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Abstract

The most frequently used approach for protein structure prediction is currently homology modeling.
The 3D model building phase of this methodology is critical for obtaining an accurate and biologically
useful prediction. The most widely employed tool to perform this task is MODELLER. This program
implements the “modeling by satisfaction of spatial restraints” strategy and its core algorithm has not
been altered significantly since the early 1990s. In this work, we have explored the idea of modifying
MODELLER with two effective, yet computationally light strategies to improve its 3D modeling
performance. Firstly, we have investigated how the level of accuracy in the estimation of structural
variability between a target protein and its templates in the form of ¢ values profoundly influences 3D
modeling. We show that the o values produced by MODELLER are on average weakly correlated to
the true level of structural divergence between target-template pairs and that increasing this correlation
greatly improves the program’s predictions, especially in multiple-template modeling. Secondly, we
have inquired into how the incorporation of statistical potential terms (such as the DOPE potential) in
the MODELLER’s objective function impacts positively 3D modeling quality by providing a small but
consistent improvement in metrics such as GDT-HA and IDDT and a large increase in stereochemical

quality. Python modules to harness this second strategy are freely available at

https://github.com/pymodproject/altmod. In summary, we show that there is a large room for improving
MODELLER in terms of 3D modeling quality and we propose strategies that could be pursued in order

to further increase its performance.

Author summary

Proteins are fundamental biological molecules that carry out countless activities in living beings. Since
the function of proteins is dictated by their three-dimensional atomic structures, acquiring structural
details of proteins provides deep insights into their function. Currently, the most successful
computational approach for protein structure prediction is template-based modeling. In this approach, a
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target protein is modeled using the experimentally-derived structural information of a template protein
assumed to have a similar structure to the target. MODELLER is the most frequently used program for
template-based 3D model building. Despite its success, its predictions are not always accurate enough
to be useful in Biomedical Research. Here, we show that it is possible to greatly increase the
performance of MODELLER by modifying two aspects of its algorithm. First, we demonstrate that
providing the program with accurate estimations of local target-template structural divergence greatly
increases the quality of its predictions. Additionally, we show that modifying MODELLER’s scoring
function with statistical potential energetic terms also helps to improve modeling quality. This work
will be useful in future research, since it reports practical strategies to improve the performance of this

core tool in Structural Bioinformatics.

Introduction

In silico protein structure prediction constitutes an invaluable tool in Biomedical Research, since it
allows to obtain structural information on a large number of proteins currently lacking an
experimentally-determined 3D structure [1]. Template-based modeling (TBM) has been shown to be

the most practically useful prediction strategy [2].

Homology modeling (HM) is a fast and reliable TBM method in which a target protein is modeled by
using as a structural template an homologous protein. HM predictions usually consist of three phases.
In the first, the sequence of the target is used to search for suitable templates in the PDB [3-4]. In the
second, a sequence alignment between the target and templates is built with the goal of inferring the
equivalences between their residues [5]. In the final, the information of the templates is used to build a

3D atomic model of the target.

The overall accuracy of HM has remarkably increased in the last 25 years [6]. This has been promoted

mostly by advances in template searching and alignment building algorithms, while only minor
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advances have been witnessed in the 3D model building step [7]. However, recent breakthroughs in
protein structure refinement methods [8-9] envisage a large room for improvement in HM which could

originate from advances in 3D model building.

MODELLER [10] is the most frequently used program for 3D model building in HM. One of the main
reasons of its success has been its accurate [11], yet fast algorithm. In MODELLER, the information
contained in an input target-template alignment is used to generate a series of homology-derived spatial
restraints (HDSRs), acting on the atoms of the 3D protein model. Sigma (“0”) values of homology-
derived distance restraints (HDDRs) determine the amount of conformational freedom which the model
is allowed to have with respect to its templates. MODELLER uses a statistical “histogram-based”
strategy to estimate o values [12]. These restraints are incorporated into an objective function which
also includes physical energetic terms from CHARMM22 [13]. A fast, but effective optimization
algorithm based on a combination of conjugate gradients (CG) and molecular dynamics with simulated
annealing (MDSA) is then used to identify a model conformation that satisfies as much as possible the

HDSRs, while retaining stereochemical realism.

The core MODELLER algorithm was developed in the early 1990s and it was essentially left

unchanged over the years. Despite its importance, there have been relatively few attempts to improve it.

In 2015, Meier and Soding designed a novel probabilistic framework for building HDDRs [7], whose
aim was to help MODELLER tolerate alignment errors and to combine the information from multiple
templates in a statistically rigorous way. This system increased 3D modeling quality, especially for
multiple-template modeling. However, since it is integrated in the HHsuite project [14] it can be

employed only when the first two phases of HM are carried out by programs of the HHsuite package.

Researchers from Lee’s group developed a modified version of MODELLER which they have been

using in CASP experiments [15-17]. First, they replaced the MODELLER optimization algorithm with

4
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the more thorough conformational space annealing (CSA) method [18]. Secondly, they pioneered a
new strategy to assign o values to HDDRs relying on machine learning [19]. Finally, they included a
series of additional terms to the MODELLER objective function, such as terms for the DFIRE [20] and
DFA [21] knowledge-based potentials, for hydrogen bond formation [22] and to enforce in models
predictions of structural properties. In terms of 3D modeling quality, this system outperformed the
original MODELLER [17]. Unfortunately, the separated contribution of several of these modifications
is not reported and much of this system remains in-house (only the CSA algorithm is publicly

available).

Although these seminal studies have shown that the core MODELLER algorithm has room for
improvement, most of its users employ its original version, probably because existing modifications
either depend on additional packages to install, or are computationally too expensive (e.g., the CSA
algorithm alone was reported to increase computational times by a factor of ~130). Since MODELLER
is a core tool in Structural Bioinformatics, it is of paramount importance to investigate in detail the
inner working of its algorithm and to develop it further. Here, we have explored two computationally

light strategies to improve it in terms of 3D modeling quality.

Particular attention has been dedicated in understanding how the level of accuracy in the estimation of
structural variability between the target and templates expressed as ¢ values influences 3D modeling.
Although in this work we have not modified the MODELLER algorithm for o values assignment, we
propose strategies that could be likely pursued in the next-future in order to greatly increase the
performance of the program. Additionally, we have investigated how the incorporation of statistical
potential terms, such as DOPE [23], in the program’s objective function is able to impact positively 3D
modeling and under certain conditions (for example in single-template modeling) it can be coupled

synergistically to the previous strategy.
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To rigorously validate these approaches, we have benchmarked them using protein targets from a
diverse set of high-resolution structures from the PDB and we quantified the individual impact on 3D
modeling of each modification. This information will be useful in future research, since it shows in
which areas there is still room for improvement and in which areas it might be difficult to advance

further.

Materials and methods

Outline of MODELLER’s homology-derived distance restraints
The MODELLER approach relies on the generation of HDSRs for interatomic distances and dihedral

angles [12]. Each HDSR is treated as a probability density function (pdf). HDSRs acting on interatomic
distances (that is, HDDRs) have a predominant role in determining the 3D structure of a model. The

way they are built is summarized here.

For a couple of atoms i and j of the model, the program finds in the template the equivalent atoms k and
I which have a distance in space of d.. The distance d, between i and j is assumed to be normally

distributed around d, with a standard deviation o and the pdf restraining it is:

— 1 N 20°

In MODELLER pdfs are converted in objective function terms as follows:

(d,—d.)

m t

20°

(dm_d[>2
=" % _In
20

1
ov2m

obj(d,)=-In(f(d,)|=—1In , )

1
e
ov2m

therefore Gaussian HDDRs correspond to harmonic potential terms. Since HDDRs are considered to be
independent, their objective function terms are summed. HDDRs are built for four groups of atoms: the

Ca-Ca, backbone NO, side chain-main chain (SCMC) and side chain-side chain (SCSC) groups (see S1
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Table). MODELLER generates its o values (hereinafter named oumop values) through an histogram-

based approach [12].

MODELLER allows to take advantage of multiple templates, a strategy that (when templates are
chosen adequately) usually outperforms single-template modeling [24]. When employing U templates

to restrain a distance d,,, MODELLER uses the following pdf:

RS 1
f(dm)—zwu Gu\/Z_ne ) 3

where u is the template index, w, is a template-specific weight, d., and o, are the distance observed in
template u and its o value respectively. In MODELLER, w, is a function of the local sequence

similarity between the target and template u.

The total objective function of MODELLER (Fror) can be expressed as follows:

Fror=FpuystFron > 4)

where Fpuys contains five physical terms (see S2 Table) and From contains HDSRs terms. In this work,
the weights for Fpuys and Fuow were always left to 1.0 (therefore they are omitted from the formula

above).

Benchmarking MODELLER modifications with an analysis set

In order to benchmark modifications of MODELLER, we built an analysis set of selected target
proteins. We obtained 926 X-ray structure chains from PISCES [25], using the following criteria to

filter the PDB:
e the maximum mutual sequence identity (Seqld) among the chains was 10%;

e their structures had a resolution < 2.0 A and R-factor < 0.25;
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e they contained no missing residues due to lacking electron density;

e their length was between 70 and 700 residues.

These chains were our target candidates. To obtain their templates, we culled from PISCES another set
using similar filters, except that this time the maximum mutual Seqld was 90%. We removed from this
larger set all the targets, obtaining 6224 chains. Each target was then aligned to these chains using TM-

align [26] and we selected as template candidates the chains meeting the following criteria:
e the Seqld in the structural alignment built by TM-align was between 15% and 95%;

e the two TM-scores [27] produced by TM-align (each score is normalized by the length of one of

the aligned proteins) were at least 0.6, a threshold to consider two proteins as homologous [28].

We retained for each target only its top five templates in terms of TM-score (normalized on the target
length). In this way, we obtained a final set of 225 target chains (suitable templates could not be found
for 701 targets, a result of using only high-resolution template structures). For each target, we
performed single-template modeling only with its top template and therefore we had 225 single-
template models, which constituted the Analysis Single-template (AS) set. 118 targets had at least two

templates (with an average of 3.3), which constituted the Analysis Multiple-templates (AM) set.

The average Seqld for the AS target-template alignments is 0.38. Improving the performance of
MODELLER with targets having templates with a Seqld < 0.40 is important, because these cases are
the most frequent ones in Biomedical Research [29] and the accuracy of TBM is often low in this
regimen. The well-equilibrated distributions of Seqld, target coverage, target length and of CATH

structural classes [30] of the analysis set (see S1 Fig) assure that our results have a general validity.
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Alignment building

In order to align target-template pairs we employed the accurate HHalign program [4], which confronts
two profile hidden Markov models. To build input profiles for HHalign, we ran HHblits [31] with its
default parameters and three search iterations against the uniprot20_2016_02 database. After
employing HHalign to align pairs of target-template profiles, we extracted from the program’s output
their pairwise alignments. Multiple target-templates alignments were obtained by joining pairwise

alignments.

Whenever specified, we also employed target-template alignments built with TM-align in order to

assess the effect on 3D modeling of HDDRs derived from error-free structural alignments.

3D model building and evaluation

For all benchmarks we used MODELLER version 9.21. In order to modify its objective function terms,

restraints parameters and optimization schedules we interfaced with its Python API.

In MODELLER, the final quality of a model is largely determined in the MDSA phase. In this work,
unless otherwise stated, we employed the default very fast MDSA protocol of the program
(corresponding to a 5.4 ps run). When specified, we also employed the more thorough slow protocol

(corresponding to a 18.4 ps run). The CG protocol was always left to its default parameters.

The approach used to evaluate the quality of an homology model was to build 16 different copies of it
(hereinafter defined as decoys), and to report as an overall quality score (see below) the average score

of the 16 decoys.

To evaluate the quality of the backbones we used the GDT-HA metric [6] computed by the TM-score
program. In order to evaluate the quality of local structures and side chains, we used the IDDT metric
[32], computed by the IDDT program. Detailed descriptions of these two metrics are given in S1 Text.

To evaluate the stereochemical quality of models we employed MolProbity scores computed by the
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MolProbity suite [33]. A MolProbity score expresses the global stereochemical quality of a 3D model.

The lower it is, the higher is the quality of the model.

Optimal o values for homology-derived distance restraints

o values of HDDRs have a fundamental role in MODELLER. A natural question is: given a target-
template alignment, what is the set of o values which will maximize 3D modeling accuracy? The
concept of optimal o values in single-template modeling was addressed for the first time by the Lee
group [19]. They reported that for a Gaussian HDDR acting on a distance d,, between atoms i and j in a

3D model, the optimal o value is:

Ad,

dn_dt

: ()

where d, is the distance between the template atoms equivalent to i and j and d, is the distance between
i and j observed in the experimentally-determined native target structure. We show that the use of |Ad,|
values for Gaussian HDDRs is supported by theory, as it can be analytically proven that they maximize
the likelihood of obtaining a model in which each restrained d. is equal to its corresponding d, (see S2

Text).

In the case of multiple-template HDDRs, we demonstrate that the combination of optimal o values and
weights can be found again analytically (see S3 Text). In this situation, the optimal ¢ values are again |
Ad,| values. The associated template weighting scheme assigns a weight of 0 to all templates with the
exception of the template with the lowest g, which should have a weight of 1. We termed this scheme
as the “only-lowest” (OL) scheme. Note that the OL scheme is an extreme case of the weighting

scheme proposed in [34] (see S3 Text).

Whenever using |Ad,| values as o parameters, we had to modify them by setting their minimum value at

0.05 A. Raw |Ad,| values are extracted directly from pairs of homologous protein structures and they

10
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222  are often close to 0 A (see Fig 1A). In MODELLER, HDDRs having very small o values will seldom
223  be satisfied because their quadratic objective function terms will penalize enormously even minimal
224  deviations from templates. In fact, using unmodified |Ad,| values often leads to modeling failures, since
225 the total objective function of models surpasses the allowed limit of MODELLER, stopping the model

226  building process. Setting a lower limit to their value, allows their use in 3D modeling.

227
A 6o B
[ Ca-Ca (mean = 0.868 A) 3.0 4 [ Ca-Ca (mean = 0.782 A)
507 NO (mean = 0.822 A) " NO (mean = 0.787 A)
4.0 - [ SCMC (mean = 0.295 A) i 1 SCMC (mean = 1.584 A)
= [ SCSC (mean = 0.872 A) 2 20 r [ SCSC (mean = 1.493 A)
2 30 2 i
[0) [0)
o o b
2.0 - 104 !
1.0 1 I f’
- k
0.0 T T T T 0.0 T T T T T T
0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 5.0
|Ad,| (A) amop (A)

228 Fig 1. Distribution of |Ad,| and oumop values. Distributions of the |Ad,| (A) and omop (B) values
229 observed in the AS models for the four HDDR groups of MODELLER. Beside the names of the

230 restraints groups, their mean values are reported.

231

232  Perturbing optimal |Ad,| values
233 To understand the effect of using error-containing estimations of |Ad,| values on 3D modeling, we

234 randomly selected a fraction f. of the HDDRs in a target-template pair and substituted their |Ad,| values

235 with randomly generated ones.

236 Random values were extracted from exponential distributions fitted on the Ca-Ca, NO, SCMC and

237 SCSC |Ad,| data observed in our AS models (see Fig 1A). These exponentials well-approximate the

11
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observed |Ad,| distributions and their means were taken to be the same. Since 3D modeling quality

tends to decrease when the average o value of a model increases (see Fig 2A and 2B), this perturbation

scheme ensures that when replacing |Ad,| values with random numbers, alterations in the quality of 3D

models will not be caused by just changing their mean o values.

A Single-template
0.6 1+ L“-n-: ____________________
O,
W,
.
.
L
-,
< 0.5 + Y
L L !
= \‘\
o =,
s‘
04 n \‘\
W,
~
o,
-,
by L
1 I I 1 1 1 1 I
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

uniform o (4)

IDDT

Single-template

0.65 -

0.6

0.55

0.5

I I
00 10 20 3.0 40

uniform o (4)

50 60 70

Fig 2. Modeling with uniform o values. Average GDT-HA (A) and IDDT (B) scores of the AS models

as a function of the uniform o value (ranging from 0.01 to 7.0 A) applied to their HDDRs. The

horizontal dashed lines represent the average scores obtained with the original omop values.

We used 10 f. values (linearly spacing from 0.1 to 1.0) and for each, we generated 5 sets of perturbed |

Ad,| values per target-template pair, which allowed to better sample the effect of perturbations. For

each perturbed set, we built 8 decoys (resulting in a total of 5*8=40 decoys for each f. value). For a

certain f, value, the quality score for a model was recorder as the average score of all its 40 decoys.
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To quantify in terms of Pearson correlation coefficient (PCC) the amount of perturbation introduced in
the |Ad,| values of a single model, for each f. we used a score defined as PCCuyopg.. This score is

computed as:

Ny

1
PCC yopp=—" Z

Rr=1

1

U
2. Pccld,.p,,)

u=1

: (6)

where ng is the number of perturbed |Ad,| sets (in our case 5), r is the index for these sets, U is the
number of templates of the model, PCC indicates the Pearson correlation coefficient, d, is the list of |
Ad,| values associated with the u-th template and p,, is the list of perturbed |Ad,| values associated with
the u-th template in set r. For each HDDR group, the relationship between f. and the average PCCyopgs

of the AS and AM sets is roughly linear (S2 Fig).

Inclusion of statistical potential terms in the objective function of MODELLER

In this work, we explored the effect of including in the objective function of MODELLER terms for
interatomic distance statistical potentials. These potentials are developed with the aim of recognizing
native-like protein conformations [35], therefore their use could help MODELLER to approach these

conformations [36].

We employed the DOPE potential [23], which is integrated in the MODELLER package where it is
commonly used to evaluate qualities of 3D models. DOPE is an “all atom” potential. Its 12561 terms
are approximated with interpolating cubic splines, which can be differentiated analytically and used in

the gradient-based optimization algorithm of the program.

The Lee group previously included the DFIRE [20] potential in the MODELLER objective function
[15]. To compare their performances in 3D model building, we also integrated DFIRE in MODELLER

(DFIRE parameters were obtained from its source code).

13
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When including statistical potential terms, the MODELLER objective function becomes:
FTOT:FPHYS+FHOM+WSPFSP ) (7)

where Fsp contains the statistical potentials terms and wsp is their weight. For obtaining best 3D

modeling results, we tested several values of wsp.

We employed statistical potentials using a contact shell value of 8.0 A. Higher values can be safely
avoided because the terms of DOPE and DFIRE start to acquire a flat shape over the 8.0 A threshold
(see S3 FigA). The code we used to employ these potentials in MODELLER is freely available at

https://github.com/pymodproject/altmod.

Results

Effects of optimal ¢ values on 3D modeling

Effects on single-template modeling. Gaussian HDDRs are the heart of the MODELLER approach.
At first, we explored how the use of optimal o values (that is, |Ad,| values) influences single-template
modeling. The Lee group already reported it to bring significant improvements for a small number of
proteins. Here, we extended the analysis to a larger set to derive general conclusions. As shown in
Table 1, employing restraints bearing |Ad,| values greatly increases 3D modeling accuracy. In terms of
global Ca backbone quality, the average GDT-HA score of the AS models increases by 6.0% with
respect to the score obtained with omop values. An improvement is also observed for local all-atom
quality, as the average IDDT score increases by 4.2%. Increments in GDT-HA and IDDT are seen for

224/225 and 225/225 AS models respectively (see Fig 3A and 3B).
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alignments.

Strategy GDT-HA IDDT MolProbity score
MODELLER® 0.6014 (-) 0.6563 (-) 3.0104 (-)
OPTIMAL® 0.6377 (+6.0%)* 0.6842 (+4.2%)* 3.0311 (+0.7%)*

MODELLER-SLOW*®

0.6036 (+0.4%)*

0.6594 (+0.5%)*

2.8512 (-5.3%)*

OPTIMAL-SLOW

0.6377 (+6.0%)*

0.6853 (+4.4%)*

2.9039 (-3.5%)*

MODELLER-TMalign®

0.6383 (+6.1%)*

0.6951 (+5.9%)*

3.0411 (+1.0%)*

OPTIMAL-TMalign

0.6805 (+13.2%)*

0.7259 (+10.6%)*

3.0870 (+2.5%)*

The “GDT-HA”, “IDDT” and “MolProbity score” columns report the average values for those metrics.
Percent improvements are computed with respect to the scores of the default MODELLER (first row),
while asterisks denote a statistically significant difference with respect to them (according to a
Wilcoxon signed-rank tests with a significance level of 0.05). See S3 Table for a full list of the
numerical p-values. *The “MODELLER” prefix indicates that the strategy employs HDDRs generated
by MODELLER. "The “OPTIMAL” prefix indicates the use of optimal HDDRs. “The “SLOW” suffix
indicates the use of the slow MDSA protocol instead of the default very_fast one. ‘The “TMalign”

prefix indicates the use of target-template alignment built through TM-align.
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Fig 3. The use of optimal parameters for HDDRs improves 3D modeling quality. (A) and (B) GDT-

HA and IDDT scores of the AS models built with omop (reported on the x-axis) and with optimal |Ad,|

(y-axis) values. (C) and (D) GDT-HA and IDDT scores for the AM models obtained with

MODELLER-generated (x-axis) and optimal (y-axis) HDDRs.
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Increasing target-template alignment quality is one of the current challenges in TBM. In our AS
models, the average accuracy of HHalign sequence alignments with respect to error-free TM-align
structural alignments is 0.87 (see S4 Fig). When rebuilding the AS models using owmop values and TM-
align alignments, the average GDT-HA and IDDT scores improve by 6.1% and 5.9% respectively over
the scores obtained with oyop values and HHalign alignments (see Table 1). These results show that by
optimizing parameters of the 3D model building phase of single-template HM, the same improvement

obtainable by optimizing alignment building can be reached.

It might be thought that |Ad,| values aid 3D modeling by compensating for alignment errors, that is, by
assigning misaligned residues more conformational freedom to help MODELLER repositioning them
in a correct way. However, their effect can not be explained only by this mechanism, since they yield a
6.6% and 4.4% increase in GDT-HA and IDDT also when models are built with TM-align alignments

(see Table 1).

Effects on multiple-template modeling. Next, we explored the effect of optimal HDDRs in multiple-
template modeling, which has never been assessed before. As shown in Table 2, applying an optimal
set of o values and template weights results in an enormous improvement in the quality of 3D models
(see also Fig 3C and 3D). When building the AM models with optimal restraints, their average GDT-
HA and IDDT scores improve by 38.9% and 18.9% over the scores obtained by using MODELLER-
generated restraints. These increments are larger than the one observed when performing multiple-
template modeling with MODELLER-generated restraints and error-free TM-align structural

alignments, which result in a 5.7% and 5.1% improvements in GDT-HA and IDDT.

Optimal HDDRs increase even more the beneficial effect of using multiple templates. With
MODELLER-generated restraints, employing multiple templates leads to an improvement of 1.9% and

2.0% in the average GDT-HA and IDDT of the AM models over single-template modeling performed
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with top-templates (see the MODELLER-ST strategy in Table 2). On the other hand, with optimal
HDDRs, it leads to an improvement of 33.2% and 16.0% in GDT-HA and IDDT over single-template

modeling performed with optimal HDDRs (see the OPTIMAL-ST strategy in Table 2).

The reason for this large improvement is the following. In MODELLER, the pdf for a multiple-
template HDDR includes a weighted contribution from each template. In optimal HDDRs, |Ad,| values
are employed as ¢ values in conjunction with the OL weighting scheme (see the Methods section). In
this scheme, only the contribution of the best template is selected for each HDDR (when considering a
single HDDR, the best template is defined as the one having a distance d; as close as possible to the
target distance d,). On the other hand, in MODELLER-generated HDDRs, the weights are usually non-
zero for every template, meaning that the contribution of the best template is always weakened. This
effect increases the allowed conformational space for the restrained distance, thus making it less likely

to build a model with a near-native distance.

The importance of the template-weighting scheme [7] is illustrated by the fact that when employing |
Ad,| values and a uniform weighting scheme (that is, for an HDDR with U templates each template is
given a weight w, = 1/U), the average GDT-HA and IDDT scores of the AM models improve only by

18.3% and 8.9% over the standard MODELLER (see the OPTIMAL-U strategy in Table 2).
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Strategy GDT-HA IDDT MolProbity score
MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)
OPTIMAL 0.8733 (+38.9%)* | 0.8106 (+18.9%)*  3.1478 (+2.4%)

MODELLER-SLOW

0.6310 (+0.4%)*

0.6850 (+0.5%)*

2.9143 (-5.2%)*

OPTIMAL-SLOW

0.8747 (+39.1%)*

0.8133 (+19.3%)*

3.0475 (-0.8%)*

OPTIMAL-U®

0.7438 (+18.3%)*

0.7427 (+8.9%)*

3.1744 (+3.3%)

MODELLER-ST"

0.6168 (-1.9%)*

0.6683 (-2.0%)*

3.0231 (-1.6%)*

OPTIMAL-ST

0.6557 (+4.3%)*

0.6986 (+2.5%)*

3.0398 (-1.1%)

MODELLER-TMalign

0.6645 (+5.7%)*

0.7165 (+5.1%)*

3.0529 (-0.6%)

OPTIMAL-TMalign

0.9222 (+46.7%)*

0.8498 (+24.6%)*

3.1044 (+1.0%)

See Table 1 for the description of contents, columns and most modeling strategies names. See S4 Table
for a full list of the numerical p-values. “The “U” suffix indicates the use of uniform template weights
for multiple-template HDDRs. "The “ST” suffix indicates that only the top template for each target was

used (thus resulting in single-template modeling).

Effects on stereochemical quality. In both single and multiple-template modeling, the use of optimal
HDDRs appears to decrease the stereochemical quality of models, as seen by increased MolProbity
scores (see Table 1 and Table 2). The increment is more prominent in multiple-template modeling
(2.4%) than in single-template modeling (0.7%). While optimal restraints may guide the models in
conformations near the native state, at the same time they probably force stereochemical inaccuracies.

However, employing a more through MDSA protocol is sufficient to almost entirely relax these
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inaccuracies, while maintaining high GDT-HA and 1IDDT scores (see the strategies with the “SLOW”

suffix in the tables).

Perturbing optimal o values

As first demonstrated in [19], omop values are weakly correlated with their optimal counterparts. In the
AS models, the distributions of |Ad,| and oumop values are markedly different (see Fig 1A and 1B) and
the average PCCs between them are 0.262, 0.277, 0.183 and 0.221 for the Ca-Ca, NO, SCMC and
SCSC restraints groups respectively (see Fig 4A). Even with accurate alignments built through TM-
align, the histogram-based approach of MODELLER produces o values which are weakly correlated to

|Ad,| values (see Fig 4B).

A Ca-Ca (mean = 0.262) NO (mean = 0.277) B Ca-Ca (mean = 0.271) NO (mean = 0.303)
60 - 60
£ < £ 601 £ 60
3 3 30 - 3 3
S 30 A o O 30 4 O 30 H
0 1 1 I T 0 I 1 1 1 0 1 1 I T 0 I 1 1 1
-0.2 01 04 0.7 -02 01 04 0.7 -0.2 01 04 0.7 -02 01 04 0.7
PCC PCC PCC PCC
SCMC (mean = 0.183) SCSC (mean = 0.221) SCMC (mean = 0.225) SCSC (mean = 0.222)
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Fig 4. Correlation between ovop and |Ad,| values in the AS models. (A) Distributions for the PCCs
between ouop and |Ad,| values for the HDDRs of the 225 AS models. (B) PCC distributions for the AS

models rebuilt with TM-align alignments.
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In the previous section we have seen that the use of optimal ¢ values greatly improves MODELLER’s
predictions. However, since |Ad,| values can not be directly inferred without the prior knowledge of the
actual 3D structure that we are trying to predict, a strategy to improve MODELLER would consist in
accurately estimating them. Irrespective of the predictive algorithm, it is reasonable to suppose that |
Ad,| estimations will always bear a certain amount of error. In order to understand how 3D modeling
quality changes as a function of this error, we rebuilt the models of the analysis set by perturbing their |

Ad,| values with random noise.

Effects on single-template modeling. Fig 5A shows how the average GDT-HA of the AS models
changes when increasing the fraction of |Ad,| values substituted with a random o (see Fig 5B for the
relationship with IDDT). In the absence of any perturbation, the average GDT-HA is at its maximum of
0.6377. When substituting just 10% of the |Ad,| values, the mean Ca-Ca PCCuyope. of the models
becomes 0.85 and the average GDT-HA decreases by 2.6%. Further increasing the fraction of random o
values leads to a continuous decrease in quality. When all the restraints have a random o, the average
Ca-Ca PCCuope:, approximates 0 and the average GDT-HA is 0.6052 (resulting in a 5.1% decrease with
respect to the optimal state). This score is 0.7% higher than the average GDT-HA obtained using the
default oumop values, which is 0.6009. Although the difference between these two scores is statistically
significant (Wilcoxon signed-rank test, p-value = 3.7e-4) it is only minimal from a structural point of
view. In other words, in single-template modeling, provided that the average o of a model does not
surpass a certain threshold (that is, the average |Ad,| observed in nature), randomly generated o values
are surprisingly as effective as those generated by the MODELLER histogram-based approach. This is
also confirmed by the fact that the use of uniform o values < 1.0 A does not significantly alter the GDT-
HA and IDDT scores of models with respect to the standard MODELLER algorithm (see Fig 2A and

2B).

21


https://doi.org/10.1101/688614
http://creativecommons.org/licenses/by/4.0/

399

400

401

402

403

404

405

406

407

408

bioRxiv preprint doi: https://doi.org/10.1101/688614; this version posted July 1, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Single-template Single-template
A g p B g p
0.68 -
0.63
$ 5
= 0621 / Q 0.67 A
(] Py (@]
] ”
-
-
0.61 —
— 0.66 -
c6————— -
1 I I 1 1 1 1 I I 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Average Ca — Ca PCCyopeL Average Ca — Ca PCCuopeL
Multiple-templates Multiple-templates
C p p D p p
@— OL weighting scheme .~' 0.8 - OL weighting scheme
RosettaCM weighting scheme ;' RosettaCM weighting scheme
0.8 ¥
4
é. / E 0.75
) g a)
O 0.7 o A
> ' -
o o 0.7
> -
______ PR3- ——
06 "
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Average Ca — Ca PCCyopeL Average Ca — Ca PCCnopeL

Fig 5. Effect of |Ad,| perturbation on 3D modeling. (A) and (B) Average GDT-HA and IDDT scores
of the AS models as a function of their average Ca-Ca PCCuopr:. Values (see the Methods section). (C)
and (D) Similar data obtained for the multiple-templates AM models. Blue triangles represent the
scores obtained by applying the template-weighting scheme described in [34] instead of the OL scheme
applied for the rest of the data. In (A) through (D), the dashed horizontal lines represent the average

quality scores obtained by the default MODELLER.

Effects on multiple-template modeling. Next, we performed perturbation experiments with multiple-

template models (see Fig 5C and 5D). Again, the average quality decreases as perturbation increases.
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However, when |Ad,| values are fully perturbed, the average GDT-HA now becomes 5.3% lower than
the one obtained using the default MODELLER. This behavior is explained by the fact that in
perturbation experiments the OL template weighting scheme was employed. When this scheme is
applied with optimal (or near-optimal) o values, it boosts 3D modeling quality, but when it is applied
with o values being weakly correlated with |Ad,| values, it has a detrimental effect (since for each
HDDR it uses only the contribution of a randomly chosen template, while the contribution from the
best template is likely to be suppressed). In order to make modeling quality less sensitive to errors in |
Ad,| estimations, the template weighting scheme of RosettaCM [34] was adopted. In this scheme, the
template with the lowest o value is still assigned the highest weight, but also other templates are given
non-zero weights. Using this scheme with a parameter k = 50.0 makes modeling quality more tolerant

with respect to the amount of |Ad,| perturbation (see Fig 5C).

This data shows that if we were able to predict |Ad,| values with sufficiently high accuracy, the
performance of MODELLER would greatly increase. In single-template modeling, obtaining
predictions with a PCC of ~0.6 would lead to an increase in GDT-HA of ~2.0%, while in multiple-
template modeling, the same PCC would increase GDT-HA by ~11.0% (when using a template-
weighting scheme possessing robustness with respect to errors in |Ad,| estimations, such as the

RosettaCM scheme).

Modifying the objective function of MODELLER with statistical potential terms
Effect on single-template modeling. In order to identify the optimal way to incorporate the DOPE

potential within MODELLER, we performed benchmarks with the AS single-template models by
tuning wsp values from 0.1 to 3.5 and by employing HDDRs bearing either owop or |Ad,| values. Fig 6A
to 6C show that, with both types of o, the inclusion of DOPE leads to improvements in 3D modeling.

Strikingly, depending on the type of g, the amount of improvement and the best wsp vary greatly.
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Fig 6. Average quality scores of the models of the analysis set as a function of the wsp, with which

the DOPE potential has been included in the objective function of MODELLER. (A) to (C)

Quality scores of the AS models. (D) to (F) Quality scores of the AM models. (A) through (F) The

horizontal dashed lines correspond to the scores obtained when modeling with MODELLER-generated

(blue color) or optimal (orange) HDDRs without the use of DOPE.

With omop values, the maximum increase in GDT-HA is observed with a wsp of 0.5. As shown in Table

3, when employing DOPE with this wsp, the average GDT-HA improves by a statistically significant

1.3% with respect to the default MODELLER. At the same time, the average IDDT score increases by
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scores now increase by 1.6% and 2.8%.

Table 3. 3D modeling qualities of the AS single-template models built by including DOPE in the

objective function of MODELLER.

Strategy GDT-HA IDDT MolProbity score
MODELLER 0.6014 (-) 0.6563 (-) 3.0104 (-)
OPTIMAL 0.6377 (+6.0%)* 0.6842 (+4.2%)* 3.0311 (+0.7%)*

MODELLER-DOPE-0.5*

0.6089 (+1.3%)*

0.6692 (+2.0%)*

2.1138 (-29.8%)*

MODELLER-SLOW-DOPE-0.5

0.6112 (+1.6%)*

0.6746 (+2.8%)*

2.0344 (-32.4%)*

MODELLER-DOPE-3.5

0.5631 (-6.4%)*

0.6397 (-2.5%)*

2.9977 (-0.4%)

OPTIMAL-DOPE-0.5

0.6549 (+8.9%)*

0.7029 (+7.1%)*

2.2960 (-23.7%)*

OPTIMAL-DOPE-3.5

0.6885 (+14.5%)*

0.7158 (+9.1%)*

2.6280 (-12.7%)

See Table 1 for the description of contents, columns and most modeling strategies names. See S3 Table
for a full list of the numerical p-values. “The “DOPE-X.X” suffix indicates the use of DOPE with a wsp

of X.X.

When modeling with |Ad,| values, the best results are instead obtained with a wsp of 3.5. In this case,
DOPE increases the average GDT-HA and IDDT scores by 8.0% and 4.6% with respect to the scores
obtained with the same restraints and the standard objective function of MODELLER. The increments
in these two metrics are extremely large if computed with respect to the default MODELLER protocol

(14.5% and 9.1%). Fig 7 shows that with the default MODELLER, secondary structure elements that
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457 show divergence in the target and template structures are most often modeled in the template
458 conformation. By using optimal HDDRs and DOPE, it is common to see these elements shifting

459 towards target conformations.
460

461

) % ‘
» /
L%

MODELLER Optimal+DOPE-3.5
(GDT-HA = 0.6938) (GDT-HA = 0.9185)

462 Fig 7. Effects on 3D modeling of optimal ¢ values and DOPE. Effects brought by the use |Ad,|
463 values and DOPE (with a wsp of 3.5) on the 3D modeling of target 1yd0_chain_A (colored in orange)
464 using as a template 1yd6_chain_D (pale green). In the model built using the default MODELLER
465 (colored in white, superposed to its target and template on the left image) the three helices shown in the
466 image are positioned in the same conformation of the template. In the model built employing |Ad,|
467 values and DOPE with a wsp of 3.5 (pale cyan, shown on the right) the helices are repositioned in a

468 native-like conformation. Figures rendered with PyMOL [37].

469
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Remarkably, the same wsp of 3.5 leads to a large decrease in modeling quality when DOPE is applied
along with omop values: in this case, the average GDT-HA and IDDT scores decrease by a large 6.4%

and 2.5% with respect to the score obtained without using DOPE.

This data shows that in single-template modeling, the addition of DOPE is much more effective with |
Ad,| values than with owop values. Additional insights into this behaviour were provided by the analysis
of DOPE energetic landscapes. Fig 8 shows the representative case of the 1lam_chain_A and
1dk8_chain_A targets, where the DOPE energies of models are plotted as a function of their GDT-HA
scores. When using single-template HDDRs with oumop values, applying DOPE with increasingly high
wsp values leads to a decrease in both GDT-HA and DOPE energies. These energies eventually become
even lower than the native target structure one. It seems that in the DOPE landscape, near-native
conformations are not at an absolute minimum. On the other hand, when modeling with single-template
optimal HDDRs, increasing wsp values leads to improvements in GDT-HA while maintaining DOPE
energies relatively high. Similar trends are observed in the landscapes of almost all AS models. We
speculate that this behaviour is caused by the fact that optimal HDDRs strongly restrain those regions
of models which are structurally conserved between the native structures and templates, while they
weakly restrain divergent regions. This probably allows to pinpoint the effect of DOPE in the divergent
regions (where its addition likely improves modeling over the use of the standard MODELLER
objective function) and to keep “rigid” the conserved regions (which are already extremely well-

modeled and where DOPE can hardly improve the situation), thus giving rise to a synergistic effect.
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Fig 8. DOPE energy landscapes. DOPE energy landscapes for target (A) 1dk8_chain_A and (B)
1lam_chain_A modeled using different strategies. 100 decoys were built for each strategy and their
GDT-HA scores are plotted here against their DOPE energies. The strategies with the “MOD-ST”
prefix adopted MODELLER-generated HDDRs and a single template (blue-shaded dots), those with
the “OPT-ST” prefix adopted optimal HDDRs and a single template (orange-shaded dots) and those
with the “OPT-MT” prefix adopted optimal HDDRs and multiple templates (red-shaded dots). The
“SP-X.X” suffix indicates the use of DOPE with a wsp of X.X. The green dots correspond to the DOPE-

minimized native target structure.

Effect on multiple-template modeling. Next, we explored the effect of DOPE in multiple-template
modeling (see Fig 6D to 6F). The trend observed when employing MODELLER-generated restraints is
reminiscent of the single-template modeling one, although the improvements are slightly smaller. Table
4 shows that the best wsp is 0.5, which results in an average increase in GDT-HA and IDDT of 0.6% and
1.6% with respect to the scores obtained with the default MODELLER. By employing DOPE with this

wsp along with the slow MDSA protocol, an additional improvement can be reached: the average GDT-
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HA and IDDT scores now improve by 1.0% and 2.2%. When further increasing wsp, we assist to a

decrease in 3D modeling qualities.

Table 4. 3D modeling qualities of the AM multiple-template models built by including DOPE in

the objective function of MODELLER.

Strategy GDT-HA IDDT MolProbity score
MODELLER 0.6287 (-) 0.6819 (-) 3.0725 (-)
OPTIMAL 0.8733 (+38.9%)* |0.8106 (+18.9%)*  3.1478 (+2.4%)
MODELLER-DOPE-0.5 0.6327 (+0.6%)* 0.6926 (+1.6%)* 2.2086 (-28.1%)*

MODELLER-SLOW-DOPE-0.5  0.6347 (+1.0%)* | 0.6971 (+2.2%)*  2.1152 (-31.2%)*

MODELLER-DOPE-3.5 0.5646 (-10.2%)*  |0.6453 (-5.4%)*  3.1267 (+1.8%)*
OPTIMAL-DOPE-0.5 0.8736 (+39.0%)* | 0.8229 (+20.7%)*  2.5635 (-16.6%)*
OPTIMAL-DOPE-3.5 0.8519 (+35.5%)* | 0.8061 (+18.2%)*  2.7520 (-10.4%)*

See Table 1 for the description of contents, columns and most modeling strategies names. See S4 Table

for a full list of the numerical p-values.

The results observed when combining DOPE with optimal multiple-template HDDRs are different. No
value of wsp is able to bring a relevant improvement in GDT-HA. As wsp increases over 1.0, the scores
even start to decrease in a significant way, although it seems that DOPE is able to bring at least a small

improvement in IDDT.

This counterintuitive behaviour can in part be explained from the analysis of DOPE energy landscapes.

Fig 8 shows that when using optimal multiple-template HDDRSs, the quality of models is already higher
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than the one obtained with optimal single-template HDDRs. In this case, applying large wsp values
leads to a decrease in DOPE energies and GDT-HA. The plots show that the models built with optimal
HDDRs seem to be attracted towards a local energy minimum of DOPE, which does not correspond to
the native state, but is located relatively near it. Therefore, when using optimal restraints, minimizing
the DOPE of a structure distant from the native state (like in the case of single-template modeling),
tends to increase its GDT-HA, but when the structure is already very close to the native state (such as in

the case of multiple-template modeling), it tends to decrease its GDT-HA.

Effects on stereochemical quality. In terms of stereochemichal quality, the use of DOPE seems to be
highly beneficial in both single and multiple-template modeling and with both MODELLER-generated
and optimal HDDRs (see Fig 6, Table 3 and 4). For example, when employing ouop values and DOPE
with a wsp of 0.5, the average MolProbity score of the AS models decreases by a large 29.8% with
respect to the default MODELLER. Additional improvements in MolProbity scores are observed when
coupling DOPE to the slow MDSA protocol. We found that the MolProbity score component in which
DOPE brings the largest improvement is by far the “Clash Score”, meaning that the potential helps to
remove steric clashes from models. Therefore, the inclusion of DOPE in the objective function of
MODELLER represents a fast and effective way of improving the stereochemical quality of its models.
This approach increases computational times by a factor of ~6.5 when employing the very_fast MDSA
protocol (and ~16.5 with the slow protocol), but on modern hardware the default MODELLER
algorithm usually takes a few seconds to complete a model, therefore in absolute terms the model

building process is still relatively fast.

Comparison between DOPE and DFIRE in 3D modeling. We also tested the effect of adding DFIRE
in the objective function of MODELLER. Overall, DFIRE seems to have very similar effects to the

ones described for DOPE (see S3 Table, S4 Table and S5 Fig), because their terms have very similar
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forms (see S3 FigB). However, when modeling with omop values, DOPE seems to slightly outperform
DFIRE in terms of all-atom local quality (expressed by IDDT scores). When using a wsp of 0.5 and
omop values, DOPE yields for the AS models an average IDDT score 0.5% higher than the one obtained
with DFIRE, a small but statistically significant improvement (Wilcoxon signed-rank test, p-value =

4.6e-35). Therefore, we suggest that in MODELLER, DOPE should be preferred over DFIRE.

Discussion

Improving the quality of HM predictions is clearly an area of great relevance in Biomedical Research
[38], given that the applicability of this methodology is expected to increase in the next years [29].
Right now, a large portion of targets can be modeled only with low accuracy, due to the remote
homology relationship (under 30% Seqld) with their templates. A solution to this problem could
potentially come from advances in 3D model building or refinement algorithms. In this work, we have
explored two main promising strategies to increase the accuracy of the original MODELLER

algorithm.

The use of optimal ¢ values (that is, |Ad,| values) greatly increases the 3D modeling quality of the
program. Since |Ad,| values can only be obtained by knowing the exact amount of divergence between
the structure of a target and its templates, they can not be used in real-life protein structure prediction

scenarios (where the target structure is of course unknown).

However, as first shown by the Lee group [19], |Ad,| values may be estimated through a machine
learning system. These authors developed a random forest which obtained estimations with an average
Ca-Ca PCC of ~0.35. The use of this predictor led to only a very small improvement in terms of 3D
modeling quality. Our data (which describes the relationship between 3D modeling quality and errors
in |Ad,| estimations) shows that increasing the PCC of a similar predictor by at least 0.2-0.3 units could

translate in a significant improvement of MODELLER.
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The other strategy that we have investigated is the inclusion of statistical potential terms, such as
DOPE, in the objective function of MODELLER. We show that employing such potentials in the 3D
model building phase of MODELLER robustly increases 3D modeling quality and provides a fast and
effective way to improve the stereochemical details models. In order to allow the user community of
MODELLER to deploy this strategy in their modeling pipelines, we share the Python code
implementing it. In future research, it will be interesting to see if there exist potentials with an even

more beneficial effect on 3D model building in MODELLER.

Our results have implications also for other Structural Bioinformatics tools. RosettaCM and I-TASSER
borrow from MODELLER the use of HDDRs [34, 39-40] and programs like MULTICOM [41] and
Pcons [42] implement MODELLER at some point in their protein modeling pipelines. The strategies

presented in this work can certainly be implemented in these protocols to improve their quality.

Of note, in the protein structure refinement field, restraints are built from a starting model and the aim
is to guide the model towards its native conformation [43]. While in the HM context we may estimate |
Ad,| values between a target native structure and a template, in protein structure refinement they could
be similarly estimated between a native structure and its unrefined model. Methods to predict the local
accuracy of 3D models already reach good performances [44]. It is reasonable to think that with a
sufficiently accurate predictor, the |Ad,| prediction strategy could also lead to improvements in current

refinement strategies.

The development of deep learning techniques [45] has recently brought advances in the field of contact
and distance map prediction [46]. We suggest that such methodologies could be well adapted to the
problem of |Ad,| estimation. In future studies, we will concentrate on using this type approach to tackle
the problem of o values assignment. Since a machine learning model usually performs predictions in a

relatively small amount of time, the |Ad,| estimation approach has the potential to greatly improve the
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“modeling by satisfaction of spatial restraints” strategy of MODELLER at the price of small

computational cost.
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Supporting Information
S1 Table. Physical terms of the MODELLER objective function. Note how by default the objective

function does not include any “physical” attractive term between non-bonded atoms (Lennard-Jones
and Coulomb potential terms from CHARMM?22 [Brooks at al., 2009] are missing). The only attractive

terms in the objective function are homology-derived distance restraints (see S2 Table).
S2 Table. Homology-derived terms of the MODELLER objective function.

S3 Table. 3D modeling qualities of the AS single-template models built with different modeling
strategies. See Table 1 in the main text for the description of contents, columns and most modeling

strategies names.

S4 Table. 3D modeling qualities of the AM multiple-templates models built with different
modeling strategies. See Table 1 and 2 in the main text and S3 Table for the description of contents,

columns and most modeling strategies names.

S1 Fig. Properties of the analysis set. (A) Seqld histogram of the pairwise target-template alignments
in the AS models obtained using TM-align and HHalign. (B) Target coverage histograms of the same
alignments. (C) Chain length histograms of the 225 AS targets, the 118 AM targets and all the 472
template chains of the analysis set. (D) CATH classes frequencies of the AS and AM targets compared

to those in the entire CATH 4.2.0 database [Dawson et al., 2017].

S2 Fig. Average PCCyopz:. values in |Ad,| perturbation experiments plotted as a function of f.. Data
for the four HDDRs groups of MODELLER is shown. As f. (that is, the fraction of perturbed |Ad,|
values in models) increases, the average correlation between |Ad,| values and their perturbed

counterpart decreases. (A) AS models. (B) AM models.
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S3 Fig. Analysis of the terms of the DOPE and DFIRE potentials. (A) Forms of the 12561 terms of
DOPE [Shen and Sali, 2006]. Each term is associated to a couple of heavy atom types from the 20
standard residues. Irrespective of the atom types, all the functions start to acquire a flat shape above the
8.0 A threshold. (B) Confrontation of DOPE and DFIRE [Zhou and Zhou, 2002] terms. An hexbin
density plot compares 364269 data points from all the 12561 terms of DOPE (x-axis) and DFIRE (y-
axis) (each term has 29 points, which report the score of the potential in a linear space from 0.75 to

14.75 A). The scores of the two potentials are highly correlated (Pearson correlation coefficient = 0.99).

S4 Fig. Accuracy of the pairwise target-template HHalign alignments of the AS models. The x-axis
reports the Seqld between the target and template sequences in TM-align alignments. The y-axis
reports the accuracy of the corresponding HHalign alignment. The accuracy is computed as the ratio
H,/T,, where T, is the total number of matches in the TM-align alignment and H,, is the number of
“correct” matches in HHalign alingments (that is, those HHalign matches which are also found in the

TM-align alignment). The average accuracy is 0.87.

S5 Fig. Average quality scores of the analysis set models as a function of the w, value with which
the DFIRE or DOPE statistical potentials have been included in the objective function of
MODELLER. The horizontal dashed lines correspond to the scores obtained when modeling with
MODELLER-generated (blue color) or optimal (orange) HDDRs without the use of statistical

potentials. (A) to (C) quality scores of the AS models. (D) to (F) quality scores of the AM models.
S1 Text. Description of the GDT-HA and IDDT metrics for model quality evaluation.
S2 Text. Obtaining optimal parameters for single-template HDDRs.

S3 Text. Obtaining optimal parameters for multiple-template HDDRs.
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