

1 **The alarmone (p)ppGpp is part of the heat shock response of *Bacillus***
2 ***subtilis***

3
4 Heinrich Schäfer^{1,2}, Bertrand Beckert³, Wieland Steinchen⁴, Aaron Nuss⁵, Michael
5 Beckstette⁵, Ingo Hantke¹, Petra Sudzinová⁶, Libor Krásný⁶, Volkhard Kaeber⁷, Petra
6 Dersch^{5,8}, Gert Bange^{4*}, Daniel Wilson^{3*} & Kürşad Turgay^{1,2*}

7
8 **Author affiliations:**

9 ¹ Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419,
10 Hannover, Germany.

11 ² Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany

12 ³ Institute for Biochemistry and Molecular Biology, Martin-Luther-King Platz 6, University of
13 Hamburg, 20146 Hamburg, Germany.

14 ⁴ Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and
15 Department of Chemistry, Hans-Meerwein-Strasse, 35043 Marburg, Germany.

16 ⁵ Department of Molecular Infection Biology, Helmholtz Centre for Infection Research,
17 Braunschweig, Germany

18 ⁶ Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague,
19 Czech Republic.

20 ⁷ Hannover Medical School, Research Core Unit Metabolomics, Carl-Neuberg-Strasse 1,
21 30625, Hannover, Germany.

22 ⁸ Institute of Infectiology, Von-Esmarch-Straße 56, University of Münster, Münster, Germany

23

24 **Short title:** The interplay of heat shock and stringent response

25

26 **Abstract**

27 Here, *B. subtilis* was used as a model organism to investigate how cells respond and adapt to
28 proteotoxic stress conditions. Our experiments suggested that the stringent response, caused
29 by raised levels of the (p)ppGpp alarmone, plays a role during thermotolerance development
30 and the heat shock response. Accordingly, our experiments revealed a rapid increase of
31 cellular (p)ppGpp levels upon heat shock as well as salt- and oxidative stress. Strains lacking
32 (p)ppGpp exhibited increased stress sensitivity, while raised (p)ppGpp levels conferred
33 increased stress tolerance to heat- and oxidative stress. During thermotolerance development,
34 stress response genes were highly up-regulated together with a concurrent transcriptional
35 down-regulation of the rRNA, which was influenced by the second messenger (p)ppGpp and
36 the transcription factor Spx. Remarkably, we observed that (p)ppGpp appeared to control the
37 cellular translational capacity and that during heat stress the raised cellular levels of the
38 alarmone were able to curb the rate of protein synthesis. Furthermore, (p)ppGpp controls the
39 heat-induced expression of Hpf and thus the formation of translationally inactive 100S
40 disomes. These results indicate that *B. subtilis* cells respond to heat-mediated protein
41 unfolding and aggregation, not only by raising the cellular repair capacity, but also by
42 decreasing translation involving (p)ppGpp mediated stringent response to concurrently reduce
43 the protein load for the cellular protein quality control system.

44 **Author Summary**

45 Here we demonstrate that the bacterial stringent response, which is known to slow down
46 translation upon sensing nutrient starvation, is also intricately involved in the stress response
47 of *B. subtilis* cells. The second messengers (p)ppGpp act as pleiotropic regulators during the
48 adaptation to heat stress. (p)ppGpp slows down translation and is also involved in the
49 transcriptional down-regulation of the translation machinery, together with the transcriptional

50 stress regulator Spx. The stress-induced elevation of cellular (p)ppGpp levels confers
51 increased stress tolerance and facilitates an improved protein homeostasis by reducing the
52 load on the protein quality control system.

53 **Introduction**

54 Bacteria have evolved complex and diverse regulatory networks to sense and respond to
55 changes in the environment, which can include physical stresses or nutrient limitations [1].
56 The protein quality control system (PQS) comprises a conserved set of chaperones and
57 proteases that monitor and maintain protein homeostasis is present in all cells. Various
58 physical stresses, such as heat stress, favor the unfolding and aggregation of cellular proteins,
59 which can be sensed by heat shock response systems, allowing an appropriate cellular stress
60 response. This response includes the induction of the expression of chaperones and proteases
61 of the PQS, also known as heat shock proteins [2,3].

62 Interestingly, in all cells including *B. subtilis*, a short exposure to a raised but non-
63 lethal temperature induces thermotolerance, an acquired resistance to otherwise lethal
64 temperatures. Investigating the adaptation to such adverse conditions, also known as priming,
65 allows the molecular mechanisms and interplay of the various cellular processes involved in
66 the cellular stress and heat shock response to be studied [4,5]. In *B. subtilis*, the heat shock
67 response is orchestrated by multiple transcriptional regulators, including the heat-sensitive
68 repressors HrcA & CtsR, which control the expression of the PQS and other general stress
69 genes [6,7]. HrcA regulates the expression of chaperones, while CtsR controls the expression
70 of the AAA+ protease complexes [8–10]. The general stress response, activated by the
71 alternative sigma factor σ^B , is controlled by a complex regulatory network that integrates
72 diverse stress and starvation signals, including heat [11]. In addition, Spx is a central regulator
73 of the heat and thiol stress response, which is important for the development of
74 thermotolerance. Spx activates the expression of many genes of the heat shock response,

75 including *clpX* and the oxidative stress response e.g. thioredoxin [5,12,13]. Interestingly, Spx
76 can also mediate the inhibition of cell growth by the concurrent transcriptional down-
77 regulation of many translation-related genes [14].

78 Another fast acting bacterial stress response system is the stringent response (SR),
79 which is mediated by the second messenger alarmones (p)ppGpp [15]. The synthesis and
80 hydrolysis of (p)ppGpp is catalyzed by RelA/SpoT homologs (RSH) which contain within the
81 N-terminal part synthetase and hydrolase domains (bifunctional Rel or SpoT subgroup) or an
82 active synthetase and an inactive hydrolase domain (RelA subgroup) together with additional
83 regulatory domains at the C-terminus [16]. RSH can therefore direct both synthesis and, in the
84 case of Rel, hydrolysis of (p)ppGpp. The enzyme activity of RelA or Rel is stimulated by
85 association with uncharged tRNAs with the ribosome, thereby mediating (p)ppGpp synthesis
86 upon amino acid starvation [17–21]. In addition to this long multidomain RSH form,
87 monofunctional small alarmone synthetases (SAS) or small alarmone hydrolases (SAH) with
88 single synthetase or hydrolase domains are present in many bacteria [16]. In *B. subtilis*,
89 alarmone levels are controlled by Rel (often referred to as RelA), a bifunctional, RSH-type
90 synthetase/hydrolase as well as two SAS proteins [22,23].

91 The synthesis and hydrolysis of (p)ppGpp allows the activation or repression of
92 different cellular pathways by modulating various enzyme activities involved in GTP
93 homeostasis, replication, transcription and translation, not only in response to amino acid
94 starvation, but also to various other signals or stresses. It was observed for different bacteria
95 that additional and diverse starvation or stress signals can activate the SR via interacting
96 proteins or metabolites that bind and modulate the activity of RSH-type enzymes, or by
97 transcriptional or post-translational regulation of monofunctional SAS [24,25]. *B. subtilis* and
98 related Firmicutes lack a DksA homolog and a direct binding site for (p)ppGpp on RNA
99 polymerase (RNAP) which mediate positive and negative stringent regulation in *E. coli* and
100 other proteobacteria. Instead, in *B. subtilis* (p)ppGpp can exert transcriptional regulation via a

101 drop in GTP levels caused by the direct inhibition of multiple enzymes of the GTP synthesis
102 pathway [26,27]. Thereby, transcription of ribosomal RNA (rRNA) and ribosomal protein (r-
103 protein) genes from promoters that initiate transcription with GTP is strongly reduced, while
104 in turn promoters that initiate with ATP are activated [28,29]. In addition, the global regulator
105 CodY is regulated by GTP via an allosteric binding site and de-represses amino acid
106 biosynthesis genes and other pathways during the SR [30]. Beyond regulation of transcription,
107 (p)ppGpp can inhibit translation initiation and elongation by binding, for example, to the
108 translation initiation factor IF-2 and other ribosome-associated GTPases [31–33]. With its
109 ability to inhibit translation and growth, the SR was also implied in persister cell formation
110 and development of antibiotic tolerance [34]. In addition, virulence as well as survival of
111 pathogens during infection was strongly affected in *rel* and (p)ppGpp⁰ mutant strains [15,35].

112 During exposure to heat and oxidative stress, we and others previously observed in
113 *B. subtilis* a pronounced down-regulation of rRNA and r-protein genes that resembled the
114 pattern of the SR [13,14,39,40]. Thus, we hypothesized that the alarmone (p)ppGpp and the
115 SR-like response could be part of the heat shock response of *B. subtilis*. Therefore, we
116 investigated the role of the SR and its intricate and mutual involvement with the cellular stress
117 response during various proteotoxic stress conditions, including heat shock conditions, such
118 as growth at high temperatures (50 °C), or thermoresistance and thermotolerance development
119 [5,41].

120 Consistent with our hypothesis, we show here that the cellular level of (p)ppGpp was
121 increased upon heat shock and also upon salt and oxidative stress. In addition, artificially
122 raised alarmone levels conferred increased stress tolerance and a (p)ppGpp⁰ strain appeared
123 more stress sensitive. The presence of the bifunctional Rel was necessary and sufficient for
124 the observed stress induced increase of (p)ppGpp. We analyzed changes in the transcriptome
125 with RNA-sequencing (RNA-seq) experiments of wildtype, *rel* and (p)ppGpp⁰ *B. subtilis*
126 strains at raised temperatures and observed pleiotropic adjustments of transcription typical for

127 SR, which was heat-dependent but also partially influenced by (p)ppGpp levels. However, the
128 presence or absence of this second messenger had a more significant and immediate impact
129 on limiting the translation of heat shocked cells. Our results suggest a model in which
130 (p)ppGpp and Spx appear to play a complementary and partially redundant role in stress-
131 mediated readjusting of transcription. In addition, we observed a prominent and instantaneous
132 effect of the cellular alarmone (p)ppGpp levels on limiting translation, allowing the fast
133 reallocation of cellular resources by raising the cellular repair capacity and concurrently
134 reducing the protein load on the PQS during stress.

135 **Results**

136 **Regimes for monitoring of heat shock stress response in *B. subtilis***

137 In this study, we monitored the stress response of *B. subtilis* by application of different, but
138 related, heat shock conditions: (i) growth and heat shock at 50°C, a temperature that is non-
139 lethal in *B. subtilis* but already induces a significant heat shock response with a raised
140 expression of chaperones and proteases, (ii) resistance to severe heat shock by measuring the
141 survival of exponentially growing cells exposed to a severe, lethal heat shock at 53 °C, which
142 can also be considered as thermoresistance (37/53°C) (Fig. 1A), and (iii) the development of
143 thermotolerance by measuring the survival of exponentially growing cells primed by a 15 min
144 mild pre-shock at 48 °C before their exposure to the severe heat shock at 53 °C (48/53°C)
145 (Fig. 1A). We experimentally established that 55°C was an appropriate temperature to
146 examine the impact of severe heat on *B. subtilis* cells growing on agar plates. In addition to
147 exposure to these various heat conditions, we also examined other potentially proteotoxic
148 stresses, such as salt and oxidative stress [5,14,41].

149 **Cellular (p)ppGpp levels increase during heat shock exposure**

150 To investigate the impact of heat on the stringent response, we first assessed the intracellular
151 levels of the alarmones pGpp, ppGpp and pppGpp during the heat shock response at 50 °C.
152 To do so, cells were grown at 37 °C in minimal medium to an optical density at 600 nm
153 (OD_{600nm}) of 0.4, and subsequently they were treated with a single, non-lethal temperature
154 upshift to 50 °C in order to induce the heat shock response. After 2, 5 and 10 minutes of
155 incubation at 50 °C, the intracellular levels of the three alarmones (i.e. pGpp, ppGpp and
156 pppGpp) were examined by liquid chromatography (LC)-coupled mass spectrometry (LC-
157 MS). Already after 2 minutes, the alarmone levels increased approx. seven-fold (from 13 to
158 88 pmol OD⁻¹ ml⁻¹) (Fig. 1B). The observed alarmone accumulation after 2 minutes at 50 °C
159 was in a similar range to that previously observed upon amino acid starvation induced by DL-
160 norvaline, serine hydroxamate, salt stress induced by 6 % (w/v) NaCl or 0.5 mM diamide, a
161 strong oxidant of thiol groups (Fig. 1 C) [39,42]. It should be noted that the (p)ppGpp levels
162 increased only transiently during heat shock and reduced to almost basal levels after
163 approximately 10 minutes (Fig. 1B). Thus, we conclude that exposure to a non-lethal heat
164 shock at 50°C elicits a fast, but transient, increase of the alarmones pGpp, ppGpp and
165 pppGpp.

166 Having shown that (p)ppGpp levels transiently increase during heat shock, we next
167 assessed the levels of the alarmones under thermoresistance conditions (37/53°C), after
168 priming (37/48°C), as well as under thermotolerance conditions (48/53°C) (Fig. 1A & D).
169 When we examined (p)ppGpp levels upon those temperature shifts, we observed transiently
170 increased (p)ppGpp levels (Fig. 1D). The alarmone levels were particularly high during the
171 severe heat shock shift at 37/53 °C (about 25-fold increase) and the induction was lower both
172 for a 37/ 48°C or 48/53°C shift (about 2-3 fold increase) (Fig. 1D). Thermotolerant cells that
173 were exposed to 48/53 °C showed a comparable alarmone level to cells exposed to 48 °C or
174 50 °C after 5 min (2-3 fold), while cells only exposed to a higher lethal heat shock of 37/53

175 °C display a relative much higher alarmone level (Fig. 1B,C). The primed thermotolerant cells
176 appear to be able to somehow limit the alarmone synthesis, when exposed to the lethal heat
177 shock.

178 The synthesis of (p)ppGpp that occurs during activation of the SR is normally
179 accompanied by a fast reduction of cellular GTP levels in cells treated with serine
180 hydroxamate (SHX) or DL-norvaline (NV) [27] and also after exposure to salt or diamide
181 (Fig. S1A). Therefore, we were also interested in monitoring changes in GTP levels under
182 conditions of heat shock but interestingly we do not observe a reduction in GTP levels after
183 exposure to 50 °C (Fig. S1A). Notably, the GTP levels were at a comparable high level
184 (FigS1B) during temperature upshifts of 37/48 °C, 37/53 °C and 48/53 °C, however GTP
185 levels appeared a little lower for all temperature upshifts after 15 min incubation (Fig. S1B).

186 Taken together, we show that exposure to heat shock elicits a fast, but transient,
187 increase of the alarmones pGpp, ppGpp and pppGpp, while not immediately affecting the
188 GTP levels. Therefore, it seems that alarmone levels exhibit a graded response to stress,
189 which appears to correlate to the temperature levels and possibly the heat stress intensity the
190 cells are exposed to.

191 **Rel is the main source for (p)ppGpp synthesis during stress response**

192 Next, we aimed to identify the major source of (p)ppGpp during the heat stress response. To
193 this end, strains with mutations that disrupt the (p)ppGpp synthetase activity of the proteins
194 encoded by either *sasA/ywaC* and *sasB/yjbM* (*sasA/B*⁻ strain) or *rel* (*rel*^{E324V}; inactive
195 synthetase) were assayed for (p)ppGpp accumulation and GTP levels upon heat shock at 50
196 °C for 2 min (Fig. 1E, S1C). As a control, (p)ppGpp accumulation was also measured in a
197 (p)ppGpp⁰ strain bearing inactivating mutations in all three alarmone synthetase genes (*sasA*,
198 *sasB* and *rel*) (Fig 1E). In addition to monitoring (p)ppGpp accumulation directly, the
199 (p)ppGpp-dependent transcription of *hpf* was employed as an additional read-out for the

200 activation of the stringent response (Fig. S1D) [43,44]. As expected, alarmone nucleotides
201 were not detected in the (p)ppGpp⁰ mutant under any conditions, neither stress or non-stress,
202 consistent with finding that Rel, SasA and SasB are the only sources of (p)ppGpp in *B.*
203 *subtilis* [23] (Fig. 1E). We observed that the *sasA/B*⁻ strain also exhibited accumulation of
204 (p)ppGpp (Fig. 1E) and up-regulation of the *hpf* transcript similar to the wildtype *B. subtilis*
205 cells upon heat exposure (Fig. S1D), indicating that the activity of SasA and SasB is
206 dispensable for (p)ppGpp production during heat stress. By contrast, the *rel*^{E324V} strain
207 accumulated negligible amounts of (p)ppGpp in response to heat, with the levels even
208 dropping after heat shock (Fig. 1E). Consistently, up-regulation of the *hpf* transcript and
209 accumulation of the Hpf protein in response to stress was also strongly impaired in the
210 *rel*^{E324V} strain (Fig. S1D, S12D). Together, these results strongly suggest that Rel is the main
211 source of (p)ppGpp during heat stress.

212 Activation of Rel during amino acid starvation requires the presence of uncharged
213 tRNA on the ribosome [17,18]. A first indication of such a connection between SR and Rel
214 activation in conjunction with the ribosome was the initial observation that (p)ppGpp
215 accumulation upon starvation for amino acids was almost completely suppressed in the
216 presence of the translation-inhibitor chloramphenicol [45]. To probe, whether Rel activation
217 during heat or oxidative stress could utilize a similar pathway, we measured alarmone levels
218 in stressed cells in the presence or absence of chloramphenicol (Fig. 1F, S1E). Interestingly,
219 the addition of chloramphenicol completely suppressed alarmone accumulation and resulted
220 in increased GTP levels upon heat and diamide treatment. Notably, chloramphenicol
221 treatment of unstressed cells did not induce a SR, but decreased the basal (p)ppGpp levels and
222 slightly increased GTP (Fig. 1F, S1E). These observations indicate that heat and oxidative
223 stress could activate Rel in a similar manner to each other and similar to the pathway
224 suggested for amino acid starvation.

225 ***B. subtilis* cells lacking the alarmone are more sensitive to stress**

226 To assess the importance of alarmone production for cellular survival under heat stress, we
227 monitored growth of the wildtype, (p)ppGpp⁰, *sasA/B*⁻ and *rel*^{E324V} strains at 37 °C and 55 °C
228 (Fig. 2A, B). As expected, no obvious growth defects were observed for any of the strains at
229 37 °C. While the cellular survival of the *sasA/B*⁻ strain at 55 °C was identical to that of the
230 wildtype strain, strong growth defects were evident for the (p)ppGpp⁰ and *rel*^{E324V} strains at
231 55 °C. These findings suggested that production of (p)ppGpp by Rel, but not SasA/B, is
232 critical for survival of *B. subtilis* cells under heat stress. This prompted us to also investigate
233 whether production of (p)ppGpp by Rel is critical for survival of *B. subtilis* cells under other
234 stress conditions, such as high salt or oxidative stress. Indeed, severe growth defects were
235 observed for both the (p)ppGpp⁰ and *rel*^{E324V} strains under oxidative heat and salt stress,
236 whereas the growth behavior of the *sasA/B*⁻ strain again resembled the wildtype strain under
237 the same conditions (Fig. 2C, D). Collectively, these findings suggest that production of
238 (p)ppGpp by Rel is critical for survival of *B. subtilis* cells, not only under heat stress, but also
239 conditions of oxidative and salt stress.

240 **High cellular (p)ppGpp levels confer elevated heat stress resistance**

241 Next, we asked whether (p)ppGpp alarmone levels influence thermotolerance development
242 and survival. To do this, we utilized the (p)ppGpp⁰ strain, which cannot synthesize (p)ppGpp
243 (Fig. 1E) as well as a *rel* deletion strain that displays raised (p)ppGpp (Fig. 2F) and lowered
244 GTP levels (Fig. S2A). The high (p)ppGpp levels in the *rel* deletion strain arise because Rel is
245 the only alarmone hydrolase in *B. subtilis* and causes an overall decrease in growth rate (Fig.
246 2F, S2A, B), as reported previously [23,46]. For completeness, we also assayed *sasA* and *sasB*
247 deletion strains. As expected, exposure of wildtype *B. subtilis* cells to heat shock at 37/53°C
248 led to a dramatic reduction in survival, e.g. 1000-fold (3-log) reduction in viability with
249 60 min heat shock at 53 °C, whereas survival remained unaltered when cells received a pre-

250 shock at 48 °C for 15 min before being exposed to the lethal heat shock at 53 °C (Fig. 2G).
251 Similarly, *B. subtilis* strains with single deletions in *sasA* or *sasB* phenocopied the wildtype
252 strain for thermotolerance development (Fig. S2C-D), as they did for heat shock resistance
253 (Fig. 2A-B and Fig. S2E). By contrast, we observed that *rel* deletion resulted in strongly
254 increased thermoresistance, which was apparent from the high number of cells still able to
255 form colonies during the otherwise lethal heat shock (Fig 2G). Consistently, we also observed
256 a strong reduction in protein aggregation during the 37/53 °C heat shock (Fig 2 I). While no
257 significant effect on thermotolerance development was observed in the (p)ppGpp⁰ strain (Fig.
258 2 H), the (p)ppGpp⁰ strain exhibited more protein aggregation when exposed to 37/53 °C heat
259 shock (Fig 2 I).

260 To confirm that the elevated heat resistance phenotype of the *rel* strain was caused by
261 the elevated levels of the alarmone (p)ppGpp, rather than the absence of the Rel protein, we
262 expressed a truncated form of the *E. coli* RelA (*RelA_{hyper}*) that exhibits constitutive and
263 hyperactive alarmone synthetase activity *in trans* in wildtype *B. subtilis* cells [47,48]. As a
264 control, we also expressed a truncated form of the *E. coli* RelA (*RelA_{inactive}*) that has no
265 alarmone synthetase activity [47,48]. In a second approach, we examined the (p)ppGpp⁰ strain
266 expressing *in trans* *B. subtilis* Rel with mutations that inactivate either the synthetase
267 (*Rel^{E324V}*) or hydrolase (*Rel^{H77AD78A}*) domains. Expression of *RelA_{hyper}* or hydrolase-inactive
268 *Rel^{H77AD78A}* resulted in increased alarmone levels (Fig. S3A) and conferred high
269 thermoresistance (Fig. S3B,C), as observed for the Δ *rel* strain (Fig. 2G). By contrast, strains
270 expressing *RelA_{inactive}* or the synthetase-inactive *Rel^{E324V}* did not display increased alarmone
271 levels (Fig. 3E), nor increased survival to severe heat stress (Fig. S3D,E).

272 High (p)ppGpp levels during the SR lead to a decrease in cellular GTP levels and this
273 decrease is known to be intricately involved in causing the transcriptional changes during SR
274 [27,28] (Fig. S1, S2A, S3A). To examine, whether the resistance to heat stress observed in the
275 Δ *rel* strain could be mediated simply by lowering cellular GTP levels, wildtype cells were

276 treated with decoyinine, an inhibitor of GMP synthetase, which results in a significant drop of
277 cellular GTP levels (> 3-fold) without increasing (p)ppGpp levels [49,50]. Treatment with
278 250 or 400 $\mu\text{g ml}^{-1}$ decoyinine resulted only in moderately increased thermoresistance and
279 moderately decreased thermotolerance (Fig. S4). However, we could not observe the strongly
280 increased thermoresistance as we observed before in the presence of raised (p)ppGpp levels
281 (Fig 2 F, G, Fig S3). In addition, higher decoyinine concentrations (1000 $\mu\text{g ml}^{-1}$) even
282 abolished both thermoresistance and thermotolerance development (Fig S4). These
283 experiments suggest that lowered cellular GTP levels, which turn the transcriptional stringent
284 response on [27,28,51], is not sufficient to elicit heat resistance as observed in strains with
285 elevated (p)ppGpp levels (Fig 2 F, G, Fig S3).

286 From these observations we infer that raised (p)ppGpp levels are sufficient to confer
287 increased stress resistance and reduced levels of heat-induced protein aggregates. This
288 phenotype is dependent on the levels of alarmones and not the presence or absence of the
289 specific Rel protein *per se*, since it could be reconstituted by *in trans* expression of full-length
290 or truncated Rel or RelA protein variants from *B. subtilis* or *E. coli* that actively synthesized
291 (p)ppGpp (Fig. 2, S3). The SR mediated drop in cellular GTP levels was not observed during
292 heat shock response (Fig. S1) and an artificial reduction of cellular GTP levels had only a
293 moderate effect on thermoresistance and even abolished thermotolerance (Fig. S4). Taken
294 together, these experiments suggest that the cellular level of the second messenger (p)ppGpp
295 *per se* appears to be important for the modulation and enhancement of the heat shock response
296 in *B. subtilis* cells, since a strain lacking the alarmone is more stress sensitive (Fig. 2 A-D, H,
297 I) and strains with constitutively raised alarmone levels are much more stress resistant (Fig. 2
298 F, G, I).

299 **Constitutive stringent response in Δrel cells results in global transcriptional changes**

300 To obtain further insights into the impact of *rel* deletion and (p)ppGpp accumulation on
301 transcriptome changes, we performed RNA-seq analyses and annotated transcription start
302 sites (TSS) of exponentially growing wildtype, (p)ppGpp⁰ and Δrel strains (Fig. S5, see S1
303 Text for a detailed analysis, Dataset S1, Dataset S2, Dataset S3). Since down-regulation of
304 “stable” rRNA is a hallmark of the SR, we introduced a previously established chromosomal
305 *rrnJp1-lacZ* fusion into the assessed strains, thereby allowing us to follow the activity of this
306 rRNA promoter using the *lacZ* reporter [14]. Only small changes between wildtype and
307 (p)ppGpp⁰ strains (45 genes significantly regulated, Fig. 3A, Fig. S6B) were observed during
308 non-stressed growth, while Δrel cells exhibit broad transcriptional changes compared to
309 wildtype cells (494 genes regulated, Fig. 3A & Fig. S6C). However, the full extent of the
310 impact of (p)ppGpp was revealed when we compared the transcriptome of the (p)ppGpp⁰ with
311 Δrel strain (Fig. 3A, B). Here we observed a differential regulation of the expression of 682
312 genes with a broad down-regulation of translation-related genes known to be part of the SR
313 regulon (Fig. 3B). We performed RT-qPCR experiments with independent samples of the
314 (p)ppGpp⁰ and Δrel strains, measuring the transcripts of selected genes known to be under
315 stringent control and observed a good correlation with the RNA-seq data (Fig. 3C). The
316 *rrnJp1-lacZ* transcript was down-regulated 1.7-fold in the RNA-seq experiment and
317 confirmed by RT-qPCR (Fig. 3C). Furthermore, we noticed an extensive up-regulation of
318 genes that function in amino acid synthesis, indicating a de-repression of the CodY regulon
319 (e.g. *ilvB* 294-fold up-regulated, Fig. 3B,D,E, S8, Dataset S2) [27,52]. Interestingly, we
320 detected a strong decrease in the transcription of CcpA-regulated genes required for the
321 utilization of alternative carbon sources (e.g. *rbsC* 181-fold down-regulated) and a broad
322 regulation of stress-related genes accompanied by an activation of the SigB regulon (e.g. *dps*
323 2.8-fold up-regulated, *ssrA* 4.5 fold up-regulated). We also observed a reduced transcription
324 of genes regulated by the regulators HrcA and CtsR (e.g. *dnaK* 6.4-fold down-regulated, *clpE*

325 7.1-fold down-regulated) (Fig. 3C, D, E and Fig. S7, S8, Dataset S2), when comparing the
326 (p)ppGpp⁰ and Δrel *B. subtilis* strains at 37 °C without heat exposure. Notably, the
327 transcription of *hpf* (*yvyD*), encoding the hibernation promoting factor Hpf, was induced by
328 raised (p)ppGpp levels (24-fold up-regulated, Fig. 3C,E, Fig. S8), confirming that the
329 increased transcription of *hpf* can be considered as a reporter for the activation of the SR
330 [43,44].

331 **(p)ppGpp modulates transcription during heat stress response**

332 To study the impact of the SR on the transcriptome during heat exposure, we examined the
333 (p)ppGpp⁰ and Δrel strains not only at 37 °C (Fig. 3), but also at 48 °C, in the same RNA-seq
334 experiment that was used to investigate the thermoresistance (37/53 °C) and thermotolerance
335 (48°/53 °C) conditions (Fig.4 & Fig. 1A) [5,14]. Thermotolerant cells (48/53 °C) exhibited a
336 pronounced up-regulation of the heat-specific stress response (median 3.4-fold up-regulated)
337 or general stress response (median 3.0-fold up-regulated) as well as comprehensive down-
338 regulation of translation-related genes (median 2.6-fold down-regulated, Fig. 4A, B, S7,
339 Dataset S2) that was, to a lesser extent, also observed in the mild pre-shock (48 °C, median
340 1.3-fold down-regulated) and severe heat shock (37/53 °C, median 1.2-fold down-regulated)
341 conditions (Fig. S6 A, S7) in agreement with previous observations [14]. The transcription of
342 translation-related genes was generally lower than wildtype levels in Δrel cells (median 1.6-
343 fold down-regulated) and higher in (p)ppGpp⁰ strains under non-stress conditions (37 °C)
344 (Fig. 4C, S7). We could confirm by RT-qPCR that down-regulation of *rrnJp1-lacZ* is partially
345 (p)ppGpp-dependent during thermotolerance development (Fig. 4C,D), which became even
346 more pronounced when the 50 °C heat shock condition was examined (Fig. S8) [14].
347 Nevertheless, the transcription of the genes encoding conserved chaperones and proteases of
348 the heat shock response were strongly up-regulated upon all temperature up-shifts,
349 independently of the presence or absence of (p)ppGpp (Fig. 4 C). Interestingly, additional

350 qPCR experiments applying a 50 °C heat shock revealed that the heat-induced expression of
351 some SigB regulated genes was impaired in the (p)ppGpp⁰ background, e.g. of *ssrA* (approx.
352 2-fold lower expression in (p)ppGpp⁰ cells at 50 °C) and *dps* (approx. 3-fold lower
353 expression), indicating a functional connection between the SR and the general stress
354 response (Fig. S8) [53,54]. However, the majority of genes of the SigB regulon were found to
355 be induced in the (p)ppGpp⁰ strain similarly to wildtype cells at 48 °C (Fig. S7). Likewise,
356 while CcpA-regulated genes were repressed in wildtype and (p)ppGpp⁰ cells under heat shock
357 conditions (Fig. 3B,D, Fig. 4A-C, S7), some genes (e.g. *rbsD*, *ganP*, *licH*) were less down-
358 regulated or even induced at 48 °C in the (p)ppGpp⁰ strain (Fig. 4C). In contrast, motility-
359 genes were particularly strongly down-regulated by heat in the (p)ppGpp⁰ mutant (median
360 3.0-fold change, Fig. 4C, S6B, S7), while the down-regulation of these genes appeared to be
361 not significant in wildtype cells at 48 °C (median 1.14-fold change, S7) [55]. Notably, the
362 expression of the *hpf* and *ilvB* transcripts, the transcription of which is positively regulated by
363 the SR, was lower during heat stress in the (p)ppGpp⁰ strain compared to wildtype cells (*hpf*:
364 3.7-fold lower in (p)ppGpp⁰ cells relative to wildtype at 50 °C, *ilvB*: 1.6-fold lower, Fig. 4D,
365 S8).

366 **Spx and the stringent response act complementary during heat shock**

367 Previously, we reported that Spx, a central regulator of the heat and oxidative stress response,
368 can down-regulate the transcription of translation-related genes and rRNA (ref). However, an
369 *spx* deletion was not impaired in the heat-mediated down-regulation of these genes [14]. Here,
370 we noticed a complex, but clearly detectable, involvement of the SR in the down-regulation of
371 specific genes during heat stress (Fig. 4C-D), suggesting an intricate regulation of these genes
372 by different factors, including Spx and (p)ppGpp. To test for such a concurrent and
373 complementary transcriptional regulation, a *B. subtilis* strain combining a *spx* deletion with
374 the (p)ppGpp⁰ mutations was constructed. Strikingly, down-regulation of *rrnJp1-lacZ* upon

375 heat shock was completely abolished in this (p)ppGpp⁰ Δspx strain, indicating a concurrent
376 and complementary activity of both regulators on this promoter (Fig. 5A). However, the
377 transcription of some r-protein genes was also down-regulated in the (p)ppGpp⁰ Δspx strain
378 (Fig. S9A), suggesting additional factors beyond Spx and (p)ppGpp, that can also influence
379 the promoter and/or the stability of these transcripts. Interestingly, this (p)ppGpp⁰ Δspx strain,
380 lacking both regulators, also displayed a slow growth phenotype at 37 °C and a more severe
381 growth defect at 50 °C compared to the strains with single deletions of (p)ppGpp⁰ or Δspx
382 (Fig. 5B, Fig. S9B). This experiment suggests a genetic interaction of the SR and the *spx*
383 regulon under heat stress conditions. In addition, the (p)ppGpp⁰ Δspx strain accumulated more
384 heat-induced protein aggregates at 50 °C than cells lacking either (p)ppGpp or *spx* (Fig. S9
385 C).

386 When mutations in *rpoA* were introduced in the (p)ppGpp⁰ strain that abolish Spx-
387 mediated up- and down-regulation (*cxs-1/rpoA^{Y263C}*), or interfere only with Spx-mediated
388 repression of rRNA while still allowing up-regulation of redox chaperones (*cxs-2 / rpoA^{V260A}*)
389 [14], only the (p)ppGpp⁰ *cxs-1* strain displayed a severe growth defect as observed for the
390 (p)ppGpp⁰ Δspx strain (Fig. S9B). This experiment suggests that the Spx-mediated up-
391 regulation of stress response genes, and not the ability to down-regulate translation related
392 genes, is required for efficient growth in the (p)ppGpp⁰ background. Notably, (p)ppGpp is
393 sufficient for the down-regulation of translation-related genes during norvaline-induced amino
394 acid limitation, while Spx is not required for this process (Fig. S10A). Conversely, Spx can
395 act on rRNA promoters independently of (p)ppGpp *in vivo* (Fig. S10B) [14]. In addition, *in*
396 *vitro* transcription experiments with purified Spx and RNAP gave no indications that ppGpp
397 could directly influence Spx transcriptional activation or inhibition of RNAP (Fig. S10C).

398 Together, these observations suggest that both regulatory systems act concurrently but
399 independently on rRNA and r-protein promoters, allowing the inhibition of transcription of

400 translation-related genes by Spx and to a minor extend also by the (p)ppGpp-mediated
401 transcriptional response.

402 **(p)ppGpp curbs translation during heat stress**

403 We observed that the raised levels of (p)ppGpp, but not the transcriptional reprogramming
404 during SR, appears to be necessary for the observed strong heat stress resistance (Fig 2, 3, 4,
405 Fig S3 & S4). Therefore, we wanted to determine the impact of (p)ppGpp on translation
406 during heat stress. To this end, a method for pulse-labeling newly synthesized nascent peptide
407 chains using low amounts of puromycin was utilized to estimate protein synthesis rates (see
408 S1 Text, Fig. S11). When we examined growing cells at 50° C, or cells exposed to
409 thermotolerance conditions (48/53 °C), we observed that the Δrel strain always exhibited a
410 lower translation rate compared to the wildtype cells (Fig. 6A,B), consistent with its raised
411 (p)ppGpp levels and the observed “stringent” phenotype of this strain. By contrast, the
412 “relaxed” (p)ppGpp⁰ strain always exhibited higher translation rates (Fig. 6A,B), indicating a
413 more deregulated translation. During the non-lethal 50 °C heat shock, translation rates
414 transiently increased in all strains (Fig. 6A), corresponding with the high growth rate at this
415 temperature (Fig. S9B). Nevertheless, the (p)ppGpp⁰ strain still displayed significantly higher
416 translation rates compared to wildtype and the Δrel strains (Fig. 6A and 6B).

417 Treatment with a lethal temperature shift (37/53 °C) without pre-shock resulted in a
418 strong decrease in translation efficiency in wildtype and (p)ppGpp⁰ strains, whereas
419 translation in Δrel cells was transiently increased (Fig. S12A), in agreement with the observed
420 high heat-resistance of this strain (Fig. 2G). Interestingly, translation was strongly decreased
421 in (p)ppGpp⁰ cells at 37/53 °C, while wildtype cells still maintained active translation under
422 this condition (Fig. S 12A). The lowered translation activity in (p)ppGpp⁰ cells appears to be
423 accompanied by a strong reduction of the levels of cellular 16S rRNA (Fig. S12C), which

424 could indicate a defect in 16S rRNA maturation and the assembly and/or activity of the small
425 ribosomal subunit.

426 The (p)ppGpp⁰ strain also failed to induce expression of the *hpf* gene during heat stress
427 and did not accumulate the Hpf protein (Fig. 4C,D, S12D). Thus, the formation of 100 S
428 disomes upon heat stress, which was clearly visible in the ribosome profiles of wt and Δ rel
429 cells, especially under thermotolerance conditions, was strongly reduced in the (p)ppGpp⁰
430 strain (Fig. 6C). However, the observed apparent degradation of the 16S rRNA under severe
431 stress conditions was not prevented by *in trans* expression of Hpf (Fig. S12 E) and
432 overexpression of Hpf could not rescue the heat-sensitive phenotype of (p)ppGpp⁰ strains
433 (Fig. S12F). Also, the addition of translation-inhibiting antibiotics could not rescue this
434 phenotype, indicating that inhibition of translation *per se* is not sufficient to protect ribosomes
435 during severe heat stress (Fig. S12G).

436 The observed influence of (p)ppGpp on translation suggests that the major impact of
437 (p)ppGpp appears not to be its effect on transcription (Fig. 4, 5), but the direct modulation of
438 translation (Fig. 6, S12), possibly by directly interfering with the activity of different
439 translational GTPases [31,33]. Conversely, Spx appears to act on transcriptional regulation of
440 stress-response and translation-related genes [14]. To assess the relative impact of Spx on
441 translation, we examined the translation rate in a *B. subtilis* strain encoding an inducible gene
442 for the synthesis of a stable Spx^{DD} variant and observed only a 20 % reduction of translation
443 by Spx^{DD} induction (Fig. S9D). This reduction may be an indirect result of the Spx^{DD}-
444 mediated repression of rRNA synthesis with the ensuing decreased synthesis of new
445 ribosomes [14].

446 In summary, these observations indicate that the intracellular (p)ppGpp second
447 messenger can immediately control translation during heat stress and is involved in the
448 protection of ribosomes from damage upon severe heat stress (Fig. 7).

449 **Discussion**

450 In this study, we analyzed the role of the SR during heat shock in *B. subtilis*. We could
451 demonstrate that upon heat shock the second messenger (p)ppGpp is rapidly synthesized
452 mostly by Rel and can confer enhanced thermostability to these cells. Our data suggests that
453 (p)ppGpp is a pleiotropic regulator, affecting several transcriptional processes, but mostly
454 modulates and protects translation during heat stress. The SR- and Spx-mediated heat shock
455 responses can act concurrently and might be able to complement one another in the down-
456 regulation of rRNA transcription during stress. Overall, our results suggest that limiting
457 translation is an integral part of the *B. subtilis* stress response (Fig. 7).

458 **The activation of the stringent response during heat stress**

459 The presented results clearly demonstrate a rapid accumulation of (p)ppGpp during heat and
460 other environmental stresses (Fig. 1). In addition, strains unable to synthesize (p)ppGpp are
461 rendered sensitive to high temperatures and accumulate more heat-induced protein aggregates
462 (Fig. 2A-D,H,I). Interestingly, (p)ppGpp synthesis and heat tolerance are solely dependent on
463 the synthetase activity of Rel, indicating that this enzyme is the major contributor of (p)ppGpp
464 under these conditions (Fig. 1E, 2A-D). Activation of the SR by Rel-mediated (p)ppGpp
465 synthesis during heat and oxidative stress has been reported for diverse taxa, suggesting that
466 the underlying mechanisms could be conserved [56–58]. However, little is known about the
467 mechanism of Rel activation upon environmental stress.

468 RSH-type enzymes have been implicated in sensing and integrating many
469 environmental cues beyond amino acid starvation. These additional signals may be
470 transmitted by direct interaction of RSH-type with additional regulatory proteins, which
471 expand and adapt SR-signalling to the respective requirements of the environmental niche
472 [24,25]. For example, growth inhibition in competent *B. subtilis* cells has recently been shown
473 to be mediated by a specific interaction between Rel and ComGA, a membrane associated

474 ATPase which is involved in uptake of DNA in competent cells [59]. It was suggested that the
475 interaction of ComGA with Rel inhibits its hydrolase activity, resulting in the accumulation of
476 (p)ppGpp and the inhibition of rRNA synthesis and growth. Furthermore, the growth-
477 inhibition by the SR promotes increased antibiotic tolerance of competent cells and therefore
478 contributes to bet-hedging and improves fitness of the population [59].

479 Our experiments demonstrate that Rel activation during heat- or oxidative stress can
480 be inhibited by chloramphenicol similarly as during amino acid starvation (Fig. 1F, S1E).
481 Therefore, the underlying activation mechanisms during environmental stress likely shares
482 some similarities to the well-studied SR-activation upon amino acid deprivation and may also
483 involve the sensing of uncharged tRNA on the ribosome [17,18,56,58].

484 Proteotoxic and oxidative stress results in the inactivation of labile enzymes and may
485 thereby impair uptake or biosynthesis of certain amino acids and/or modulate the activity of
486 aminoacyl-tRNA synthetases, resulting in an accumulation of uncharged tRNA which can
487 serve as a signal to activate Rel [58,60]. In addition, tRNAs and proteins of the translational
488 machinery are prone to oxidation or modification upon stress, leading to translation stalling,
489 which can also elicit the SR [61].

490 **491 The role of (p)ppGpp and the transcription factor Spx in global transcriptional
regulation upon heat stress**

492 Using RNA-seq, we observed large transcriptomic alterations mediated by (p)ppGpp in the
493 Δrel mutant (Fig. 3). Since *B. subtilis* lacks a DksA homolog, regulation of transcription by
494 (p)ppGpp is achieved indirectly by lowering GTP levels, which reduces transcription of
495 promoters that initiate with GTP. Accordingly, transcription of rRNA and r-protein genes was
496 strongly reduced in the Δrel strain as a consequence of the lower GTP level [28,62]. In
497 addition, the CodY activity is under allosteric control by cellular GTP levels [52]. While the
498 effect of both mechanisms is prominently visible in Δrel cells where the GTP level is strongly

499 reduced, their impact is less noticeable in heat-stressed cells where a transient increase of
500 alarmones, but no decrease of the GTP concentration, was observed (Fig. 1, S1). It is possible
501 that the transient pulse, its kinetic and the generated total amount of (p)ppGpp induced by the
502 raised temperature might not be sufficient to promote the strong reduction of cellular GTP
503 that is observed during amino acid starvation (Fig. S1) [27]. It should be noted that a strong
504 reduction of cellular GTP levels would most likely also interfere with the ability of *B. subtilis*
505 cells to grow at 50 °C with a growth rate comparable to that at 37 °C (Fig. S9 B). When
506 designing the RNA-seq experiment, we choose 48 °C as a simple heat shock condition for the
507 mutant strains since it resembled the thermotolerance protocol (Fig. 1A) and the condition of
508 previously published microarrays [14]. However, many phenotypes of Spx and (p)ppGpp
509 could be observed best upon a stronger, but non-lethal, heat shock at 50 °C [14]. In contrast,
510 while wildtype cells treated with 37/53 °C exhibit a strong increase of (p)ppGpp within the
511 first minutes of stress (Fig 1D), the examination of cellular physiology is confounded by the
512 rapid reduction of viability at this lethal condition (Fig. 2G) [5,14].

513 We reported previously that transcription of rRNA can be down-regulated by the
514 global regulator Spx. During heat stress however, down-regulation of rRNA was independent
515 of Spx, suggesting that the loss of Spx was compensated by additional regulators [14].
516 Strikingly, we now observed that (p)ppGpp also engages in this down-regulation of rRNA
517 during heat stress and that the concurrent activity of both Spx and (p)ppGpp is required to
518 reach the full strength of this effect (Fig. 5A). This functional relationship of Spx and the SR
519 is corroborated by the observation that the (p)ppGpp⁰ Δ spx mutant strain displays strongly
520 impaired growth at both 37 °C and 50 °C (Fig. 5B). In addition, the observation that a
521 (p)ppGpp⁰ cxs-2 strain, in which Spx can still up-regulate the stress response, exhibits a much
522 less impaired growth than a (p)ppGpp⁰ Δ spx or (p)ppGpp⁰ cxs-1 strain in which Spx activity
523 is fully disrupted. This suggests that at least either (p)ppGpp or Spx is required for the
524 transcription of unknown factors necessary for efficient growth under adverse conditions. The

525 observation that transcription of *spx* is also activated by (p)ppGpp via CodY in *Enterococcus*
526 *faecalis* and *rel* transcription is activated by the disulfide-stress regulator σ^R in *Streptomyces*
527 *coelicolor* points toward possible functional connection of these two regulators [63,64].

528 Our RNA-seq dataset also indicates a possible activation of the SigB-dependent
529 general stress response by (p)ppGpp during stress- and non-stress conditions (Fig S7). SigB
530 becomes activated by decreased GTP levels as elicited by decoyinine [53,54]. In addition, a
531 requirement of L11, which is necessary for Rel synthetase activity, and Obg, a ribosome-
532 associated GTPase that interacts with ppGpp, for the activation of SigB upon physical stress
533 and an interaction of Obg with components of the SigB regulatory cascade was reported,
534 suggesting an intricate connection between the ribosome, Rel and the general stress response
535 [53,65,66].

536 **Control and protection of translation by (p)ppGpp and the role of Hpf during heat
537 stress**

538 Our results suggest that (p)ppGpp acts as a negative regulator of translation during heat shock.
539 (p)ppGpp was shown to bind and inhibit many ribosome-associated GTPases thus interfering
540 with ribosome assembly and arresting translation [32,33]. The relative reduction of translation
541 during stress would reduce the load on the protein quality control systems, thus alleviating the
542 burden for cellular protein homeostasis upon protein folding stress [3,67]. This hypothesis is
543 supported by the observation that the (p)ppGpp⁰ mutant accumulated more protein aggregates
544 during heat stress, whereas a Δrel mutant strain exhibited significantly lower translation, but
545 at the same time generated also significantly less protein aggregates (Fig. 2I). (p)ppGpp is
546 also required for the efficient transcription and synthesis of the Hpf protein that promotes the
547 formation of translationally inactive 100S disomes, which supports the fast regrowth of cells
548 after stress conditions have ceased [43,68,69]. Furthermore, we observed that the 16S rRNA
549 was degraded and translation was diminished in the (p)ppGpp⁰ mutant upon severe stress at

550 37/53 °C. This phenotype was neither rescued by *in trans* expression of *hpf* or the addition of
551 antibiotics that inhibit translation, suggesting that a specific mechanism for the protective
552 action of (p)ppGpp and not an inhibition of translation is required for this process. However,
553 cells were reported to be able to fully recover from the heat-induced rRNA degradation [70].
554 It was recently observed *B. subtilis* that tRNA maturation defects could lead to an inhibition
555 of rRNA processing and 30S assembly via the synthesis of (p)ppGpp [71]. These observations
556 might be important to understand possible stress signaling pathways and also the protective
557 effect of (p)ppGpp on translation under proteotoxic stress conditions.

558 **The role of the SR during the heat stress response**

559 Taken together, our data suggest a model in which cells respond in a concerted manner to
560 heat-mediated protein unfolding and aggregation, not only by raising the repair capacity, but
561 also by decreasing translation to concurrently reduce the load on the cellular protein quality
562 control systems (Fig. 7A). Upon heat shock, Rel is activated and rapidly synthesizes
563 alarmones. These alarmones mediate, in conjunction with Spx, a strong down-regulation of
564 ribosomal promoters together with the up-regulation of stress response-genes such as *hpf*
565 during heat shock (Fig. 7B), while chaperones and stress-response genes controlled by Spx
566 and other regulators are concurrently up-regulated. In addition, the second messenger
567 (p)ppGpp could directly control the activity of translation factors and may thereby mediate a
568 fast and immediate response to slow down translation during stress. Together, the combined
569 readjustments on transcription and translation allow an efficient reallocation of cellular
570 resources to the synthesis of stress response proteins and concurrently minimize the load on
571 the protein quality control systems, thus contributing to protein homeostasis [3,67,72]. The
572 unfolded protein response to misbalances in protein homeostasis in the endoplasmic reticulum
573 of eukaryotic cells is a well-studied and analogous stress response mechanism where the up-

574 regulation of chaperones is also coupled to the concurrent down-regulation of translation,
575 albeit by different mechanisms [3,73].

576 Interestingly, accumulation of (p)ppGpp upon heat or oxidative stress and its
577 importance for stress resistance has also been reported in other *Firmicutes* and also
578 *Proteobacteria* that differ widely in terms of (p)ppGpp signaling [56–58,74,75].
579 Accumulation of (p)ppGpp was shown to protect cells from salt or osmotic stress [76,77].
580 Conversely, the lack of (p)ppGpp is known to renders cells sensitive to heat or oxidative
581 stress [58,78,79], suggesting that activation of the SR, allowing the fast down regulation of
582 translation, is an important and conserved part of the response to environmental stress in
583 bacteria. It is interesting to note that SR was also implicated in *B. subtilis* competence
584 development, facilitating a cellular state (also referred to as the K-state) where cells cease to
585 divide, and most transcription and translation is strongly down-regulated. In these cells only
586 competence proteins, together with DNA repair and recombination genes, are expressed,
587 allowing the uptake and possible utilization of homologous of DNA in this specific cellular
588 state of a subpopulation of stationary phase cells [59]. Bacterial cells thus appear to utilize the
589 (p)ppGpp second messenger, which can interfere directly with basic cellular processes such as
590 translation, replication and growth, as an important part of different regulatory networks,
591 facilitating and allowing the survival of bacterial cells in fast changing environments with
592 limited nutrient availability and exposure to various stress conditions.

593 **Methods**

594 **Construction of strains and plasmids**

595 Strains, plasmids and primers are listed in S1 Table. PCR-amplification and molecular
596 cloning using *E. coli* DH5 α as host was carried out according to standard protocols [80]. Point
597 mutations were introduced via overlap-extension PCR. To generate pBSII-spxDD-spec, a

598 fragment carrying *spx^{DD}*, *lacI* and the spectinomycin resistance cassette was amplified from
599 pSN56 [12] with primers p289/p223 and ligated using *SpeI*/*NsiI* sites into the pBSIIE
600 backbone amplified with primers p203/p288. Integrative plasmids were linearized by
601 digestion with *ScalI* or *BsaI* prior to transformation. Point mutations in the *rel* gene were first
602 cloned in the pMAD vector and then re-amplified for cloning into pDR111.

603 Transformation of *B. subtilis* strains, the generation of scarless mutations using the pMAD
604 system and the introduction of *cxs-1/2* mutations in *rpoA* was carried out as described
605 previously [81–83]. Mutants were selected on 100 µg ml⁻¹ spectinomycin, 10 µg ml⁻¹
606 kanamycin, 1 µg ml⁻¹ erythromycin, 25 µg ml⁻¹ lincomycin or 5 µg ml⁻¹ chloramphenicol,
607 respectively. To obtain the (p)ppGpp⁰ strain (BHS214), markerless *sasA^{E154V}* and *sasB^{E139V}*
608 mutations were introduced into *B. subtilis* 168 cells by successive transformation and
609 recombination of plasmids pMAD-sasA^{E154V} and pMAD-sasB^{E139V}, yielding strain BHS204.
610 Next, a PCR amplified fragment carrying *rel::erm* [22] and flanking homologous regions was
611 transformed to generate BHS214. Since the (p)ppGpp⁰ strain fails to develop natural
612 competence, additional mutations were introduced in BHS204 and transformed with a PCR-
613 amplified *rel::erm* fragment or BHS214 genomic DNA in a second step.

614 **Growth conditions**

615 *B. subtilis* strains were grown in LB medium (5 g L⁻¹ yeast extract, 10 g L⁻¹ tryptone-peptone,
616 10 g L⁻¹ NaCl) or minimal medium [84] supplemented with 0.5 % casamino acids in water
617 baths with 200 rpm orbital shaking at the desired temperatures. 1 mM IPTG or 0.4 % xylose
618 was supplemented if required.

619 **Survival and viability assays**

620 The assays for thermotolerance development, survival and preparation of protein aggregate
621 are described previously [5]. 1 mM IPTG was added to induce expression of recombinant
622 proteins 30 min before the division of the culture. The influence of decoyinine on

623 thermotolerance was tested in 1.5 mL tubes in thermoshakers. Detection of aggregates by
624 fluorescence microscopy was described previously in [41]. Spot colony formation assays were
625 carried out as described previously and incubated at the indicated temperatures [14].

626 **Transcription analysis**

627 Strains were grown in LB and treated as indicated. Samples of 15-25 mL were harvested by
628 centrifugation for 3 min at 3.860 xg at 4 °C and frozen in liquid nitrogen. Isolation of total
629 RNA, treatment with DNase I (NEB) and quality control by native agarose gel
630 electrophoresis, methylene blue staining and northern blotting was described previously [14].
631 Northern blotting, hybridization with DIG-labeled RNA probes and detection was carried out
632 as described previously [14]. Primers for the synthesis of probes are listed in S1 Table.
633 Reverse transcription and qPCR were carried out as described previously [14]. The primers
634 are listed in S1 Table. 23S rRNA was used as a reference.

635 **RNA sequencing**

636 Cells of BHS220, BHS319 and BHS368 were grown in 150 mL LB medium in 500 mL flasks
637 in water baths at 37 °C and 200 rpm. In the mid-exponential phase ($OD_{600\text{ nm}} \sim 0.4$), the
638 culture was divided and shifted to 48 °C or left at 37 °C. After 15 min, samples were
639 withdrawn and both cultures were shifted to 53 °C for another 15 min and harvested. Cells
640 from 25 mL medium were pelleted by centrifugation for 3 min at 3.860 x g and 4 °C and
641 flash-frozen in liquid nitrogen. RNA was prepared the using phenol/trizol method as
642 described in [85] and treated with TURBO DNase (Invitrogen). RNA quality was assessed on
643 a Bioanalyzer 2100 System (Agilent).

644 rRNA depletion from total RNA using MICROBExpress (Ambion), treatment with tobacco
645 acid pyrophosphatase (TAP) for +TAP libraries, library preparation, Illumina sequencing and
646 quality control of the sequencing output was carried out as described previously [86]. Reads
647 were mapped to the *Bacillus subtilis* 168 genome with insertion of *rrnJp1-lacZ* in the *amyE*

648 site (strain BHS220, *amyE::rrnJp1-lacZ cat*) using Bowtie2 (version 2.1.0) reads [87] with
649 default parameters and filtered for uniquely mapped reads using SAMtools [88]. The DEseq2
650 package with default parameters was used for the detection of differentially expressed genes
651 from raw count data of triplicate experiments [89]. Expression changes were considered
652 significant if differentially regulated by at least 4-fold (*p*-value ≤ 0.05). The data have been
653 deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series
654 accession number GSE125467 [90]. Identification of transcription start sites (TSS) and gene
655 set enrichment analysis (GSEA) is described in S1 Text.

656 ***In vitro* transcription**

657 *In vitro* transcription assays using purified *B. subtilis* RNA polymerase and Spx protein was
658 carried out as described previously [14].

659 **Fluorescence microscopy**

660 Strain BIH369 (*lacA::Pxyl-yocM-mCherry erm*) was grown in LB medium + 0.5 % xylose.
661 The culture was divided in the mid-exponential phase, supplemented with puromycin for 15
662 min and subjected to fluorescence microscopy in a Axio Imager.Z2 (Zeiss) microscope using
663 the RFP filter set [14].

664 **SDS PAGE and Western blotting**

665 Strains were grown in LB medium and treated as indicated, harvested by centrifugation for 5
666 min at 3.860 xg at 4 °C, washed in TE buffer (10 mM TRIS-HCl, 1 mM EDTA, pH 8.0) and
667 disrupted by sonication in TE supplemented with 1 mM PMSF. Equal amounts of protein
668 were separated by SDS-PAGE and stained with coomassie or subjected to western blotting
669 [91–93]. For signal detection, polyclonal α -Hpf antibody (1:5000) [69] or monoclonal anti-
670 puromycin antibody (1:10.000, Merck) and HRP-conjugated anti-mouse or anti-rabbit
671 antibodies (1:10.000, Roth) were used in conjunction with the ECL-system as described

672 previously [14]. Images were acquired using a ChemoStar Imaging System (Intas, Göttingen,
673 Germany)

674 **Translation rate analysis**

675 Strains were grown in LB medium and treated as indicated. For *in vivo* labeling, 10 mL
676 medium were separated, supplemented with 1 $\mu\text{g mL}^{-1}$ puromycin (Roth) and incubated for 15
677 min at the same conditions. Then, samples were supplemented with 25 $\mu\text{g mL}^{-1}$
678 chloramphenicol, harvested by centrifugation for 5 min at 3.860 xg at 4 °C, washed in TE
679 buffer (10 mM TRIS-HCl, 1 mM EDTA, pH 8.0) and disrupted by sonication in TE
680 supplemented with 1 mM PMSF. Equal amounts of protein were directly spotted on
681 nitrocellulose membranes (5 μg) or subjected to SDS-PAGE and western blotting [80].
682 Puromycin-signals were detected using monoclonal anti-puromycin antibody (1:10.000,
683 Merck), HRP-conjugated anti-mouse antibody (1:10.000, Roth) and the ECL-system in a
684 ChemoStar imaging system (Intas, Göttingen, Germany). Signals were analyzed using Fiji
685 distribution of ImageJ [94].

686

687 **Sucrose density gradient centrifugation analysis**

688 Early exponential phase cultures of *B. subtilis* strains grown in LB medium were treated with
689 heat shock at 48 °C or 48 °C/53 °C for 15 min each. Samples of 50 mL were supplemented
690 with 50 $\mu\text{g mL}^{-1}$ chloramphenicol to stall translation and harvested by centrifugation at 4000 x
691 g for 10 min at 4 °C. Cells were resuspended in 25 mM HEPES-KOH, pH 7.5, 150 mM
692 KOAc, 25 mM Mg(OAc)₂, 1 mM dithiothreitol (DTT), n-Decyl-β-D-thiomaltopyranoside
693 (DTM), 5 % (w/v) sucrose) and lysed by sonication. The lysate was cleared by centrifugation
694 at 16,000 x g for 15 min at 4 °C. 10 OD₂₆₀ units were loaded on a 10 mL 5-45 % (w/v)
695 sucrose gradient prepared in the same buffer, run in a SW-40 Ti rotor (Beckman Coulter) at

696 57471 x g for 16.5 h and analyzed using a Gradient Station (Biocomp) with an Econo UV
697 Monitor (Bio-Rad).

698 **Quantification of nucleotides**

699 Cells were grown in minimal medium supplemented with 0.5 % casamino acids to support the
700 growth of (p)ppGpp deficient strains [95] and treated as indicated. Samples of 2 mL were
701 removed, supplemented with 75 µL 100 % formic acid and incubated on ice for 30 min.
702 Extraction of nucleotides was carried out as described in [96] and detected by HPLC-ESI-
703 MS/MS on a QTRAP 5500 instrument. Analytes were separated on a Hypercarb column (30 x
704 4.6 mm, 5 µm particle size) in a linear gradient of solvent A (10 mM ammonium acetate pH
705 10) and solvent B (acetonitrile) at a flow rate of 0.6 mL/min from 96 % A + 4 % B (0 min) to
706 40 % A + 60 % B (8 min) into the ESI ion source at 4.5 kV in positive ion mode. Tenofovir
707 was used as internal standard. pGpp and pppGpp standards were synthesized *in vitro* from
708 ATP and GTP or GMP as described previously [97]. ppGpp was purchased from Trilink
709 Biotechnologies.

710 **Acknowledgements**

711 We thank Dr. Laurent Jannière ([French National Centre for Scientific Research, Paris, France](#))
712 and the National BioResource Project (National Institute of Genetics, Japan) for providing
713 strains and plasmids.

714

715 **Funding**

716 This work was supported by Czech Science Foundation Grant No. 19-12956S (to LK), by the
717 Czech research infrastructure for systems biology C4SYS (project LM2015055).

718 This research was supported by grants from the Deutsche Forschungsgemeinschaft (SPP 1879
719 to K.T., G.B., and D.N.W.).

720

721 **References**

1. Storz G, Hengge R, American Society for Microbiology, editors. *Bacterial stress responses*. 2nd ed. Washington, DC: ASM Press; 2011.
2. Mogk A, Huber D, Bukau B. Integrating protein homeostasis strategies in prokaryotes. *Cold Spring Harb Perspect Biol*. 2011;3. doi:10.1101/cshperspect.a004366
3. Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. *Nature*. 2011;475: 324–332. doi:10.1038/nature10317
4. Völker U, Mach H, Schmid R, Hecker M. Stress proteins and cross-protection by heat shock and salt stress in *Bacillus subtilis*. *J Gen Microbiol*. 1992;138: 2125–2135. doi:10.1099/00221287-138-10-2125
5. Runde S, Molière N, Heinz A, Maisonneuve E, Janczikowski A, Elsholz AKW, et al. The role of thiol oxidative stress response in heat-induced protein aggregate formation during thermotolerance in *Bacillus subtilis*: Thiol oxidation in protein aggregate formation. *Molecular Microbiology*. 2014;91: 1036–1052. doi:10.1111/mmi.12521
6. Hecker M, Schumann W, Völker U. Heat-shock and general stress response in *Bacillus subtilis*. *Molecular microbiology*. 1996;19: 417–428.
7. Schumann W. The *Bacillus subtilis* heat shock stimulon. *Cell Stress Chaperones*. 2003;8: 207–217.
8. Mogk A, Homuth G, Scholz C, Kim L, Schmid FX, Schumann W. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of *Bacillus subtilis*. *EMBO J*. 1997;16: 4579–4590. doi:10.1093/emboj/16.15.4579
9. Krüger E, Hecker M. The first gene of the *Bacillus subtilis* *clpC* operon, *ctsR*, encodes a negative regulator of its own operon and other class III heat shock genes. *J Bacteriol*. 1998;180: 6681–6688.
10. Elsholz AKW, Michalik S, Zühlke D, Hecker M, Gerth U. *CtsR*, the Gram-positive master regulator of protein quality control, feels the heat. *The EMBO Journal*. 2010;29: 3621–3629. doi:10.1038/emboj.2010.228
11. Hecker M, Pané-Farré J, Uwe V. *SigB*-Dependent General Stress Response in *Bacillus subtilis* and Related Gram-Positive Bacteria. *Annual Review of Microbiology*. 2007;61: 215–236. doi:10.1146/annurev.micro.61.080706.093445
12. Nakano S, Küster-Schöck E, Grossman AD, Zuber P. *Spx*-dependent global transcriptional control is induced by thiol-specific oxidative stress in *Bacillus subtilis*. *Proc Natl Acad Sci USA*. 2003;100: 13603–13608. doi:10.1073/pnas.2235180100
13. Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, Leduc A, et al. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor *Spx* in *Bacillus subtilis*. *Nucleic Acids Res*. 2012;40: 9571–9583. doi:10.1093/nar/gks755
14. Schäfer H, Heinz A, Sudzinová P, Voß M, Hantke I, Krásný L, et al. *Spx*, the central regulator of the heat and oxidative stress response in *B. subtilis*, can repress transcription of translation-related genes. *Mol Microbiol*. 2019;111: 514–533. doi:10.1111/mmi.14171
15. Potrykus K, Cashel M. (p)ppGpp: still magical? *Annu Rev Microbiol*. 2008;62: 35–51. doi:10.1146/annurev.micro.62.081307.162903
16. Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT Homolog (RSH) Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases across the Tree of Life. Stiller JW, editor. *PLoS ONE*. 2011;6: e23479. doi:10.1371/journal.pone.0023479

768 17. Haseltine WA, Block R. Synthesis of guanosine tetra- and pentaphosphate requires the
769 presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of
770 ribosomes. *Proc Natl Acad Sci USA*. 1973;70: 1564–1568.

771 18. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH. Dissection of the
772 Mechanism for the Stringent Factor RelA. *Molecular Cell*. 2002;10: 779–788.
773 doi:10.1016/S1097-2765(02)00656-1

774 19. Arenz S, Abdelshahid M, Sohmen D, Payoe R, Starosta AL, Berninghausen O, et al.
775 The stringent factor RelA adopts an open conformation on the ribosome to stimulate
776 ppGpp synthesis. *Nucleic Acids Res*. 2016;44: 6471–6481. doi:10.1093/nar/gkw470

777 20. Brown A, Fernández IS, Gordiyenko Y, Ramakrishnan V. Ribosome-dependent
778 activation of stringent control. *Nature*. 2016;534: 277–280. doi:10.1038/nature17675

779 21. Loveland AB, Bah E, Madireddy R, Zhang Y, Brilot AF, Grigorieff N, et al.
780 Ribosome•RelA structures reveal the mechanism of stringent response activation. *Elife*.
781 2016;5. doi:10.7554/elife.17029

782 22. Wendrich TM, Marahiel MA. Cloning and characterization of a relA/spoT homologue
783 from *Bacillus subtilis*. *Mol Microbiol*. 1997;26: 65–79.

784 23. Nanamiya H, Kasai K, Nozawa A, Yun C-S, Narisawa T, Murakami K, et al.
785 Identification and functional analysis of novel (p)ppGpp synthetase genes in *Bacillus*
786 *subtilis*. *Mol Microbiol*. 2008;67: 291–304. doi:10.1111/j.1365-2958.2007.06018.x

787 24. Boute CC, Crosson S. Bacterial lifestyle shapes stringent response activation. *Trends*
788 *Microbiol*. 2013;21: 174–180. doi:10.1016/j.tim.2013.01.002

789 25. Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for
790 activating (p)ppGpp synthesis in bacteria. *Microbiology*. 2018;164: 268–276.
791 doi:10.1099/mic.0.000621

792 26. Lopez JM, Dromerick A, Freese E. Response of guanosine 5'-triphosphate
793 concentration to nutritional changes and its significance for *Bacillus subtilis*
794 sporulation. *J Bacteriol*. 1981;146: 605–613.

795 27. Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK, Zou WY, et al. Direct regulation
796 of GTP homeostasis by (p)ppGpp: a critical component of viability and stress
797 resistance. *Mol Cell*. 2012;48: 231–241. doi:10.1016/j.molcel.2012.08.009

798 28. Krásný L, Gourse RL. An alternative strategy for bacterial ribosome synthesis: *Bacillus*
799 *subtilis* rRNA transcription regulation. *EMBO J*. 2004;23: 4473–4483.
800 doi:10.1038/sj.emboj.7600423

801 29. Krásný L, Tišerová H, Jonák J, Rejman D, Šanderová H. The identity of the
802 transcription +1 position is crucial for changes in gene expression in response to amino
803 acid starvation in *Bacillus subtilis*. *Molecular Microbiology*. 2008;69: 42–54.
804 doi:10.1111/j.1365-2958.2008.06256.x

805 30. Geiger T, Wolz C. Intersection of the stringent response and the CodY regulon in low
806 GC Gram-positive bacteria. *Int J Med Microbiol*. 2014;304: 150–155.
807 doi:10.1016/j.ijmm.2013.11.013

808 31. Svitil AL, Cashel M, Zyskind JW. Guanosine tetraphosphate inhibits protein synthesis
809 *in vivo*. A possible protective mechanism for starvation stress in *Escherichia coli*. *J*
810 *Biol Chem*. 1993;268: 2307–2311.

811 32. Milon P, Tischenko E, Tomsic J, Caserta E, Folkers G, La Teana A, et al. The
812 nucleotide-binding site of bacterial translation initiation factor 2 (IF2) as a metabolic
813 sensor. *Proc Natl Acad Sci USA*. 2006;103: 13962–13967.
814 doi:10.1073/pnas.0606384103

815 33. Corrigan RM, Bellows LE, Wood A, Gründling A. ppGpp negatively impacts ribosome
816 assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. *Proc*
817 *Natl Acad Sci USA*. 2016;113: E1710-1719. doi:10.1073/pnas.1522179113

818 34. Bokinsky G, Baidoo EEK, Akella S, Burd H, Weaver D, Alonso-Gutierrez J, et al.
819 HipA-triggered growth arrest and β -lactam tolerance in *Escherichia coli* are mediated
820 by RelA-dependent ppGpp synthesis. *J Bacteriol.* 2013;195: 3173–3182.
821 doi:10.1128/JB.02210-12

822 35. Dalebroux ZD, Swanson MS. ppGpp: magic beyond RNA polymerase. *Nat Rev
823 Microbiol.* 2012;10: 203–212. doi:10.1038/nrmicro2720

824 36. Kanjee U, Ogata K, Houry WA. Direct binding targets of the stringent response
825 alarmone (p)ppGpp: Protein targets of ppGpp. *Molecular Microbiology.* 2012;85:
826 1029–1043. doi:10.1111/j.1365-2958.2012.08177.x

827 37. Zhang Y, Zborníková E, Rejman D, Gerdes K. Novel (p)ppGpp Binding and
828 Metabolizing Proteins of *Escherichia coli*. *MBio.* 2018;9. doi:10.1128/mBio.02188-17

829 38. Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, et al. Affinity-based
830 capture and identification of protein effectors of the growth regulator ppGpp. *Nat Chem
831 Biol.* 2019;15: 141–150. doi:10.1038/s41589-018-0183-4

832 39. Leichert LIO, Scharf C, Hecker M. Global characterization of disulfide stress in
833 *Bacillus subtilis*. *J Bacteriol.* 2003;185: 1967–1975.

834 40. Mostertz J, Scharf C, Hecker M, Homuth G. Transcriptome and proteome analysis of
835 *Bacillus subtilis* gene expression in response to superoxide and peroxide stress.
836 *Microbiology (Reading, Engl).* 2004;150: 497–512. doi:10.1099/mic.0.26665-0

837 41. Hantke I, Schäfer H, Janczikowski A, Turgay K. YocM a small heat shock protein can
838 protect *Bacillus subtilis* cells during salt stress. *Mol Microbiol.* 2019;111: 423–440.
839 doi:10.1111/mmi.14164

840 42. Hecker M, Richter A, Schroeter A, Wölfel L, Mach F. [Synthesis of heat shock proteins
841 following amino acid or oxygen limitation in *Bacillus subtilis* relA+ and relA strains].
842 *Z Naturforsch, C, J Biosci.* 1987;42: 941–947.

843 43. Drzewiecki K, Eymann C, Mittenhuber G, Hecker M. The yvyD gene of *Bacillus
844 subtilis* is under dual control of sigmaB and sigmaH. *J Bacteriol.* 1998;180: 6674–6680.

845 44. Tagami K, Nanamiya H, Kazo Y, Maehashi M, Suzuki S, Namba E, et al. Expression
846 of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of *Bacillus subtilis*
847 triggers YvyD-dependent dimerization of ribosome. *Microbiologyopen.* 2012;1: 115–
848 134. doi:10.1002/mbo3.16

849 45. Cashel M. The Control of Ribonucleic Acid Synthesis in *Escherichia coli* : IV.
850 RELEVANCE OF UNUSUAL PHOSPHORYLATED COMPOUNDS FROM
851 AMINO ACID-STARVED STRINGENT STRAINS. *Journal of Biological Chemistry.*
852 1969;244: 3133–3141.

853 46. Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, et al. High-precision,
854 whole-genome sequencing of laboratory strains facilitates genetic studies. *PLoS Genet.*
855 2008;4: e1000139. doi:10.1371/journal.pgen.1000139

856 47. Schreiber G, Metzger S, Aizenman E, Roza S, Cashel M, Glaser G. Overexpression of
857 the relA gene in *Escherichia coli*. *J Biol Chem.* 1991;266: 3760–3767.

858 48. Nouri H, Monnier A-F, Fossum-Raunehaug S, Maciag-Dorszynska M, Cabin-Flaman
859 A, Képès F, et al. Multiple links connect central carbon metabolism to DNA replication
860 initiation and elongation in *Bacillus subtilis*. *DNA Res.* 2018;
861 doi:10.1093/dnares/dsy031

862 49. Lopez JM, Marks CL, Freese E. The decrease of guanine nucleotides initiates
863 sporulation of *Bacillus subtilis*. *Biochim Biophys Acta.* 1979;587: 238–252.

864 50. Tojo S, Satomura T, Kumamoto K, Hirooka K, Fujita Y. Molecular Mechanisms
865 Underlying the Positive Stringent Response of the *Bacillus subtilis* ilv-leu Operon,
866 Involved in the Biosynthesis of Branched-Chain Amino Acids. *J Bacteriol.* 2008;190:
867 6134–6147. doi:10.1128/JB.00606-08

868 51. Tojo S, Kumamoto K, Hirooka K, Fujita Y. Heavy involvement of stringent
869 transcription control depending on the adenine or guanine species of the transcription
870 initiation site in glucose and pyruvate metabolism in *Bacillus subtilis*. *J Bacteriol*.
871 2010;192: 1573–1585. doi:10.1128/JB.01394-09

872 52. Ratnayake-Lecamwasam M, Serror P, Wong KW, Sonenshein AL. *Bacillus subtilis*
873 CodY represses early-stationary-phase genes by sensing GTP levels. *Genes Dev*.
874 2001;15: 1093–1103. doi:10.1101/gad.874201

875 53. Zhang S, Haldenwang WG. RelA is a component of the nutritional stress activation
876 pathway of the *Bacillus subtilis* transcription factor sigma B. *J Bacteriol*. 2003;185:
877 5714–5721.

878 54. Zhang S, Haldenwang WG. Contributions of ATP, GTP, and redox state to nutritional
879 stress activation of the *Bacillus subtilis* sigmaB transcription factor. *J Bacteriol*.
880 2005;187: 7554–7560. doi:10.1128/JB.187.22.7554-7560.2005

881 55. Mollière N, Hoßmann J, Schäfer H, Turgay K. Role of Hsp100/Clp Protease Complexes
882 in Controlling the Regulation of Motility in *Bacillus subtilis*. *Front Microbiol*. 2016;7:
883 315. doi:10.3389/fmicb.2016.00315

884 56. Gallant J, Palmer L, Pao CC. Anomalous synthesis of ppGpp in growing cells. *Cell*.
885 1977;11: 181–185.

886 57. VanBogelen RA, Kelley PM, Neidhardt FC. Differential induction of heat shock, SOS,
887 and oxidation stress regulons and accumulation of nucleotides in *Escherichia coli*. *J*
888 *Bacteriol*. 1987;169: 26–32.

889 58. Fitzsimmons LF, Liu L, Kim J-S, Jones-Carson J, Vázquez-Torres A. *Salmonella*
890 Reprograms Nucleotide Metabolism in Its Adaptation to Nitrosative Stress. Aballay A,
891 editor. *mBio*. 2018;9: e00211-18. doi:10.1128/mBio.00211-18

892 59. Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D. ComGA-RelA interaction
893 and persistence in the *Bacillus subtilis* K-state. *Mol Microbiol*. 2015;97: 454–471.
894 doi:10.1111/mmi.13040

895 60. Pöther D-C, Liebeke M, Hochgräfe F, Antelmann H, Becher D, Lalk M, et al. Diamide
896 triggers mainly S Thiolations in the cytoplasmic proteomes of *Bacillus subtilis* and
897 *Staphylococcus aureus*. *J Bacteriol*. 2009;191: 7520–7530. doi:10.1128/JB.00937-09

898 61. Katz A, Orellana O. Protein Synthesis and the Stress Response. In: Biyani M, editor.
899 Cell-Free Protein Synthesis. InTech; 2012. doi:10.5772/50311

900 62. Natori Y, Tagami K, Murakami K, Yoshida S, Tanigawa O, Moh Y, et al. Transcription
901 Activity of Individual rrn Operons in *Bacillus subtilis* Mutants Deficient in (p)ppGpp
902 Synthetase Genes, relA, yjbM, and ywaC. *Journal of Bacteriology*. 2009;191: 4555–
903 4561. doi:10.1128/JB.00263-09

904 63. Paget MSB, Molle V, Cohen G, Aharonowitz Y, Buttner MJ. Defining the disulphide
905 stress response in *Streptomyces coelicolor* A3(2): identification of the sigmaR regulon.
906 *Molecular Microbiology*. 2001;42: 1007–1020. doi:10.1046/j.1365-2958.2001.02675.x

907 64. Gaca AO, Abrantes J, Kajfasz JK, Lemos JA. Global transcriptional analysis of the
908 stringent response in *Enterococcus faecalis*. *Microbiology (Reading, Engl)*. 2012;158:
909 1994–2004. doi:10.1099/mic.0.060236-0

910 65. Scott JM, Haldenwang WG. Obg, an essential GTP binding protein of *Bacillus subtilis*,
911 is necessary for stress activation of transcription factor sigma(B). *J Bacteriol*. 1999;181:
912 4653–4660.

913 66. Zhang S, Scott JM, Haldenwang WG. Loss of ribosomal protein L11 blocks stress
914 activation of the *Bacillus subtilis* transcription factor sigma(B). *J Bacteriol*. 2001;183:
915 2316–2321. doi:10.1128/JB.183.7.2316-2321.2001

916 67. Bruel N, Castanié-Cornet M-P, Cirinesi A-M, Koningstein G, Georgopoulos C, Luirink
917 J, et al. Hsp33 controls elongation factor-Tu stability and allows *Escherichia coli*

918 growth in the absence of the major DnaK and trigger factor chaperones. *J Biol Chem.* 919 2012;287: 44435–44446. doi:10.1074/jbc.M112.418525

920 68. Akanuma G, Kazo Y, Tagami K, Hiraoka H, Yano K, Suzuki S, et al. Ribosome 921 dimerization is essential for the efficient regrowth of *Bacillus subtilis*. *Microbiology.* 922 2016;162: 448–458. doi:10.1099/mic.0.000234

923 69. Beckert B, Abdelshahid M, Schäfer H, Steinchen W, Arenz S, Berninghausen O, et al. 924 Structure of the *Bacillus subtilis* hibernating 100S ribosome reveals the basis for 70S 925 dimerization. *EMBO J.* 2017;36: 2061–2072. doi:10.15252/embj.201696189

926 70. Miller LL, Ordal ZJ. Thermal injury and recovery of *Bacillus subtilis*. *Appl Microbiol.* 927 1972;24: 878–884.

928 71. Trinquier A, Ulmer JE, Gilet L, Figaro S, Hammann P, Kuhn L, et al. tRNA Maturation 929 Defects Lead to Inhibition of rRNA Processing via Synthesis of pppGpp. *Molecular* 930 *Cell.* 2019;0. doi:10.1016/j.molcel.2019.03.030

931 72. Maaß S, Wachlin G, Bernhardt J, Eymann C, Fromion V, Riedel K, et al. Highly 932 precise quantification of protein molecules per cell during stress and starvation 933 responses in *Bacillus subtilis*. *Mol Cell Proteomics.* 2014;13: 2260–2276. 934 doi:10.1074/mcp.M113.035741

935 73. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic 936 regulation. *Science.* 2011;334: 1081–1086. doi:10.1126/science.1209038

937 74. Abranches J, Martinez AR, Kajfasz JK, Chávez V, Garsin DA, Lemos JA. The 938 molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and 939 virulence in *Enterococcus faecalis*. *J Bacteriol.* 2009;191: 2248–2256. 940 doi:10.1128/JB.01726-08

941 75. Gaca AO, Kudrin P, Colomer-Winter C, Beljantseva J, Liu K, Anderson B, et al. From 942 (p)ppGpp to (pp)pGpp: Characterization of Regulatory Effects of pGpp Synthesized by 943 the Small Alarmone Synthetase of *Enterococcus faecalis*. *J Bacteriol.* 2015;197: 2908– 944 2919. doi:10.1128/JB.00324-15

945 76. Rallu F, Gruss A, Ehrlich SD, Maguin E. Acid- and multistress-resistant mutants of 946 *Lactococcus lactis*: identification of intracellular stress signals. *Molecular* 947 *Microbiology.* 2000;35: 517–528. doi:10.1046/j.1365-2958.2000.01711.x

948 77. Okada Y, Makino S, Tobe T, Okada N, Yamazaki S. Cloning of rel from *Listeria* 949 *monocytogenes* as an osmotolerance involvement gene. *Appl Environ Microbiol.* 950 2002;68: 1541–1547.

951 78. Yang X, Ishiguro EE. Temperature-Sensitive Growth and Decreased Thermotolerance 952 Associated with relA Mutations in *Escherichia coli*. *J Bacteriol.* 2003;185: 5765–5771. 953 doi:10.1128/JB.185.19.5765-5771.2003

954 79. Khakimova M, Ahlgren HG, Harrison JJ, English AM, Nguyen D. The stringent 955 response controls catalases in *Pseudomonas aeruginosa* and is required for hydrogen 956 peroxide and antibiotic tolerance. *J Bacteriol.* 2013;195: 2011–2020. 957 doi:10.1128/JB.02061-12

958 80. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring 959 Harbor, N.Y: Cold Spring Harbor Laboratory Press; 2001.

960 81. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS 961 OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. *Proc Natl Acad Sci USA.* 962 1958;44: 1072–1078.

963 82. Nakano MM, Zhu Y, Liu J, Reyes DY, Yoshikawa H, Zuber P. Mutations conferring 964 amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase 965 alpha can suppress clpX and clpP with respect to developmentally regulated 966 transcription in *Bacillus subtilis*. *Mol Microbiol.* 2000;37: 869–884.

967 83. Arnaud M, Chastanet A, Débarbouillé M. New vector for efficient allelic replacement
968 in naturally nontransformable, low-GC-content, gram-positive bacteria. *Appl Environ*
969 *Microbiol.* 2004;70: 6887–6891. doi:10.1128/AEM.70.11.6887-6891.2004

970 84. Stülke J, Hanschke R, Hecker M. Temporal activation of beta-glucanase synthesis in
971 *Bacillus subtilis* is mediated by the GTP pool. *J Gen Microbiol.* 1993;139: 2041–2045.
972 doi:10.1099/00221287-139-9-2041

973 85. Lamy M-C, Zouine M, Fert J, Vergassola M, Couve E, Pellegrini E, et al. CovS/CovR
974 of group B streptococcus: a two-component global regulatory system involved in
975 virulence: The CovS/CovR regulatory system of *Streptococcus agalactiae*. *Molecular*
976 *Microbiology.* 2004;54: 1250–1268. doi:10.1111/j.1365-2958.2004.04365.x

977 86. Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M, et al.
978 Transcriptomic Profiling of *Yersinia pseudotuberculosis* Reveals Reprogramming of
979 the Crp Regulon by Temperature and Uncovers Crp as a Master Regulator of Small
980 RNAs. Sharma CM, editor. *PLoS Genet.* 2015;11: e1005087.
981 doi:10.1371/journal.pgen.1005087

982 87. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
983 2012;9: 357–359. doi:10.1038/nmeth.1923

984 88. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
985 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25: 2078–2079.
986 doi:10.1093/bioinformatics/btp352

987 89. Anders S, Huber W. Differential expression analysis for sequence count data. *Genome*
988 *Biol.* 2010;11: R106. doi:10.1186/gb-2010-11-10-r106

989 90. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression
990 and hybridization array data repository. *Nucleic Acids Res.* 2002;30: 207–210.

991 91. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from
992 polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc*
993 *Natl Acad Sci USA.* 1979;76: 4350–4354.

994 92. Laemmli UK. Cleavage of structural proteins during the assembly of the head of
995 bacteriophage T4. *Nature.* 1970;227: 680–685.

996 93. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in
997 polyacrylamide gels including isoelectric focusing gels with clear background at
998 nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250.
999 *Electrophoresis.* 1988;9: 255–262. doi:10.1002/elps.1150090603

1000 94. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji:
1001 an open-source platform for biological-image analysis. *Nat Methods.* 2012;9: 676–682.
1002 doi:10.1038/nmeth.2019

1003 95. Kriel A, Brinsmade SR, Tse JL, Tehranchi AK, Bittner AN, Sonenshein AL, et al. GTP
1004 Dysregulation in *Bacillus subtilis* Cells Lacking (p)ppGpp Results in Phenotypic
1005 Amino Acid Auxotrophy and Failure To Adapt to Nutrient Downshift and Regulate
1006 Biosynthesis Genes. *Journal of Bacteriology.* 2014;196: 189–201.
1007 doi:10.1128/JB.00918-13

1008 96. Ihara Y, Ohta H, Masuda S. A highly sensitive quantification method for the
1009 accumulation of alarmone ppGpp in *Arabidopsis thaliana* using UPLC-ESI-qMS/MS. *J*
1010 *Plant Res.* 2015;128: 511–518. doi:10.1007/s10265-015-0711-1

1011 97. Steinchen W, Schuhmacher JS, Altegoer F, Fage CD, Srinivasan V, Linne U, et al.
1012 Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by
1013 an alarmone. *Proc Natl Acad Sci USA.* 2015;112: 13348–13353.
1014 doi:10.1073/pnas.1505271112

1015 98. Nicolas P, Mäder U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. Condition-
1016 dependent transcriptome reveals high-level regulatory architecture in *Bacillus subtilis*.
1017 *Science.* 2012;335: 1103–1106. doi:10.1126/science.1206848

1018

1019 **Figure Captions**

1020 **Fig. 1: (p)ppGpp levels are increased by heat shock and stress.**

1021 **(A)** Outline of the thermotolerance protocol. A culture of cells growing exponentially at 37 °C
1022 is divided and incubated at 48 °C or left at 37 °C. After 15 min, both cultures are shifted to 53
1023 °C. **(B-F)** Levels of pGpp, ppGpp and pppGpp under different conditions. **(B)** Cells were
1024 grown in minimal medium to OD₆₀₀ of 0.4 and transferred to 50 °C or treated with 0.5 mg ml⁻¹
1025 DL-norvaline for 10 min. Means and standard error of mean (SEM) of four independent
1026 experiments are shown. Asterisks (*) indicate significance ($p_{adj.} \leq 0.05$) of combined pGpp,
1027 ppGpp and pppGpp levels according to the Kruskal-Wallis and Dunn-Bonferroni test. **(C)**
1028 Cells were grown in minimal medium to the mid-exponential phase (OD₆₀₀ ~ 0.4) and treated
1029 with DL-norvaline (NV; 0.5 mg ml⁻¹), serine hydroxamate (SHX; 5 µg ml⁻¹), NaCl (6 %) or
1030 diamide (0.5 mM) for 10 min. Means and SEM of three to four independent experiments are
1031 shown. Asterisks (*) indicate significance ($p_{adj.} \leq 0.05$) of combined pGpp, ppGpp and
1032 pppGpp levels according to the Kruskal-Wallis and Dunn-Bonferroni test. **(D)** Wildtype cells
1033 were grown at 37 °C and shifted to 48 °C for 15 min (pre-shock), then to 53 °C or directly to
1034 53 °C. Samples were taken at 2, 5 and 15 min. Means and SEM of four independent
1035 experiments are shown. Asterisks (*) indicate significance ($p_{adj.} \leq 0.05$) of combined pGpp,
1036 ppGpp and pppGpp levels according to the Kruskal-Wallis and Dunn-Bonferroni test. **(E)**
1037 Wildtype cells or strains with mutations in (p)ppGpp synthetases (*sasA/B*⁻: BHS204, *relE*^{324V}:
1038 BHS709; (p)ppGpp⁰: BHS214) were treated with or without heat shock at 50 °C for 2 min.
1039 Means and SEM of three to six independent experiments are shown. No alarmone peaks were
1040 detected in the (p)ppGpp⁰ mutant (lower limit of quantification: 0.26 pmol x mL⁻¹ x OD⁻¹).
1041 Asterisks (*) indicate significant changes ($p \leq 0.05$) of combined pGpp, ppGpp and pppGpp
1042 levels according to Welch's *t*-test. **(F)** The influence of chloramphenicol on alarmone

1043 accumulation during stress. Cells were grown in minimal medium and treated with DL-
1044 norvaline (0.5 mg ml⁻¹) for 10 min, heat shock at 50 °C for 2 min or diamide (1 mM) for 10
1045 min. Chloramphenicol (Cm, 25 µg ml⁻¹) was added at the same time to one part. Means and
1046 SEM of two independent experiments are shown.

1047 **Fig. 2: Increased (p)ppGpp levels confer high heat stress resistance.**

1048 **(A-D)** Growth of strains with mutations in (p)ppGpp synthetases (*sasA/B*⁻: BHS204, *rel*^{E324V}:
1049 BHS709; (p)ppGpp⁰: BHS214) on agar plates at 37 °C, during heat stress (55 °C), oxidative
1050 stress (0.1 mM diamide) or salt stress (total concentration of 7 % (w/v) NaCl) over night. **(E)**
1051 Outline of the genotypes and the (p)ppGpp synthesis capabilities of the assessed wildtype,
1052 *Δrel* (BHS126 and BHS368) and (p)ppGpp⁰ (BHS214 and BHS319) strains. **(F)** Cellular
1053 alarmone levels of wildtype and *Δrel* strains. Asterisks indicate significant changes ($p \leq 0.05$)
1054 of combined pGpp, ppGpp and pppGpp levels according to Welch's *t*-test. Means and SEM of
1055 three independent experiments are shown. **(G/H)** Thermotolerance and survival of wildtype
1056 (black lines) and mutant strains (red lines) at 53 °C. Means and SEM of at least three
1057 independent experiments are shown. Open symbols: no pre-shock, closed symbols: 15 min
1058 pre-shock at 48 °C. **(I)** Accumulation of protein aggregates during heat stress at 53 °C without
1059 (37/53 °C) or with (48/53 °C) pre-shock. CE: cell extract, SN: supernatant, PE: pellet
1060 (aggregated protein fraction).

1061

1062 **Fig. 3: (p)ppGpp- mediated global changes in the transcriptome.**

1063 **(A)** Venn diagram showing the number of significantly regulated genes in *Δrel* or (p)ppGpp⁰
1064 strains vs. wildtype. **(B)** Global differences in gene expression in *Δrel* versus (p)ppGpp⁰
1065 strains. Bar tracks indicate the distribution of genes in the respective functional groups. **(C)**
1066 Comparison of the relative transcription changes of selected genes in, *Δrel* and (p)ppGpp⁰
1067 strains during exponential growth at 37 °C as determined by RNA-seq or RT-qPCR from

1068 independent experiments. Means and SEM of three replicates are shown. **(D)** Selected
1069 category results of the gene set enrichment analysis from regulated transcripts in Δrel vs.
1070 (p)ppGpp⁰ cells. Positive/negative enrichment scores represent enrichment in the up- or
1071 down-regulated genes. **(E)** Heatmap showing the expression changes of selected transcripts in
1072 wildtype, (p)ppGpp⁰ or Δrel strains. Values represent normalized log₂ scaled read counts
1073 centered on the mean expression level of each transcript.

1074 **Fig. 4: (p)ppGpp mediated transcriptional changes during heat stress.**

1075 **(A)** Global differences in gene expression of heat shocked, thermotolerant cells (48/53 °C)
1076 versus untreated cells (37 °C). Bar tracks indicate the distribution of genes in the respective
1077 functional groups. **(B)** Selected category results of the gene set enrichment analysis from
1078 regulated transcripts in heat shocked (48/53 °C) cells. Positive/negative enrichment scores
1079 represent enrichment in the up- or down-regulated genes. **(C)** Heatmap showing expression
1080 changes of selected transcripts during mild heat stress in wildtype, (p)ppGpp⁰ or Δrel cells.
1081 Values represent log₂ fold changes of transcript levels relative to wildtype cells at 37 °C. **(D)**
1082 Relative changes in the transcription of selected genes during heat shock in wildtype and
1083 (p)ppGpp⁰ strains determined by RT-qPCR. Means and SEM of three replicates are shown.
1084 Asterisks indicate significance ($p \leq 0.05$) according to Welch's *t*-test.

1085 **Fig. 5: (p)ppGpp and Spx act complementary during heat shock.**

1086 **(A)** Heat mediated down-regulation of *rrnJp1-lacZ* transcription in wildtype (BHS220), Δspx
1087 (BHS222), (p)ppGpp⁰ (BHS319) and Δspx (p)ppGpp⁰ (BHS766) strains as determined by RT-
1088 qPCR. Means and SEM of three independent experiments are shown. Asterisks indicate
1089 significant changes ($p \leq 0.05$) of combined pGpp, ppGpp and pppGpp levels according to
1090 Welch's *t*-test. **(B)** Growth of the same strains in LB medium at 50 °C.

1091

1092 **Fig. 6: (p)ppGpp modulates translation during stress response.**

1093 **(A/ B)** Relative translation (estimated from puromycin incorporation) of wildtype, (p)ppGpp⁰
1094 (BHS214) and Δrel (BHS126) strains during heat stress **(A)** at 50 °C or **(B)** at 48 °C, 53 °C or
1095 48/53 °C. 1 μ g ml⁻¹ puromycin was added for 15 min to the medium directly after (0-15 min)
1096 or 15 min after shifting the sample to the indicated temperatures. Means and SEM of four
1097 independent experiments are shown. Asterisks indicate significance ($p \leq 0.05$) relative to
1098 wildtype according to Welch's *t*-test. **(C)** Sucrose gradient profiles of extracts from
1099 wildtype,(p)ppGpp⁰ (BHS214) or Δrel cells (BHS126) with or without heat shock at 48 °C or
1100 48/53 °C for 15 min each.

1101 **Fig. 7: The interplay of the stringent response and the heat shock response.**

1102 **(A)** Model of the role of the stringent response in the regulatory network of the heat shock
1103 response. **(B)** The interplay of Spx activity and the stringent response in the regulation of
1104 transcription and translation during the heat shock response.

1105 **Supporting information captions**

1106 **S1 Fig.: Alarmone and GTP levels during stress and starvation.**

1107 **(A)** Means and SEM of GTP after the application of different stress conditions. Sample sizes
1108 and treatments are the same as in Fig. 1 A, B. NV: DL-norvaline, SHX: serine hydroxamate.
1109 Asterisks (*) indicate significance ($p_{adj.} \leq 0.05$) of combined pGpp, ppGpp and pppGpp levels
1110 according to the Kruskal-Wallis and Dunn-Bonferroni test. **(B)** Levels of GTP during
1111 thermotolerance development. Wildtype cells were grown at 37 °C and shifted to 48 °C for 15
1112 min (pre-shock), then to 53 °C or directly to 53 °C. Samples were taken at 2, 5 and 15 min.
1113 Means and SEM of four independent experiments are shown. All changes are not significant
1114 ($p \leq 0.05$) according to the Kruskal-Wallis test. **(C)** Means and SEM of GTP levels during
1115 heat shock in of wildtype cells or strains with mutations in (p)ppGpp synthetases (*sasA/B*:

1116 BHS204, *rel*^{E324V}: BHS709; (p)ppGpp⁰: BHS214). Sample sizes are the same as in Fig. 1E.
1117 Asterisks indicate significant changes ($p \leq 0.05$) according to Welch's *t*-test. **(D)** Relative
1118 changes in the transcription of *hpf* during heat shock in the same strains (15 min 50 °C).
1119 Means and SEM of three independent experiments are shown. Asterisks (*) indicate
1120 significance ($p_{adj.} \leq 0.05$) according to the Kruskal-Wallis and Dunn-Bonferroni test. **(E)** The
1121 influence of chloramphenicol on GTP levels during stress. Sample sizes and treatments are
1122 the same as in Fig. 1F. Asterisks indicate significant changes ($p \leq 0.05$) according to Welch's
1123 *t*-test.

1124 **S2 Fig.: Phenotype of single deletions of (p)ppGpp synthetase genes.**
1125 **(A)** Cellular GTP levels in wildtype or Δrel : (BHS126) strains. **(B)** Growth of strains with
1126 mutations or deletions in (pp)pGpp metabolizing enzymes in rich LB medium. Δrel : BHS126,
1127 (p)ppGpp⁰: BHS214. **(C/D)** Survival of wildtype (black lines) and mutant strains ($\Delta sasB$:
1128 BHS127 or $\Delta sasA$: BHS128) red lines at 53 °C with (48/53 °C) or without (37/53 °C) pre-
1129 shock. Means and SEM of at least three independent experiments are shown. Open symbols:
1130 no pre-shock, closed symbols: 15 min pre-shock at 48 °C. **(E)** Growth of wildtype cells or
1131 strains with deletions in *sasB* (BHS127) or *sasA* (BHS128) on agar plates at 37 °C, during
1132 heat stress (55 °C) or oxidative stress (0.2 mM diamide).

1133 **S3 Fig.: Thermotolerance and survival of strains expressing *rel* variants *in trans*.**
1134 **(A)** Levels of alarmones in these strains after the application of 1 mM IPTG for 15 min.
1135 Asterisks indicate significant changes ($p \leq 0.05$) of combined alarmone levels according to
1136 Welch's *t*-test. **(B-E)** Survival of wildtype (black lines) and mutant strains (red lines) at 53 °C
1137 without pre-shock (37/53 °C; open symbols) or with pre-shock (15 min 48 °C/53 °C; closed
1138 symbols). Means and SEM of at least three independent experiments are shown. Strains were
1139 supplemented with 1 mM IPTG 15 min prior to temperature shift. **(B)** Expression of a
1140 truncated, hyperactive *rel* variant from *E. coli* (designated *relA_{hyper}*). **(C)** Expression of *rel_{B.s.}*

1141 with inactive hydrolase domain (E77A D78A) in the (pp)pGpp⁰ strain. **(D)** Expression of a
1142 truncated, inactive *relA* variant from *E. coli* (*relA_{inactive}*). **(E)** Expression of *rel_{B.S.}* with inactive
1143 synthetase domain (E324V) in the (pp)pGpp⁰ strain.

1144 **S4 Fig.: thermotolerance and survival of strains expressing treated with decoyinine**

1145 Thermotolerance development and survival of wildtype cells treated with decoyinine (red
1146 lines) or left untreated (black lines). Means and SEM of at least three independent
1147 experiments are shown. Strains were supplemented with 50, 250, 400 or 1000 µg ml⁻¹
1148 decoyinine 15 min before heat treatment. Open symbols: no pre-shock, closed symbols: 15
1149 min pre-shock at 48 °C. n.d.: not determined, no cfu could be detected from 100 µl cell
1150 culture.

1151 **S5 Fig.: Analysis of transcription start sites**

1152 **(A)** Venn Diagram showing the overlap of TSS identified in this study with transcription
1153 upshifts identified in [98]. **(B)** Venn Diagram depicting the classification of the identified
1154 TSS. **(C)** Length distribution of the distance from the TSS to the translation initiation site. **(D)**
1155 Sequence logos of the region around the TSS of genes up- or down-regulated during different
1156 conditions. **(E)** Predicted sigma factors in the different TSS classes.

1157 **S6 Fig.: Global differences in gene expression of heat shocked**

1158 The distributions of all up- and down-regulated genes for the indicated conditions are shown.
1159 Bar tracks indicate the distribution of the respective functional groups. **(A)** Wildtype cells
1160 (BHS220) heat shocked at 48 °C or 53 °C versus unstressed cells. **(B)** Wildtype (BHS220)
1161 versus (p)ppGpp⁰ cells (BHS319) at 37 or 48 °C. **(C)** wildtype (BHS220) versus Δrel cells
1162 (BHS368) at 37 °C or 48 °C.

1163 **S7 Fig.: Up- or down-regulation of regulons or gene categories.**

1164 Points in the scatterplot represent log2-transformed up- or down-regulation of individual
1165 genes of the respective regulons relative to wildtype cells at 37 °C. Blue/gray color indicates
1166 transcriptional changes above/below the significance threshold (see Materials and Methods).
1167 Horizontal bars represent the median expression changes of the whole gene set.

1168 **S8 Fig.: (p)ppGpp mediated transcriptional changes during heat stress**

1169 Relative changes in the transcription of selected genes during heat shock at 50 °C in wildtype
1170 (BHS220), (p)ppGpp⁰ (BHS319) and *Δrel* (BHS368) strains determined by RT-qPCR. Means
1171 and SEM of three replicates are shown. Asterisks indicate significance ($p \leq 0.05$) according to
1172 Welch's *t*-test, *n.s.*: not significant.

1173 **S9 Fig.: (pp)pGpp and Spx act complementary.**

1174 **(A)** RT-qPCR experiment showing the relative transcription of *rplC* and *rplO* in wildtype
1175 (BHS220), *Δspx* (BHS222), (pp)pGpp⁰ (BHS319) or (pp)pGpp⁰ *Δspx* (BHS766) cells treated
1176 with or heat stress at 50 °C for 15 min. Means and SEM of three replicates are shown.
1177 Asterisks indicate significant changes ($p \leq 0.05$) of transcript levels according to Welch's *t*-
1178 test, **(B)** Growth of wildtype (BHS220), *Δspx* (BHS222), (pp)pGpp⁰ (BHS319), (pp)pGpp⁰
1179 *Δspx* (BHS766), (pp)pGpp⁰ *cxs-1* (BHS954) or (pp)pGpp⁰ *cxs-2* (BHS949) cell in LB
1180 medium at 37 °C or 50 °C. **(C)** The fraction of aggregated proteins (left) or soluble proteins
1181 (right) in wildtype, *Δspx* (BHS014), (pp)pGpp⁰ (BHS214) or (pp)pGpp⁰ *Δspx* (BHS766) cells
1182 treated with or heat stress at 50 °C for 15 min. **(D)** Relative translation of a strain carrying an
1183 inducible copy of Spx^{DD} (BHS201) with and without the addition of IPTG. Means and SEM
1184 of seven independent experiments are shown. Asterisks indicate significance ($p \leq 0.05$)
1185 according to Welch's *t*-test.

1186 **S10 Fig.: (pp)pGpp and Spx act independently.**

1187 **(A)** Northern and western blot of wildtype, Δspx (BHS014) or (pp)pGpp⁰ (BHS214) strains
1188 treated with or without DL-norvaline. Cells were grown in minimal medium supplemented
1189 with 0.5 % casamino acids to OD₆₀₀ 0.4. The medium was removed by centrifugation and the
1190 cells were resuspended in fresh medium with casamino acids (--) or 0.5 mg/ml DL-norvaline
1191 (+) and grown for 30 min. **(B)** Relative transcription of *rrnJp1-lacZ* with or without
1192 expression of *spx^{DD}* with 1 mM IPTG for 30 min in the wildtype or (pp)pGpp⁰ background.
1193 Means and SEM of three replicates are shown. **(C)** *in vitro* transcription from selected
1194 promoters with or without Spx and ppGpp under reducing (+ DTT) or oxidizing (- DTT)
1195 conditions. Means and SEM of three replicates and a representative autoradiogram are shown.

1196 **S11 Fig.: Puromycin labels nascent proteins and does not disturb protein homeostasis at
1197 low concentration.**

1198 **(A)** Accumulation of subcellular protein aggregates (fluorescent spots) after the addition of
1199 puromycin visualized by YocM-mCherry. BIH369 cells were grown in LB + 0.5 % xylose
1200 and treated with 1, 10 or 25 μ g ml⁻¹ puromycin or left untreated for 15 min. Phase contrast
1201 images (P.C.) and fluorescence images with RFP-filters (YocM-mCherry) are shown. **(B)** The
1202 effect of puromycin on growth. Wildtype cells were grown in LB to the mid-exponential
1203 phase (OD₆₀₀ 0.4) and supplemented with puromycin at the indicated concentrations. **(C)** Dot
1204 blot or western blot of puromycin-labeled proteins. Exponentially growing cells grown in LB
1205 were treated with the indicated concentrations of puromycin for 15 min. **(D)** Outline of the
1206 genotypes of the RIK1066 strain, carrying an inducible copy of *sasA* in the (p)ppGpp⁰
1207 background. **(E)** Relative puromycin incorporation in RIK1066 cells treated with or without 1
1208 mM IPTG. Cells were incubated with 1 mg ml⁻¹ puromycin for 15 min, added directly to the
1209 medium after the addition of IPTG (0-15 min) or after 15 min (15-30 min), then harvested.
1210 One representative experiment and means and SEM from the quantification of three

1211 independent experiments are shown. Asterisks indicate significance ($p \leq 0.05$) according to
1212 Welch's *t*-test.

1213 **S12 Fig.: Relative translation of heat shocked cells.**

1214 **(A)** Relative translation (puromycin incorporation) of wildtype, (p)ppGpp⁰ (BHS214) and
1215 Δrel (BHS126) strains during heat stress at 53 °C. 1 μ g ml⁻¹ puromycin was added for 15 min
1216 to the medium directly after (0-15 min) or 15 min after the temperature upshift. Means and
1217 SEM of three independent experiments are shown. Asterisks indicate significance ($p \leq 0.05$)
1218 according to Welch's *t*-test. **(B)** Representative experiment from Fig. 6 B & S9 A. **(C)**
1219 Methylene blue stained membranes showing the integrity or degradation of rRNA after severe
1220 heat stress (53 °C). Wildtype, (p)ppGpp⁰ (BHS214) or Δrel (BHS126) cells were heat-
1221 shocked at 48 °C, 53 °C or 48/53 °C for 15 min each. 2 μ g total RNA was separated on
1222 denaturing agarose gels and blotted on nylon membranes. **(D)** Western blot showing Hpf
1223 levels during thermotolerance development in wildtype, (p)ppGpp⁰ (BHS214) or Δrel
1224 (BHS126) strains. Cells were heat shocked for 15 min each at the indicated temperature(s).
1225 **(E)** Methylene blue stained membranes showing the integrity or degradation of rRNA.
1226 Wildtype, (p)ppGpp⁰ (BHS214) Δhpf (BHS008) or (p)ppGpp⁰ P_{spac}-*hpf* (BHS626) cells were
1227 treated with or without heat shock at 53 °C for 15 min. 1 mM IPTG was added to the strains
1228 to induce the expression of *hpf* 15 min prior to heat shock. 2 μ g total RNA was separated on
1229 denaturing agarose gels and blotted on nylon membranes. **(F)** Wildtype, (p)ppGpp⁰ (BHS214)
1230 (p)ppGpp⁰ P_{spac}-*rel* (BHS622) or (p)ppGpp⁰ P_{spac}-*hpf* (BHS626) were spotted on agar plates
1231 supplemented with 1 mM IPTG and incubated over night at 37 °C or 55 °C. **(G)** rRNA
1232 degradation after severe heat stress (53 °C) in wildtype or (p)ppGpp⁰ (BHS214) cells left
1233 untreated or treated with 5 μ g ml⁻¹ chloramphenicol or 100 μ g ml⁻¹ spectinomycin 15 min
1234 prior to the application of stress. 2 μ g total RNA was separated on denaturing agarose gels
1235 and blotted on nylon membranes.

1236

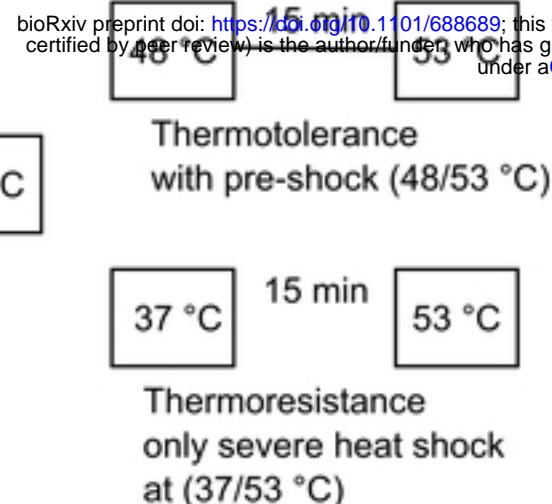
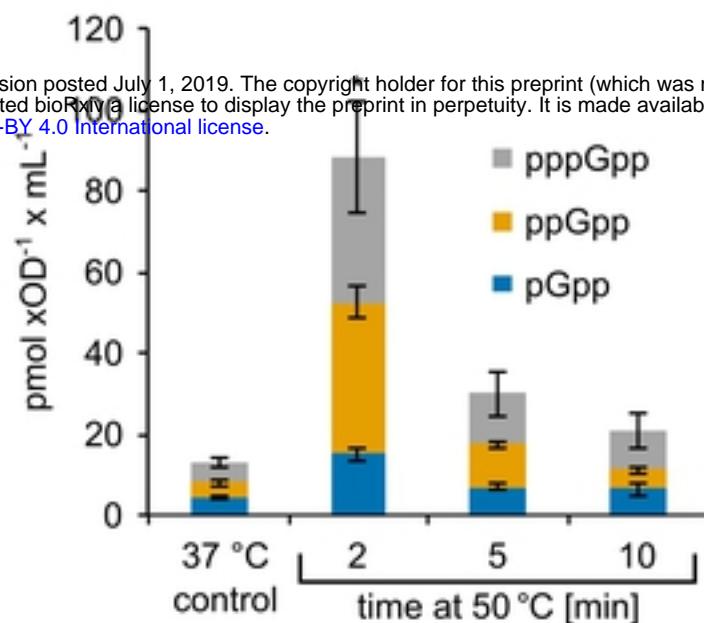
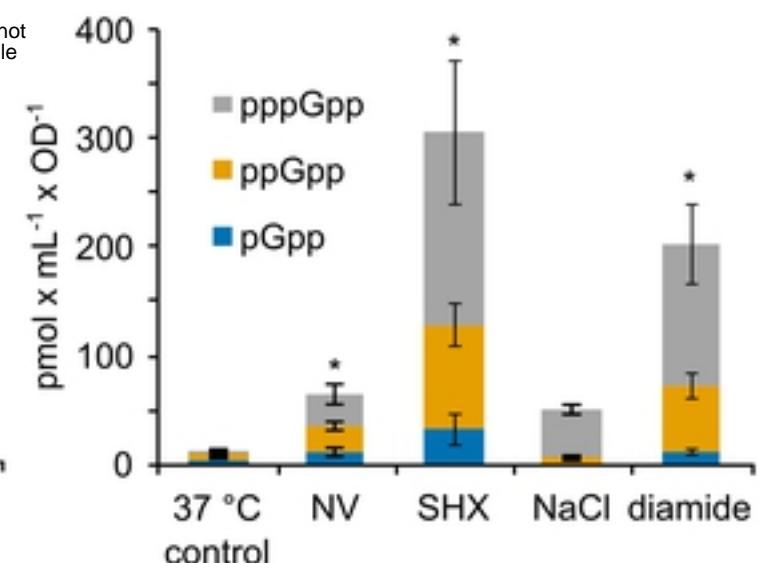
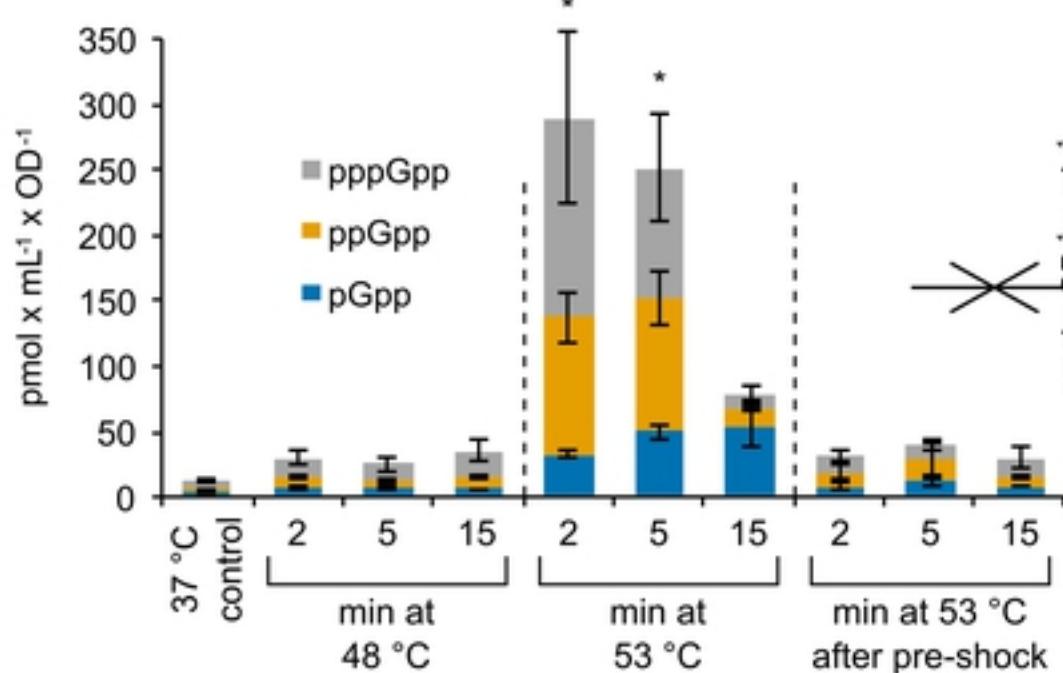
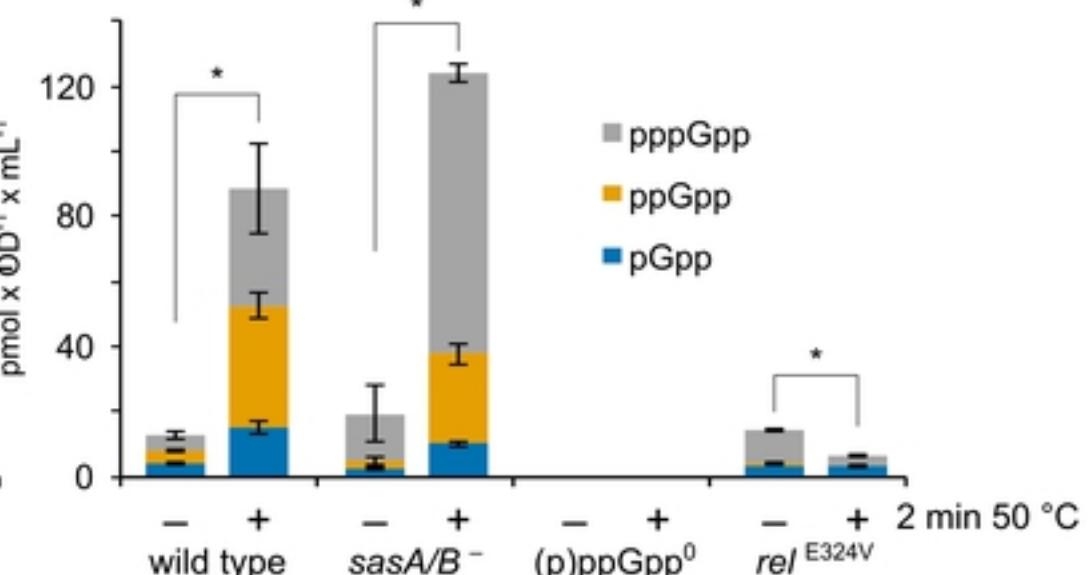
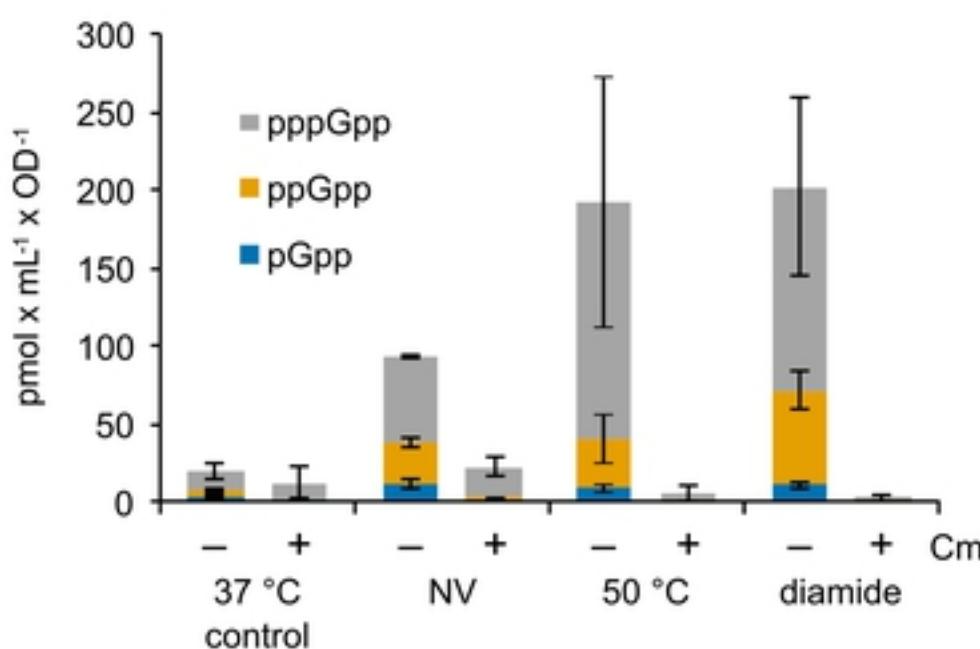
1237 **S1 Table: List of strains, plasmids and oligonucleotides.**

1238 This table lists all *B. subtilis* strains, plasmids and oligonucleotides used in this study.

1239 **S1 Text: List of identified transcription start sites.**

1240 In this document, additional methods and results are described.

1241 **S1 Dataset: List of identified transcription start sites.**







1242 In this dataset, all identified transcriptional start sites and their classification is shown.

1243 **S2 Dataset: Results of the gene set enrichment analysis.**

1244 This dataset lists all enriched functional categories and regulons for each for each condition in
1245 separate sheets.

1246 **S3 Dataset: List of differentially expressed genes**

1247 Global gene expression changes for all conditions are listed in separate sheets.

A**B****C****D****E****F****Figure 1**

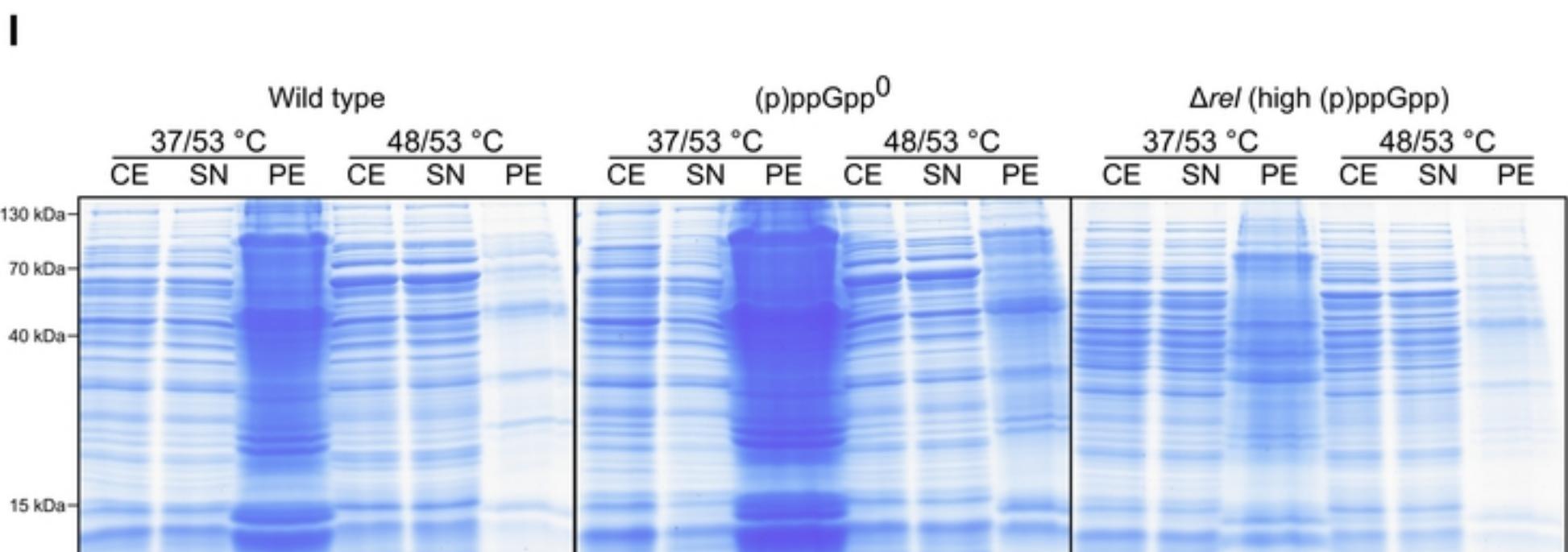
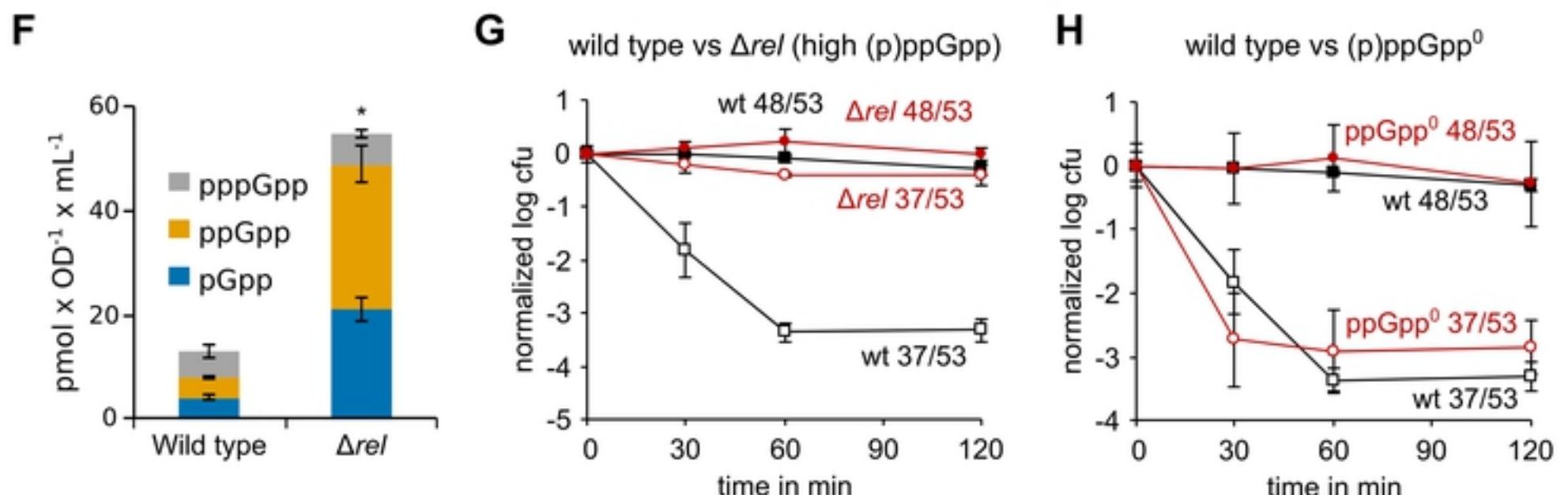
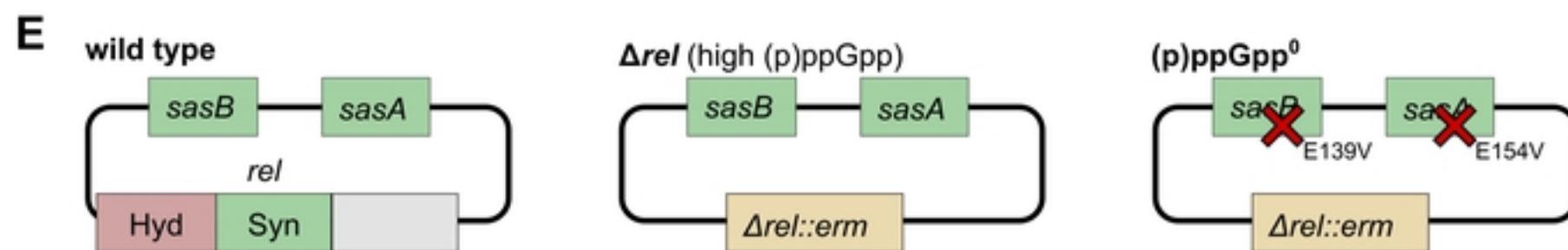
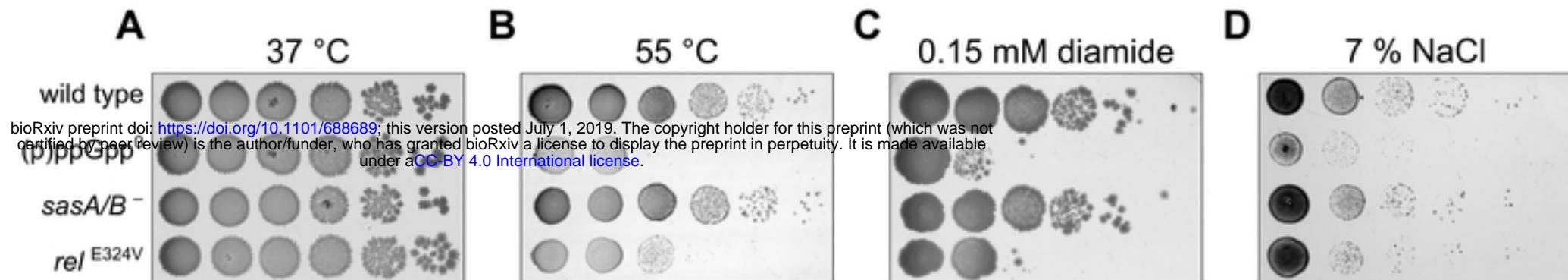





Figure 2

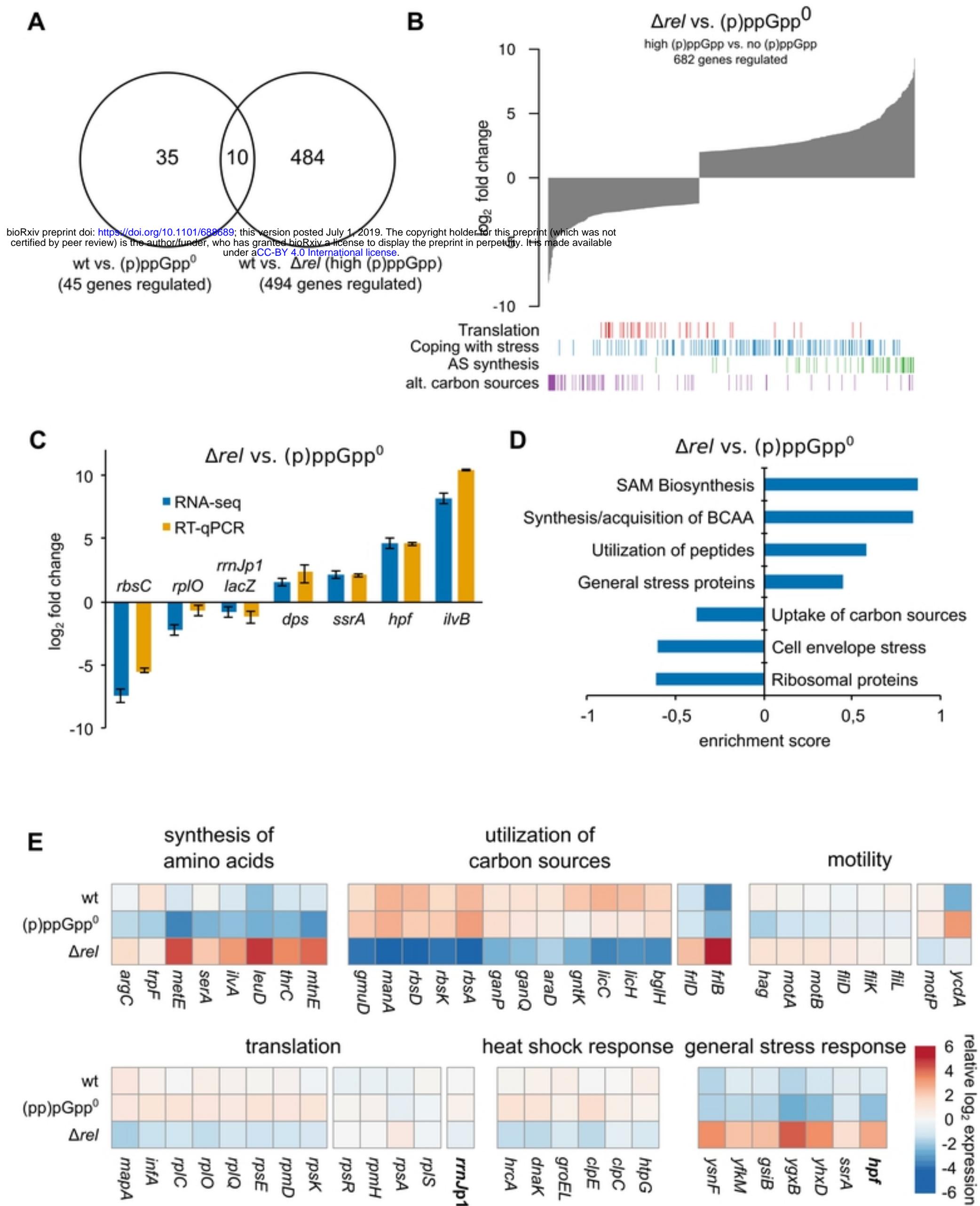
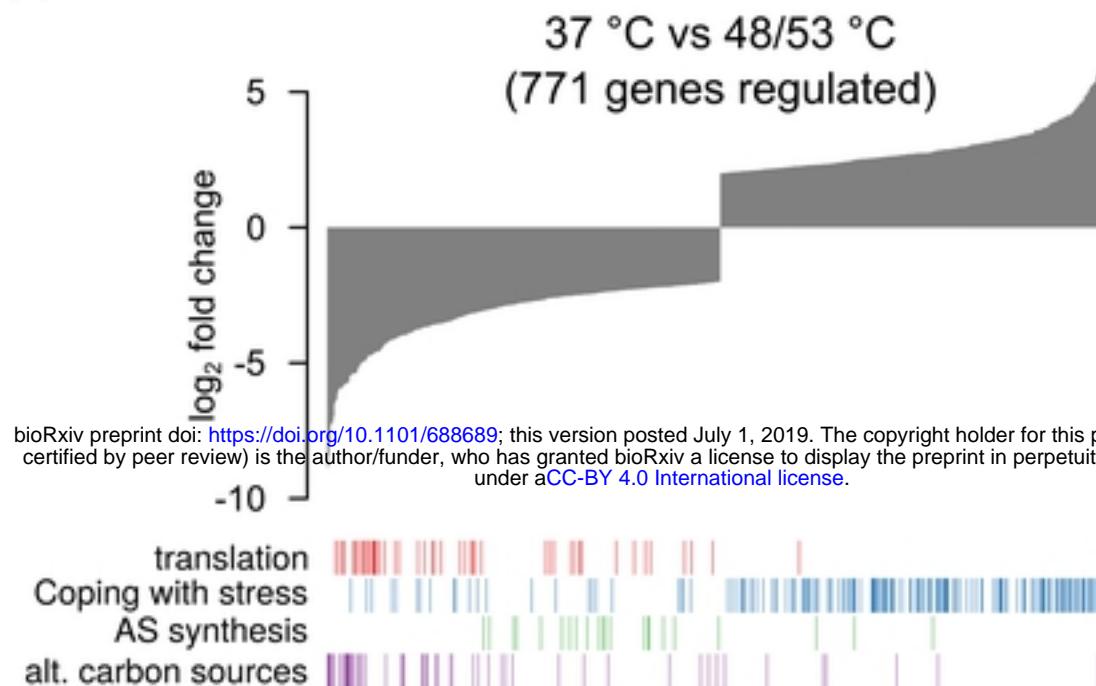
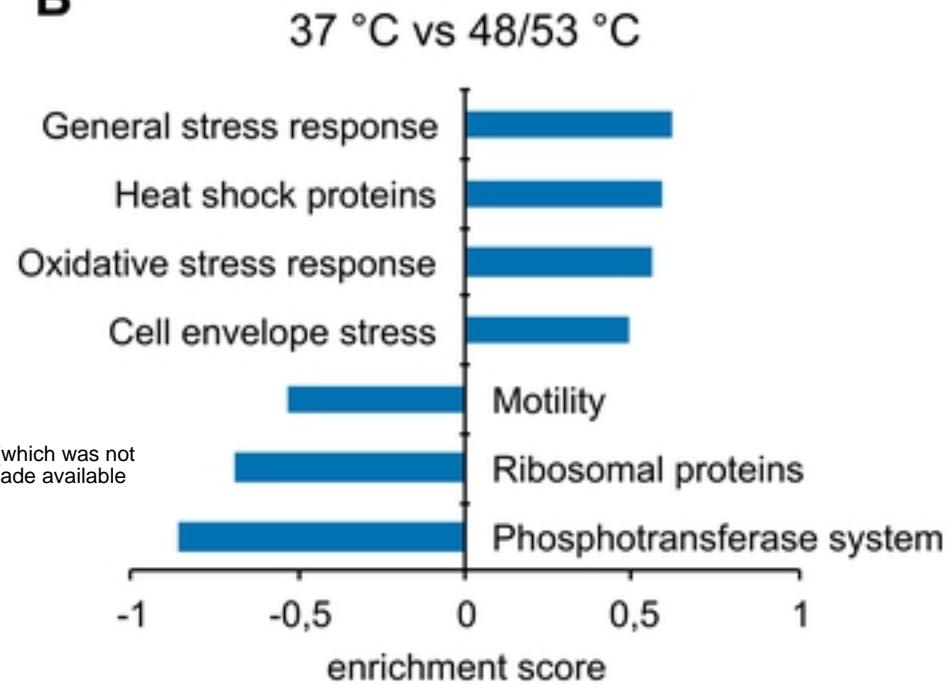
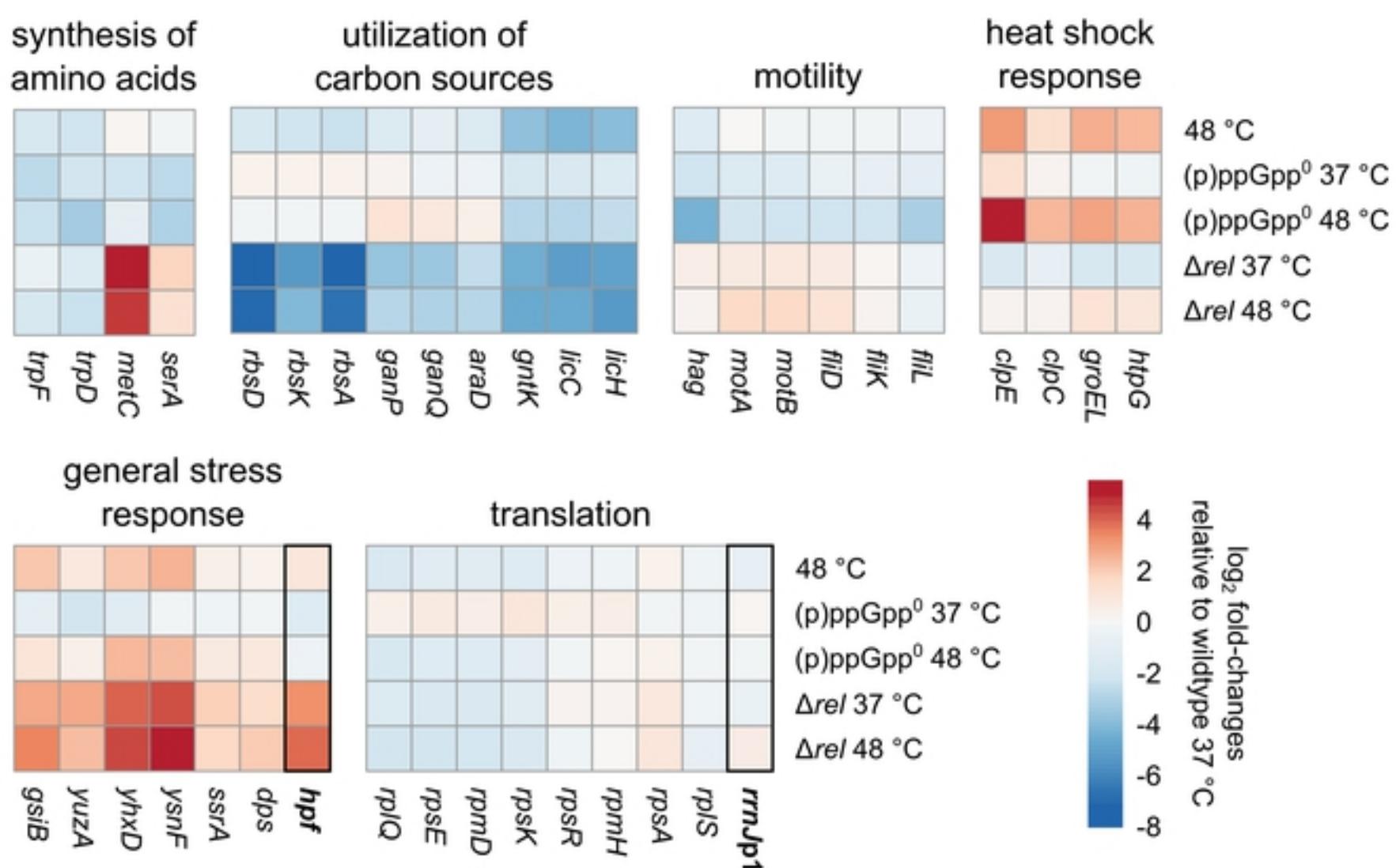
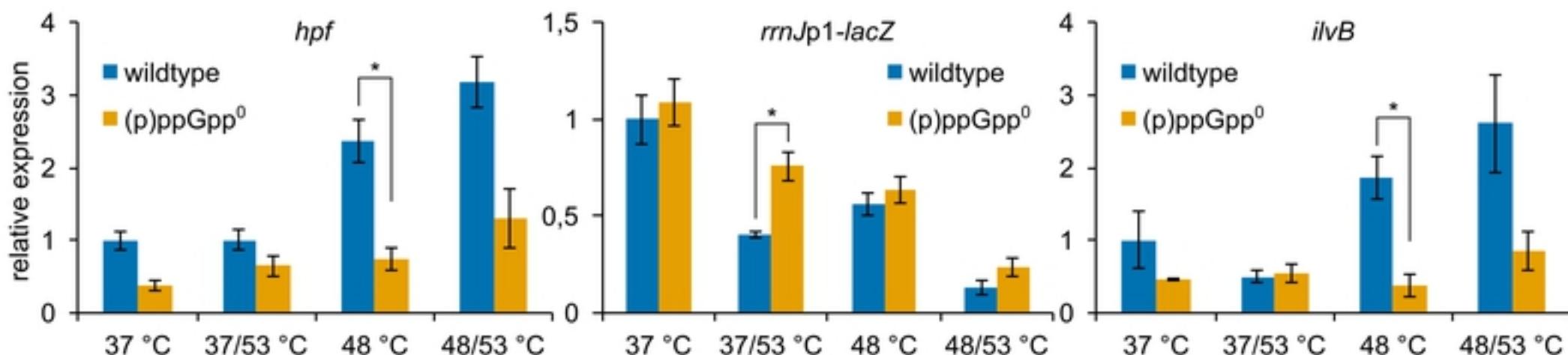
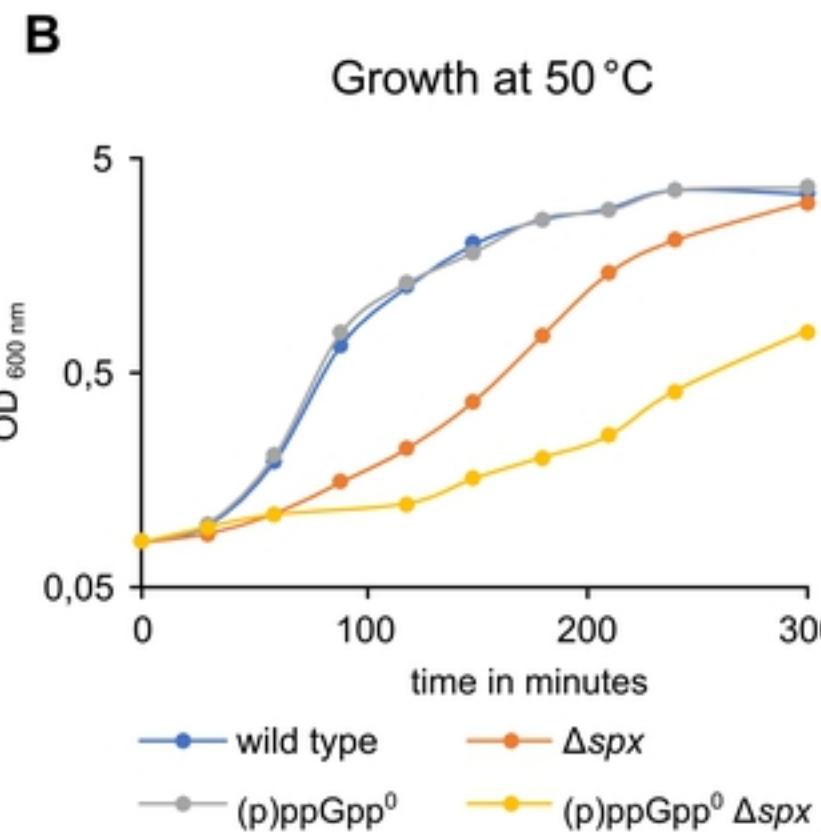
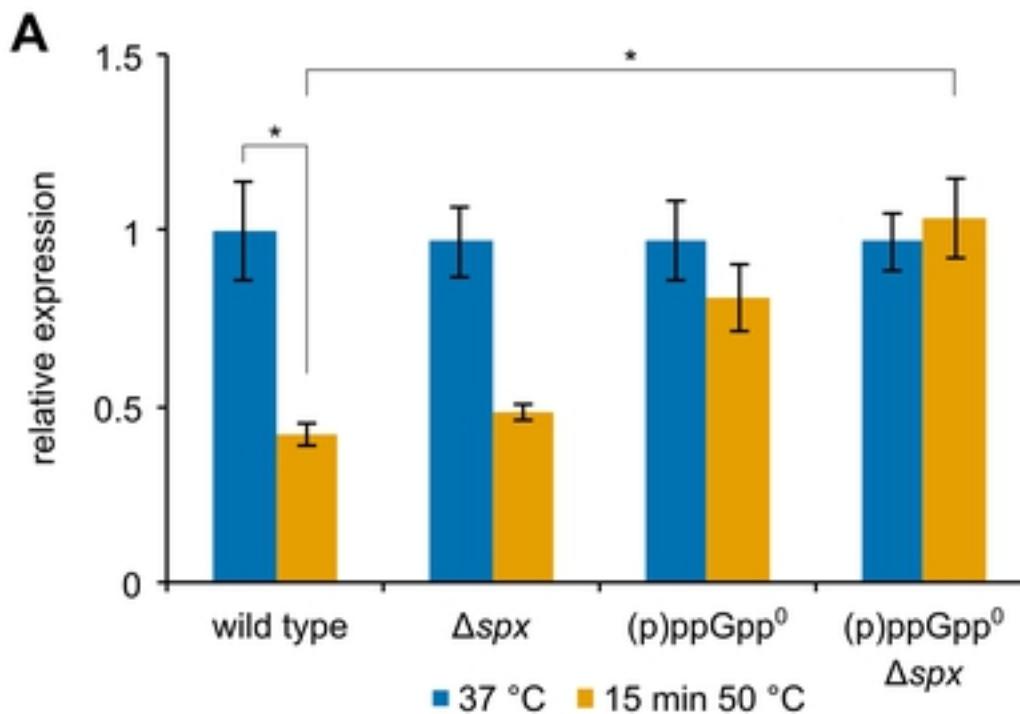
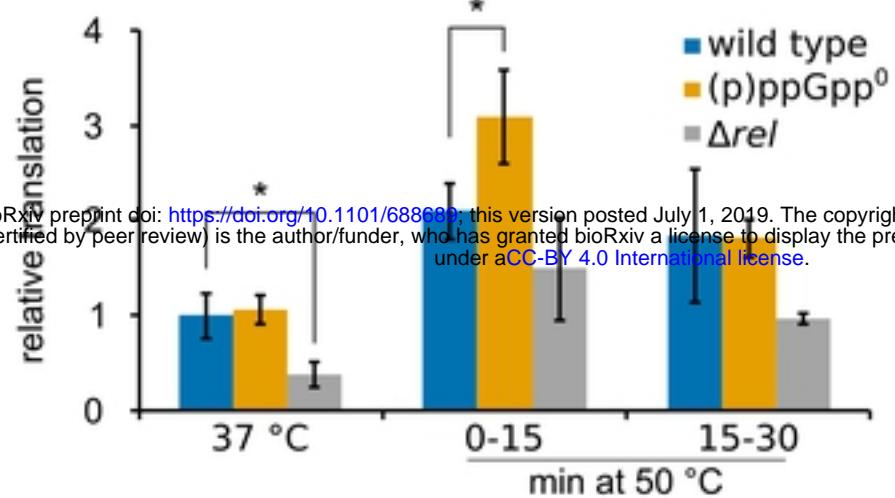
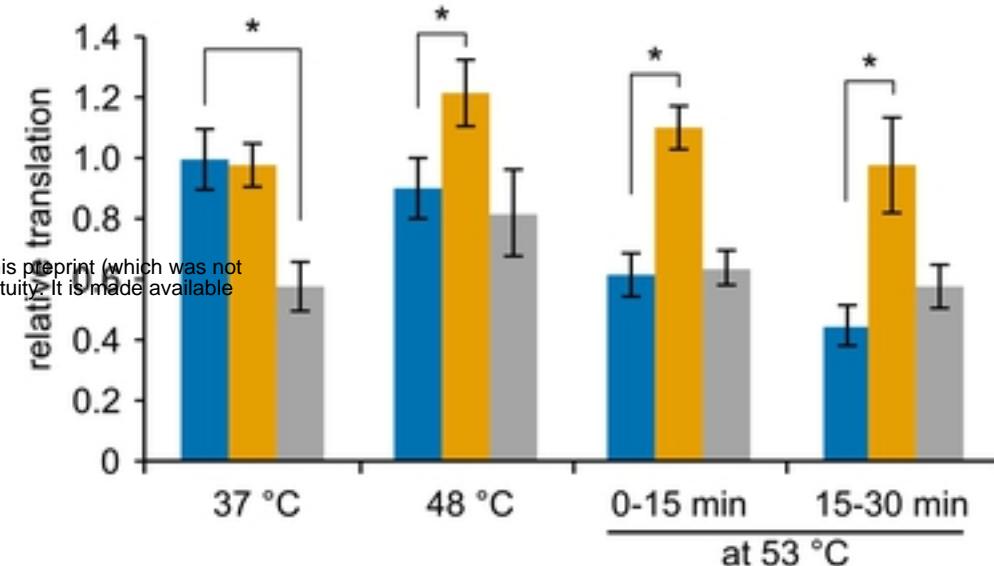






Figure 3

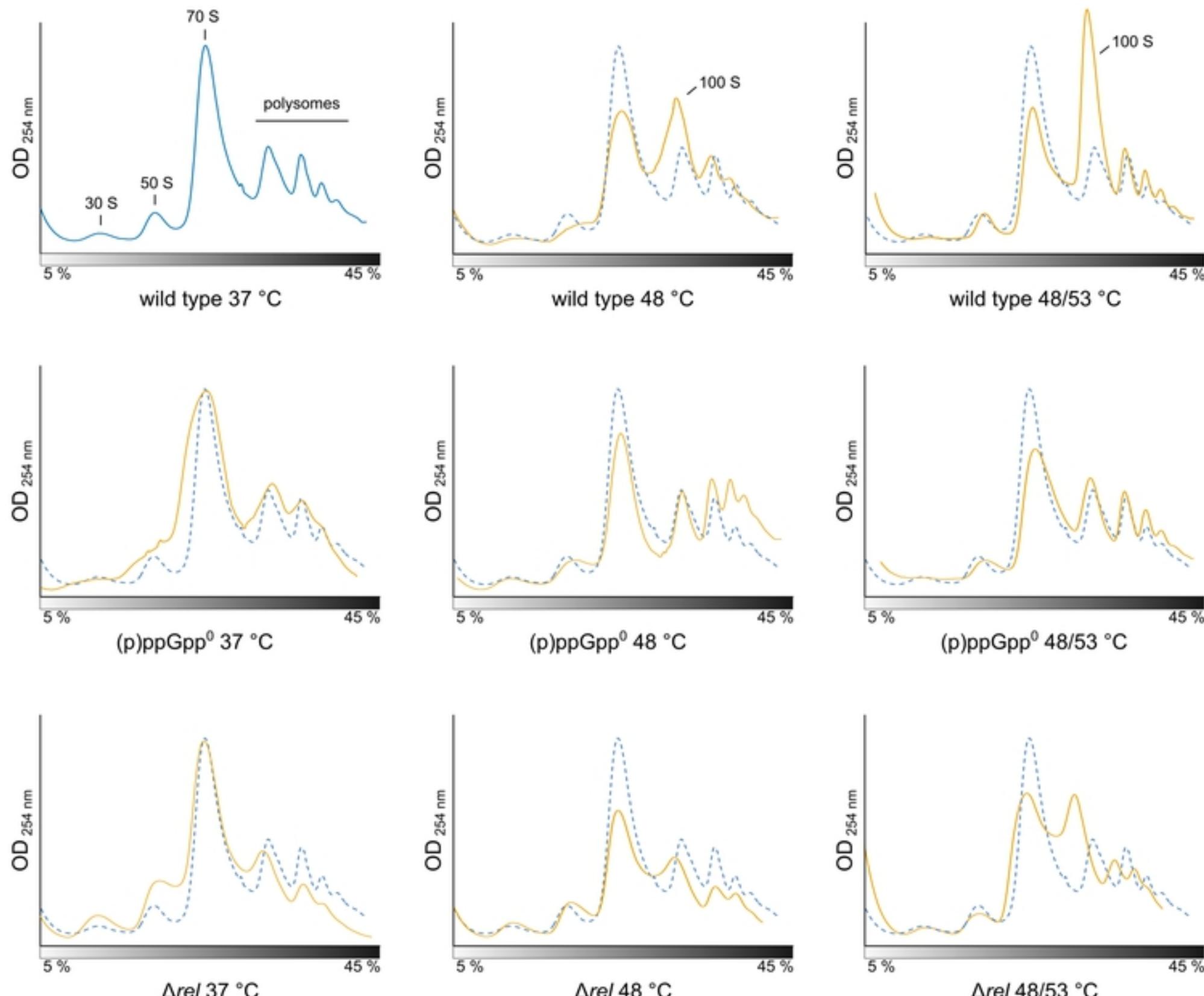
A**B****C****D****Figure 4**

relative *rrnJp1* transcription


Figure 5

bioRxiv preprint doi: <https://doi.org/10.1101/688609>; this version posted July 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


A relative translation at 50 °C

B relative translation at 53 °C with pre-shock (15 min 48 °C)

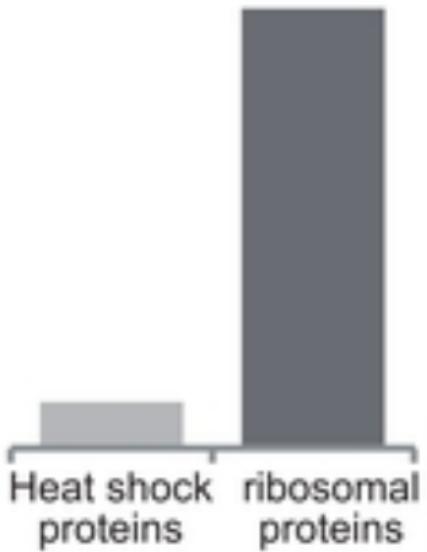

C

Figure 6

A

Exponential growth

SigB, HrcA, Spx, CtsR

Synthesis of chaperones and proteases, prevention and removal of aggregates

(p)ppGpp, Spx

growth arrest and shutdown of translation (Hpf) to prevent further protein aggregation

Heat shock

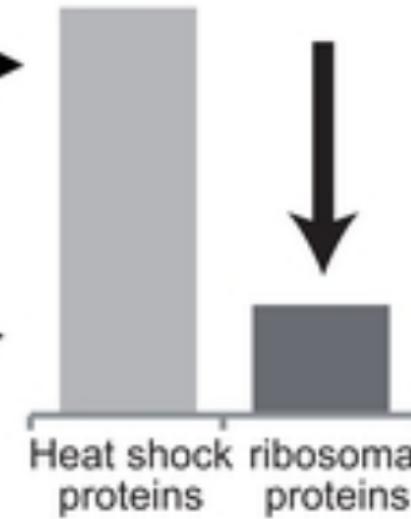
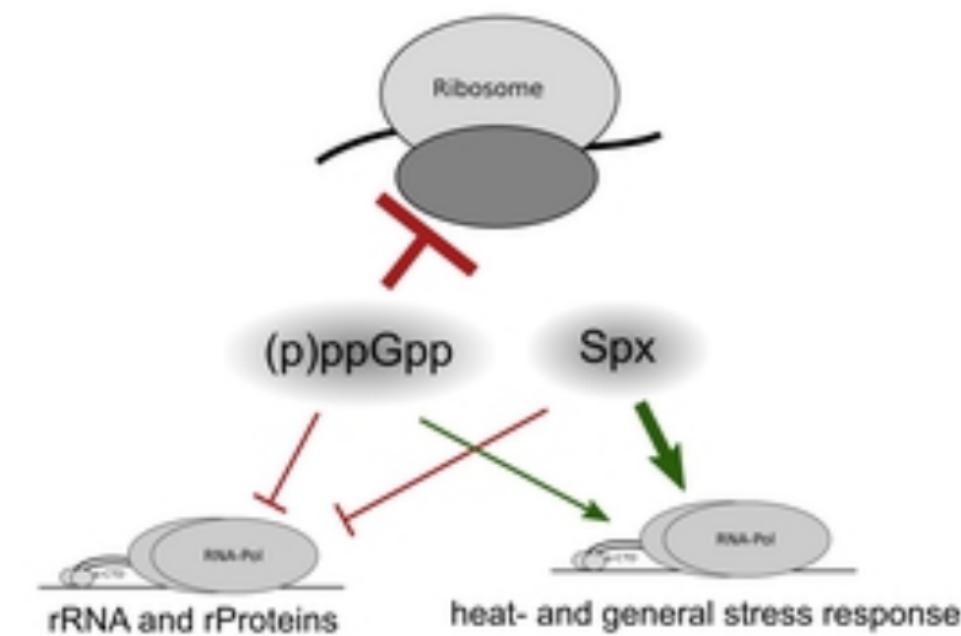


B

Figure 7