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Abstract
Diabetes is a large healthcare burden worldwide. There is substantial evidence that lifestyle
modifications and drug intervention can prevent diabetes, therefore, an early identification of
high risk individuals is important to design targeted prevention strategies. In this paper, we
present an automatic tool that uses machine learning techniques to predict the development of
type 2 diabetes mellitus (T2DM). Data generated from an oral glucose tolerance test (OGTT)
was used to develop a predictive model based on the support vector machine (SVM). We
trained and validated the models using the OGTT and demographic data of 1,492 healthy
individuals collected during the San Antonio Heart Study. This study collected plasma glucose
and insulin concentrations before glucose intake and at three time-points thereafter (30, 60 and
120 min). Furthermore, personal information such as age, ethnicity and body-mass index was
also a part of the dataset. Using 11 oral glucose tolerance test (OGTT) measurements, we have
deduced 61 features, which are then assigned a rank and the top ten features are shortlisted
using Minimum Redundancy Maximum Relevance feature selection algorithm. All possible
combinations of the 10 best ranked features were used to generate SVM based prediction
models. This research shows that an individual’s plasma glucose levels, and the information
derived therefrom have the strongest predictive performance for the future development of
T2DM. Significantly, insulin and demographic features do not provide additional performance
improvement for diabetes prediction. The results of this work identify the parsimonious
clinical data needed to be collected for an efficient prediction of T2DM. Our approach shows
an average accuracy of 96.80 % and a sensitivity of 80.09 % obtained on a holdout set.

Introduction 1

The global incidence of diabetes was estimated at 422 million in the year 2014 and its 2

prevalence among the adult population increased from 4.7 % in 1980 to 8.5 % in 2014 [1]. In 3

2015 alone, about 1.6 million deaths worldwide were attributed to diabetes. In addition to the 4

high mortality rate, an individual with diabetes is at a greater risk of developing cardiovascular 5
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Fig 1. Box plots of glucose and insulin levels for healthy and diabetic subjects measured at the
baseline OGTT. A: Plasma glucose. B: Serum insulin

disease (CVD), visual impairment and limb amputations, as compared to a non-diabetic 6

individual. Due to the substantial socio-economic burdens that are associated with diabetes, its 7

early detection, prevention, and management has become a worldwide top-level health concern. 8

There is experimental evidence that the development of diabetes can be delayed or even 9

prevented provided an individual undertakes a lifestyle change that includes diet management, 10

adopting exercise, and adhering to a pharmacological treatment [2]. The early identification of 11

high risk individuals of diabetes is therefore, essential for targeted prevention strategies [3]. 12

Even though the number of clinical studies aimed at diagnosing diabetes has been growing 13

recently, studies predicting the risk of developing diabetes are limited. This subject has lately 14

received an increased amount of research interest [4]. However, the clinical significance of 15

such predictions largely depend on the type and quality of data collected. There are studies that 16

assign a probability to the future risk of diabetes using socio-demographic characteristics such 17

as age, ethnicity, body-mass index (BMI) and genealogical information collected through 18

population [5, 6]. Due to the unreliable data collection, such techniques can be misleading. 19

The collection of blood samples, on the other hand, provides more reliable data and is a first 20

step towards the disease prognosis with a deeper clinical insight [7]. The OGTT is commonly 21

used to screen diabetes [8] and to provide a critical understanding of its future evolution [9]. In 22

an OGTT, the plasma glucose and insulin levels are measured at regular intervals in a 2-hr 23

period after orally administering a standard dose of glucose [9]. The glucose tolerance and 24

insulin resistance are two of the most significant parameters deduced from the OGTT that are 25

widely regarded as the major factors in the development of type 2 diabetes mellitus (T2DM). 26

A precursory stage of diabetes, commonly referred to as prediabetes, exists before overt 27

T2DM, and is described by impaired fasting glucose (IFG), along with impaired glucose 28

tolerance (IGT). According to the World Health Organization (WHO) diagnostic criteria, the 29

IFG is defined as fasting plasma glucose level of 100 mg/dL to 125 mg/dL. The IGT which 30

describes an abnormally raised glucose level is defined as the 2-hour plasma glucose level in 31

the range of 140 mg/dL to 199 mg/dL, measured during the OGTT [10]. Although prediabetes 32

is considered as an intermediate stage in the natural progression of T2DM [11], it has been 33

reported that only 50 % of the subjects diagnosed with IGT developed diabetes within 10 34

years [12,13]. Moreover, long-term population studies have also shown that around 50 % of the 35

diabetic patients did not exhibit IGT at any time prior to the diagnosis [14]. This suggests that 36

the fasting and 2-hour plasma glucose levels used in and of themselves cannot accurately 37

predict the future development of T2DM. 38

The availability of big data in the healthcare sector has made Machine learning (ML) a 39

viable instrument for disease prediction [15, 16]. In contrast to traditional diagnostic 40
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techniques employing population based statistics, ML methods develop models that are trained 41

using large amounts of data. In a pilot study, Maeta et al developed a ML algorithm to predict 42

the risk of developing glucose metabolism disorder using the OGTT data [17]. Barakat et al 43

used socio-demographic information, and point-of-care testing from blood and urine to 44

develop diagnostic models of diabetes [18]. This approach uses support vector machine (SVM) 45

along with a rule-based explanation to provide a comprehensibility of the results to the 46

clinicians. The plasma glucose levels at baseline and 2-hr were among the features used. Han 47

et al employed an ensemble SVM and random forest learning approaches to develop a decision 48

making algorithm for the diagnosis of diabetes [19]. However, investigations that are designed 49

to identify individuals at high risk of developing T2DM in the long-term future are limited. 50

The San Antonio diabetes prediction model (SADPM) [20] uses a logistic regression supported 51

by physiological parameters such as systolic blood pressure and cholesterol level. The 52

underlying causes of T2DM in the form insulin resistance and insulin secretion were studied to 53

develop a prediction model in [14]. In another study, multivariate logistic models using the 54

plasma glucose values measured in the OGTT were used to predict the future risk of 55

developing T2DM [21,22]. The predictive power of different biomarkers such as the fasting 56

plasma glucose level, BMI and hemoglobin A1C (HbA1c) for T2DM onset was assessed 57

in [23]. This study focused on individuals with metabolic syndrome, a complex and serious 58

health condition that greatly increases the risk of CVD and diabetes. 59

The standard ML algorithms are designed to yield optimal performance in terms of 60

accuracy over the full dataset. However, medical applications such as diagnosis and prediction 61

of a disease require a biased decision-making mechanism that favors one of the classes. This 62

approach inherently maximizes the performance of the class that is more relevant in clinic 63

terms. Therefore, the objective in such applications is to design a classifier that improves the 64

accuracy of the class that is clinically more relevant. Additionally, often the amount of data is 65

highly skewed with the clinically relevant class in an outsized minority. There are various 66

roundabout ways to obtain accurate classifier performance in this scenario that include the 67

method of sampling [24] in which the class distribution is artificially balanced by either under 68

sampling the majority class, over-sampling the minority class or both. Furthermore, feature 69

weighting schemes assign distinct costs to training examples [25] in order to introduce a certain 70

bias. Other techniques introduce evaluation metric such as the geometric mean (g-mean) [26], 71

that concurrently optimizes the positive class accuracy (sensitivity) and the negative class 72

accuracy (specificity) [27]. 73

We hypothesized that the features extracted from the OGTT will be able to predict the 74

future onset of T2DM. In this paper, we therefore propose a screening tool that identifies the 75

most relevant features extracted from the OGTT data that strongly correlate with the future 76

development of T2DM. We then use SVM to develop a prediction model by utilizing these 77

relevant features estimated from the longitudinal cohort study, the San Antonio Heart 78

Study (SAHS) [28, 29]. 79

Materials and methods 80

San Antonio Heart Study 81

The SAHS is a population-based epidemiological study that was conducted to assess the risk 82

factors of diabetes and cardiovascular diseases in healthy population [28, 29]. In total, 5,158 83

men and non-pregnant women of Mexican American (MA) and Non-Hispanic White (NHW) 84

residents of San Antonio, Texas participated in the study in two cohorts. The age of individuals 85

at the time of recruitment was between 25 and 64 years. As a part of the data collection, 86

plasma glucose and serum insulin concentrations were collected during the OGTT at the 87

baseline and after an average follow-up of 7.5 years. The BMI was also recorded for each 88

individual at the baseline. In this study, we analyzed only the data generated from the second 89
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cohort of the SAHS which comprised of 1,492 subjects from the second cohort of the SAHS. 90

T2DM was diagnosed at the follow-up using the WHO criteria, i.e. fasting glucose level 91

>126 mg/dL or 2-hr glucose level ≥200 mg/dL [10]. Furthermore, all individuals taking 92

anti-diabetic medications were also classified as having T2DM. Individuals that reported by 93

themselves any cardiovascular event such as a heart attack, stroke or angina, were labeled as 94

having CVD at the follow-up. All other participants without T2DM or self-reported CVD were 95

labeled as healthy for the case of this study. During the course of this longitudinal study, a total 96

of 171 individuals developed T2DM with 10 individuals also reporting at least one 97

cardiovascular event. The incidence rate of T2DM in the second cohort of the SAHS 98

population was 10.79 %. Table 1 shows the population distribution in terms of the four classes. 99

The distribution in terms of the ethnicity shows the T2DM prevalence among the MA 100

individuals more than double, as compared to the NHW population. 101

Table 1. The classification of the 1,492 subjects used in this study based on the ethnicity.
Healthy T2DM CVD T2DM+CVD

Total 1,277 161 44 10
85.56 % 10.79 % 2.95 % 0.67 %

MA 836 131 24 7
83.77 % 13.13 % 2.40 % 0.70 %

NHW 441 30 20 3
89.27 % 6.07 % 4.05 % 0.61 %

The data used in this study consists of plasma glucose and serum insulin concentrations 102

sampled at the baseline, and at 30, 60 and 120 min thereafter. The individuals are labeled at the 103

SAHS follow-up using the current standard of care [28]. Fig 1 shows the distributions of the 104

data used in this study. 105

Machine Learning Framework 106

In this paper, we implemented SVM to construct the models for the prediction of future T2DM. 107

The SVM develops models from a given training dataset such that it generalizes well to a new 108

dataset and minimizes the empirical risk associated with misclassification of samples in the 109

training set [30, 31]. A model constructed by the SVM minimizes the overlap between classes 110

in the training set by optimizing the separating hyperplane. For problems that may not be 111

amenable to linear separation between the two classes, the SVM technique is very attractive 112

due to the fact that the input feature space can be transformed to a higher dimension space, and 113

a linear boundary can then be determined. This approach generally provides a better training 114

performance, but potentially increases computational complexity excessively with the increase 115

of the dimensionality of the input feature space [32]. The introduction of a kernel alleviates the 116

need to determine the transformation by calculating the inner product between the coordinates 117

of the input feature space instead. In this paper, we used the Gaussian radial basis 118

function (RBF), as the kernel. The performance of the SVM can be optimized by tuning the 119

free parameter of the kernel σ and specifying a cost that controls the rigidity of the class 120

margin. This process is normally carried out through a grid search. 121

Feature Extraction 122

We extracted all the features from the SAHS data acquired at the baseline. The dataset consists 123

of plasma glucose and insulin concentrations recorded before glucose intake and at three 124

time-points thereafter (30, 60, and 120 min). The labels (healthy and diabetes) were generated 125

at the 7.5 years follow-up using the current standard of care diagnostics [28]. From the glucose 126

and insulin concentrations, we computed the slope and area under the curve between all the 127

June 17, 2019 4/11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/688804doi: bioRxiv preprint 

https://doi.org/10.1101/688804
http://creativecommons.org/licenses/by/4.0/


Basal 30 60 120
0

50

100

150

200

250

Glucose

Insulin

AuC-G30-60

�G120-60

I60

G60ThalfG15

1. AuC-G0-30 25. ThalfG1513. �G30-0 37. �I/�G30-0

2. AuC-G0-60 26. ThalfG3014. �G60-0 38. �I/�G60-0

3. AuC-G0-120 27. ThalfG4515. �G120-0 39. �I/�G120-0

4. AuC-G30-60 16. �G60-30 28. ThalfG60 40. �I/�G60-30

5. AuC-G30-120 17. �G120-30 29. ThalfG75 41. �I/�G120-30

6. AuC-G60-120 18. �G120-60 30. ThalfG90 42. �I/�G120-60

8. AuC-I0-60 20. �I60-0 32. ThalfI30 44. �I/�G60-0 x M

7. AuC-I0-30 19. �I30-0 31. ThalfI15 43. �I/�G30-0 x M

9. AuC-I0-120 21. �I120-0
33. ThalfI45 45. �I/�G120-0 x M

10. AuC-I30-60 22. �I60-30 34. ThalfI60 46. �I/�G60-30 x M

11. AuC-I30-120 23. �I120-30 35. ThalfI75 47. �I/�G120-30 x M

12. AuC-I60-120 24. �I120-60 36. ThalfI90 48. �I/�G120-60 x M

49. G0

50. G30

51. G60

52. G120

53. I0

54. I30

55. I60

56. I120

57. Age
58. Ethnicity
59. BMI
60. HOMA-IR
61. Matsuda  Index

Fig 2. Illustration of all 61 features extracted from the SAHS dataset.

possible combinations of a pair of measurements. In addition, we also calculated three 128

empirical markers that describe the relationship between the glucose intake and insulin 129

response. The first is the insulinogenic index (IGI) [33], which is a direct measure of the 130

insulin response to glucose. It is calculated as the ratio of the slope of the insulin curve to the 131

slope of the glucose curve between any two time intervals in the OGTT. The second marker, 132

Matsuda index (M) evaluates the insulin sensitivity from the OGTT using a product of the 133

weighted averages of the glucose and insulin concentrations [34], 134

M =
10, 000

8
√

G0 · I0

[
G0 + 2G30 + 2G60 + 2G90 + G120

]−1/2

×
[
I0 + 2I30 + 2I60 + 2I90 + I120

]−1/2
(1)

where the subscripts depict the time point of the OGTT. In case when the value at 90 min is not 135

available, the average of 60 and 120 min is used instead [34]. The third marker, homeostatic 136

model assessment - insulin resistance (HOMA-IR) [35] evaluates the beta-cell function. It is 137

defined as the product of fasting plasma glucose concentration and fasting blood insulin 138

concentration divided by 22.5. These markers have been used to estimate abnormalities in the 139

insulin sensitivity. A total of 61 features (illustrated in Fig 2) are used in this study. The prefix 140

AuC denotes the area under the curve and the slope is denoted by the symbol ∆. The term Thalf 141

represents the linearly interpolated value between any two intervals. 142

Feature Selection 143

Before constructing the SVM model to predict a future diabetes occurrence, we search for the 144

most effective subset of features in terms of relevance to the classifier output, i.e. incidence of 145

T2DM at the follow-up. As a first step, we selected the ten most relevant features from the 61 146

available features using the minimum redundancy maximum relevance (mRMR) 147

algorithm [36], which selects the most relevant features with minimum correlation among 148

them. The mRMR algorithm determines the relevance between a feature (x as continuous 149

random variable) and the class label (y as discrete random variable) in terms of the mutual 150

information I defined as [37], 151

I(x, y) = −
∫

pi ln pi dx −
∑
j

pj ln pj +
∑
j

∫
pi j ln pi j dx, (2)

where pi , and pj are the probabilities of the random variables x and y taking a particular value 152

xi and yj ∈ (−1, 1)∀ j respectively. The term pi j denotes the joint probability 153

P{x = xi, y = yj}. The three terms in Eq (2) represent the continuous, discrete and joint 154

June 17, 2019 5/11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/688804doi: bioRxiv preprint 

https://doi.org/10.1101/688804
http://creativecommons.org/licenses/by/4.0/


entropies of the random variables in the respective order. The features that are most relevant to 155

the class label are the ones that maximize I. A heuristic approach is to keep only one a single 156

feature from a correlated set of features that provides similar relevance information, and 157

discard the remaining features. In order to ensure this, the mRMR algorithm minimizes the 158

mutual correlation among the features expressed in terms of redundancy R, 159

R(X) =
∑

xi,x j ∈X

I(xi, xj). (3)

where I follows its definition in Eq (2). This procedure yielding maximum I with respect to 160

the diabetic class, along with minimal R, shortlists a set of ten features that are potentially 161

strong predictors of the future development of T2DM.

Table 2. List of ten most relevant features ranked by the mRMR algorithm
Rank Feature

1 AuC-G0-120
2 ∆G120-0
3 ∆G120-60
4 Ethnicity
5 ∆I120-0
6 ∆G60-0
7 ∆G30-0
8 ∆G60-30
9 ∆I120-60
10 ∆I60-0

162

Classification 163

We developed a supervised learning scheme using the baseline SAHS dataset and the labels 164

(healthy, T2DM) obtained at the follow-up after an average of 7.5 years. In each experiment, 165

we used a kernel-based binary SVM method to train, test and validate the performance of the 166

diabetes prediction models. We excluded the 44 CVD entries as the only way of defining this 167

class was based upon self-reporting and not on quantitative assessment. Furthermore, we also 168

removed all entries with any information missing. That resulted in a total of 1,492 instances 169

that were used in this study, out of which 171 were from the minority class and 1,321 were 170

majority instances. As shown in Table 1, the SAHS dataset is intrinsically unbalanced with the 171

class distribution skewed toward the majority class with a ratio of 7.5:1. We considered the 172

minority class of diabetic subjects as the positive class with a label of 1, whereas the majority 173

class consisting of healthy persons was termed as the negative class marked by a ‘-1’ label. To 174

standardize the feature range prior to training, the feature space was scaled to unit variance 175

around the respective mean for each feature respectively. To ensure that a model was unbiased, 176

robust, and generalized well to the new data, we performed 10-fold cross-validation (CV). 177

For each CV, we first randomly selected a hold-out set consisting of 11 minority and 83 178

majority instances. We evaluated each model 100 times, in which the data was randomly 179

partitioned on each occasion. We compared the performances of linear and non-linear SVM for 180

all 1,023 possible combinations of the 10 most relevant features by considering all 1 to 10 181

combinations of features?. The optimal hyperplane parameters of the kernel were determined 182

through a grid search. To select the best feature set, we have used the geometric mean of 183

sensitivity and specificity [26]. All experiments were performed by an in-house developed 184

software using Matlab®(version 9.2.0 MathWorks Inc., Natick, Massachusetts, USA). 185
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Fig 3. The g-mean of sensitivity and specificity for A: linear, and B: RBF kernels. The
maximum performance feature combination is depicted by a different color scheme.

1 Results and Discussion 186

The mRMR algorithm produces a sequential list of ten ranked features, shown in Table 2. 187

Besides ethnicity (ranked fourth), all other features are notably derived from OGTT 188

measurements. The list contains six features derived from plasma glucose concentrations, 189

while only three features are deduced from insulin concentrations.
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Fig 4. The classifier performance in terms of accuracy and sensitivity for the best feature
combinations. A: Linear kernel. B: RBF kernel.

190

In all the classification experiments, we aimed to maximize the ability to correctly predict 191

the diabetic class without compromising the classifier accuracy. The bar plots in Fig. 3 show 192

the g-mean of the sensitivity and specificity obtained from the linear and RBF kernels. For 193

each number of features used, we selected the combination that generated the maximum 194

g-mean. All the results presented here are averaged over 100 iterations of the respective 195

classifiers. The g-mean obtained from the linear SVM ranges from 0.8711 to 0.8742. As 196

observed from Fig. 3a, the addition of more features does not result in a substantial 197

performance improvement. However, the maximum g-mean of the sensitivity and specificity is 198

obtained when all 10 features are used. For the non-linear SVM with RBF kernel, the g-mean 199

ranges from 0.8638 to 0.8903. The combination of the features namely, AuC-Glu0-120, 200

∆G120-0, ∆G120-60 and ∆G30-0 yields the maximum performance. Notably, all four features are 201

derived from the plasma glucose concentrations. We note that the glucose derived features are 202

ranked the highest during feature selection. Moreover, a combination of glucose only features 203

generate the best SVM models when less than four features are used. 204

The accuracy and sensitivity of the same feature combinations are separately shown in Fig. 205
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Table 3. Comparison of validation performance of the best SVM classifiers with previous
studies.

Accuracy ± SD Specificity ± SD Specificity ± SD g-mean ± SD

Linear SVM (10 features) 95.55 % ± 0.24 % 78.09 % ± 0.33 % 97.87 % ± 0.30 % 0.8742 ± 0.2100
SVM-RBF (4 features) 96.80 % ± 0.41 % 80.09 % ± 1.42 % 99.02 % ± 0.33 % 0.8903 ± 1.5600

SADPM [20] 56.329 % 88.80 % 52.00 % 0.6795
Two-step Approach [21] 77.43 % 77.70 % 77.40 % 0.7755

4. The best model obtained using a combination of four glucose derived features and RBF 206

kernel has an accuracy of 96.80 %, and sensitivity of 80.09 %. 207

Table 3 presents a comparison of the generated SVM models to the results obtained in other 208

studies using the SAHS dataset. We compared our results with the SADPM [20], in which a 209

person’s age, gender, ethnicity, fasting glucose level, family history, blood pressure, and 210

cholesterol level were used to construct a logistic regression. It is notable that the SADPM has 211

the highest sensitivity (88.80 %) however, the increased prediction performance comes along 212

with a very low accuracy of 56.33 %. In [21], a two-step approach was introduced that first 213

used the SADPM risk score and then augmented it with the 1-hour plasma glucose 214

concentration measured in the OGTT. This strategy resulted in an improved accuracy but the 215

sensitivity dropped to 77.70 %. 216

In the SAHS dataset, the prevalence of IFG and IGT was 8.91 % (133 instances) and 217

22.52 % (336 instances) respectively. Out of the 399 subjects diagnosed with prediabetes 218

showing IFG or IGT at the baseline, only 120 (30.08 %) actually developed diabetes between 219

the baseline and the follow-up. Furthermore, 120 (25.67 %) subjects diagnosed with diabetes 220

at the follow-up did not show any symptoms of either IGT or IFG at the baseline. 221

Our investigation shows that features derived from insulin have less predictive value for 222

T2DM as compared to glucose based features. Indices such as Matsuda and HOMA-IR that are 223

commonly used to assess the insulin function, also did not yield high correlation with the 224

future development of T2DM. 225

2 Conclusion 226

In this paper, we present a most promising set of features that are used to develop a non-linear 227

SVM based future T2DM prediction model. The features were derived from the OGTT data 228

and were augmented by personal information such as age, ethnicity, and BMI. Using a feature 229

selection algorithm, we demonstrate that the features deduced from the plasma glucose 230

concentrations provide the optimal feature subset and have the strongest predictive power for 231

the future development of T2DM. Moreover, the performance of the presented prediction 232

model is significantly better in terms of combined accuracy and sensitivity combined, 233

compared to other T2DM prediction models. In order to address the unbalanced nature of the 234

SAHS dataset, we chose the g-mean of sensitivity and specificity as the performance evaluation 235

criteria. 236

The principal contribution of this study includes a T2DM prediction model based on the 237

features derived only from the plasma glucose concentrations measured during an OGTT. The 238

findings of this paper provide a complementary and cost-effective tool for the clinicians to 239

screen individuals that are at an increased risk of developing T2DM in the future. 240
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