 2001/11/06. doi: 10.1111/j.1572-0241.2001.04667.x. PubMed PMID: 11693332.

567 3. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al.
568 Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.
569 *Nature reviews Gastroenterology & hepatology*. 2018;15(1):11-20. Epub 2017/09/21.
570 doi: 10.1038/nrgastro.2017.109. PubMed PMID: 28930295.

571 4. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver
572 disease: the multiple parallel hits hypothesis. *Hepatology*. 2010;52(5):1836-46. doi:
573 10.1002/hep.24001. PubMed PMID: 21038418.

574 5. Basaranoglu M, Basaranoglu G, Sabuncu T, Senturk H. Fructose as a key
575 player in the development of fatty liver disease. *World journal of gastroenterology* :
576 WJG. 2013;19(8):1166-72. doi: 10.3748/wjg.v19.i8.1166. PubMed PMID: 23482247;
577 PubMed Central PMCID: PMCPMC3587472.

578 6. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR.
579 CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic
580 steatohepatitis. *The Journal of clinical investigation*. 2000;105(8):1067-75. doi:
581 10.1172/JCI8814. PubMed PMID: 10772651; PubMed Central PMCID:

582 PMCPMC300833.

583 7. Stojasavljevic S, Gomercic Palcic M, Virovic Jukic L, Smircic Duvnjak L,
584 Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the
585 pathogenesis of nonalcoholic fatty liver disease. *World journal of gastroenterology* :
586 WJG. 2014;20(48):18070-91. doi: 10.3748/wjg.v20.i48.18070. PubMed PMID:
587 25561778.

588 8. Miura K, Ohnishi H. Role of gut microbiota and Toll-like receptors in
589 nonalcoholic fatty liver disease. *World journal of gastroenterology* : WJG.
590 2014;20(23):7381-91. doi: 10.3748/wjg.v20.i23.7381. PubMed PMID: 24966608;
591 PubMed Central PMCID: PMCPMC4064083.

592 9. Begriche K, Massart J, Robin MA, Bonnet F, Fromenty B. Mitochondrial
593 adaptations and dysfunctions in nonalcoholic fatty liver disease. *Hepatology*.
594 2013;58(4):1497-507. doi: 10.1002/hep.26226. PubMed PMID: 23299992.

595 10. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce
596 endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells.
597 *American journal of physiology Endocrinology and metabolism*. 2006;291(2):E275-81.
598 doi: 10.1152/ajpendo.00644.2005. PubMed PMID: 16492686.

599 11. Hauff P, Gottwald U, Ocker M. Early to Phase II drugs currently under
600 investigation for the treatment of liver fibrosis. *Expert Opin Investig Drugs*.
601 2015;24(3):309-27. doi: 10.1517/13543784.2015.997874. PubMed PMID: 25547844.

602 12. Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, et
603 al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. *Hepatology*.
604 2011;54(1):344-53. doi: 10.1002/hep.24376. PubMed PMID: 21520200; PubMed
605 Central PMCID: PMC4014460.

606 13. Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, et
607 al. The natural history of nonalcoholic fatty liver disease: a population-based cohort
608 study. *Gastroenterology*. 2005;129(1):113-21. Epub 2005/07/14. PubMed PMID:
609 16012941.

610 14. Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, et al.
611 Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.
612 *Nat Genet*. 2008;40(12):1461-5. Epub 2008/09/30. doi: 10.1038/ng.257. PubMed
613 PMID: 18820647; PubMed Central PMCID: PMCPMC2597056.

614 15. Anstee QM, Targher G, Day CP. Progression of NAFLD to diabetes mellitus,
615 cardiovascular disease or cirrhosis. *Nature reviews Gastroenterology & hepatology*.
616 2013;10(6):330-44. Epub 2013/03/20. doi: 10.1038/nrgastro.2013.41. PubMed PMID:
617 23507799.

618 16. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel
619 genes coding for small expressed RNAs. *Science*. 2001;294(5543):853-8. Epub
620 2001/10/27. doi: 10.1126/science.1064921. PubMed PMID: 11679670.

621 17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function.
622 *Cell*. 2004;116(2):281-97. Epub 2004/01/28. PubMed PMID: 14744438.

623 18. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. Human RISC couples
624 microRNA biogenesis and posttranscriptional gene silencing. *Cell*. 2005;123(4):631-40.
625 Epub 2005/11/08. doi: 10.1016/j.cell.2005.10.022. PubMed PMID: 16271387.

626 19. Szabo G, Bala S. MicroRNAs in liver disease. *Nature reviews Gastroenterology & hepatology*.
627 2013;10(9):542-52. Epub 2013/05/22. doi: 10.1038/nrgastro.2013.87. PubMed PMID: 23689081; PubMed Central PMCID:
628 PMCPMC4091636.

630 20. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, et al.
631 Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression.
632 Hepatology. 2008;48(6):1810-20. doi: 10.1002/hep.22569. PubMed PMID: 19030170;
633 PubMed Central PMCID: PMCPMC2717729.

634 21. Pogribny IP, Starlard-Davenport A, Tryndyak VP, Han T, Ross SA, Rusyn I,
635 et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and
636 miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic
637 steatohepatitis in mice. Lab Invest. 2010;90(10):1437-46. Epub 2010/06/16. doi:
638 10.1038/labinvest.2010.113. PubMed PMID: 20548288; PubMed Central PMCID:
639 PMCPMC4281935.

640 22. Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, et al.
641 Mirnome analysis reveals novel molecular determinants in the pathogenesis of
642 diet-induced nonalcoholic fatty liver disease. Lab Invest. 2011;91(2):283-93. Epub
643 2010/10/20. doi: 10.1038/labinvest.2010.166. PubMed PMID: 20956972.

644 23. Okamoto K, Koda M, Okamoto T, Onoyama T, Miyoshi K, Kishina M, et al.
645 A Series of microRNA in the Chromosome 14q32.2 Maternally Imprinted Region
646 Related to Progression of Non-Alcoholic Fatty Liver Disease in a Mouse Model. PloS
647 one. 2016;11(5):e0154676. Epub 2016/05/03. doi: 10.1371/journal.pone.0154676.
648 PubMed PMID: 27135827; PubMed Central PMCID: PMCPMC4852931.

649 24. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of
650 microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other
651 diseases. Cell Res. 2008;18(10):997-1006. Epub 2008/09/04. doi: 10.1038/cr.2008.282.
652 PubMed PMID: 18766170.

653 25. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and

654 function. *Nat Rev Immunol.* 2002;2(8):569-79. Epub 2002/08/03. doi: 10.1038/nri855.

655 PubMed PMID: 12154376.

656 26. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon

657 BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological

658 lesions. *The American journal of gastroenterology.* 1999;94(9):2467-74. doi:

659 10.1111/j.1572-0241.1999.01377.x. PubMed PMID: 10484010.

660 27. Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential

661 expression of microRNAs in plasma of patients with colorectal cancer: a potential

662 marker for colorectal cancer screening. *Gut.* 2009;58(10):1375-81. Epub 2009/02/10.

663 doi: 10.1136/gut.2008.167817. PubMed PMID: 19201770.

664 28. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct

665 serum assay for microRNA-21 concentrations in early and advanced breast cancer. *Clin*

666 *Chem.* 2011;57(1):84-91. Epub 2010/11/03. doi: 10.1373/clinchem.2010.151845.

667 PubMed PMID: 21036945.

668 29. Panasiuk A, Dzieciol J, Panasiuk B, Prokopowicz D. Expression of p53, Bax

669 and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease. *World journal of*

670 *gastroenterology : WJG.* 2006;12(38):6198-202. Epub 2006/10/13. PubMed PMID:

671 17036395; PubMed Central PMCID: PMCPMC4088117.

672 30. Kumar A, Sharma A, Duseja A, Das A, Dhiman RK, Chawla YK, et al.

673 Patients with Nonalcoholic Fatty Liver Disease (NAFLD) have Higher Oxidative Stress

674 in Comparison to Chronic Viral Hepatitis. *J Clin Exp Hepatol.* 2013;3(1):12-8. Epub

675 2013/03/01. doi: 10.1016/j.jceh.2012.10.009. PubMed PMID: 25755466; PubMed

676 Central PMCID: PMCPMC3940559.

677 31. Gentic G, Maillet V, Paradis V, Couton D, L'Hermitte A, Panasyuk G, et al.

678 Oxidative stress promotes pathologic polyploidization in nonalcoholic fatty liver
679 disease. *The Journal of clinical investigation.* 2015;125(3):981-92. Epub 2015/01/27.
680 doi: 10.1172/JCI73957. PubMed PMID: 25621497; PubMed Central PMCID:
681 PMCPMC4362240.

682 32. Oh KJ, Han HS, Kim MJ, Koo SH. CREB and FoxO1: two transcription
683 factors for the regulation of hepatic gluconeogenesis. *BMB Rep.* 2013;46(12):567-74.
684 Epub 2013/11/19. PubMed PMID: 24238363; PubMed Central PMCID:
685 PMCPMC4133859.

686 33. Colak Y, Senates E, Coskunpinar E, Oltulu YM, Zemheri E, Ozturk O, et al.
687 Concentrations of connective tissue growth factor in patients with nonalcoholic fatty
688 liver disease: association with liver fibrosis. *Dis Markers.* 2012;33(2):77-83. Epub
689 2012/08/01. doi: 10.3233/DMA-2012-0907. PubMed PMID: 22846210; PubMed
690 Central PMCID: PMCPMC3810787.

691 34. Wang C, Hu L, Zhao L, Yang P, Moorhead JF, Varghese Z, et al.
692 Inflammatory stress increases hepatic CD36 translational efficiency via activation of the
693 mTOR signalling pathway. *PLoS one.* 2014;9(7):e103071. Epub 2014/07/23. doi:
694 10.1371/journal.pone.0103071. PubMed PMID: 25048611; PubMed Central PMCID:
695 PMCPMC4105654.

696 35. Pan X, Zhang Y, Kim HG, Liangpunsakul S, Dong XC. FOXO transcription
697 factors protect against the diet-induced fatty liver disease. *Sci Rep.* 2017;7:44597. Epub
698 2017/03/17. doi: 10.1038/srep44597. PubMed PMID: 28300161; PubMed Central
699 PMCID: PMCPMC5353679.

700 36. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E. The role of the
701 microbiome in NAFLD and NASH. *EMBO Mol Med.* 2019;11(2). Epub 2018/12/29.

702 doi: 10.15252/emmm.201809302. PubMed PMID: 30591521; PubMed Central PMCID:
703 PMCPMC6365925.

704 37. Kosone T, Takagi H, Horiguchi N, Ariyama Y, Otsuka T, Sohara N, et al.
705 HGF ameliorates a high-fat diet-induced fatty liver. *Am J Physiol Gastrointest Liver*
706 *Physiol.* 2007;293(1):G204-10. Epub 2007/03/31. doi: 10.1152/ajpgi.00021.2007.
707 PubMed PMID: 17395903.

708 38. Wu H, Zhang T, Pan F, Steer CJ, Li Z, Chen X, et al. MicroRNA-206
709 prevents hepatosteatosis and hyperglycemia by facilitating insulin signaling and
710 impairing lipogenesis. *Journal of hepatology.* 2017;66(4):816-24. Epub 2016/12/28. doi:
711 10.1016/j.jhep.2016.12.016. PubMed PMID: 28025059; PubMed Central PMCID:
712 PMCPMC5568011.

713 39. Adamek A, Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver
714 Diseases. *Int J Mol Sci.* 2018;19(5). Epub 2018/04/28. doi: 10.3390/ijms19051308.
715 PubMed PMID: 29702590; PubMed Central PMCID: PMCPMC5983723.

716 40. Go GW, Srivastava R, Hernandez-Ono A, Gang G, Smith SB, Booth CJ, et al.
717 The combined hyperlipidemia caused by impaired Wnt-LRP6 signaling is reversed by
718 Wnt3a rescue. *Cell Metab.* 2014;19(2):209-20. Epub 2014/02/11. doi:
719 10.1016/j.cmet.2013.11.023. PubMed PMID: 24506864; PubMed Central PMCID:
720 PMCPMC3920193.

721 41. Cintra DE, Pauli JR, Araujo EP, Moraes JC, de Souza CT, Milanski M, et al.
722 Interleukin-10 is a protective factor against diet-induced insulin resistance in liver.
723 *Journal of hepatology.* 2008;48(4):628-37. Epub 2008/02/13. doi:
724 10.1016/j.jhep.2007.12.017. PubMed PMID: 18267346.

725 42. Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA,

726 Robert ME, Mennone A, et al. Nonalcoholic fatty liver disease impairs expression of
727 the type II inositol 1,4,5-trisphosphate receptor. *Hepatology*. 2017. Epub 2017/10/13.
728 doi: 10.1002/hep.29588. PubMed PMID: 29023819; PubMed Central PMCID:
729 PMCPMC5893412.

730 43. Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al.
731 Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in
732 non-alcoholic fatty liver disease. *Gut*. 2017;66(7):1321-8. Epub 2016/03/24. doi:
733 10.1136/gutjnl-2016-311526. PubMed PMID: 27002005; PubMed Central PMCID:
734 PMCPMC5031527.

735 44. Abderrahmani A, Yengo L, Caiazzo R, Canouil M, Cauchi S, Raverdy V, et
736 al. Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in
737 Obesity-Associated Type 2 Diabetes. *Diabetes*. 2018;67(7):1310-21. Epub 2018/05/08.
738 doi: 10.2337/db17-1539. PubMed PMID: 29728363.

739 45. Kung CP, Leu JI, Basu S, Khaku S, Anokye-Danso F, Liu Q, et al. The P72R
740 Polymorphism of p53 Predisposes to Obesity and Metabolic Dysfunction. *Cell Rep*.
741 2016;14(10):2413-25. Epub 2016/03/08. doi: 10.1016/j.celrep.2016.02.037. PubMed
742 PMID: 26947067; PubMed Central PMCID: PMCPMC4926645.

743 46. Garcia D, Hellberg K, Chaix A, Wallace M, Herzig S, Badur MG, et al.
744 Genetic Liver-Specific AMPK Activation Protects against Diet-Induced Obesity and
745 NAFLD. *Cell Rep*. 2019;26(1):192-208 e6. Epub 2019/01/04. doi:
746 10.1016/j.celrep.2018.12.036. PubMed PMID: 30605676; PubMed Central PMCID:
747 PMCPMC6344045.

748 47. Matsuda S, Kobayashi M, Kitagishi Y. Roles for PI3K/AKT/PTEN Pathway
749 in Cell Signaling of Nonalcoholic Fatty Liver Disease. *ISRN Endocrinol*.

750 2013;2013:472432. Epub 2013/02/23. doi: 10.1155/2013/472432. PubMed PMID:
751 23431468; PubMed Central PMCID: PMCPMC3570922.

752 48. Sydor S, Sowa JP, Megger DA, Schlattjan M, Jafoui S, Wingerter L, et al.
753 Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte
754 hypertrophy and diet-induced liver steatosis. Mol Metab. 2017;6(5):416-27. Epub
755 2017/05/04. doi: 10.1016/j.molmet.2017.03.002. PubMed PMID: 28462076; PubMed
756 Central PMCID: PMCPMC5404101.

757 49. Qin G, Wang GZ, Guo DD, Bai RX, Wang M, Du SY. Deletion of Smad4
758 reduces hepatic inflammation and fibrogenesis during nonalcoholic steatohepatitis
759 progression. J Dig Dis. 2018;19(5):301-13. Epub 2018/04/27. doi:
760 10.1111/1751-2980.12599. PubMed PMID: 29696816.

761 50. Wang H, Shao Y, Yuan F, Feng H, Li N, Zhang H, et al. Fish Oil Feeding
762 Modulates the Expression of Hepatic MicroRNAs in a Western-Style Diet-Induced
763 Nonalcoholic Fatty Liver Disease Rat Model. Biomed Res Int. 2017;2017:2503847.
764 Epub 2017/07/12. doi: 10.1155/2017/2503847. PubMed PMID: 28691019; PubMed
765 Central PMCID: PMCPMC5485288.

766 51. Musso G, Gambino R, Pacini G, De Michieli F, Cassader M. Prolonged
767 saturated fat-induced, glucose-dependent insulinotropic polypeptide elevation is
768 associated with adipokine imbalance and liver injury in nonalcoholic steatohepatitis:
769 dysregulated enteroadipocyte axis as a novel feature of fatty liver. Am J Clin Nutr.
770 2009;89(2):558-67. Epub 2009/01/15. doi: 10.3945/ajcn.2008.26720. PubMed PMID:
771 19141695.

772 52. Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, et al.
773 TGF-beta-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism

774 following lithocholic acid-induced liver injury. *J Lipid Res.* 2012;53(12):2698-707.

775 Epub 2012/10/05. doi: 10.1194/jlr.M031773. PubMed PMID: 23034213; PubMed

776 Central PMCID: PMCPMC3494264.

777 53. Li Y, Turpin CP, Wang S. Role of thrombospondin 1 in liver diseases.

778 *Hepatol Res.* 2017;47(2):186-93. Epub 2016/08/06. doi: 10.1111/hepr.12787. PubMed

779 PMID: 27492250; PubMed Central PMCID: PMCPMC5292098.

780 54. Chen P, Luo Q, Huang C, Gao Q, Li L, Chen J, et al. Pathogenesis of

781 non-alcoholic fatty liver disease mediated by YAP. *Hepatol Int.* 2018;12(1):26-36. Epub

782 2018/01/14. doi: 10.1007/s12072-017-9841-y. PubMed PMID: 29330836.

783 55. da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic

784 imprinting at the mammalian Dlk1-Dio3 domain. *Trends Genet.* 2008;24(6):306-16.

785 Epub 2008/05/13. doi: 10.1016/j.tig.2008.03.011. PubMed PMID: 18471925.

786 56. Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, et al.

787 Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12:

788 implications for imprinting control from comparison with Igf2-H19. *Hum Mol Genet.*

789 2002;11(1):77-86. Epub 2002/01/05. PubMed PMID: 11773001.

790 57. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetze GA, et al.

791 Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6

792 by chromatin-modifying drugs in human cancer cells. *Cancer Cell.* 2006;9(6):435-43.

793 Epub 2006/06/13. doi: 10.1016/j.ccr.2006.04.020. PubMed PMID: 16766263.

794 58. Dai R, Lu R, Ahmed SA. The Upregulation of Genomic Imprinted

795 DLK1-Dio3 miRNAs in Murine Lupus Is Associated with Global DNA

796 Hypomethylation. *PLoS one.* 2016;11(4):e0153509. Epub 2016/04/14. doi:

797 10.1371/journal.pone.0153509. PubMed PMID: 27070142; PubMed Central PMCID:

798 PMCPMC4829153.

799 59. de Guia RM, Rose AJ, Sommerfeld A, Seibert O, Strzoda D, Zota A, et al.

800 microRNA-379 couples glucocorticoid hormones to dysfunctional lipid homeostasis.

801 EMBO J. 2015;34(3):344-60. Epub 2014/12/17. doi: 10.15252/embj.201490464.

802 PubMed PMID: 25510864; PubMed Central PMCID: PMCPMC4339121.

803 60. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal

804 microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics.

805 2015;13(1):17-24. Epub 2015/03/01. doi: 10.1016/j.gpb.2015.02.001. PubMed PMID:

806 25724326; PubMed Central PMCID: PMCPMC4411500.

807 61. Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI,

808 Kyriazopoulou VE, et al. Differential expression of microRNAs in adipose tissue after

809 long-term high-fat diet-induced obesity in mice. PloS one. 2012;7(4):e34872. Epub

810 2012/04/13. doi: 10.1371/journal.pone.0034872. PubMed PMID: 22496873; PubMed

811 Central PMCID: PMCPMC3319598.

812 62. Pearce SG, Thosani NC, Pan JJ. Noninvasive biomarkers for the diagnosis of

813 steatohepatitis and advanced fibrosis in NAFLD. Biomark Res. 2013;1(1):7. Epub

814 2013/11/21. doi: 10.1186/2050-7771-1-7. PubMed PMID: 24252302; PubMed Central

815 PMCID: PMCPMC4177607.

816 63. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al.

817 The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients

818 with NAFLD. Hepatology. 2007;45(4):846-54. Epub 2007/03/30. doi:

819 10.1002/hep.21496. PubMed PMID: 17393509.

820 64. Yang M, Xu D, Liu Y, Guo X, Li W, Guo C, et al. Combined Serum

821 Biomarkers in Non-Invasive Diagnosis of Non-Alcoholic Steatohepatitis. PloS one.

822 2015;10(6):e0131664. Epub 2015/06/30. doi: 10.1371/journal.pone.0131664. PubMed
823 PMID: 26121037; PubMed Central PMCID: PMCPMC4486729.

824 65. Kaplan MM. Alkaline phosphatase. *Gastroenterology*. 1972;62(3):452-68.
825 Epub 1972/03/01. PubMed PMID: 4551808.

826 66. Poupon R. Liver alkaline phosphatase: a missing link between cholesterosis and
827 biliary inflammation. *Hepatology*. 2015;61(6):2080-90. Epub 2015/01/22. doi:
828 10.1002/hep.27715. PubMed PMID: 25603770.

829 67. Tomizawa M, Kawanabe Y, Shinozaki F, Sato S, Motoyoshi Y, Sugiyama T,
830 et al. Triglyceride is strongly associated with nonalcoholic fatty liver disease among
831 markers of hyperlipidemia and diabetes. *Biomed Rep*. 2014;2(5):633-6. Epub
832 2014/07/24. doi: 10.3892/br.2014.309. PubMed PMID: 25054002; PubMed Central
833 PMCID: PMCPMC4106613.

834 68. Pantsari MW, Harrison SA. Nonalcoholic fatty liver disease presenting with
835 an isolated elevated alkaline phosphatase. *Journal of clinical gastroenterology*.
836 2006;40(7):633-5. Epub 2006/08/19. PubMed PMID: 16917408.

837 69. Kocabay G, Telci A, Tutuncu Y, Tiryaki B, Ozel S, Cevikbas U, et al.
838 Alkaline phosphatase: can it be considered as an indicator of liver fibrosis in
839 non-alcoholic steatohepatitis with type 2 diabetes? Bratisl Lek Listy.
840 2011;112(11):626-9. Epub 2011/12/21. PubMed PMID: 22180989.

841 70. Hatoff DE, Hardison WG. Bile acid-dependent secretion of alkaline
842 phosphatase in rat bile. *Hepatology*. 1982;2(4):433-9. Epub 1982/07/01. PubMed
843 PMID: 7095744.

844 71. Barshop NJ, Sirlin CB, Schwimmer JB, Lavine JE. Review article:
845 epidemiology, pathogenesis and potential treatments of paediatric non-alcoholic fatty

846 liver disease. *Aliment Pharmacol Ther.* 2008;28(1):13-24. Epub 2008/04/10. doi:
847 10.1111/j.1365-2036.2008.03703.x. PubMed PMID: 18397387.

848 72. Simonen P, Kotronen A, Hallikainen M, Sevastianova K, Makkonen J,
849 Hakkarainen A, et al. Cholesterol synthesis is increased and absorption decreased in
850 non-alcoholic fatty liver disease independent of obesity. *Journal of hepatology.*
851 2011;54(1):153-9. Epub 2010/10/16. doi: 10.1016/j.jhep.2010.05.037. PubMed PMID:
852 20947198.

853 73. Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC.
854 Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial
855 injury and is HMGB1 and TLR4-dependent. *Journal of hepatology.*
856 2014;61(6):1376-84. Epub 2014/07/30. doi: 10.1016/j.jhep.2014.07.024. PubMed
857 PMID: 25064435.

858 74. Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H, Maher J, et al. Increased
859 hepatic synthesis and dysregulation of cholesterol metabolism is associated with the
860 severity of nonalcoholic fatty liver disease. *Cell Metab.* 2012;15(5):665-74. Epub
861 2012/05/09. doi: 10.1016/j.cmet.2012.04.004. PubMed PMID: 22560219; PubMed
862 Central PMCID: PMCPMC3361911.

863 75. Beg ZH, Stonik JA, Brewer HB, Jr. Phosphorylation of hepatic
864 3-hydroxy-3-methylglutaryl coenzyme A reductase and modulation of its enzymic
865 activity by calcium-activated and phospholipid-dependent protein kinase. *J Biol Chem.*
866 1985;260(3):1682-7. Epub 1985/02/10. PubMed PMID: 3155737.

867 76. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J,
868 Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human
869 NASH. *Journal of hepatology.* 2009;50(4):789-96. Epub 2009/02/24. doi:

870 10.1016/j.jhep.2008.12.016. PubMed PMID: 19231010.

871 77. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, et al.

872 Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated

873 steatohepatitis. *Cell Metab.* 2006;4(3):185-98. Epub 2006/09/05. doi:

874 10.1016/j.cmet.2006.07.006. PubMed PMID: 16950136.

875 78. Leroux A, Ferrere G, Godie V, Cailleux F, Renoud ML, Gaudin F, et al.

876 Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at

877 an early stage of steatohepatitis. *Journal of hepatology.* 2012;57(1):141-9. Epub

878 2012/03/20. doi: 10.1016/j.jhep.2012.02.028. PubMed PMID: 22425624.

879 79. Teratani T, Tomita K, Suzuki T, Oshikawa T, Yokoyama H, Shimamura K, et

880 al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free

881 cholesterol in hepatic stellate cells. *Gastroenterology.* 2012;142(1):152-64 e10. Epub

882 2011/10/15. doi: 10.1053/j.gastro.2011.09.049. PubMed PMID: 21995947.

883 80. Ekstedt M, Hagstrom H, Nasr P, Fredrikson M, Stal P, Kechagias S, et al.

884 Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after

885 up to 33 years of follow-up. *Hepatology.* 2015;61(5):1547-54. Epub 2014/08/16. doi:

886 10.1002/hep.27368. PubMed PMID: 25125077.

887 81. Sumida Y, Yoneda M. Current and future pharmacological therapies for

888 NAFLD/NASH. *Journal of gastroenterology.* 2018;53(3):362-76. Epub 2017/12/17. doi:

889 10.1007/s00535-017-1415-1. PubMed PMID: 29247356; PubMed Central PMCID:

890 PMCPMC5847174.

891 82. Cicognani C, Malavolti M, Morselli-Labate AM, Zamboni L, Sama C,

892 Barbara L. Serum lipid and lipoprotein patterns in patients with liver cirrhosis and

893 chronic active hepatitis. *Arch Intern Med.* 1997;157(7):792-6. Epub 1997/04/14.

894 PubMed PMID: 9125012.

895 83. Stancu C, Sima A. Statins: mechanism of action and effects. *J Cell Mol Med.*
896 2001;5(4):378-87. Epub 2002/06/18. PubMed PMID: 12067471.

897 84. Eslami L, Merat S, Malekzadeh R, Nasseri-Moghaddam S, Aramin H. Statins
898 for non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. *Cochrane*
899 *Database Syst Rev.* 2013;(12):CD008623. Epub 2014/01/01. doi:
900 10.1002/14651858.CD008623.pub2. PubMed PMID: 24374462.

901 85. Dongiovanni P, Petta S, Mannisto V, Mancina RM, Pipitone R, Karja V, et al.
902 Statin use and non-alcoholic steatohepatitis in at risk individuals. *Journal of hepatology.*
903 2015;63(3):705-12. Epub 2015/05/20. doi: 10.1016/j.jhep.2015.05.006. PubMed PMID:
904 25980762.

905 86. Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES,
906 Charatcharoenwitthaya P, et al. Liver Fibrosis, but No Other Histologic Features, Is
907 Associated With Long-term Outcomes of Patients With Nonalcoholic Fatty Liver
908 Disease. *Gastroenterology.* 2015;149(2):389-97 e10. Epub 2015/05/04. doi:
909 10.1053/j.gastro.2015.04.043. PubMed PMID: 25935633; PubMed Central PMCID:
910 PMCPMC4516664.

911 87. Li K, Wang Y, Zhang A, Liu B, Jia L. miR-379 Inhibits Cell Proliferation,
912 Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like
913 Factor-1. *Yonsei Med J.* 2017;58(1):234-40. Epub 2016/11/23. doi:
914 10.3349/ymj.2017.58.1.234. PubMed PMID: 27873518; PubMed Central PMCID:
915 PMCPMC5122642.

916 88. Huang DJ, Huang JZ, Yang J, Li YH, Luo YC, He HY, et al. Bioinformatic
917 identification of IGF1 as a hub gene in hepatocellular carcinoma (HCC) and in-vitro

918 analysis of the chemosensitizing effect of miR-379 via suppressing the IGF1/IGF1R
919 signaling pathway. *Eur Rev Med Pharmacol Sci.* 2016;20(24):5098-106. Epub
920 2017/01/05. PubMed PMID: 28051262.

921 89. Garcia-Galiano D, Sanchez-Garrido MA, Espejo I, Montero JL, Costan G,
922 Marchal T, et al. IL-6 and IGF-1 are independent prognostic factors of liver steatosis
923 and non-alcoholic steatohepatitis in morbidly obese patients. *Obes Surg.*
924 2007;17(4):493-503. Epub 2007/07/05. doi: 10.1007/s11695-007-9087-1. PubMed
925 PMID: 17608262.

926 90. Molitch ME, Clemons DR, Malozowski S, Merriam GR, Vance ML,
927 Endocrine S. Evaluation and treatment of adult growth hormone deficiency: an
928 Endocrine Society clinical practice guideline. *The Journal of clinical endocrinology and
929 metabolism.* 2011;96(6):1587-609. Epub 2011/05/24. doi: 10.1210/jc.2011-0179.
930 PubMed PMID: 21602453.

931 91. Nishizawa H, Takahashi M, Fukuoka H, Iguchi G, Kitazawa R, Takahashi Y.
932 GH-independent IGF-I action is essential to prevent the development of nonalcoholic
933 steatohepatitis in a GH-deficient rat model. *Biochem Biophys Res Commun.*
934 2012;423(2):295-300. Epub 2012/06/05. doi: 10.1016/j.bbrc.2012.05.115. PubMed
935 PMID: 22659415.

936 92. Arturi F, Succurro E, Procopio C, Pedace E, Mannino GC, Lugara M, et al.
937 Nonalcoholic fatty liver disease is associated with low circulating levels of insulin-like
938 growth factor-I. *The Journal of clinical endocrinology and metabolism.*
939 2011;96(10):E1640-4. Epub 2011/08/06. doi: 10.1210/jc.2011-1227. PubMed PMID:
940 21816784.

941 93. Ichikawa T, Nakao K, Hamasaki K, Furukawa R, Tsuruta S, Ueda Y, et al.

942 Role of growth hormone, insulin-like growth factor 1 and insulin-like growth
943 factor-binding protein 3 in development of non-alcoholic fatty liver disease. *Hepatol Int.*
944 2007;1(2):287-94. Epub 2007/06/01. doi: 10.1007/s12072-007-9007-4. PubMed PMID:
945 19669352; PubMed Central PMCID: PMCPMC2716823.

946 94. Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay
947 P, et al. Endothelial function and vascular oxidative stress in long-lived
948 GH/IGF-deficient Ames dwarf mice. *Am J Physiol Heart Circ Physiol.*
949 2008;295(5):H1882-94. Epub 2008/09/02. doi: 10.1152/ajpheart.412.2008. PubMed
950 PMID: 18757483; PubMed Central PMCID: PMCPMC2614588.

951 95. Nishizawa H, Iguchi G, Fukuoka H, Takahashi M, Suda K, Bando H, et al.
952 IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent
953 manner. *Sci Rep.* 2016;6:34605. Epub 2016/10/11. doi: 10.1038/srep34605. PubMed
954 PMID: 27721459; PubMed Central PMCID: PMCPMC5056388.

955 96. Lam CS, Chen MH, Lacey SM, Yang Q, Sullivan LM, Xanthakis V, et al.
956 Circulating insulin-like growth factor-1 and its binding protein-3: metabolic and genetic
957 correlates in the community. *Arterioscler Thromb Vasc Biol.* 2010;30(7):1479-84. Epub
958 2010/04/10. doi: 10.1161/ATVBAHA.110.203943. PubMed PMID: 20378848; PubMed
959 Central PMCID: PMCPMC2891230.

960 97. Zaki SM, Abdel Fattah S, Hassan DS. The differential effects of high-fat and
961 high fructose diets on the liver of male albino rat and the proposed underlying
962 mechanisms. *Folia Morphol (Warsz).* 2018. Epub 2018/07/17. doi:
963 10.5603/FM.a2018.0063. PubMed PMID: 30009361.

964 98. Liu Y, Cheng F, Luo Y, Zhan Z, Hu P, Ren H, et al. PEGylated Curcumin
965 Derivative Attenuates Hepatic Steatosis via CREB/PPAR-gamma/CD36 Pathway.

966 Biomed Res Int. 2017;2017:8234507. Epub 2017/08/05. doi: 10.1155/2017/8234507.

967 PubMed PMID: 28770225; PubMed Central PMCID: PMCPMC5523402.

968 99. Hardie DG. Regulation of fatty acid and cholesterol metabolism by the

969 AMP-activated protein kinase. Biochim Biophys Acta. 1992;1123(3):231-8. Epub

970 1992/02/12. PubMed PMID: 1536860.

971 100. Kim KH. Regulation of acetyl-CoA carboxylase. Curr Top Cell Regul.

972 1983;22:143-76. Epub 1983/01/01. PubMed PMID: 6135568.

973 101. Song Z, Deaciuc I, Zhou Z, Song M, Chen T, Hill D, et al. Involvement of

974 AMP-activated protein kinase in beneficial effects of betaine on high-sucrose

975 diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol.

976 2007;293(4):G894-902. Epub 2007/08/19. doi: 10.1152/ajpgi.00133.2007. PubMed

977 PMID: 17702954; PubMed Central PMCID: PMCPMC4215798.

978 102. Zhao X, Chu J. MicroRNA-379 suppresses cell proliferation, migration and

979 invasion in nasopharyngeal carcinoma by targeting tumor protein D52. Exp Ther Med.

980 2018;16(2):1232-40. Epub 2018/08/18. doi: 10.3892/etm.2018.6302. PubMed PMID:

981 30116374; PubMed Central PMCID: PMCPMC6090252.

982 103. Shi X, Xiao X, Yuan N, Zhang S, Yuan F, Wang X. MicroRNA-379

983 Suppresses Cervical Cancer Cell Proliferation and Invasion by Directly Targeting V-crk

984 Avian Sarcoma Virus CT10 Oncogene Homolog-Like (CRKL). Oncol Res.

985 2018;26(7):987-96. Epub 2018/01/04. doi: 10.3727/096504017X15140534417184.

986 PubMed PMID: 29295725.

987 104. Xu M, Qin S, Cao F, Ding S, Li M. MicroRNA-379 inhibits metastasis and

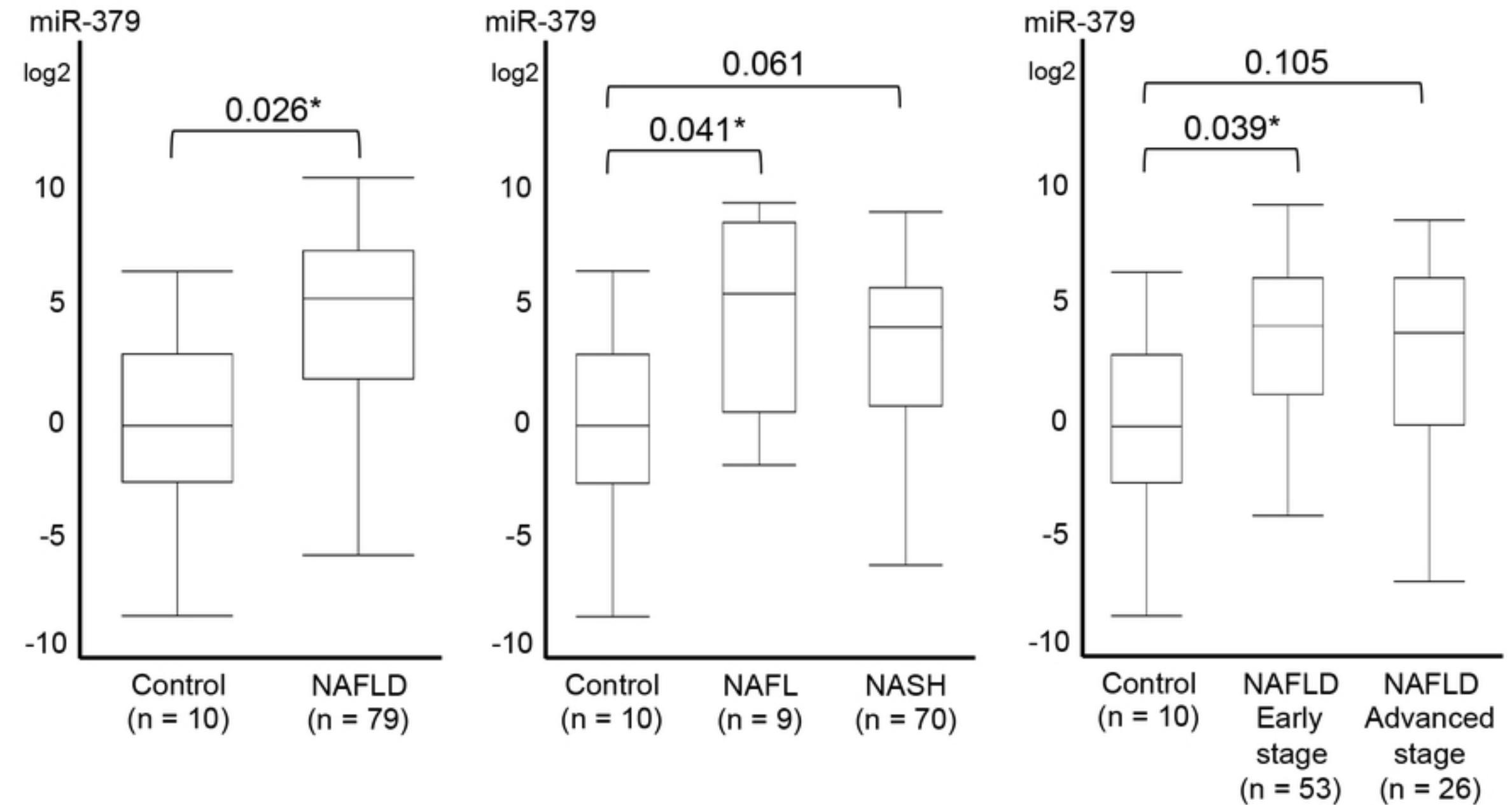
988 epithelial-mesenchymal transition via targeting FAK/AKT signaling in gastric cancer.

989 Int J Oncol. 2017;51(3):867-76. Epub 2017/07/18. doi: 10.3892/ijo.2017.4072. PubMed

990 PMID: 28713929.

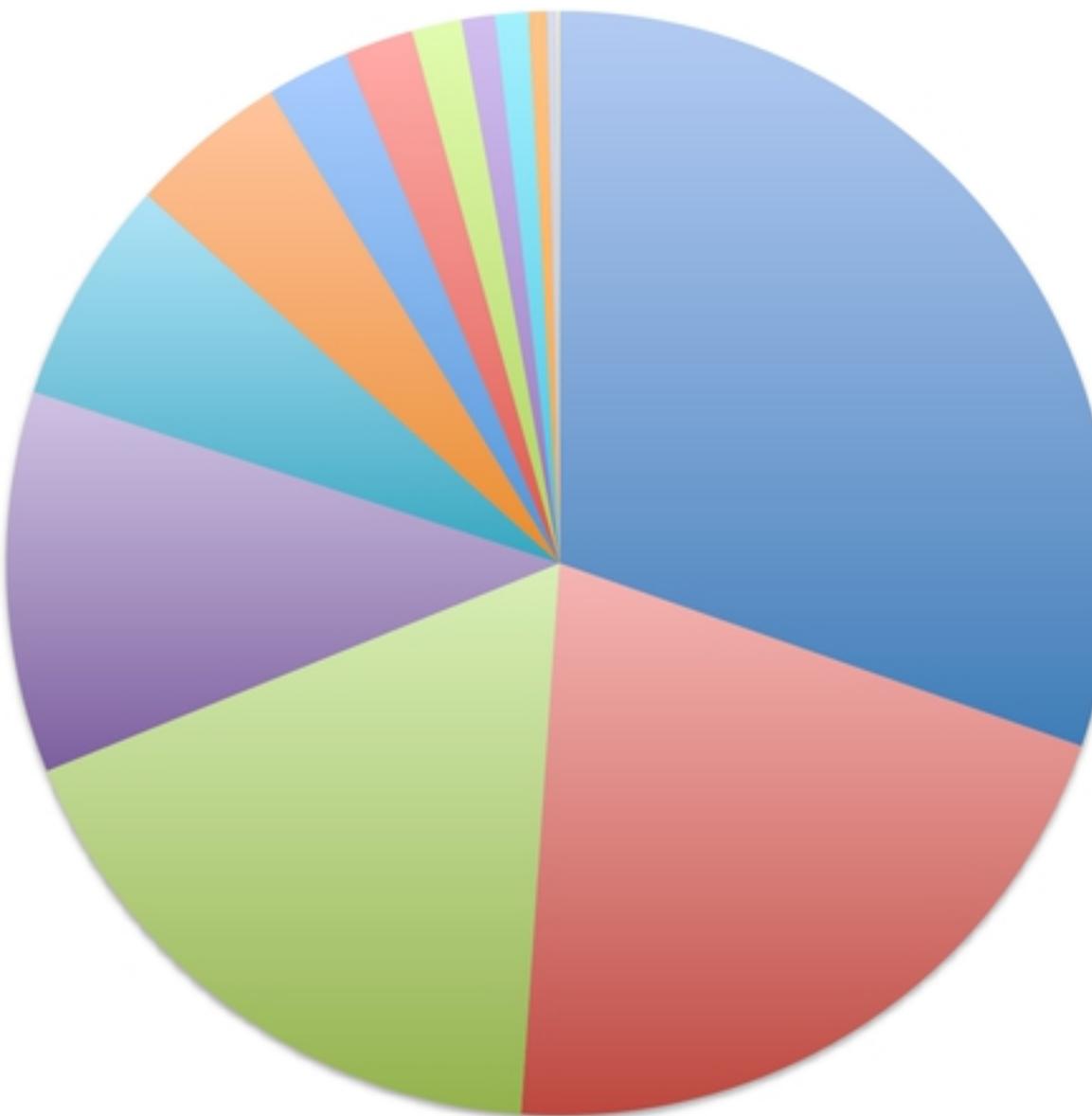
991 105. Wu D, Niu X, Tao J, Li P, Lu Q, Xu A, et al. MicroRNA-379-5p plays a
992 tumor-suppressive role in human bladder cancer growth and metastasis by directly
993 targeting MDM2. *Oncol Rep.* 2017;37(6):3502-8. Epub 2017/05/13. doi:
994 10.3892/or.2017.5607. PubMed PMID: 28498468.

995 106. Xie X, Li YS, Xiao WF, Deng ZH, He HB, Liu Q, et al. MicroRNA-379
996 inhibits the proliferation, migration and invasion of human osteosarcoma cells by
997 targeting EIF4G2. *Biosci Rep.* 2017;37(3). Epub 2017/04/07. doi:
998 10.1042/BSR20160542. PubMed PMID: 28381518; PubMed Central PMCID:
999 PMCPMC5434889.


1000 107. Chen JS, Li HS, Huang JQ, Dong SH, Huang ZJ, Yi W, et al. MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT
1001 signaling in hepatocellular carcinoma. *Cancer Lett.* 2016;375(1):73-83. Epub
1002 2016/03/06. doi: 10.1016/j.canlet.2016.02.043. PubMed PMID: 26944318.

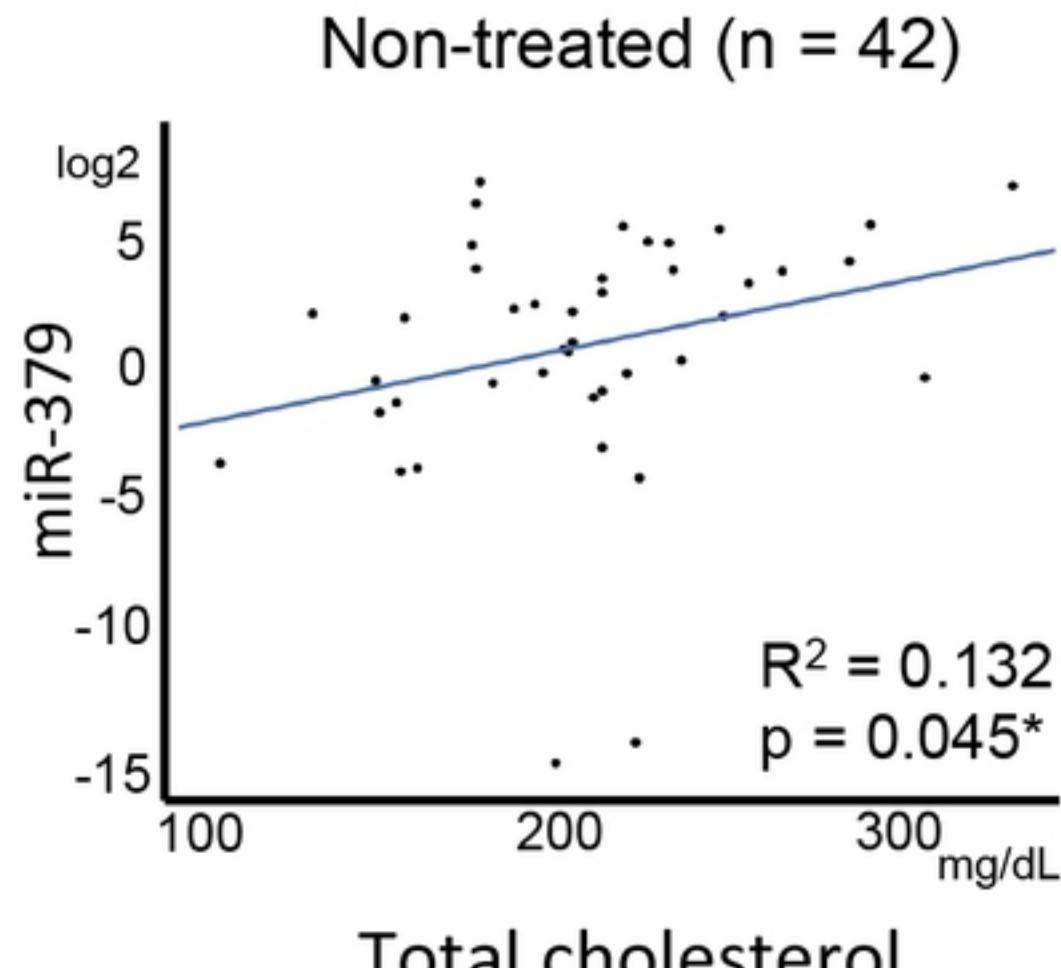
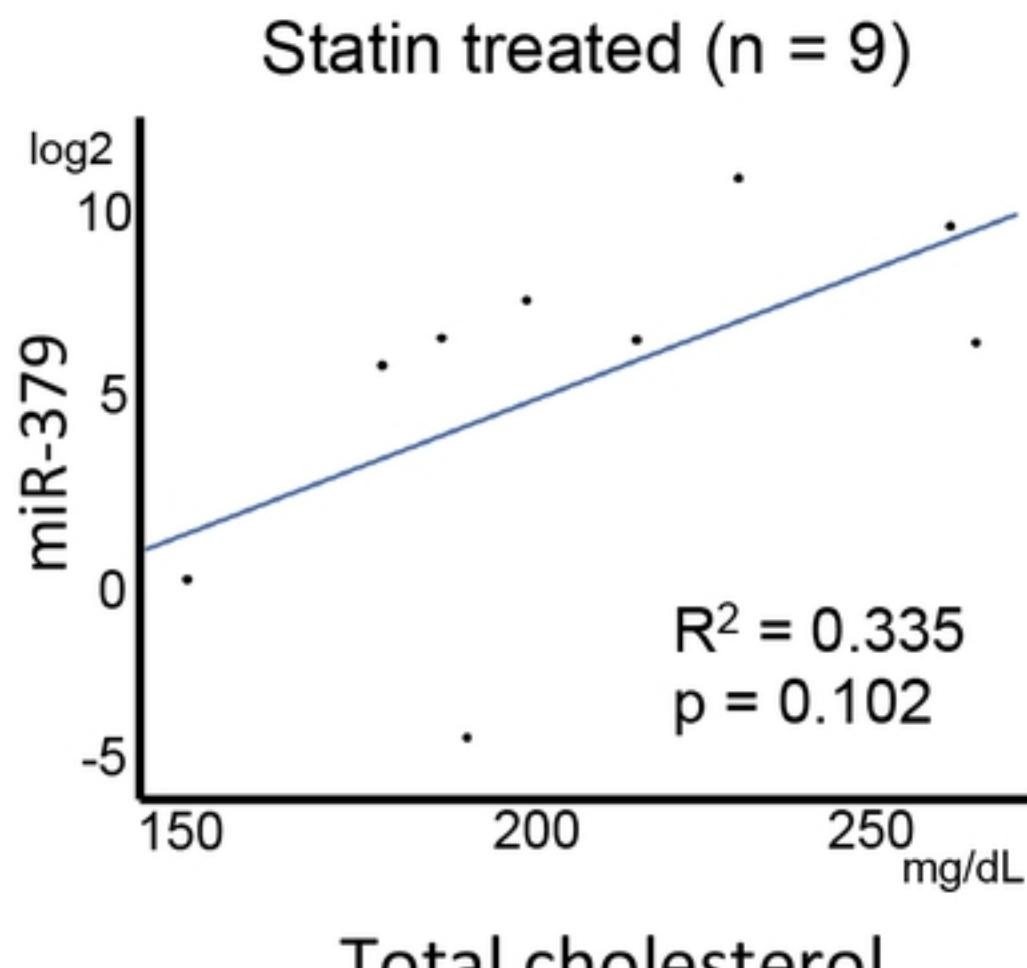
1004 108. Mitter D, Buiting K, von Eggeling F, Kuechler A, Liehr T, Mau-Holzmann
1005 UA, et al. Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]?
1006 Detection of 10 new patients by methylation-specific PCR. *Am J Med Genet A.*
1007 2006;140(19):2039-49. Epub 2006/08/15. doi: 10.1002/ajmg.a.31414. PubMed PMID:
1008 16906536.

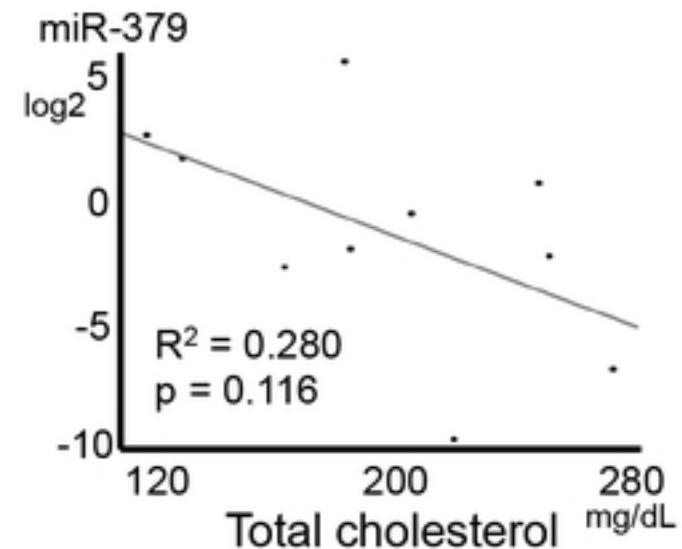
1009 109. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA
1010 expression profiles in normal human tissues. *BMC Genomics.* 2007;8:166. Epub
1011 2007/06/15. doi: 10.1186/1471-2164-8-166. PubMed PMID: 17565689; PubMed
1012 Central PMCID: PMCPMC1904203.


1013 110. Turan S, Topcu B, Gokce I, Guran T, Atay Z, Omar A, et al. Serum alkaline

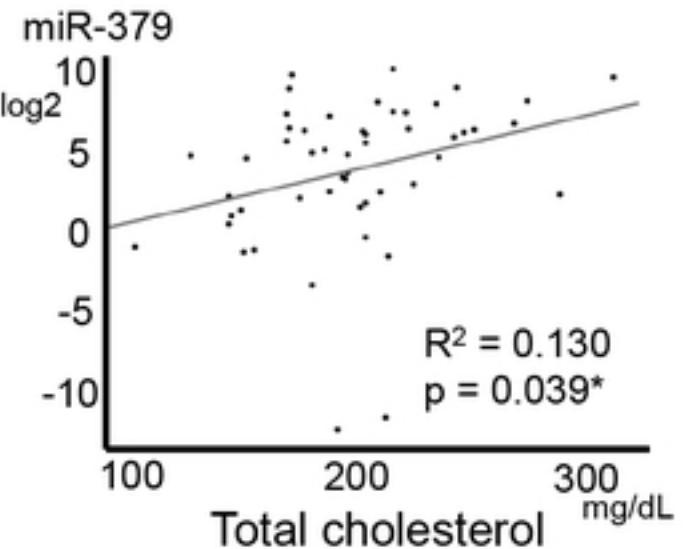
1014 phosphatase levels in healthy children and evaluation of alkaline phosphatase z-scores
1015 in different types of rickets. *J Clin Res Pediatr Endocrinol.* 2011;3(1):7-11. Epub
1016 2011/03/31. doi: 10.4274/jcrpe.v3i1.02. PubMed PMID: 21448327; PubMed Central
1017 PMCID: PMCPMC3065317.
1018 111. Kuo TR, Chen CH. Bone biomarker for the clinical assessment of
1019 osteoporosis: recent developments and future perspectives. *Biomark Res.* 2017;5:18.
1020 Epub 2017/05/23. doi: 10.1186/s40364-017-0097-4. PubMed PMID: 28529755;
1021 PubMed Central PMCID: PMCPMC5436437.

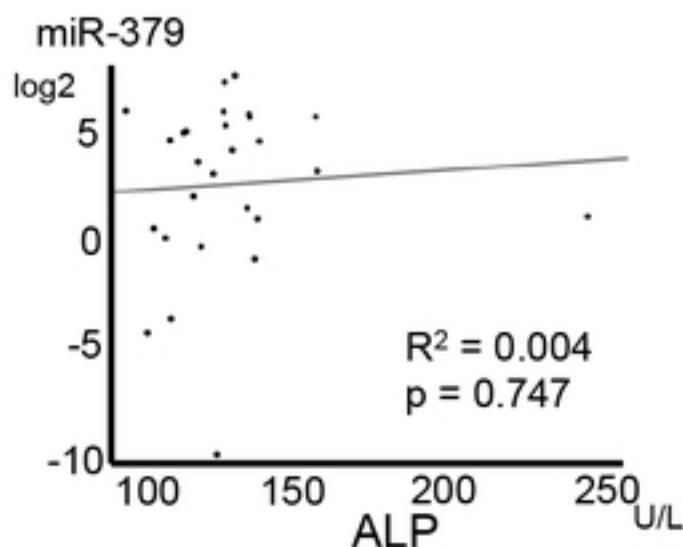
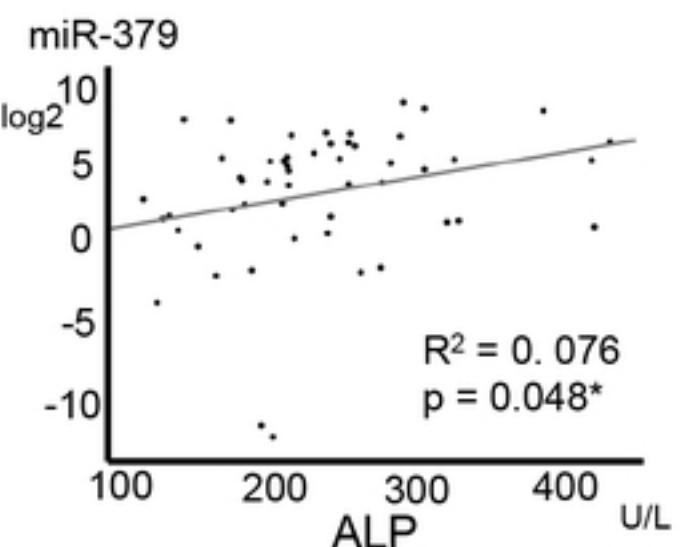
Control (n = 10)	NAFLD (n = 79)	NAFLD subgroup		NAFLD Brunt fibrosis stage	
		NAFL (n = 9)	NASH (n = 70)	Early (n = 53)	Advanced (n = 26)
miR-379	0 ± 4.55	3.49 ± 4.58	4.87 ± 4.50	3.32 ± 4.60	3.65 ± 4.73
p-value versus control	0.026*	0.041*	0.061	0.039*	0.105

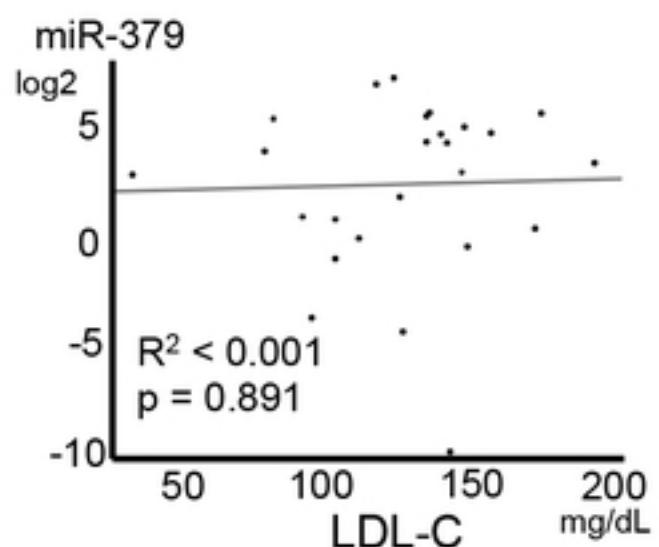
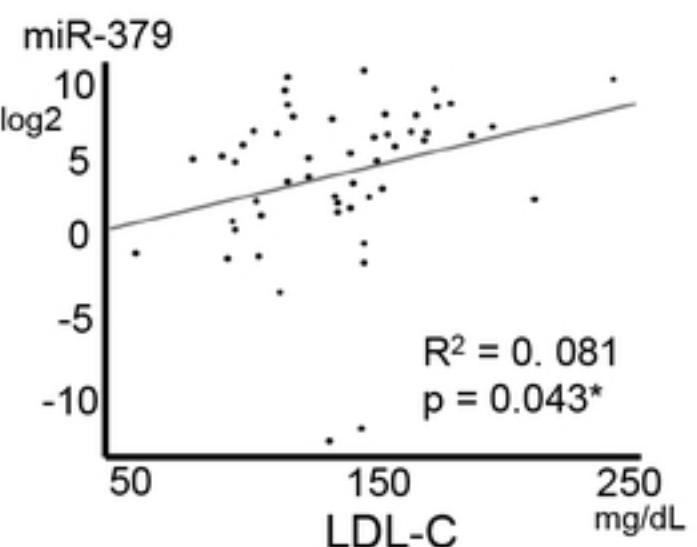
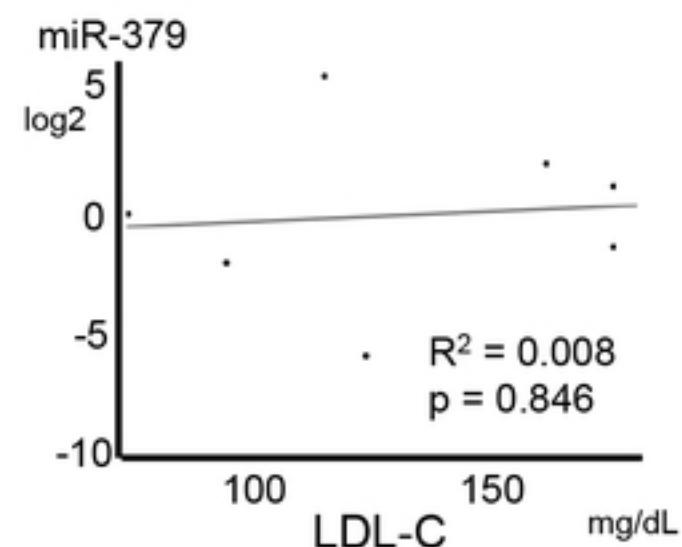
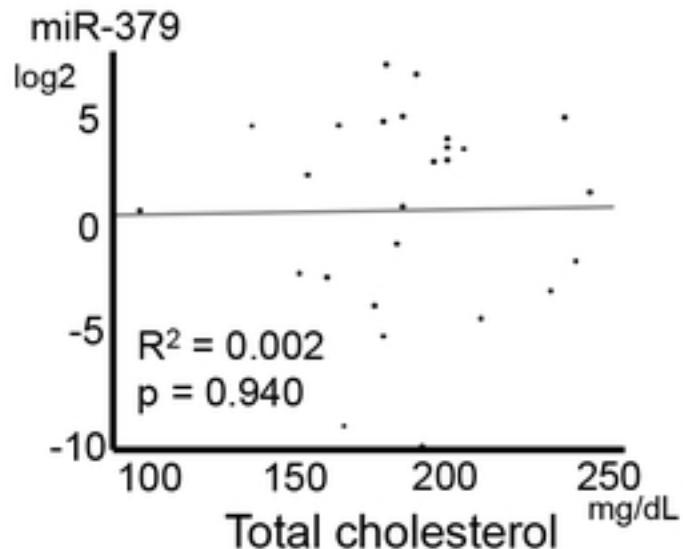


figure

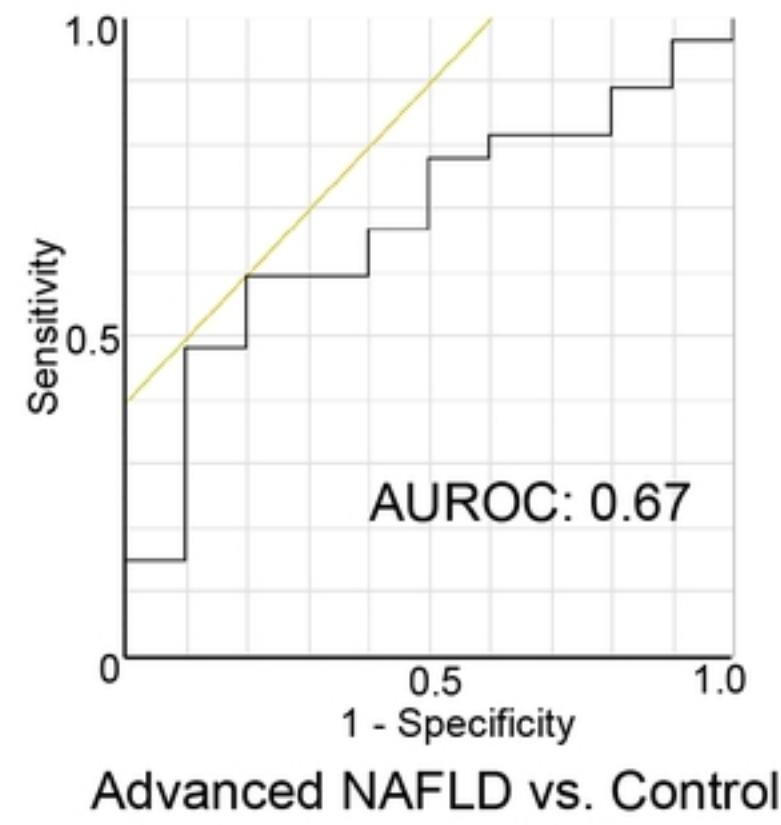
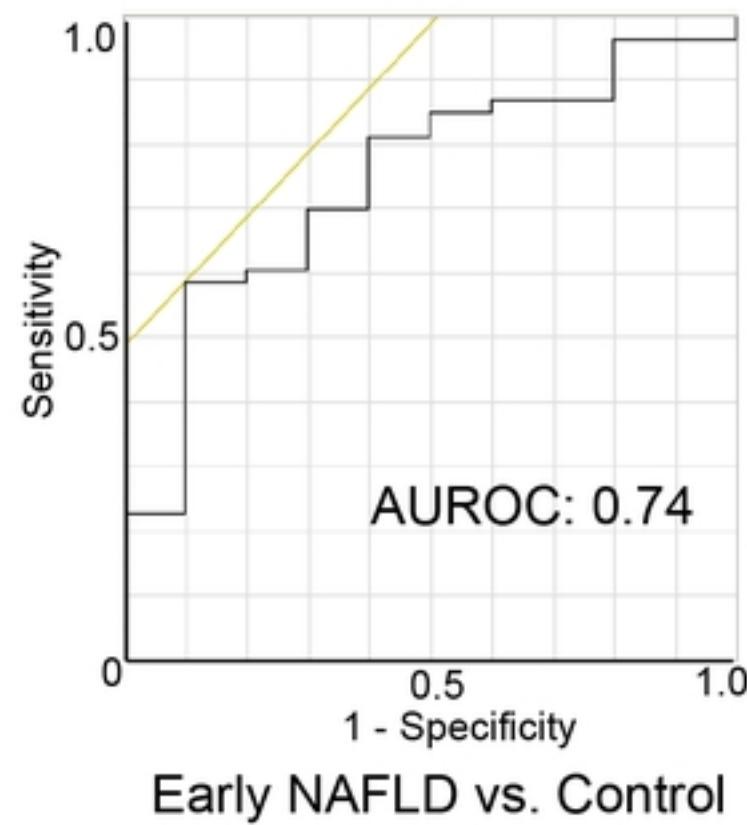
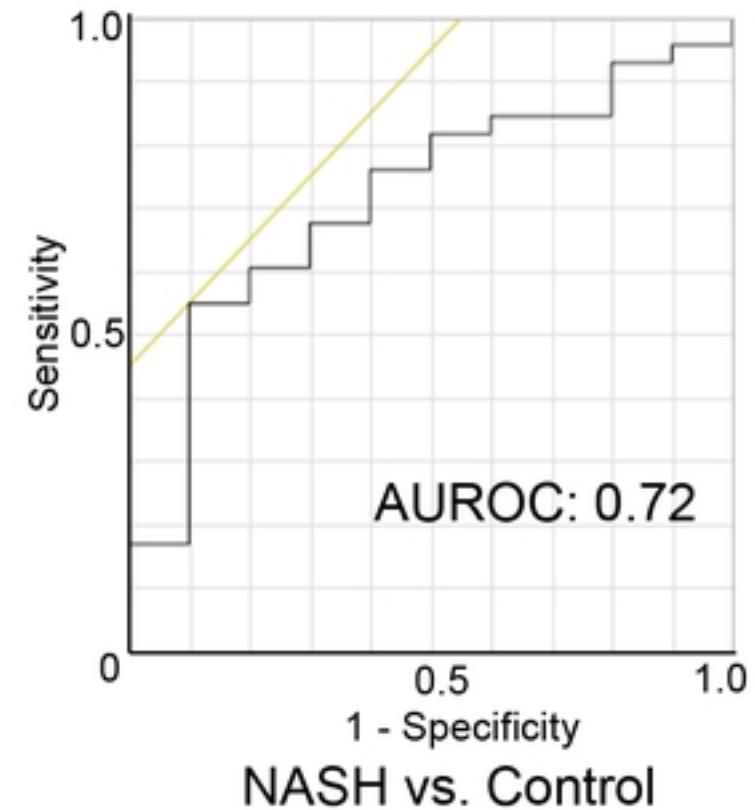
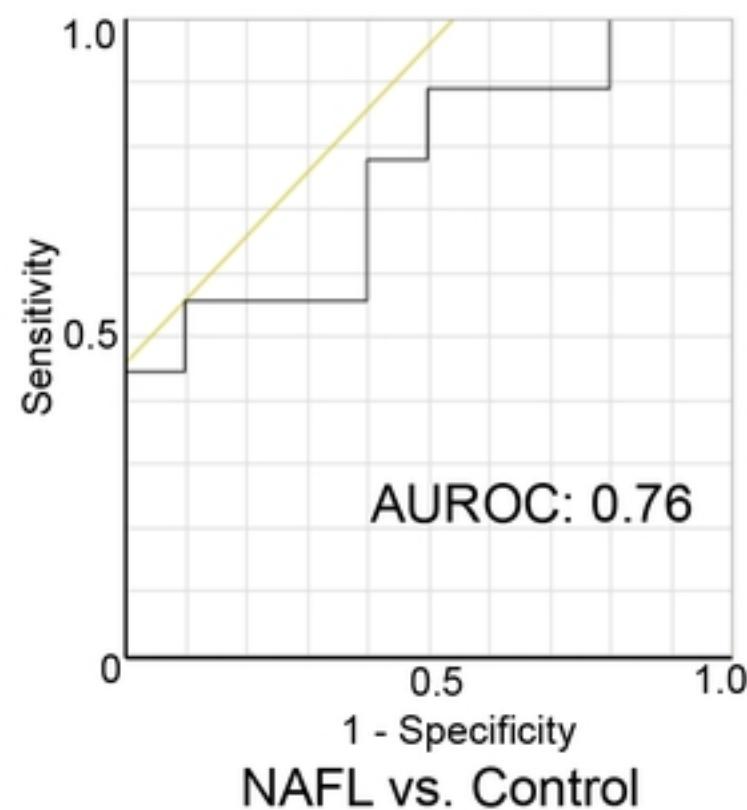
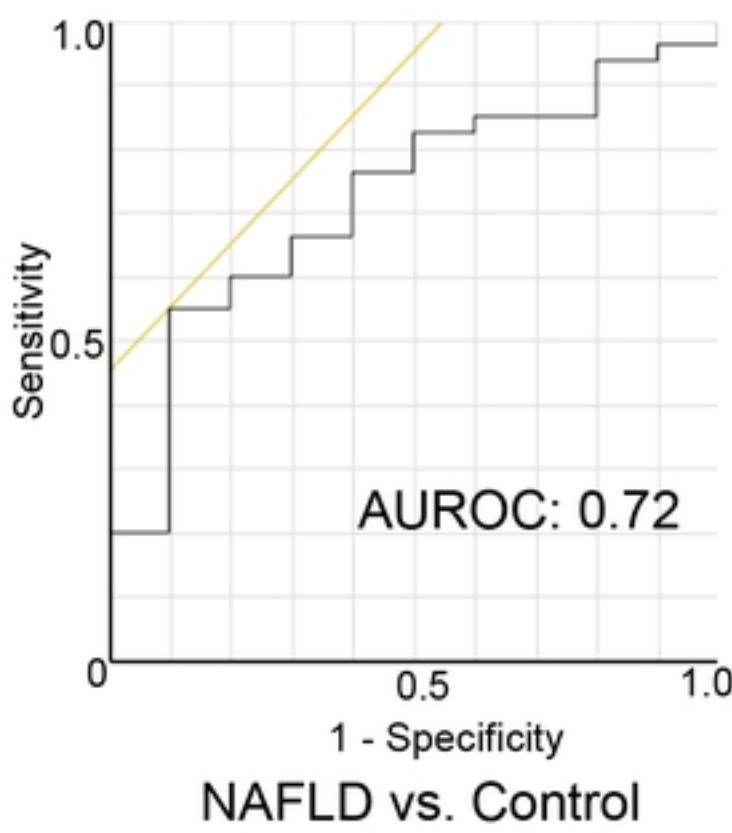

GO term	GO ID	Gene Count	%
Cellular process	0009987	438	31.5
Metabolic process	0008152	299	21.5
Biological regulation	0065007	256	18.4
Localization	0051179	161	11.6
Multicellular organismal process	0032501	95	6.8
Response to stimulus	0050896	67	4.8
Developmental process	0032502	35	2.5
Biological adhesion	0022610	29	2.1
Immune system process	0002376	21	1.5
Cellular component organization or biogenesis	0071840	14	1
Reproduction	0000003	14	1
Cell proliferation	0008283	8	0.6
Rhythmic process	0048511	3	0.2
Biological phase	0044848	1	0.1
Pigmentation	0043473	1	0.1

figure


NAFLD early stage			
	Statin treated (n = 9)	Non-treated (n = 42)	p-value
T-Chol (mg/dL)	205.4 \pm 30.9	209.9 \pm 38.1	0.916
LDL-C (mg/dL)	134.4 \pm 32.1	135.3 \pm 34.6	0.945
HDL-C (mg/dL)	50.2 \pm 7.3	48.8 \pm 8.1	0.631
TG (mg/dL)	152.1 \pm 57.0	154.9 \pm 73.6	0.914
miR-379 (log2 fold)	5.1 \pm 4.4	3.2 \pm 4.8	0.293





Control (n = 10)






NAFLD early stage (n = 53)

NAFLD advanced stage (n = 26)

figure

figure