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Abstract

The most frequently used approach for protein structure prediction is currently homology modeling.

The 3D model building phase of this methodology is critical for obtaining an accurate and biologically

useful prediction. The most widely employed tool to perform this task is MODELLER. This program

implements the “modeling by satisfaction of spatial restraints” strategy and its core algorithm has not

been altered significantly since the early 1990s. In this work, we have explored the idea of modifying

MODELLER with  two effective,  yet  computationally  light  strategies  to  improve  its  3D modeling

performance. Firstly, we have investigated how the level of accuracy in the estimation of structural

variability between a target protein and its templates in the form of σ values profoundly influences 3D

modeling. We show that the σ values produced by MODELLER are on average weakly correlated to

the true level of structural divergence between target-template pairs and that increasing this correlation

greatly improves the program’s predictions, especially in multiple-template modeling. Secondly, we

have inquired into how the incorporation of statistical potential terms (such as the DOPE potential) in

the MODELLER’s objective function impacts positively 3D modeling quality by providing a small but

consistent improvement in metrics such as GDT-HA and lDDT and a large increase in stereochemical

quality.  Python  modules  to  harness  this  second  strategy  are  freely  available  at

https://github.com/pymodproject/altmod. In summary, we show that there is a large room for improving

MODELLER in terms of 3D modeling quality and we propose strategies that could be pursued in order

to further increase its performance.

Author summary

Proteins are fundamental biological molecules that carry out countless activities in living beings. Since

the function of proteins is dictated by their three-dimensional atomic structures, acquiring structural

details  of  proteins  provides  deep  insights  into  their  function.  Currently,  the  most  successful

computational approach for protein structure prediction is template-based modeling. In this approach, a
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target protein is modeled using the experimentally-derived structural information of a template protein

assumed to have a similar structure to the target. MODELLER is the most frequently used program for

template-based 3D model building. Despite its success, its predictions are not always accurate enough

to  be  useful  in  Biomedical  Research.  Here,  we  show  that  it  is  possible  to  greatly  increase  the

performance of MODELLER by modifying two aspects of its algorithm. First, we demonstrate that

providing the program with accurate estimations of local target-template structural divergence greatly

increases the quality of its predictions. Additionally, we show that modifying MODELLER’s scoring

function with statistical potential energetic terms also helps to improve modeling quality. This work

will be useful in future research, since it reports practical strategies to improve the performance of this

core tool in Structural Bioinformatics.

Introduction

In silico protein structure prediction constitutes an invaluable tool in Biomedical Research, since it

allows  to  obtain  structural  information  on  a  large  number  of  proteins  currently  lacking  an

experimentally-determined 3D structure [1]. Template-based modeling (TBM) has been shown to be

the most practically useful prediction strategy [2].

Homology modeling (HM) is a fast and reliable TBM method in which a target protein is modeled by

using as a structural template an homologous protein. HM predictions usually consist of three phases.

In the first, the sequence of the target is used to search for suitable templates in the PDB [3-4]. In the

second, a sequence alignment between the target and templates is built with the goal of inferring the

equivalences between their residues [5]. In the final, the information of the templates is used to build a

3D atomic model of the target.

The overall accuracy of HM has remarkably increased in the last 25 years [6]. This has been promoted

mostly  by  advances  in  template  searching  and  alignment  building  algorithms,  while  only  minor
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advances have been witnessed in the 3D model building step [7]. However, recent breakthroughs in

protein structure refinement methods [8-9] envisage a large room for improvement in HM which could

originate from advances in 3D model building.

MODELLER [10] is the most frequently used program for 3D model building in HM. One of the main

reasons of its success has been its accurate [11], yet fast algorithm. In MODELLER, the information

contained in an input target-template alignment is used to generate a series of homology-derived spatial

restraints (HDSRs), acting on the atoms of the 3D protein model. Sigma (“σ”) values of homology-

derived distance restraints (HDDRs) determine the amount of conformational freedom which the model

is  allowed to have with respect  to  its  templates.  MODELLER uses  a  statistical  “histogram-based”

strategy to estimate  σ values [12]. These restraints are incorporated into an objective function which

also  includes  physical  energetic  terms  from CHARMM22 [13].  A fast,  but  effective  optimization

algorithm based on a combination of conjugate gradients (CG) and molecular dynamics with simulated

annealing (MDSA) is then used to identify a model conformation that satisfies as much as possible the

HDSRs, while retaining stereochemical realism.

The  core  MODELLER  algorithm  was  developed  in  the  early  1990s  and  it  was  essentially  left

unchanged over the years. Despite its importance, there have been relatively few attempts to improve it.

In 2015, Meier and Söding designed a novel probabilistic framework for building HDDRs [7], whose

aim was to help MODELLER tolerate alignment errors and to combine the information from multiple

templates in a statistically rigorous way. This system increased 3D modeling quality, especially for

multiple-template  modeling.  However,  since  it  is  integrated  in  the  HHsuite  project  [14]  it  can  be

employed only when the first two phases of HM are carried out by programs of the HHsuite package.

Researchers from Lee’s group developed a modified version of MODELLER which they have been

using in CASP experiments [15-17]. First, they replaced the MODELLER optimization algorithm with
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the more thorough conformational space annealing (CSA) method [18]. Secondly, they pioneered a

new strategy to assign σ values to HDDRs relying on machine learning [19]. Finally, they included a

series of additional terms to the MODELLER objective function, such as terms for the DFIRE [20] and

DFA [21] knowledge-based potentials, for hydrogen bond formation [22] and to enforce in models

predictions of structural properties. In terms of 3D modeling quality,  this system outperformed the

original MODELLER [17]. Unfortunately, the separated contribution of several of these modifications

is  not  reported  and  much  of  this  system  remains  in-house  (only  the  CSA algorithm  is  publicly

available).

Although  these  seminal  studies  have  shown  that  the  core  MODELLER  algorithm  has  room  for

improvement, most of its users employ its original version, probably because existing modifications

either depend on additional packages to install, or are computationally too expensive (e.g., the CSA

algorithm alone was reported to increase computational times by a factor of ~130). Since MODELLER

is a core tool in Structural Bioinformatics, it is of paramount importance to investigate in detail the

inner working of its algorithm and to develop it further. Here, we have explored two computationally

light strategies to improve it in terms of 3D modeling quality.

Particular attention has been dedicated in understanding how the level of accuracy in the estimation of

structural variability between the target and templates expressed as σ values influences 3D modeling.

Although in this work we have not modified the MODELLER algorithm for σ values assignment, we

propose  strategies  that  could  be  likely  pursued  in  the  next-future  in  order  to  greatly  increase  the

performance of the program. Additionally, we have investigated how the incorporation of statistical

potential terms, such as DOPE [23], in the program’s objective function is able to impact positively 3D

modeling and under certain conditions (for example in single-template modeling) it can be coupled

synergistically to the previous strategy.
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To rigorously  validate  these  approaches,  we have  benchmarked them using  protein  targets  from a

diverse set of high-resolution structures from the PDB and we quantified the individual impact on 3D

modeling of each modification. This information will be useful in future research, since it shows in

which areas there is still room for improvement and in which areas it might be difficult to advance

further.

Materials and methods

Outline of MODELLER’s homology-derived distance restraints

The MODELLER approach relies on the generation of HDSRs for interatomic distances and dihedral

angles [12]. Each HDSR is treated as a probability density function (pdf). HDSRs acting on interatomic

distances (that is, HDDRs) have a predominant role in determining the 3D structure of a model. The

way they are built is summarized here.

For a couple of atoms i and j of the model, the program finds in the template the equivalent atoms k and

l which have a distance in space of  dt. The distance  dm between  i and  j is assumed to be normally

distributed around dt with a standard deviation σ and the pdf restraining it is:

f (dm)=
1

σ √2π
e
−

(dm−d t)
2

2σ
2

 . (1)

In MODELLER pdfs are converted in objective function terms as follows:

obj(dm)=−ln ( f (dm))=−ln( 1
σ √2π

e
−

(dm−d t )
2

2σ2 )=(dm−dt)
2

2σ
2 −ln( 1

σ √2π ) , (2)

therefore Gaussian HDDRs correspond to harmonic potential terms. Since HDDRs are considered to be

independent, their objective function terms are summed. HDDRs are built for four groups of atoms: the

Cα-Cα, backbone NO, side chain-main chain (SCMC) and side chain-side chain (SCSC) groups (see S1
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Table). MODELLER generates its  σ values (hereinafter named  σMOD values) through an histogram-

based approach [12].

MODELLER allows  to  take  advantage  of  multiple  templates,  a  strategy that  (when templates  are

chosen adequately) usually outperforms single-template modeling [24]. When employing U templates

to restrain a distance dm, MODELLER uses the following pdf:

f (dm)=∑
u=1

U

wu

1
σu√2π

e
−

(dm−d t ,u)
2

2σu
2

, (3)

where u is the template index, wu is a template-specific weight, dt,u and σu are the distance observed in

template  u and  its  σ value  respectively.  In  MODELLER,  wu is  a  function  of  the  local  sequence

similarity between the target and template u.

The total objective function of MODELLER (FTOT) can be expressed as follows:

FTOT=FPHYS+FHOM , (4)

where FPHYS contains five physical terms (see S2 Table) and FHOM contains HDSRs terms. In this work,

the weights for  FPHYS and  FHOM were always left to 1.0 (therefore they are omitted from the formula

above).

Benchmarking MODELLER modifications with an analysis set

In  order  to  benchmark  modifications  of  MODELLER,  we  built  an  analysis  set  of  selected  target

proteins. We obtained 926 X-ray structure chains from PISCES [25], using the following criteria to

filter the PDB:

● the maximum mutual sequence identity (SeqId) among the chains was 10%;

● their structures had a resolution < 2.0 Å and R-factor < 0.25;   
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● they contained no missing residues due to lacking electron density;

● their length was between 70 and 700 residues.

These chains were our target candidates. To obtain their templates, we culled from PISCES another set

using similar filters, except that this time the maximum mutual SeqId was 90%. We removed from this

larger set all the targets, obtaining 6224 chains. Each target was then aligned to these chains using TM-

align [26] and we selected as template candidates the chains meeting the following criteria:

● the SeqId in the structural alignment built by TM-align was between 15% and 95%;

● the two TM-scores [27] produced by TM-align (each score is normalized by the length of one of

the aligned proteins) were at least 0.6, a threshold to consider two proteins as homologous [28].

We retained for each target only its top five templates in terms of TM-score (normalized on the target

length). In this way, we obtained a final set of 225 target chains (suitable templates could not be found

for  701  targets,  a  result  of  using  only  high-resolution  template  structures).  For  each  target,  we

performed  single-template  modeling  only  with  its  top  template  and  therefore  we  had  225  single-

template models, which constituted the Analysis Single-template (AS) set. 118 targets had at least two

templates (with an average of 3.3), which constituted the Analysis Multiple-templates (AM) set.

The  average  SeqId  for  the  AS  target-template  alignments  is  0.38.  Improving  the  performance  of

MODELLER with targets having templates with a SeqId < 0.40 is important, because these cases are

the most frequent ones in Biomedical Research [29] and the accuracy of TBM is often low in this

regimen.  The well-equilibrated distributions  of  SeqId,  target  coverage,  target  length  and of  CATH

structural classes [30] of the analysis set (see S1 Fig) assure that our results have a general validity.
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Alignment building

In order to align target-template pairs we employed the accurate HHalign program [4], which confronts

two profile hidden Markov models. To build input profiles for HHalign, we ran HHblits [31] with its

default  parameters  and  three  search  iterations  against  the  uniprot20_2016_02 database.  After

employing HHalign to align pairs of target-template profiles, we extracted from the program’s output

their  pairwise  alignments.  Multiple  target-templates  alignments  were  obtained  by  joining  pairwise

alignments.

Whenever  specified,  we also employed target-template  alignments  built  with TM-align in  order  to

assess the effect on 3D modeling of HDDRs derived from error-free structural alignments.

3D model building and evaluation

For all benchmarks we used MODELLER version 9.21. In order to modify its objective function terms,

restraints parameters and optimization schedules we interfaced with its Python API.

In MODELLER, the final quality of a model is largely determined in the MDSA phase. In this work,

unless  otherwise  stated,  we  employed  the  default  very_fast MDSA  protocol  of  the  program

(corresponding to a 5.4 ps run). When specified, we also employed the more thorough slow protocol

(corresponding to a 18.4 ps run). The CG protocol was always left to its default parameters.

The approach used to evaluate the quality of an homology model was to build 16 different copies of it

(hereinafter defined as decoys), and to report as an overall quality score (see below) the average score

of the 16 decoys.

To evaluate the quality of the backbones we used the GDT-HA metric [6] computed by the TM-score

program. In order to evaluate the quality of local structures and side chains, we used the lDDT metric

[32], computed by the lDDT program. Detailed descriptions of these two metrics are given in S1 Text.

To evaluate the stereochemical quality of models we employed MolProbity scores computed by the
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MolProbity suite [33]. A MolProbity score expresses the global stereochemical quality of a 3D model.

The lower it is, the higher is the quality of the model.

Optimal σ values for homology-derived distance restraints

σ values of HDDRs have a fundamental role in MODELLER. A natural question is: given a target-

template alignment,  what is  the set  of  σ values which will  maximize 3D modeling accuracy? The

concept of optimal  σ values in single-template modeling was addressed for the first time by the Lee

group [19]. They reported that for a Gaussian HDDR acting on a distance dm between atoms i and j in a

3D model, the optimal σ value is:

|Δdn|=|dn−dt| , (5)

where dt is the distance between the template atoms equivalent to i and j and dn is the distance between

i and j observed in the experimentally-determined native target structure. We show that the use of |Δdn|

values for Gaussian HDDRs is supported by theory, as it can be analytically proven that they maximize

the likelihood of obtaining a model in which each restrained dm is equal to its corresponding dn (see S2

Text).

In the case of multiple-template HDDRs, we demonstrate that the combination of optimal σ values and

weights can be found again analytically (see S3 Text). In this situation, the optimal σ values are again |

Δdn| values. The associated template weighting scheme assigns a weight of 0 to all templates with the

exception of the template with the lowest σ, which should have a weight of 1. We termed this scheme

as the “only-lowest”  (OL) scheme.  Note that  the OL scheme is  an extreme case of the weighting

scheme proposed in [34] (see S3 Text).

Whenever using |Δdn| values as σ parameters, we had to modify them by setting their minimum value at

0.05 Å. Raw |Δdn| values are extracted directly from pairs of homologous protein structures and they
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are often close to 0 Å (see Fig 1A). In MODELLER, HDDRs having very small σ values will seldom

be satisfied because their quadratic objective function terms will penalize enormously even minimal

deviations from templates. In fact, using unmodified |Δdn| values often leads to modeling failures, since

the total objective function of models surpasses the allowed limit of MODELLER, stopping the model

building process. Setting a lower limit to their value, allows their use in 3D modeling.

Fig 1.  Distribution of  |Δdn| and  σMOD values.  Distributions  of  the  |Δdn| (A) and  σMOD (B)  values

observed in  the AS models for  the four HDDR groups of MODELLER. Beside the names of  the

restraints groups, their mean values are reported.

Perturbing optimal |Δdn| values

To understand the effect of using error-containing estimations of  |Δdn| values on 3D modeling, we

randomly selected a fraction fe of the HDDRs in a target-template pair and substituted their |Δdn| values

with randomly generated ones.

Random values were extracted from exponential distributions fitted on the  Cα-Cα, NO, SCMC and

SCSC |Δdn| data observed in our AS models (see  Fig 1A). These exponentials well-approximate the
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observed  |Δdn| distributions and their means were taken to be the same. Since  3D modeling quality

tends to decrease when the average σ value of a model increases (see Fig 2A and 2B), this perturbation

scheme ensures that when replacing |Δdn| values with random numbers, alterations in the quality of 3D

models will not be caused by just changing their mean σ values.

Fig 2. Modeling with uniform σ values. Average GDT-HA (A) and lDDT (B) scores of the AS models

as  a  function  of  the  uniform  σ value  (ranging from 0.01 to  7.0 Å) applied  to  their  HDDRs.  The

horizontal dashed lines represent the average scores obtained with the original σMOD values.

We used 10 fe values (linearly spacing from 0.1 to 1.0) and for each, we generated 5 sets of perturbed |

Δdn| values per target-template pair, which allowed to better sample the effect of perturbations. For

each perturbed set, we built 8 decoys (resulting in a total of 5*8=40 decoys for each fe value). For a

certain fe value, the quality score for a model was recorder as the average score of all its 40 decoys.
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To quantify in terms of Pearson correlation coefficient (PCC) the amount of perturbation introduced in

the  |Δdn| values of a single model, for each  fe we used a score defined as  PCCMODEL. This score is

computed as:

PCC MODEL=
1
nR

∑
r=1

nR

( 1
U ∑

u=1

U

PCC (du , pu ,r)) , (6)

where  nR is the number of perturbed  |Δdn| sets (in our case 5),  r is the index for these sets,  U is the

number of templates of the model, PCC indicates the Pearson correlation coefficient, du is the list of |

Δdn| values associated with the u-th template and pu,r is the list of perturbed |Δdn| values associated with

the u-th template in set r. For each HDDR group, the relationship between fe and the average PCCMODEL

of the AS and AM sets is roughly linear (S2 Fig).

Inclusion of statistical potential terms in the objective function of MODELLER

In this work, we explored the effect of including in the objective function of MODELLER terms for

interatomic distance statistical potentials. These potentials are developed with the aim of recognizing

native-like protein conformations [35], therefore their use could help MODELLER to approach these

conformations [36].

We employed the DOPE potential [23], which is integrated in the MODELLER package where it is

commonly used to evaluate qualities of 3D models. DOPE is an “all atom” potential. Its 12561 terms

are approximated with interpolating cubic splines, which can be differentiated analytically and used in

the gradient-based optimization algorithm of the program.

The Lee group previously included the DFIRE [20] potential in the MODELLER objective function

[15]. To compare their performances in 3D model building, we also integrated DFIRE in MODELLER

(DFIRE parameters were obtained from its source code).
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When including statistical potential terms, the MODELLER objective function becomes:

FTOT=FPHYS+FHOM +wSP F SP , (7)

where  FSP contains  the  statistical  potentials  terms  and  wSP is  their  weight.  For  obtaining  best  3D

modeling results, we tested several values of wSP.

We employed statistical potentials using a contact shell value of 8.0 Å. Higher values can be safely

avoided because the terms of DOPE and DFIRE start to acquire a flat shape over the 8.0 Å threshold

(see  S3 FigA). The code we used to employ these potentials in MODELLER is freely available at

https://github.com/pymodproject/altmod.

Results

Effects of optimal σ values on 3D modeling

Effects on single-template modeling. Gaussian HDDRs are the heart of the MODELLER approach.

At first, we explored how the use of optimal σ values (that is, |Δdn| values) influences single-template

modeling. The Lee group already reported it to bring significant improvements for a small number of

proteins. Here, we extended the analysis to a larger set to derive general conclusions. As shown in

Table 1, employing restraints bearing |Δdn| values greatly increases 3D modeling accuracy. In terms of

global Cα backbone quality, the average GDT-HA score of the AS models increases by 6.0% with

respect to the score obtained with  σMOD  values. An improvement is also observed for local all-atom

quality, as the average lDDT score increases by 4.2%. Increments in GDT-HA and lDDT are seen for

224/225 and 225/225 AS models respectively (see Fig 3A and 3B).
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Table 1. 3D modeling qualities of the AS single-template models built with optimal HDDRs and

alignments.

Strategy GDT-HA lDDT MolProbity score

MODELLERa 0.6014 (-) 0.6563 (-) 3.0104 (-)

OPTIMALb 0.6377 (+6.0%)* 0.6842 (+4.2%)* 3.0311 (+0.7%)*

MODELLER-SLOWc 0.6036 (+0.4%)* 0.6594 (+0.5%)* 2.8512 (-5.3%)*

OPTIMAL-SLOW 0.6377 (+6.0%)* 0.6853 (+4.4%)* 2.9039 (-3.5%)*

MODELLER-TMalignd 0.6383 (+6.1%)* 0.6951 (+5.9%)* 3.0411 (+1.0%)*

OPTIMAL-TMalign 0.6805 (+13.2%)* 0.7259 (+10.6%)* 3.0870 (+2.5%)*

The “GDT-HA”, “lDDT” and “MolProbity score” columns report the average values for those metrics.

Percent improvements are computed with respect to the scores of the default MODELLER (first row),

while  asterisks  denote  a  statistically  significant  difference  with  respect  to  them  (according  to  a

Wilcoxon signed-rank tests  with  a  significance  level  of  0.05).  See  S3 Table for  a  full  list  of  the

numerical p-values. aThe “MODELLER” prefix indicates that the strategy employs HDDRs generated

by MODELLER. bThe “OPTIMAL” prefix indicates the use of optimal HDDRs. cThe “SLOW” suffix

indicates the use of the  slow MDSA protocol instead of the default  very_fast one.  dThe “TMalign”

prefix indicates the use of target-template alignment built through TM-align.
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Fig 3. The use of optimal parameters for HDDRs improves 3D modeling quality. (A) and (B) GDT-

HA and lDDT scores of the AS models built with σMOD (reported on the x-axis) and with optimal |Δdn|

(y-axis)  values.  (C)  and  (D)  GDT-HA  and  lDDT  scores  for  the  AM  models  obtained  with

MODELLER-generated (x-axis) and optimal (y-axis) HDDRs.
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Increasing  target-template  alignment  quality  is  one  of  the  current  challenges  in  TBM.  In  our  AS

models, the average accuracy of HHalign sequence alignments with respect to error-free TM-align

structural alignments is 0.87 (see S4 Fig). When rebuilding the AS models using σMOD values and TM-

align alignments, the average GDT-HA and lDDT scores improve by 6.1% and 5.9% respectively over

the scores obtained with σMOD values and HHalign alignments (see Table 1). These results show that by

optimizing parameters of the 3D model building phase of single-template HM, the same improvement

obtainable by optimizing alignment building can be reached.

It might be thought that |Δdn| values aid 3D modeling by compensating for alignment errors, that is, by

assigning misaligned residues more conformational freedom to help MODELLER repositioning them

in a correct way. However, their effect can not be explained only by this mechanism, since they yield a

6.6% and 4.4% increase in GDT-HA and lDDT also when models are built with TM-align alignments

(see Table 1).

Effects on multiple-template modeling. Next, we explored the effect of optimal HDDRs in multiple-

template modeling, which has never been assessed before. As shown in Table 2, applying an optimal

set of σ values and template weights results in an enormous improvement in the quality of 3D models

(see also Fig 3C and 3D). When building the AM models with optimal restraints, their average GDT-

HA and lDDT scores improve by 38.9% and 18.9% over the scores obtained by using MODELLER-

generated restraints.  These increments are larger than the one observed when performing multiple-

template  modeling  with  MODELLER-generated  restraints  and  error-free  TM-align  structural

alignments, which result in a 5.7% and 5.1% improvements in GDT-HA and lDDT.

Optimal  HDDRs  increase  even  more  the  beneficial  effect  of  using  multiple  templates.  With

MODELLER-generated restraints, employing multiple templates leads to an improvement of 1.9% and

2.0% in the average GDT-HA and lDDT of the AM models over single-template modeling performed
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with top-templates (see the MODELLER-ST strategy in  Table 2). On the other hand, with optimal

HDDRs, it leads to an improvement of 33.2% and 16.0% in GDT-HA and lDDT over single-template

modeling performed with optimal HDDRs (see the OPTIMAL-ST strategy in Table 2).

The  reason  for  this  large  improvement  is  the  following.  In  MODELLER,  the  pdf for  a  multiple-

template HDDR includes a weighted contribution from each template. In optimal HDDRs, |Δdn| values

are employed as σ values in conjunction with the OL weighting scheme (see the Methods section). In

this scheme, only the contribution of the best template is selected for each HDDR (when considering a

single HDDR, the best template is defined as the one having a distance dt as close as possible to the

target distance dn). On the other hand, in MODELLER-generated HDDRs, the weights are usually non-

zero for every template, meaning that the contribution of the best template is always weakened. This

effect increases the allowed conformational space for the restrained distance, thus making it less likely

to build a model with a near-native distance.

The importance of the template-weighting scheme [7] is illustrated by the fact that when employing |

Δdn| values and a uniform weighting scheme (that is, for an HDDR with U templates each template is

given a weight wu = 1/U), the average GDT-HA and lDDT scores of the AM models improve only by

18.3% and 8.9% over the standard MODELLER (see the OPTIMAL-U strategy in Table 2).
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Table 2. 3D modeling qualities of the AM multiple-template models built with optimal HDDRs

and alignments.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)

OPTIMAL 0.8733 (+38.9%)* 0.8106 (+18.9%)* 3.1478 (+2.4%)

MODELLER-SLOW 0.6310 (+0.4%)* 0.6850 (+0.5%)* 2.9143 (-5.2%)*

OPTIMAL-SLOW 0.8747 (+39.1%)* 0.8133 (+19.3%)* 3.0475 (-0.8%)*

OPTIMAL-Ua 0.7438 (+18.3%)* 0.7427 (+8.9%)* 3.1744 (+3.3%)

MODELLER-STb 0.6168 (-1.9%)* 0.6683 (-2.0%)* 3.0231 (-1.6%)*

OPTIMAL-ST 0.6557 (+4.3%)* 0.6986 (+2.5%)* 3.0398 (-1.1%)

MODELLER-TMalign 0.6645 (+5.7%)* 0.7165 (+5.1%)* 3.0529 (-0.6%)

OPTIMAL-TMalign 0.9222 (+46.7%)* 0.8498 (+24.6%)* 3.1044 (+1.0%)

See Table 1 for the description of contents, columns and most modeling strategies names. See S4 Table

for a full list of the numerical p-values. aThe “U” suffix indicates the use of uniform template weights

for multiple-template HDDRs. bThe “ST” suffix indicates that only the top template for each target was

used (thus resulting in single-template modeling).

Effects on stereochemical quality. In both single and multiple-template modeling, the use of optimal

HDDRs appears to decrease the stereochemical quality of models, as seen by increased MolProbity

scores (see  Table 1 and  Table 2). The increment is more prominent in multiple-template modeling

(2.4%) than in single-template modeling (0.7%). While optimal restraints may guide the models in

conformations near the native state, at the same time they probably force stereochemical inaccuracies.

However,  employing  a  more  through  MDSA protocol  is  sufficient  to  almost  entirely  relax  these
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inaccuracies, while maintaining high GDT-HA and lDDT scores (see the strategies with the “SLOW”

suffix in the tables).

Perturbing optimal σ values

As first demonstrated in [19], σMOD values are weakly correlated with their optimal counterparts. In the

AS models, the distributions of |Δdn| and σMOD values are markedly different (see Fig 1A and 1B) and

the average PCCs between them are 0.262, 0.277, 0.183 and 0.221 for the Cα-Cα, NO, SCMC and

SCSC restraints groups respectively (see  Fig 4A).  Even with accurate alignments built through TM-

align, the histogram-based approach of MODELLER produces σ values which are weakly correlated to

|Δdn| values (see Fig 4B).

Fig 4. Correlation between σMOD and |Δdn| values in the AS models. (A) Distributions for the PCCs

between σMOD and |Δdn| values for the HDDRs of the 225 AS models. (B) PCC distributions for the AS

models rebuilt with TM-align alignments.
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In the previous section we have seen that the use of optimal σ values greatly improves MODELLER’s

predictions. However, since |Δdn| values can not be directly inferred without the prior knowledge of the

actual 3D structure that we are trying to predict, a strategy to improve MODELLER would consist in

accurately estimating them. Irrespective of the predictive algorithm, it is reasonable to suppose that |

Δdn| estimations will always bear a certain amount of error. In order to understand how 3D modeling

quality changes as a function of this error, we rebuilt the models of the analysis set by perturbing their |

Δdn| values with random noise.

Effects on single-template modeling.  Fig 5A shows how the average GDT-HA of the AS models

changes when increasing the fraction of |Δdn| values substituted with a random σ (see Fig 5B for the

relationship with lDDT). In the absence of any perturbation, the average GDT-HA is at its maximum of

0.6377. When substituting just  10% of the  |Δdn| values, the mean Cα-Cα  PCCMODEL of  the models

becomes 0.85 and the average GDT-HA decreases by 2.6%. Further increasing the fraction of random σ

values leads to a continuous decrease in quality. When all the restraints have a random σ, the average

Cα-Cα PCCMODEL approximates 0 and the average GDT-HA is 0.6052 (resulting in a 5.1% decrease with

respect to the optimal state). This score is 0.7% higher than the average GDT-HA obtained using the

default σMOD values, which is 0.6009. Although the difference between these two scores is statistically

significant (Wilcoxon signed-rank test, p-value = 3.7e-4) it is only minimal from a structural point of

view. In other words, in single-template modeling, provided that the average  σ of a model does not

surpass a certain threshold (that is, the average |Δdn| observed in nature), randomly generated σ values

are surprisingly as effective as those generated by the MODELLER histogram-based approach. This is

also confirmed by the fact that the use of uniform σ values < 1.0 Å does not significantly alter the GDT-

HA and lDDT scores of models with respect to the standard MODELLER algorithm (see  Fig 2A and

2B).
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Fig 5. Effect of |Δdn| perturbation on 3D modeling. (A) and (B) Average GDT-HA and lDDT scores

of the AS models as a function of their average Cα-Cα PCCMODEL values (see the Methods section). (C)

and (D) Similar  data  obtained for  the multiple-templates  AM models.  Blue  triangles  represent  the

scores obtained by applying the template-weighting scheme described in [34] instead of the OL scheme

applied for the rest of the data. In (A) through (D), the dashed horizontal lines represent the average

quality scores obtained by the default MODELLER.

Effects on multiple-template modeling. Next, we performed perturbation experiments with multiple-

template models (see Fig 5C and 5D). Again, the average quality decreases as perturbation increases.
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However, when |Δdn| values are fully perturbed, the average GDT-HA now becomes 5.3% lower than

the  one  obtained  using  the  default  MODELLER.  This  behavior  is  explained  by  the  fact  that  in

perturbation  experiments  the  OL template  weighting  scheme was  employed.  When this  scheme is

applied with optimal (or near-optimal) σ values, it boosts 3D modeling quality, but when it is applied

with  σ values being weakly correlated with  |Δdn| values, it  has a detrimental effect (since for each

HDDR it uses only the contribution of a randomly chosen template, while the contribution from the

best template is likely to be suppressed). In order to make modeling quality less sensitive to errors in |

Δdn| estimations, the template weighting scheme of RosettaCM [34] was adopted. In this scheme, the

template with the lowest σ value is still assigned the highest weight, but also other templates are given

non-zero weights. Using this scheme with a parameter k = 50.0 makes modeling quality more tolerant

with respect to the amount of |Δdn| perturbation (see Fig 5C).

This  data  shows  that  if  we were  able  to  predict  |Δdn| values  with  sufficiently  high  accuracy,  the

performance  of  MODELLER  would  greatly  increase.  In  single-template  modeling,  obtaining

predictions with a PCC of ~0.6 would lead to an increase in GDT-HA of ~2.0%, while in multiple-

template  modeling,  the  same  PCC would  increase  GDT-HA by  ~11.0% (when  using  a  template-

weighting  scheme  possessing  robustness  with  respect  to  errors  in  |Δdn| estimations,  such  as  the

RosettaCM scheme).

Modifying the objective function of MODELLER with statistical potential terms

Effect on single-template modeling. In order to identify the optimal way to incorporate the DOPE

potential  within  MODELLER,  we  performed  benchmarks  with  the  AS single-template  models  by

tuning wSP values from 0.1 to 3.5 and by employing HDDRs bearing either σMOD or |Δdn| values. Fig 6A

to 6C show that, with both types of σ, the inclusion of DOPE leads to improvements in 3D modeling.

Strikingly, depending on the type of σ, the amount of improvement and the best wSP vary greatly.
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Fig 6. Average quality scores of the models of the analysis set as a function of the wSP with which

the DOPE potential  has  been included in  the  objective  function of  MODELLER.  (A)  to  (C)

Quality scores of the AS models. (D) to (F) Quality scores of the AM models. (A) through (F) The

horizontal dashed lines correspond to the scores obtained when modeling with MODELLER-generated

(blue color) or optimal (orange) HDDRs without the use of DOPE.

With σMOD values, the maximum increase in GDT-HA is observed with a wSP of 0.5. As shown in Table

3, when employing DOPE with this  wSP, the average GDT-HA improves by a statistically significant

1.3% with respect to the default MODELLER. At the same time, the average lDDT score increases by
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2.0%, showing that the use of DOPE also aids local modeling. Of note, when applying DOPE along

with the slow MDSA protocol, an additional improvement is obtained: the average GDT-HA and lDDT

scores now increase by 1.6% and 2.8%.

Table 3. 3D modeling qualities of the AS single-template models built by including DOPE in the

objective function of MODELLER.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6014 (-) 0.6563 (-) 3.0104 (-)

OPTIMAL 0.6377 (+6.0%)* 0.6842 (+4.2%)* 3.0311 (+0.7%)*

MODELLER-DOPE-0.5a 0.6089 (+1.3%)* 0.6692 (+2.0%)* 2.1138 (-29.8%)*

MODELLER-SLOW-DOPE-0.5 0.6112 (+1.6%)* 0.6746 (+2.8%)* 2.0344 (-32.4%)*

MODELLER-DOPE-3.5 0.5631 (-6.4%)* 0.6397 (-2.5%)* 2.9977 (-0.4%)

OPTIMAL-DOPE-0.5 0.6549 (+8.9%)* 0.7029 (+7.1%)* 2.2960 (-23.7%)*

OPTIMAL-DOPE-3.5 0.6885 (+14.5%)* 0.7158 (+9.1%)* 2.6280 (-12.7%)

See Table 1 for the description of contents, columns and most modeling strategies names. See S3 Table

for a full list of the numerical p-values. aThe “DOPE-X.X” suffix indicates the use of DOPE with a wSP

of X.X.

When modeling with |Δdn| values, the best results are instead obtained with a wSP of 3.5. In this case,

DOPE increases the average GDT-HA and lDDT scores by 8.0% and 4.6% with respect to the scores

obtained with the same restraints and the standard objective function of MODELLER. The increments

in these two metrics are extremely large if computed with respect to the default MODELLER protocol

(14.5% and 9.1%). Fig 7 shows that with the default MODELLER, secondary structure elements that
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show  divergence  in  the  target  and  template  structures  are  most  often  modeled  in  the  template

conformation.  By using  optimal  HDDRs and DOPE,  it  is  common to  see  these  elements  shifting

towards target conformations.

Fig 7. Effects on 3D modeling of optimal  σ values and DOPE.  Effects brought by the use  |Δdn|

values and DOPE (with a wSP of 3.5) on the 3D modeling of target 1yd0_chain_A (colored in orange)

using as a template  1yd6_chain_D (pale green).  In the model built  using the default  MODELLER

(colored in white, superposed to its target and template on the left image) the three helices shown in the

image are positioned in the same conformation of the template. In the model built employing  |Δdn|

values and DOPE with a  wSP of 3.5 (pale cyan, shown on the right) the helices are repositioned in a

native-like conformation. Figures rendered with PyMOL [37].
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Remarkably, the same wSP of 3.5 leads to a large decrease in modeling quality when DOPE is applied

along with σMOD values: in this case, the average GDT-HA and lDDT scores decrease by a large 6.4%

and 2.5% with respect to the score obtained without using DOPE.

This data shows that in single-template modeling, the addition of DOPE is much more effective with |

Δdn| values than with σMOD values. Additional insights into this behaviour were provided by the analysis

of  DOPE  energetic  landscapes.  Fig  8 shows  the  representative  case  of  the  1lam_chain_A and

1dk8_chain_A targets, where the DOPE energies of models are plotted as a function of their GDT-HA

scores. When using single-template HDDRs with σMOD values, applying DOPE with increasingly high

wSP values leads to a decrease in both GDT-HA  and DOPE energies. These energies eventually become

even lower than the native target  structure one.  It  seems that  in  the DOPE landscape,  near-native

conformations are not at an absolute minimum. On the other hand, when modeling with single-template

optimal HDDRs, increasing  wSP values leads to improvements in GDT-HA while maintaining DOPE

energies relatively high. Similar trends are observed in the landscapes of almost all AS models. We

speculate that this behaviour is caused by the fact that optimal HDDRs strongly restrain those regions

of models which are structurally conserved between the native structures and templates, while they

weakly restrain divergent regions. This probably allows to pinpoint the effect of DOPE in the divergent

regions  (where  its  addition  likely  improves  modeling  over  the  use  of  the  standard  MODELLER

objective  function)  and to  keep “rigid”  the  conserved  regions  (which  are  already  extremely  well-

modeled and where DOPE can hardly improve the situation), thus giving rise to a synergistic effect.
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Fig 8. DOPE energy landscapes. DOPE energy landscapes  for  target  (A)  1dk8_chain_A and (B)

1lam_chain_A  modeled using different strategies. 100 decoys were built for each strategy and their

GDT-HA scores  are  plotted here against  their  DOPE energies.  The strategies with the “MOD-ST”

prefix adopted MODELLER-generated HDDRs and a single template (blue-shaded dots), those with

the “OPT-ST” prefix adopted optimal HDDRs and a single template (orange-shaded dots) and those

with the “OPT-MT” prefix adopted optimal HDDRs and multiple templates (red-shaded dots). The

“SP-X.X” suffix indicates the use of DOPE with a wSP of X.X. The green dots correspond to the DOPE-

minimized native target structure.

Effect on multiple-template modeling. Next, we explored the effect of DOPE in multiple-template

modeling (see Fig 6D to 6F). The trend observed when employing MODELLER-generated restraints is

reminiscent of the single-template modeling one, although the improvements are slightly smaller. Table

4 shows that the best wSP is 0.5, which results in an average increase in GDT-HA and lDDT of 0.6% and

1.6% with respect to the scores obtained with the default MODELLER. By employing DOPE with this

wSP along with the slow MDSA protocol, an additional improvement can be reached: the average GDT-
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HA and lDDT scores now improve by 1.0% and 2.2%. When further increasing  wSP, we assist to a

decrease in 3D modeling qualities.

Table 4. 3D modeling qualities of the AM multiple-template models built by including DOPE in

the objective function of MODELLER.

Strategy GDT-HA lDDT MolProbity score

MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)

OPTIMAL 0.8733 (+38.9%)* 0.8106 (+18.9%)* 3.1478 (+2.4%)

MODELLER-DOPE-0.5 0.6327 (+0.6%)* 0.6926 (+1.6%)* 2.2086 (-28.1%)*

MODELLER-SLOW-DOPE-0.5 0.6347 (+1.0%)* 0.6971 (+2.2%)* 2.1152 (-31.2%)*

MODELLER-DOPE-3.5 0.5646 (-10.2%)* 0.6453 (-5.4%)* 3.1267 (+1.8%)*

OPTIMAL-DOPE-0.5 0.8736 (+39.0%)* 0.8229 (+20.7%)* 2.5635 (-16.6%)*

OPTIMAL-DOPE-3.5 0.8519 (+35.5%)* 0.8061 (+18.2%)* 2.7520 (-10.4%)*

See Table 1 for the description of contents, columns and most modeling strategies names. See S4 Table

for a full list of the numerical p-values.

The results observed when combining DOPE with optimal multiple-template HDDRs are different. No

value of wSP is able to bring a relevant improvement in GDT-HA. As wSP increases over 1.0, the scores

even start to decrease in a significant way, although it seems that DOPE is able to bring at least a small

improvement in lDDT.

This counterintuitive behaviour can in part be explained from the analysis of DOPE energy landscapes.

Fig 8 shows that when using optimal multiple-template HDDRs, the quality of models is already higher
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than the one obtained with optimal single-template HDDRs. In this case, applying large  wSP values

leads to a decrease in DOPE energies and GDT-HA. The plots show that the models built with optimal

HDDRs seem to be attracted towards a local energy minimum of DOPE, which does not correspond to

the native state, but is located relatively near it. Therefore, when using optimal restraints, minimizing

the DOPE of a structure distant from the native state (like in the case of single-template modeling),

tends to increase its GDT-HA, but when the structure is already very close to the native state (such as in

the case of multiple-template modeling), it tends to decrease its GDT-HA.

Effects on stereochemical quality. In terms of stereochemichal quality, the use of DOPE seems to be

highly beneficial in both single and multiple-template modeling and with both MODELLER-generated

and optimal HDDRs (see Fig 6, Table 3 and 4). For example, when employing σMOD values and DOPE

with a  wSP of 0.5, the average MolProbity score of the AS models decreases by a large 29.8% with

respect to the default MODELLER. Additional improvements in MolProbity scores are observed when

coupling DOPE to the slow MDSA protocol. We found that the MolProbity score component in which

DOPE brings the largest improvement is by far the “Clash Score”, meaning that the potential helps to

remove steric  clashes from models.  Therefore,  the inclusion of DOPE in the objective function of

MODELLER represents a fast and effective way of improving the stereochemical quality of its models.

This approach increases computational times by a factor of ~6.5 when employing the very_fast MDSA

protocol  (and  ~16.5  with  the  slow protocol),  but  on  modern  hardware  the  default  MODELLER

algorithm usually takes a few seconds to complete a model,  therefore in absolute terms the model

building process is still relatively fast.

Comparison between DOPE and DFIRE in 3D modeling. We also tested the effect of adding DFIRE

in the objective function of MODELLER. Overall, DFIRE seems to have very similar effects to the

ones described for DOPE (see S3 Table, S4 Table and S5 Fig), because their terms have very similar
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forms (see S3 FigB). However, when modeling with σMOD values, DOPE seems to slightly outperform

DFIRE in terms of all-atom local quality (expressed by lDDT scores). When using a  wSP of 0.5 and

σMOD values, DOPE yields for the AS models an average lDDT score 0.5% higher than the one obtained

with DFIRE, a small but statistically significant improvement (Wilcoxon signed-rank test, p-value =

4.6e-35). Therefore, we suggest that in MODELLER, DOPE should be preferred over DFIRE.

Discussion

Improving the quality of HM predictions is clearly an area of great relevance in Biomedical Research

[38], given that the applicability of this methodology is expected to increase in the next years [29].

Right  now, a  large  portion  of  targets  can  be  modeled  only  with  low accuracy,  due  to  the  remote

homology  relationship  (under  30% SeqId)  with  their  templates.  A solution  to  this  problem could

potentially come from advances in 3D model building or refinement algorithms. In this work, we have

explored  two  main  promising  strategies  to  increase  the  accuracy  of  the  original  MODELLER

algorithm.

The use of optimal  σ values (that is,  |Δdn| values) greatly increases the 3D modeling quality of the

program. Since |Δdn| values can only be obtained by knowing the exact amount of divergence between

the structure of a target and its templates, they can not be used in real-life protein structure prediction

scenarios (where the target structure is of course unknown).

However, as first  shown by the Lee group [19],  |Δdn| values may be estimated through a machine

learning system. These authors developed a random forest which obtained estimations with an average

Cα-Cα PCC of ~0.35. The use of this predictor led to only a very small improvement in terms of 3D

modeling quality. Our data (which describes the relationship between 3D modeling quality and errors

in |Δdn| estimations) shows that increasing the PCC of a similar predictor by at least 0.2-0.3 units could

translate in a significant improvement of MODELLER.
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The other  strategy that  we have investigated is  the inclusion of statistical  potential  terms, such as

DOPE, in the objective function of MODELLER. We show that employing such potentials in the 3D

model building phase of MODELLER robustly increases 3D modeling quality and provides a fast and

effective way to improve the stereochemical details models. In order to allow the user community of

MODELLER  to  deploy  this  strategy  in  their  modeling  pipelines,  we  share  the  Python  code

implementing it. In future research, it will be interesting to see if there exist potentials with an even

more beneficial effect on 3D model building in MODELLER.

Our results have implications also for other Structural Bioinformatics tools. RosettaCM and I-TASSER

borrow from MODELLER the use of HDDRs [34, 39-40] and programs like MULTICOM [41] and

Pcons [42] implement MODELLER at some point in their protein modeling pipelines. The strategies

presented in this work can certainly be implemented in these protocols to improve their quality.

Of note, in the protein structure refinement field, restraints are built from a starting model and the aim

is to guide the model towards its native conformation [43]. While in the HM context we may estimate |

Δdn| values between a target native structure and a template, in protein structure refinement they could

be similarly estimated between a native structure and its unrefined model. Methods to predict the local

accuracy of 3D models already reach good performances [44]. It is reasonable to think that with a

sufficiently accurate predictor, the |Δdn| prediction strategy could also lead to improvements in current

refinement strategies.

The development of deep learning techniques [45] has recently brought advances in the field of contact

and distance map prediction [46]. We suggest that such methodologies could be well adapted to the

problem of |Δdn| estimation. In future studies, we will concentrate on using this type approach to tackle

the problem of σ values assignment. Since a machine learning model usually performs predictions in a

relatively small amount of time, the |Δdn| estimation approach has the potential to greatly improve the
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“modeling  by  satisfaction  of  spatial  restraints”  strategy  of  MODELLER at  the  price  of  small

computational cost.
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Supporting Information

S1 Table. Physical terms of the MODELLER objective function. Note how by default the objective

function does not include any “physical” attractive term between non-bonded atoms (Lennard-Jones

and Coulomb potential terms from CHARMM22 [Brooks at al., 2009] are missing). The only attractive

terms in the objective function are homology-derived distance restraints (see S2 Table).

S2 Table. Homology-derived terms of the MODELLER objective function.

S3 Table. 3D modeling qualities of the AS single-template models built with different modeling

strategies. See Table 1 in the main text for the description of contents, columns and most modeling

strategies names.

S4  Table.  3D  modeling  qualities  of  the  AM  multiple-templates  models  built  with  different

modeling strategies. See Table 1 and 2 in the main text and S3 Table for the description of contents,

columns and most modeling strategies names.

S1 Fig. Properties of the analysis set. (A) SeqId histogram of the pairwise target-template alignments

in the AS models obtained using TM-align and HHalign. (B) Target coverage histograms of the same

alignments. (C) Chain length histograms of the 225 AS targets, the 118 AM targets and all the 472

template chains of the analysis set. (D) CATH classes frequencies of the AS and AM targets compared

to those in the entire CATH 4.2.0 database [Dawson et al., 2017].

S2 Fig. Average PCCMODEL values in |Δdn| perturbation experiments plotted as a function of fe. Data

for the four HDDRs groups of MODELLER is shown. As  fe (that is, the fraction of perturbed  |Δdn|

values  in  models)  increases,  the  average  correlation  between  |Δdn| values  and  their  perturbed

counterpart decreases. (A) AS models. (B) AM models.
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S3 Fig. Analysis of the terms of the DOPE and DFIRE potentials. (A) Forms of the 12561 terms of

DOPE [Shen and Sali, 2006]. Each term is associated to a couple of heavy atom types from the 20

standard residues. Irrespective of the atom types, all the functions start to acquire a flat shape above the

8.0 Å threshold. (B) Confrontation of DOPE and DFIRE [Zhou and Zhou, 2002] terms. An hexbin

density plot compares 364269 data points from all the 12561 terms of DOPE (x-axis) and DFIRE (y-

axis) (each term has 29 points, which report the score of the potential in a linear space from 0.75 to

14.75 Å). The scores of the two potentials are highly correlated (Pearson correlation coefficient = 0.99).

S4 Fig. Accuracy of the pairwise target-template HHalign alignments of the AS models. The x-axis

reports  the  SeqId  between  the  target  and  template  sequences  in  TM-align  alignments.  The  y-axis

reports the accuracy of the corresponding HHalign alignment. The accuracy is computed as the ratio

Hm/Tm, where  Tm is the total number of matches in the TM-align alignment and Hm is the number of

“correct” matches in HHalign alingments (that is, those HHalign matches which are also found in the

TM-align alignment). The average accuracy is 0.87.

S5 Fig. Average quality scores of the analysis set models as a function of the wsp value with which

the  DFIRE  or  DOPE  statistical  potentials  have  been  included  in  the  objective  function  of

MODELLER. The horizontal  dashed lines correspond to the scores obtained when modeling with

MODELLER-generated  (blue  color)  or  optimal  (orange)  HDDRs  without  the  use  of  statistical

potentials. (A) to (C) quality scores of the AS models. (D) to (F) quality scores of the AM models.

S1 Text. Description of the GDT-HA and lDDT metrics for model quality evaluation.

S2 Text. Obtaining optimal parameters for single-template HDDRs.

S3 Text. Obtaining optimal parameters for multiple-template HDDRs.
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