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Abstract

Diabetes is a large healthcare burden worldwide. There is substantial evidence that lifestyle
modifications and drug intervention can prevent diabetes, therefore, an early identification of
high risk individuals is important to design targeted prevention strategies. In this paper, we
present an automatic tool that uses machine learning techniques to predict the development of
type 2 diabetes mellitus (T2DM). Data generated from an oral glucose tolerance test (OGTT)
was used to develop a predictive model based on the support vector machine (SVM). We
trained and validated the models using the OGTT and demographic data of 1,492 healthy
individuals collected during the San Antonio Heart Study. This study collected plasma glucose
and insulin concentrations before glucose intake and at three time-points thereafter (30, 60 and
120 min). Furthermore, personal information such as age, ethnicity and body-mass index was
also a part of the dataset. Using 11 oral glucose tolerance test (OGTT) measurements, we have
deduced 61 features, which are then assigned a rank and the top ten features are shortlisted
using Minimum Redundancy Maximum Relevance feature selection algorithm. All possible
combinations of the 10 best ranked features were used to generate SVM based prediction
models. This research shows that an individual’s plasma glucose levels, and the information
derived therefrom have the strongest predictive performance for the future development of
T2DM. Significantly, insulin and demographic features do not provide additional performance
improvement for diabetes prediction. The results of this work identify the parsimonious
clinical data needed to be collected for an efficient prediction of T2DM. Our approach shows
an average accuracy of 96.80 % and a sensitivity of 80.09 % obtained on a holdout set.

Introduction

The global incidence of diabetes was estimated at 422 million in the year 2014 and its
prevalence among the adult population increased from 4.7 % in 1980 to 8.5 % in 2014 [1]. In
2015 alone, about 1.6 million deaths worldwide were attributed to diabetes. In addition to the
high mortality rate, an individual with diabetes is at a greater risk of developing cardiovascular

June 17, 2019

]


https://doi.org/10.1101/688804
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/688804; this version posted July 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

300 T T T T 600

250 | —. 500

400 -

IRRREIRN Y

- - i #l

= — i A
Basal 30 60 120

U/mL]

I L L I
Basal 30 60 120

(a) A (b)B
Fig 1. Box plots of glucose and insulin levels for healthy and diabetic subjects measured at the
baseline OGTT. A: Plasma glucose. B: Serum insulin

disease (CVD), visual impairment and limb amputations, as compared to a non-diabetic
individual. Due to the substantial socio-economic burdens that are associated with diabetes, its
early detection, prevention, and management has become a worldwide top-level health concern.
There is experimental evidence that the development of diabetes can be delayed or even
prevented provided an individual undertakes a lifestyle change that includes diet management,
adopting exercise, and adhering to a pharmacological treatment [2]]. The early identification of
high risk individuals of diabetes is therefore, essential for targeted prevention strategies [3].

Even though the number of clinical studies aimed at diagnosing diabetes has been growing
recently, studies predicting the risk of developing diabetes are limited. This subject has lately
received an increased amount of research interest [4]. However, the clinical significance of
such predictions largely depend on the type and quality of data collected. There are studies that
assign a probability to the future risk of diabetes using socio-demographic characteristics such
as age, ethnicity, body-mass index (BMI) and genealogical information collected through
population [5}|6]. Due to the unreliable data collection, such techniques can be misleading.
The collection of blood samples, on the other hand, provides more reliable data and is a first
step towards the disease prognosis with a deeper clinical insight [7]. The OGTT is commonly
used to screen diabetes [8]] and to provide a critical understanding of its future evolution [9]. In
an OGTT, the plasma glucose and insulin levels are measured at regular intervals in a 2-hr
period after orally administering a standard dose of glucose [9]. The glucose tolerance and
insulin resistance are two of the most significant parameters deduced from the OGTT that are
widely regarded as the major factors in the development of type 2 diabetes mellitus (T2DM).

A precursory stage of diabetes, commonly referred to as prediabetes, exists before overt
T2DM, and is described by impaired fasting glucose (IFG), along with impaired glucose
tolerance (IGT). According to the World Health Organization (WHO) diagnostic criteria, the
IFG is defined as fasting plasma glucose level of 100 mg/dL to 125 mg/dL. The IGT which
describes an abnormally raised glucose level is defined as the 2-hour plasma glucose level in
the range of 140 mg/dL to 199 mg/dL, measured during the OGTT [10]. Although prediabetes
is considered as an intermediate stage in the natural progression of T2DM [11], it has been
reported that only 50 % of the subjects diagnosed with IGT developed diabetes within 10
years [[12}/13]]. Moreover, long-term population studies have also shown that around 50 % of the
diabetic patients did not exhibit IGT at any time prior to the diagnosis [[14]]. This suggests that
the fasting and 2-hour plasma glucose levels used in and of themselves cannot accurately
predict the future development of T2DM.

The availability of big data in the healthcare sector has made Machine learning (ML) a
viable instrument for disease prediction [[15}/16]. In contrast to traditional diagnostic
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techniques employing population based statistics, ML methods develop models that are trained
using large amounts of data. In a pilot study, Maeta et al developed a ML algorithm to predict
the risk of developing glucose metabolism disorder using the OGTT data [|17]. Barakat et al
used socio-demographic information, and point-of-care testing from blood and urine to
develop diagnostic models of diabetes [[18|]. This approach uses support vector machine (SVM)
along with a rule-based explanation to provide a comprehensibility of the results to the
clinicians. The plasma glucose levels at baseline and 2-hr were among the features used. Han
et al employed an ensemble SVM and random forest learning approaches to develop a decision
making algorithm for the diagnosis of diabetes [[19]]. However, investigations that are designed
to identify individuals at high risk of developing T2DM in the long-term future are limited.
The San Antonio diabetes prediction model (SADPM) [20] uses a logistic regression supported
by physiological parameters such as systolic blood pressure and cholesterol level. The
underlying causes of T2DM in the form insulin resistance and insulin secretion were studied to
develop a prediction model in [|14]]. In another study, multivariate logistic models using the
plasma glucose values measured in the OGTT were used to predict the future risk of
developing T2DM [21]22]. The predictive power of different biomarkers such as the fasting
plasma glucose level, BMI and hemoglobin A1C (HbA1c) for T2DM onset was assessed

in [23]]. This study focused on individuals with metabolic syndrome, a complex and serious
health condition that greatly increases the risk of CVD and diabetes.

The standard ML algorithms are designed to yield optimal performance in terms of
accuracy over the full dataset. However, medical applications such as diagnosis and prediction
of a disease require a biased decision-making mechanism that favors one of the classes. This
approach inherently maximizes the performance of the class that is more relevant in clinic
terms. Therefore, the objective in such applications is to design a classifier that improves the
accuracy of the class that is clinically more relevant. Additionally, often the amount of data is
highly skewed with the clinically relevant class in an outsized minority. There are various
roundabout ways to obtain accurate classifier performance in this scenario that include the
method of sampling [24] in which the class distribution is artificially balanced by either under
sampling the majority class, over-sampling the minority class or both. Furthermore, feature
weighting schemes assign distinct costs to training examples [[25]] in order to introduce a certain
bias. Other techniques introduce evaluation metric such as the geometric mean (g-mean) [26],
that concurrently optimizes the positive class accuracy (sensitivity) and the negative class
accuracy (specificity) [27].

We hypothesized that the features extracted from the OGTT will be able to predict the
future onset of T2DM. In this paper, we therefore propose a screening tool that identifies the
most relevant features extracted from the OGTT data that strongly correlate with the future
development of T2DM. We then use SVM to develop a prediction model by utilizing these
relevant features estimated from the longitudinal cohort study, the San Antonio Heart
Study (SAHS) [28],29].

Materials and methods

San Antonio Heart Study

The SAHS is a population-based epidemiological study that was conducted to assess the risk
factors of diabetes and cardiovascular diseases in healthy population [28}29]. In total, 5,158
men and non-pregnant women of Mexican American (MA) and Non-Hispanic White (NHW)
residents of San Antonio, Texas participated in the study in two cohorts. The age of individuals
at the time of recruitment was between 25 and 64 years. As a part of the data collection,
plasma glucose and serum insulin concentrations were collected during the OGTT at the
baseline and after an average follow-up of 7.5 years. The BMI was also recorded for each
individual at the baseline. In this study, we analyzed only the data generated from the second
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cohort of the SAHS which comprised of 1,492 subjects from the second cohort of the SAHS.

T2DM was diagnosed at the follow-up using the WHO criteria, i.e. fasting glucose level
>126 mg/dL or 2-hr glucose level >200 mg/dL [10]. Furthermore, all individuals taking
anti-diabetic medications were also classified as having T2DM. Individuals that reported by
themselves any cardiovascular event such as a heart attack, stroke or angina, were labeled as
having CVD at the follow-up. All other participants without T2DM or self-reported CVD were
labeled as healthy for the case of this study. During the course of this longitudinal study, a total
of 171 individuals developed T2DM with 10 individuals also reporting at least one
cardiovascular event. The incidence rate of T2DM in the second cohort of the SAHS
population was 10.79 %. Table[I|shows the population distribution in terms of the four classes.
The distribution in terms of the ethnicity shows the T2DM prevalence among the MA
individuals more than double, as compared to the NHW population.

Table 1. The classification of the 1,492 subjects used in this study based on the ethnicity.
Healthy ~T2DM  CVD  T2DM+CVD

Total 1,277 161 44 10
85.56%  10.79%  2.95% 0.67 %

MA 836 131 24 7
83.77%  13.13%  2.40% 0.70 %

NHW 441 30 20 3
89.27%  6.07%  4.05% 0.61 %

The data used in this study consists of plasma glucose and serum insulin concentrations
sampled at the baseline, and at 30, 60 and 120 min thereafter. The individuals are labeled at the
SAHS follow-up using the current standard of care [28]]. Fig[I]shows the distributions of the
data used in this study.

Machine Learning Framework

In this paper, we implemented SVM to construct the models for the prediction of future T2DM.
The SVM develops models from a given training dataset such that it generalizes well to a new
dataset and minimizes the empirical risk associated with misclassification of samples in the
training set [30,31]. A model constructed by the SVM minimizes the overlap between classes
in the training set by optimizing the separating hyperplane. For problems that may not be
amenable to linear separation between the two classes, the SVM technique is very attractive
due to the fact that the input feature space can be transformed to a higher dimension space, and
a linear boundary can then be determined. This approach generally provides a better training
performance, but potentially increases computational complexity excessively with the increase
of the dimensionality of the input feature space [32]]. The introduction of a kernel alleviates the
need to determine the transformation by calculating the inner product between the coordinates
of the input feature space instead. In this paper, we used the Gaussian radial basis

function (RBF), as the kernel. The performance of the SVM can be optimized by tuning the
free parameter of the kernel o and specifying a cost that controls the rigidity of the class
margin. This process is normally carried out through a grid search.

Feature Extraction

We extracted all the features from the SAHS data acquired at the baseline. The dataset consists
of plasma glucose and insulin concentrations recorded before glucose intake and at three
time-points thereafter (30, 60, and 120 min). The labels (healthy and diabetes) were generated
at the 7.5 years follow-up using the current standard of care diagnostics [28]]. From the glucose
and insulin concentrations, we computed the slope and area under the curve between all the
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Fig 2. Tllustration of all 61 features extracted from the SAHS dataset.

possible combinations of a pair of measurements. In addition, we also calculated three
empirical markers that describe the relationship between the glucose intake and insulin
response. The first is the insulinogenic index (IGI) [33]], which is a direct measure of the
insulin response to glucose. It is calculated as the ratio of the slope of the insulin curve to the
slope of the glucose curve between any two time intervals in the OGTT. The second marker,
Matsuda index (M) evaluates the insulin sensitivity from the OGTT using a product of the
weighted averages of the glucose and insulin concentrations [34]],

10,000 -
M=— [GO + 2G3g + 2Ggo + 2Gogg + G120] 12

8VGo - Iy ey

X [IO + 2I30 + 2Ig0 + 2Igg + 1120]_1/2

where the subscripts depict the time point of the OGTT. In case when the value at 90 min is not
available, the average of 60 and 120 min is used instead [[34)]. The third marker, homeostatic
model assessment - insulin resistance (HOMA-IR) [35]] evaluates the beta-cell function. It is
defined as the product of fasting plasma glucose concentration and fasting blood insulin
concentration divided by 22.5. These markers have been used to estimate abnormalities in the
insulin sensitivity. A total of 61 features (illustrated in Fig[2) are used in this study. The prefix
AuC denotes the area under the curve and the slope is denoted by the symbol A. The term Thr
represents the linearly interpolated value between any two intervals.

Feature Selection

Before constructing the SVM model to predict a future diabetes occurrence, we search for the
most effective subset of features in terms of relevance to the classifier output, i.e. incidence of
T2DM at the follow-up. As a first step, we selected the ten most relevant features from the 61
available features using the minimum redundancy maximum relevance (mRMR)

algorithm [36]], which selects the most relevant features with minimum correlation among
them. The mRMR algorithm determines the relevance between a feature (x as continuous
random variable) and the class label (y as discrete random variable) in terms of the mutual
information 7 defined as [37],

I(xy) = —/pilnpidx—ijlnpj+Z/pijlnpijdx, @)
j J

where p;, and p; are the probabilities of the random variables x and y taking a particular value
x; and y; € (=1,1)V; respectively. The term p;; denotes the joint probability
P{x = x;,y = y;}. The three terms in Eq (2) represent the continuous, discrete and joint
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entropies of the random variables in the respective order. The features that are most relevant to
the class label are the ones that maximize 7. A heuristic approach is to keep only one a single
feature from a correlated set of features that provides similar relevance information, and
discard the remaining features. In order to ensure this, the mRMR algorithm minimizes the
mutual correlation among the features expressed in terms of redundancy R,

RE) = > T(xx)). 3)

Xi,Xj eX

where I follows its definition in Eq (2)). This procedure yielding maximum I with respect to
the diabetic class, along with minimal R, shortlists a set of ten features that are potentially
strong predictors of the future development of T2DM.

Table 2. List of ten most relevant features ranked by the mRMR algorithm

Rank Feature
1 AuC-Gy_129
2 AGi20.0
3 AG120-60
4 Ethnicity
5 Alj20-0
6 AGgp-0
7 AG30.0
8 AGg0-30
9 Al120-60

10 Algo-o

Classification

We developed a supervised learning scheme using the baseline SAHS dataset and the labels
(healthy, T2DM) obtained at the follow-up after an average of 7.5 years. In each experiment,
we used a kernel-based binary SVM method to train, test and validate the performance of the
diabetes prediction models. We excluded the 44 CVD entries as the only way of defining this
class was based upon self-reporting and not on quantitative assessment. Furthermore, we also
removed all entries with any information missing. That resulted in a total of 1,492 instances
that were used in this study, out of which 171 were from the minority class and 1,321 were
majority instances. As shown in Table[I] the SAHS dataset is intrinsically unbalanced with the
class distribution skewed toward the majority class with a ratio of 7.5:1. We considered the
minority class of diabetic subjects as the positive class with a label of 1, whereas the majority
class consisting of healthy persons was termed as the negative class marked by a ‘-1’ label. To
standardize the feature range prior to training, the feature space was scaled to unit variance
around the respective mean for each feature respectively. To ensure that a model was unbiased,
robust, and generalized well to the new data, we performed 10-fold cross-validation (CV).

For each CV, we first randomly selected a hold-out set consisting of 11 minority and 83
majority instances. We evaluated each model 100 times, in which the data was randomly
partitioned on each occasion. We compared the performances of linear and non-linear SVM for
all 1,023 possible combinations of the 10 most relevant features by considering all 1 to 10
combinations of features?. The optimal hyperplane parameters of the kernel were determined
through a grid search. To select the best feature set, we have used the geometric mean of
sensitivity and specificity [26]. All experiments were performed by an in-house developed
software using Matlab®(version 9.2.0 MathWorks Inc., Natick, Massachusetts, USA).
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Fig 3. The g-mean of sensitivity and specificity for A: linear, and B: RBF kernels. The
maximum performance feature combination is depicted by a different color scheme.

1 Results and Discussion

The mRMR algorithm produces a sequential list of ten ranked features, shown in Table 2}
Besides ethnicity (ranked fourth), all other features are notably derived from OGTT
measurements. The list contains six features derived from plasma glucose concentrations,
while only three features are deduced from insulin concentrations.
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Fig 4. The classifier performance in terms of accuracy and sensitivity for the best feature
combinations. A: Linear kernel. B: RBF kernel.

In all the classification experiments, we aimed to maximize the ability to correctly predict
the diabetic class without compromising the classifier accuracy. The bar plots in Fig. [3] show
the g-mean of the sensitivity and specificity obtained from the linear and RBF kernels. For
each number of features used, we selected the combination that generated the maximum
g-mean. All the results presented here are averaged over 100 iterations of the respective
classifiers. The g-mean obtained from the linear SVM ranges from 0.8711 to 0.8742. As
observed from Fig. 3] the addition of more features does not result in a substantial
performance improvement. However, the maximum g-mean of the sensitivity and specificity is
obtained when all 10 features are used. For the non-linear SVM with RBF kernel, the g-mean
ranges from 0.8638 to 0.8903. The combination of the features namely, AuC-Gluy.29,
AG120-0, AGi20-60 and AGsg.g yields the maximum performance. Notably, all four features are
derived from the plasma glucose concentrations. We note that the glucose derived features are
ranked the highest during feature selection. Moreover, a combination of glucose only features
generate the best SVM models when less than four features are used.

The accuracy and sensitivity of the same feature combinations are separately shown in Fig.
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Table 3. Comparison of validation performance of the best SVM classifiers with previous
studies.

Accuracy + SD Specificity + SD Specificity + SD g-mean + SD

Linear SVM (10 features)  95.55% +0.24%  78.09% +0.33%  97.87% +0.30%  0.8742 +0.2100

SVM-RBF (4 features) 96.80% +0.41%  80.09% +1.42%  99.02% +0.33%  0.8903 £+ 1.5600
SADPM [20] 56.329 % 88.80 % 52.00 % 0.6795
Two-step Approach [21] 77.43 % 77.70 % 77.40 % 0.7755

[l The best model obtained using a combination of four glucose derived features and RBF
kernel has an accuracy of 96.80 %, and sensitivity of 80.09 %.

Table 3| presents a comparison of the generated SVM models to the results obtained in other
studies using the SAHS dataset. We compared our results with the SADPM [20], in which a
person’s age, gender, ethnicity, fasting glucose level, family history, blood pressure, and
cholesterol level were used to construct a logistic regression. It is notable that the SADPM has
the highest sensitivity (88.80 %) however, the increased prediction performance comes along
with a very low accuracy of 56.33 %. In [21]], a two-step approach was introduced that first
used the SADPM risk score and then augmented it with the 1-hour plasma glucose
concentration measured in the OGTT. This strategy resulted in an improved accuracy but the
sensitivity dropped to 77.70 %.

In the SAHS dataset, the prevalence of IFG and IGT was 8.91 % (133 instances) and
22.52 % (336 instances) respectively. Out of the 399 subjects diagnosed with prediabetes
showing IFG or IGT at the baseline, only 120 (30.08 %) actually developed diabetes between
the baseline and the follow-up. Furthermore, 120 (25.67 %) subjects diagnosed with diabetes
at the follow-up did not show any symptoms of either IGT or IFG at the baseline.

Our investigation shows that features derived from insulin have less predictive value for
T2DM as compared to glucose based features. Indices such as Matsuda and HOMA-IR that are
commonly used to assess the insulin function, also did not yield high correlation with the
future development of T2DM.

2 Conclusion

In this paper, we present a most promising set of features that are used to develop a non-linear
SVM based future T2DM prediction model. The features were derived from the OGTT data
and were augmented by personal information such as age, ethnicity, and BMI. Using a feature
selection algorithm, we demonstrate that the features deduced from the plasma glucose
concentrations provide the optimal feature subset and have the strongest predictive power for
the future development of T2DM. Moreover, the performance of the presented prediction
model is significantly better in terms of combined accuracy and sensitivity combined,
compared to other T2DM prediction models. In order to address the unbalanced nature of the
SAHS dataset, we chose the g-mean of sensitivity and specificity as the performance evaluation
criteria.

The principal contribution of this study includes a T2DM prediction model based on the
features derived only from the plasma glucose concentrations measured during an OGTT. The
findings of this paper provide a complementary and cost-effective tool for the clinicians to
screen individuals that are at an increased risk of developing T2DM in the future.
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