

1

2

3

4 Revisiting the “satisfaction of spatial restraints” approach of MODELLER
5 for protein homology modeling

6

7

8 Giacomo Janson^{1*}, Alessandro Grottesi², Marco Pietrosanto³, Gabriele Ausiello³, Giulia Guarguaglini^{4¶},
9 Alessandro Paiardini^{1*¶}

10

11

12

13 ¹Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University of Rome, Roma, Italy

14 ²Super Computing Applications and Innovation (CINECA), Roma, Italy

15 ³Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Roma,
16 Italy

17 ⁴Department of Biology and Biotechnology, Institute of Molecular Biology and Pathology, “Sapienza”
18 University of Rome, Roma, Italy

19

20

21 *Corresponding authors

22 ¶These authors contributed equally to this work.

23 E-mail: giacomo.janson@uniroma1.it, alessandro.paiardini@uniroma1.it

24 **Abstract**

25 The most frequently used approach for protein structure prediction is currently homology modeling.
26 The 3D model building phase of this methodology is critical for obtaining an accurate and biologically
27 useful prediction. The most widely employed tool to perform this task is MODELLER. This program
28 implements the “modeling by satisfaction of spatial restraints” strategy and its core algorithm has not
29 been altered significantly since the early 1990s. In this work, we have explored the idea of modifying
30 MODELLER with two effective, yet computationally light strategies to improve its 3D modeling
31 performance. Firstly, we have investigated how the level of accuracy in the estimation of structural
32 variability between a target protein and its templates in the form of σ values profoundly influences 3D
33 modeling. We show that the σ values produced by MODELLER are on average weakly correlated to
34 the true level of structural divergence between target-template pairs and that increasing this correlation
35 greatly improves the program’s predictions, especially in multiple-template modeling. Secondly, we
36 have inquired into how the incorporation of statistical potential terms (such as the DOPE potential) in
37 the MODELLER’s objective function impacts positively 3D modeling quality by providing a small but
38 consistent improvement in metrics such as GDT-HA and lDDT and a large increase in stereochemical
39 quality. Python modules to harness this second strategy are freely available at
40 <https://github.com/pymodproject/altmod>. In summary, we show that there is a large room for improving
41 MODELLER in terms of 3D modeling quality and we propose strategies that could be pursued in order
42 to further increase its performance.

43 **Author summary**

44 Proteins are fundamental biological molecules that carry out countless activities in living beings. Since
45 the function of proteins is dictated by their three-dimensional atomic structures, acquiring structural
46 details of proteins provides deep insights into their function. Currently, the most successful
47 computational approach for protein structure prediction is template-based modeling. In this approach, a

48 target protein is modeled using the experimentally-derived structural information of a template protein
49 assumed to have a similar structure to the target. MODELLER is the most frequently used program for
50 template-based 3D model building. Despite its success, its predictions are not always accurate enough
51 to be useful in Biomedical Research. Here, we show that it is possible to greatly increase the
52 performance of MODELLER by modifying two aspects of its algorithm. First, we demonstrate that
53 providing the program with accurate estimations of local target-template structural divergence greatly
54 increases the quality of its predictions. Additionally, we show that modifying MODELLER's scoring
55 function with statistical potential energetic terms also helps to improve modeling quality. This work
56 will be useful in future research, since it reports practical strategies to improve the performance of this
57 core tool in Structural Bioinformatics.

58 **Introduction**

59 *In silico* protein structure prediction constitutes an invaluable tool in Biomedical Research, since it
60 allows to obtain structural information on a large number of proteins currently lacking an
61 experimentally-determined 3D structure [1]. Template-based modeling (TBM) has been shown to be
62 the most practically useful prediction strategy [2].

63 Homology modeling (HM) is a fast and reliable TBM method in which a target protein is modeled by
64 using as a structural template an homologous protein. HM predictions usually consist of three phases.
65 In the first, the sequence of the target is used to search for suitable templates in the PDB [3-4]. In the
66 second, a sequence alignment between the target and templates is built with the goal of inferring the
67 equivalences between their residues [5]. In the final, the information of the templates is used to build a
68 3D atomic model of the target.

69 The overall accuracy of HM has remarkably increased in the last 25 years [6]. This has been promoted
70 mostly by advances in template searching and alignment building algorithms, while only minor

71 advances have been witnessed in the 3D model building step [7]. However, recent breakthroughs in
72 protein structure refinement methods [8-9] envisage a large room for improvement in HM which could
73 originate from advances in 3D model building.

74 MODELLER [10] is the most frequently used program for 3D model building in HM. One of the main
75 reasons of its success has been its accurate [11], yet fast algorithm. In MODELLER, the information
76 contained in an input target-template alignment is used to generate a series of homology-derived spatial
77 restraints (HDSRs), acting on the atoms of the 3D protein model. Sigma (“ σ ”) values of homology-
78 derived distance restraints (HDDRs) determine the amount of conformational freedom which the model
79 is allowed to have with respect to its templates. MODELLER uses a statistical “histogram-based”
80 strategy to estimate σ values [12]. These restraints are incorporated into an objective function which
81 also includes physical energetic terms from CHARMM22 [13]. A fast, but effective optimization
82 algorithm based on a combination of conjugate gradients (CG) and molecular dynamics with simulated
83 annealing (MDSA) is then used to identify a model conformation that satisfies as much as possible the
84 HDSRs, while retaining stereochemical realism.

85 The core MODELLER algorithm was developed in the early 1990s and it was essentially left
86 unchanged over the years. Despite its importance, there have been relatively few attempts to improve it.

87 In 2015, Meier and Söding designed a novel probabilistic framework for building HDDRs [7], whose
88 aim was to help MODELLER tolerate alignment errors and to combine the information from multiple
89 templates in a statistically rigorous way. This system increased 3D modeling quality, especially for
90 multiple-template modeling. However, since it is integrated in the HHsuite project [14] it can be
91 employed only when the first two phases of HM are carried out by programs of the HHsuite package.

92 Researchers from Lee’s group developed a modified version of MODELLER which they have been
93 using in CASP experiments [15-17]. First, they replaced the MODELLER optimization algorithm with

94 the more thorough conformational space annealing (CSA) method [18]. Secondly, they pioneered a
95 new strategy to assign σ values to HDDRs relying on machine learning [19]. Finally, they included a
96 series of additional terms to the MODELLER objective function, such as terms for the DFIRE [20] and
97 DFA [21] knowledge-based potentials, for hydrogen bond formation [22] and to enforce in models
98 predictions of structural properties. In terms of 3D modeling quality, this system outperformed the
99 original MODELLER [17]. Unfortunately, the separated contribution of several of these modifications
100 is not reported and much of this system remains in-house (only the CSA algorithm is publicly
101 available).

102 Although these seminal studies have shown that the core MODELLER algorithm has room for
103 improvement, most of its users employ its original version, probably because existing modifications
104 either depend on additional packages to install, or are computationally too expensive (e.g., the CSA
105 algorithm alone was reported to increase computational times by a factor of \sim 130). Since MODELLER
106 is a core tool in Structural Bioinformatics, it is of paramount importance to investigate in detail the
107 inner working of its algorithm and to develop it further. Here, we have explored two computationally
108 light strategies to improve it in terms of 3D modeling quality.

109 Particular attention has been dedicated in understanding how the level of accuracy in the estimation of
110 structural variability between the target and templates expressed as σ values influences 3D modeling.
111 Although in this work we have not modified the MODELLER algorithm for σ values assignment, we
112 propose strategies that could be likely pursued in the next-future in order to greatly increase the
113 performance of the program. Additionally, we have investigated how the incorporation of statistical
114 potential terms, such as DOPE [23], in the program's objective function is able to impact positively 3D
115 modeling and under certain conditions (for example in single-template modeling) it can be coupled
116 synergistically to the previous strategy.

117 To rigorously validate these approaches, we have benchmarked them using protein targets from a
118 diverse set of high-resolution structures from the PDB and we quantified the individual impact on 3D
119 modeling of each modification. This information will be useful in future research, since it shows in
120 which areas there is still room for improvement and in which areas it might be difficult to advance
121 further.

122 **Materials and methods**

123 **Outline of MODELLER's homology-derived distance restraints**

124 The MODELLER approach relies on the generation of HDSRs for interatomic distances and dihedral
125 angles [12]. Each HDSR is treated as a probability density function (*pdf*). HDSRs acting on interatomic
126 distances (that is, HDDRs) have a predominant role in determining the 3D structure of a model. The
127 way they are built is summarized here.

128 For a couple of atoms i and j of the model, the program finds in the template the equivalent atoms k and
129 l which have a distance in space of d_t . The distance d_m between i and j is assumed to be normally
130 distributed around d_t with a standard deviation σ and the *pdf* restraining it is:

$$131 \quad f(d_m) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(d_m - d_t)^2}{2\sigma^2}}. \quad (1)$$

132 In MODELLER *pdfs* are converted in objective function terms as follows:

$$133 \quad obj(d_m) = -\ln(f(d_m)) = -\ln\left(\frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(d_m - d_t)^2}{2\sigma^2}}\right) = \frac{(d_m - d_t)^2}{2\sigma^2} - \ln\left(\frac{1}{\sigma \sqrt{2\pi}}\right), \quad (2)$$

134 therefore Gaussian HDDRs correspond to harmonic potential terms. Since HDDRs are considered to be
135 independent, their objective function terms are summed. HDDRs are built for four groups of atoms: the
136 C α -C α , backbone NO, side chain-main chain (SCMC) and side chain-side chain (SCSC) groups (see **S1**

137 **Table).** MODELLER generates its σ values (hereinafter named σ_{MOD} values) through an histogram-based approach [12].

139 MODELLER allows to take advantage of multiple templates, a strategy that (when templates are
140 chosen adequately) usually outperforms single-template modeling [24]. When employing U templates
141 to restrain a distance d_m , MODELLER uses the following *pdf*:

$$142 \quad f(d_m) = \sum_{u=1}^U w_u \frac{1}{\sigma_u \sqrt{2\pi}} e^{-\frac{(d_m - d_{t,u})^2}{2\sigma_u^2}}, \quad (3)$$

143 where u is the template index, w_u is a template-specific weight, $d_{t,u}$ and σ_u are the distance observed in
144 template u and its σ value respectively. In MODELLER, w_u is a function of the local sequence
145 similarity between the target and template u .

146 The total objective function of MODELLER (F_{TOT}) can be expressed as follows:

$$147 \quad F_{TOT} = F_{PHYS} + F_{HOM} , \quad (4)$$

148 where F_{PHYS} contains five physical terms (see **S2 Table**) and F_{HOM} contains HDSRs terms. In this work,
149 the weights for F_{PHYS} and F_{HOM} were always left to 1.0 (therefore they are omitted from the formula
150 above).

151 **Benchmarking MODELLER modifications with an analysis set**

152 In order to benchmark modifications of MODELLER, we built an analysis set of selected target
153 proteins. We obtained 926 X-ray structure chains from PISCES [25], using the following criteria to
154 filter the PDB:

155

- the maximum mutual sequence identity (SeqId) among the chains was 10%;
- their structures had a resolution $< 2.0 \text{ \AA}$ and R-factor < 0.25 ;

157 • they contained no missing residues due to lacking electron density;

158 • their length was between 70 and 700 residues.

159 These chains were our target candidates. To obtain their templates, we culled from PISCES another set
160 using similar filters, except that this time the maximum mutual SeqId was 90%. We removed from this
161 larger set all the targets, obtaining 6224 chains. Each target was then aligned to these chains using TM-
162 align [26] and we selected as template candidates the chains meeting the following criteria:

163 • the SeqId in the structural alignment built by TM-align was between 15% and 95%;

164 • the two TM-scores [27] produced by TM-align (each score is normalized by the length of one of
165 the aligned proteins) were at least 0.6, a threshold to consider two proteins as homologous [28].

166 We retained for each target only its top five templates in terms of TM-score (normalized on the target
167 length). In this way, we obtained a final set of 225 target chains (suitable templates could not be found
168 for 701 targets, a result of using only high-resolution template structures). For each target, we
169 performed single-template modeling only with its top template and therefore we had 225 single-
170 template models, which constituted the Analysis Single-template (AS) set. 118 targets had at least two
171 templates (with an average of 3.3), which constituted the Analysis Multiple-templates (AM) set.

172 The average SeqId for the AS target-template alignments is 0.38. Improving the performance of
173 MODELLER with targets having templates with a SeqId < 0.40 is important, because these cases are
174 the most frequent ones in Biomedical Research [29] and the accuracy of TBM is often low in this
175 regimen. The well-equilibrated distributions of SeqId, target coverage, target length and of CATH
176 structural classes [30] of the analysis set (see **S1 Fig**) assure that our results have a general validity.

177 **Alignment building**

178 In order to align target-template pairs we employed the accurate HHalign program [4], which confronts
179 two profile hidden Markov models. To build input profiles for HHalign, we ran HHblits [31] with its
180 default parameters and three search iterations against the *uniprot20_2016_02* database. After
181 employing HHalign to align pairs of target-template profiles, we extracted from the program's output
182 their pairwise alignments. Multiple target-templates alignments were obtained by joining pairwise
183 alignments.

184 Whenever specified, we also employed target-template alignments built with TM-align in order to
185 assess the effect on 3D modeling of HDDRs derived from error-free structural alignments.

186 **3D model building and evaluation**

187 For all benchmarks we used MODELLER version 9.21. In order to modify its objective function terms,
188 restraints parameters and optimization schedules we interfaced with its Python API.

189 In MODELLER, the final quality of a model is largely determined in the MDSA phase. In this work,
190 unless otherwise stated, we employed the default *very_fast* MDSA protocol of the program
191 (corresponding to a 5.4 ps run). When specified, we also employed the more thorough *slow* protocol
192 (corresponding to a 18.4 ps run). The CG protocol was always left to its default parameters.

193 The approach used to evaluate the quality of an homology model was to build 16 different copies of it
194 (hereinafter defined as decoys), and to report as an overall quality score (see below) the average score
195 of the 16 decoys.

196 To evaluate the quality of the backbones we used the GDT-HA metric [6] computed by the TM-score
197 program. In order to evaluate the quality of local structures and side chains, we used the IDDT metric
198 [32], computed by the IDDT program. Detailed descriptions of these two metrics are given in **S1 Text**.
199 To evaluate the stereochemical quality of models we employed MolProbity scores computed by the

200 MolProbity suite [33]. A MolProbity score expresses the global stereochemical quality of a 3D model.
201 The lower it is, the higher is the quality of the model.

202 **Optimal σ values for homology-derived distance restraints**

203 σ values of HDDRs have a fundamental role in MODELLER. A natural question is: given a target-
204 template alignment, what is the set of σ values which will maximize 3D modeling accuracy? The
205 concept of optimal σ values in single-template modeling was addressed for the first time by the Lee
206 group [19]. They reported that for a Gaussian HDDR acting on a distance d_m between atoms i and j in a
207 3D model, the optimal σ value is:

208 $|\Delta d_n| = |d_n - d_t|$, (5)

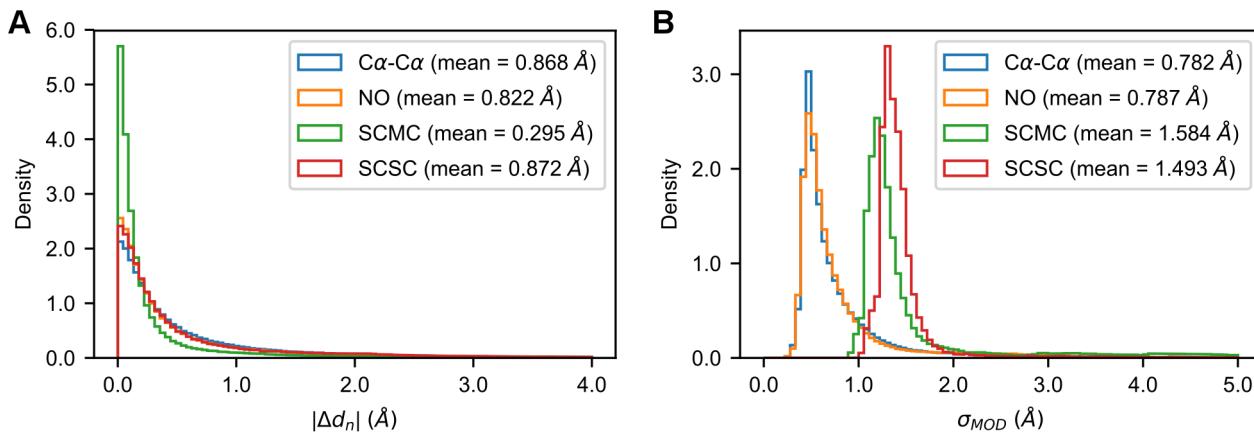
209 where d_t is the distance between the template atoms equivalent to i and j and d_n is the distance between
210 i and j observed in the experimentally-determined native target structure. We show that the use of $|\Delta d_n|$
211 values for Gaussian HDDRs is supported by theory, as it can be analytically proven that they maximize
212 the likelihood of obtaining a model in which each restrained d_m is equal to its corresponding d_n (see **S2**
213 **Text**).

214 In the case of multiple-template HDDRs, we demonstrate that the combination of optimal σ values and
215 weights can be found again analytically (see **S3 Text**). In this situation, the optimal σ values are again $|\Delta d_n|$
216 values. The associated template weighting scheme assigns a weight of 0 to all templates with the
217 exception of the template with the lowest σ , which should have a weight of 1. We termed this scheme
218 as the “only-lowest” (OL) scheme. Note that the OL scheme is an extreme case of the weighting
219 scheme proposed in [34] (see **S3 Text**).

220 Whenever using $|\Delta d_n|$ values as σ parameters, we had to modify them by setting their minimum value at
221 0.05 Å. Raw $|\Delta d_n|$ values are extracted directly from pairs of homologous protein structures and they

222 are often close to 0 Å (see **Fig 1A**). In MODELLER, HDDRs having very small σ values will seldom
223 be satisfied because their quadratic objective function terms will penalize enormously even minimal
224 deviations from templates. In fact, using unmodified $|\Delta d_n|$ values often leads to modeling failures, since
225 the total objective function of models surpasses the allowed limit of MODELLER, stopping the model
226 building process. Setting a lower limit to their value, allows their use in 3D modeling.

227



228 **Fig 1. Distribution of $|\Delta d_n|$ and σ_{MOD} values.** Distributions of the $|\Delta d_n|$ (A) and σ_{MOD} (B) values
229 observed in the AS models for the four HDDR groups of MODELLER. Beside the names of the
230 restraints groups, their mean values are reported.

231

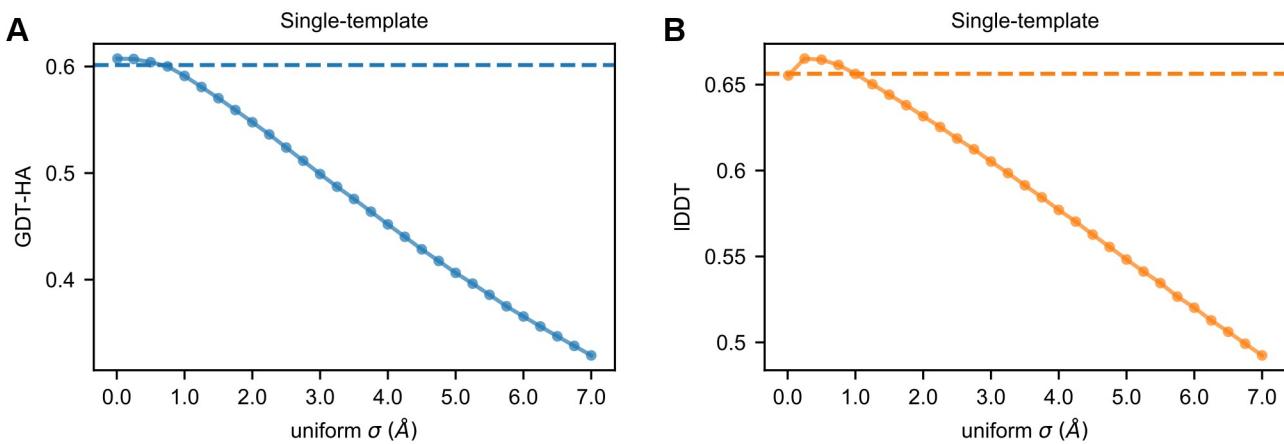
232 **Perturbing optimal $|\Delta d_n|$ values**

233 To understand the effect of using error-containing estimations of $|\Delta d_n|$ values on 3D modeling, we
234 randomly selected a fraction f_e of the HDDRs in a target-template pair and substituted their $|\Delta d_n|$ values
235 with randomly generated ones.

236 Random values were extracted from exponential distributions fitted on the C α -C α , NO, SCMC and
237 SCSC $|\Delta d_n|$ data observed in our AS models (see **Fig 1A**). These exponentials well-approximate the

238 observed $|\Delta d_n|$ distributions and their means were taken to be the same. Since 3D modeling quality
239 tends to decrease when the average σ value of a model increases (see **Fig 2A** and **2B**), this perturbation
240 scheme ensures that when replacing $|\Delta d_n|$ values with random numbers, alterations in the quality of 3D
241 models will not be caused by just changing their mean σ values.

242



243 **Fig 2. Modeling with uniform σ values.** Average GDT-HA (A) and IDDT (B) scores of the AS models
244 as a function of the uniform σ value (ranging from 0.01 to 7.0 Å) applied to their HDDRs. The
245 horizontal dashed lines represent the average scores obtained with the original σ_{MOD} values.

246

247 We used 10 f_e values (linearly spacing from 0.1 to 1.0) and for each, we generated 5 sets of perturbed |
248 $|\Delta d_n|$ values per target-template pair, which allowed to better sample the effect of perturbations. For
249 each perturbed set, we built 8 decoys (resulting in a total of 5*8=40 decoys for each f_e value). For a
250 certain f_e value, the quality score for a model was recorder as the average score of all its 40 decoys.

251 To quantify in terms of Pearson correlation coefficient (PCC) the amount of perturbation introduced in
252 the $|\Delta d_n|$ values of a single model, for each f_e we used a score defined as PCC_{MODEL} . This score is
253 computed as:

$$254 \quad PCC_{MODEL} = \frac{1}{n_R} \sum_{r=1}^{n_R} \left(\frac{1}{U} \sum_{u=1}^U PCC(d_u, p_{u,r}) \right) , \quad (6)$$

255 where n_R is the number of perturbed $|\Delta d_n|$ sets (in our case 5), r is the index for these sets, U is the
256 number of templates of the model, PCC indicates the Pearson correlation coefficient, d_u is the list of $|\Delta d_n|$
257 values associated with the u -th template and $p_{u,r}$ is the list of perturbed $|\Delta d_n|$ values associated with
258 the u -th template in set r . For each HDDR group, the relationship between f_e and the average PCC_{MODEL}
259 of the AS and AM sets is roughly linear (**S2 Fig**).

260 **Inclusion of statistical potential terms in the objective function of MODELLER**

261 In this work, we explored the effect of including in the objective function of MODELLER terms for
262 interatomic distance statistical potentials. These potentials are developed with the aim of recognizing
263 native-like protein conformations [35], therefore their use could help MODELLER to approach these
264 conformations [36].

265 We employed the DOPE potential [23], which is integrated in the MODELLER package where it is
266 commonly used to evaluate qualities of 3D models. DOPE is an “all atom” potential. Its 12561 terms
267 are approximated with interpolating cubic splines, which can be differentiated analytically and used in
268 the gradient-based optimization algorithm of the program.

269 The Lee group previously included the DFIRE [20] potential in the MODELLER objective function
270 [15]. To compare their performances in 3D model building, we also integrated DFIRE in MODELLER
271 (DFIRE parameters were obtained from its source code).

272 When including statistical potential terms, the MODELLER objective function becomes:

273
$$F_{TOT} = F_{PHYS} + F_{HOM} + w_{SP} F_{SP} , \quad (7)$$

274 where F_{SP} contains the statistical potentials terms and w_{SP} is their weight. For obtaining best 3D
275 modeling results, we tested several values of w_{SP} .

276 We employed statistical potentials using a contact shell value of 8.0 Å. Higher values can be safely
277 avoided because the terms of DOPE and DFIRE start to acquire a flat shape over the 8.0 Å threshold
278 (see **S3 FigA**). The code we used to employ these potentials in MODELLER is freely available at
279 <https://github.com/pymodproject/altmod>.

280 **Results**

281 **Effects of optimal σ values on 3D modeling**

282 **Effects on single-template modeling.** Gaussian HDDRs are the heart of the MODELLER approach.
283 At first, we explored how the use of optimal σ values (that is, $|\Delta d_n|$ values) influences single-template
284 modeling. The Lee group already reported it to bring significant improvements for a small number of
285 proteins. Here, we extended the analysis to a larger set to derive general conclusions. As shown in
286 **Table 1**, employing restraints bearing $|\Delta d_n|$ values greatly increases 3D modeling accuracy. In terms of
287 global C α backbone quality, the average GDT-HA score of the AS models increases by 6.0% with
288 respect to the score obtained with σ_{MOD} values. An improvement is also observed for local all-atom
289 quality, as the average IDDT score increases by 4.2%. Increments in GDT-HA and IDDT are seen for
290 224/225 and 225/225 AS models respectively (see **Fig 3A** and **3B**).

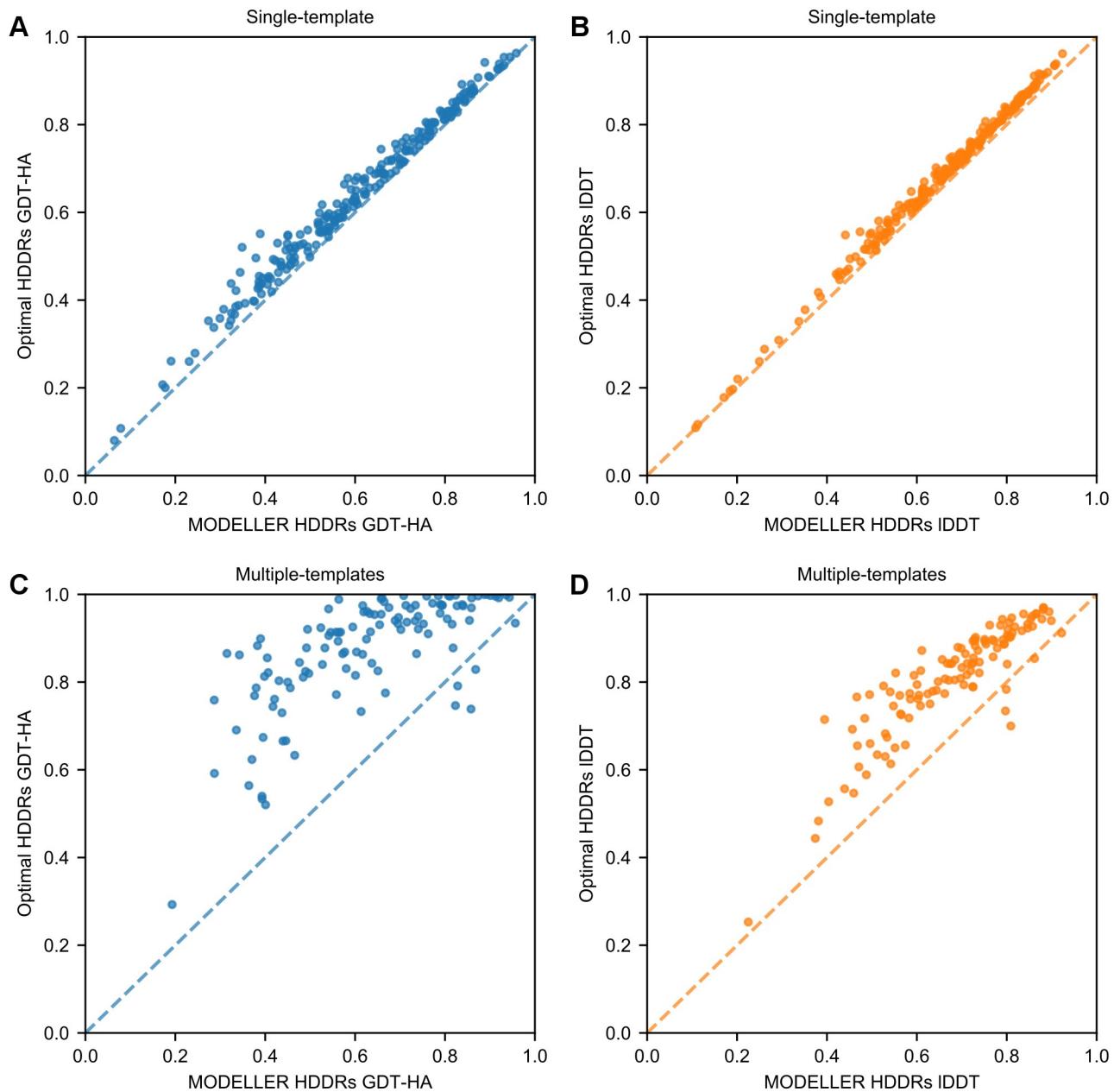
291

292 **Table 1. 3D modeling qualities of the AS single-template models built with optimal HDDRs and**
293 **alignments.**

Strategy	GDT-HA	IDDT	MolProbity score
MODELLER ^a	0.6014 (-)	0.6563 (-)	3.0104 (-)
OPTIMAL ^b	0.6377 (+6.0%)*	0.6842 (+4.2%)*	3.0311 (+0.7%)*
MODELLER-SLOW ^c	0.6036 (+0.4%)*	0.6594 (+0.5%)*	2.8512 (-5.3%)*
OPTIMAL-SLOW	0.6377 (+6.0%)*	0.6853 (+4.4%)*	2.9039 (-3.5%)*
MODELLER-TMalign ^d	0.6383 (+6.1%)*	0.6951 (+5.9%)*	3.0411 (+1.0%)*
OPTIMAL-TMalign	0.6805 (+13.2%)*	0.7259 (+10.6%)*	3.0870 (+2.5%)*

294 The “GDT-HA”, “IDDT” and “MolProbity score” columns report the average values for those metrics.
295 Percent improvements are computed with respect to the scores of the default MODELLER (first row),
296 while asterisks denote a statistically significant difference with respect to them (according to a
297 Wilcoxon signed-rank tests with a significance level of 0.05). See **S3 Table** for a full list of the
298 numerical p-values. ^aThe “MODELLER” prefix indicates that the strategy employs HDDRs generated
299 by MODELLER. ^bThe “OPTIMAL” prefix indicates the use of optimal HDDRs. ^cThe “SLOW” suffix
300 indicates the use of the *slow* MDSA protocol instead of the default *very_fast* one. ^dThe “TMalign”
301 prefix indicates the use of target-template alignment built through TM-align.

302



304 **Fig 3. The use of optimal parameters for HDDRs improves 3D modeling quality.** (A) and (B) GDT-
305 HA and IDDT scores of the AS models built with σ_{MOD} (reported on the x-axis) and with optimal $|\Delta d_n|$
306 (y-axis) values. (C) and (D) GDT-HA and IDDT scores for the AM models obtained with
307 MODELLER-generated (x-axis) and optimal (y-axis) HDDRs.

308

309 Increasing target-template alignment quality is one of the current challenges in TBM. In our AS
310 models, the average accuracy of HHalign sequence alignments with respect to error-free TM-align
311 structural alignments is 0.87 (see **S4 Fig**). When rebuilding the AS models using σ_{MOD} values and TM-
312 align alignments, the average GDT-HA and lDDT scores improve by 6.1% and 5.9% respectively over
313 the scores obtained with σ_{MOD} values and HHalign alignments (see **Table 1**). These results show that by
314 optimizing parameters of the 3D model building phase of single-template HM, the same improvement
315 obtainable by optimizing alignment building can be reached.

316 It might be thought that $|\Delta d_n|$ values aid 3D modeling by compensating for alignment errors, that is, by
317 assigning misaligned residues more conformational freedom to help MODELLER repositioning them
318 in a correct way. However, their effect can not be explained only by this mechanism, since they yield a
319 6.6% and 4.4% increase in GDT-HA and lDDT also when models are built with TM-align alignments
320 (see **Table 1**).

321 **Effects on multiple-template modeling.** Next, we explored the effect of optimal HDDRs in multiple-
322 template modeling, which has never been assessed before. As shown in **Table 2**, applying an optimal
323 set of σ values and template weights results in an enormous improvement in the quality of 3D models
324 (see also **Fig 3C and 3D**). When building the AM models with optimal restraints, their average GDT-
325 HA and lDDT scores improve by 38.9% and 18.9% over the scores obtained by using MODELLER-
326 generated restraints. These increments are larger than the one observed when performing multiple-
327 template modeling with MODELLER-generated restraints and error-free TM-align structural
328 alignments, which result in a 5.7% and 5.1% improvements in GDT-HA and lDDT.

329 Optimal HDDRs increase even more the beneficial effect of using multiple templates. With
330 MODELLER-generated restraints, employing multiple templates leads to an improvement of 1.9% and
331 2.0% in the average GDT-HA and lDDT of the AM models over single-template modeling performed

332 with top-templates (see the MODELLER-ST strategy in **Table 2**). On the other hand, with optimal
333 HDDRs, it leads to an improvement of 33.2% and 16.0% in GDT-HA and IDDT over single-template
334 modeling performed with optimal HDDRs (see the OPTIMAL-ST strategy in **Table 2**).

335 The reason for this large improvement is the following. In MODELLER, the *pdf* for a multiple-
336 template HDDR includes a weighted contribution from each template. In optimal HDDRs, $|\Delta d_n|$ values
337 are employed as σ values in conjunction with the OL weighting scheme (see the Methods section). In
338 this scheme, only the contribution of the best template is selected for each HDDR (when considering a
339 single HDDR, the best template is defined as the one having a distance d_r as close as possible to the
340 target distance d_n). On the other hand, in MODELLER-generated HDDRs, the weights are usually non-
341 zero for every template, meaning that the contribution of the best template is always weakened. This
342 effect increases the allowed conformational space for the restrained distance, thus making it less likely
343 to build a model with a near-native distance.

344 The importance of the template-weighting scheme [7] is illustrated by the fact that when employing $|\Delta d_n|$
345 values and a uniform weighting scheme (that is, for an HDDR with U templates each template is
346 given a weight $w_u = 1/U$), the average GDT-HA and IDDT scores of the AM models improve only by
347 18.3% and 8.9% over the standard MODELLER (see the OPTIMAL-U strategy in **Table 2**).

348

349 **Table 2. 3D modeling qualities of the AM multiple-template models built with optimal HDDRs**
350 **and alignments.**

Strategy	GDT-HA	IDDT	MolProbity score
MODELLER	0.6287 (-)	0.6819 (-)	3.0725 (-)
OPTIMAL	0.8733 (+38.9%)*	0.8106 (+18.9%)*	3.1478 (+2.4%)
MODELLER-SLOW	0.6310 (+0.4%)*	0.6850 (+0.5%)*	2.9143 (-5.2%)*
OPTIMAL-SLOW	0.8747 (+39.1%)*	0.8133 (+19.3%)*	3.0475 (-0.8%)*
OPTIMAL-U ^a	0.7438 (+18.3%)*	0.7427 (+8.9%)*	3.1744 (+3.3%)
MODELLER-ST ^b	0.6168 (-1.9%)*	0.6683 (-2.0%)*	3.0231 (-1.6%)*
OPTIMAL-ST	0.6557 (+4.3%)*	0.6986 (+2.5%)*	3.0398 (-1.1%)
MODELLER-TMalign	0.6645 (+5.7%)*	0.7165 (+5.1%)*	3.0529 (-0.6%)
OPTIMAL-TMalign	0.9222 (+46.7%)*	0.8498 (+24.6%)*	3.1044 (+1.0%)

351 See **Table 1** for the description of contents, columns and most modeling strategies names. See **S4 Table**
352 for a full list of the numerical p-values. ^aThe “U” suffix indicates the use of uniform template weights
353 for multiple-template HDDRs. ^bThe “ST” suffix indicates that only the top template for each target was
354 used (thus resulting in single-template modeling).

355

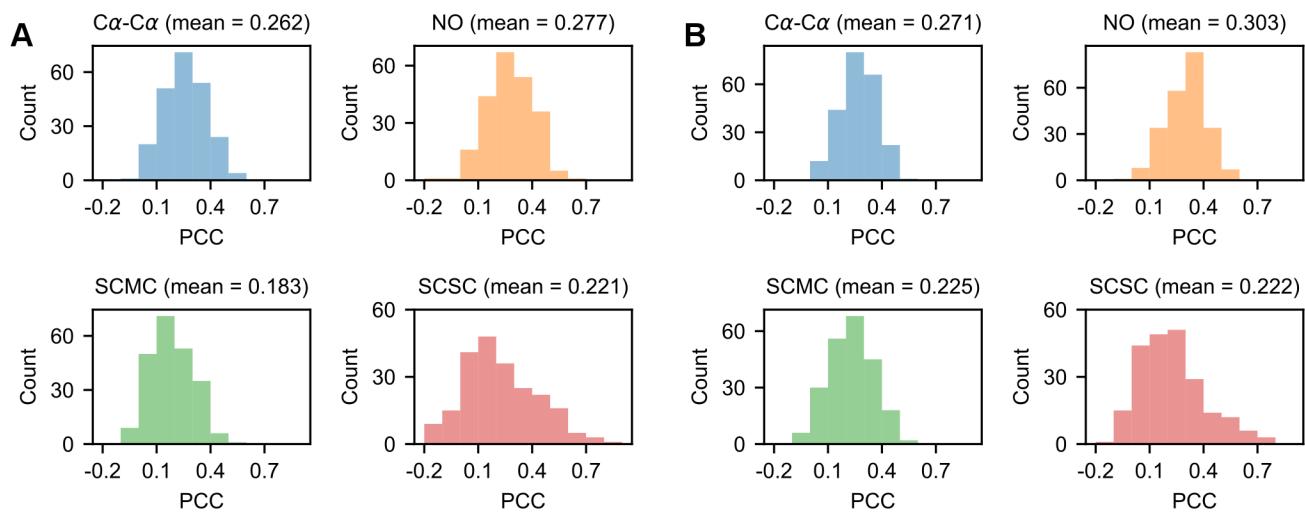
356 **Effects on stereochemical quality.** In both single and multiple-template modeling, the use of optimal
357 HDDRs appears to decrease the stereochemical quality of models, as seen by increased MolProbity
358 scores (see **Table 1** and **Table 2**). The increment is more prominent in multiple-template modeling
359 (2.4%) than in single-template modeling (0.7%). While optimal restraints may guide the models in
360 conformations near the native state, at the same time they probably force stereochemical inaccuracies.
361 However, employing a more thorough MDSA protocol is sufficient to almost entirely relax these

362 inaccuracies, while maintaining high GDT-HA and IDDT scores (see the strategies with the “SLOW”
363 suffix in the tables).

364 **Perturbing optimal σ values**

365 As first demonstrated in [19], σ_{MOD} values are weakly correlated with their optimal counterparts. In the
366 AS models, the distributions of $|\Delta d_n|$ and σ_{MOD} values are markedly different (see **Fig 1A** and **1B**) and
367 the average PCCs between them are 0.262, 0.277, 0.183 and 0.221 for the C α -C α , NO, SCMC and
368 SCSC restraints groups respectively (see **Fig 4A**). Even with accurate alignments built through TM-
369 align, the histogram-based approach of MODELLER produces σ values which are weakly correlated to
370 $|\Delta d_n|$ values (see **Fig 4B**).

371



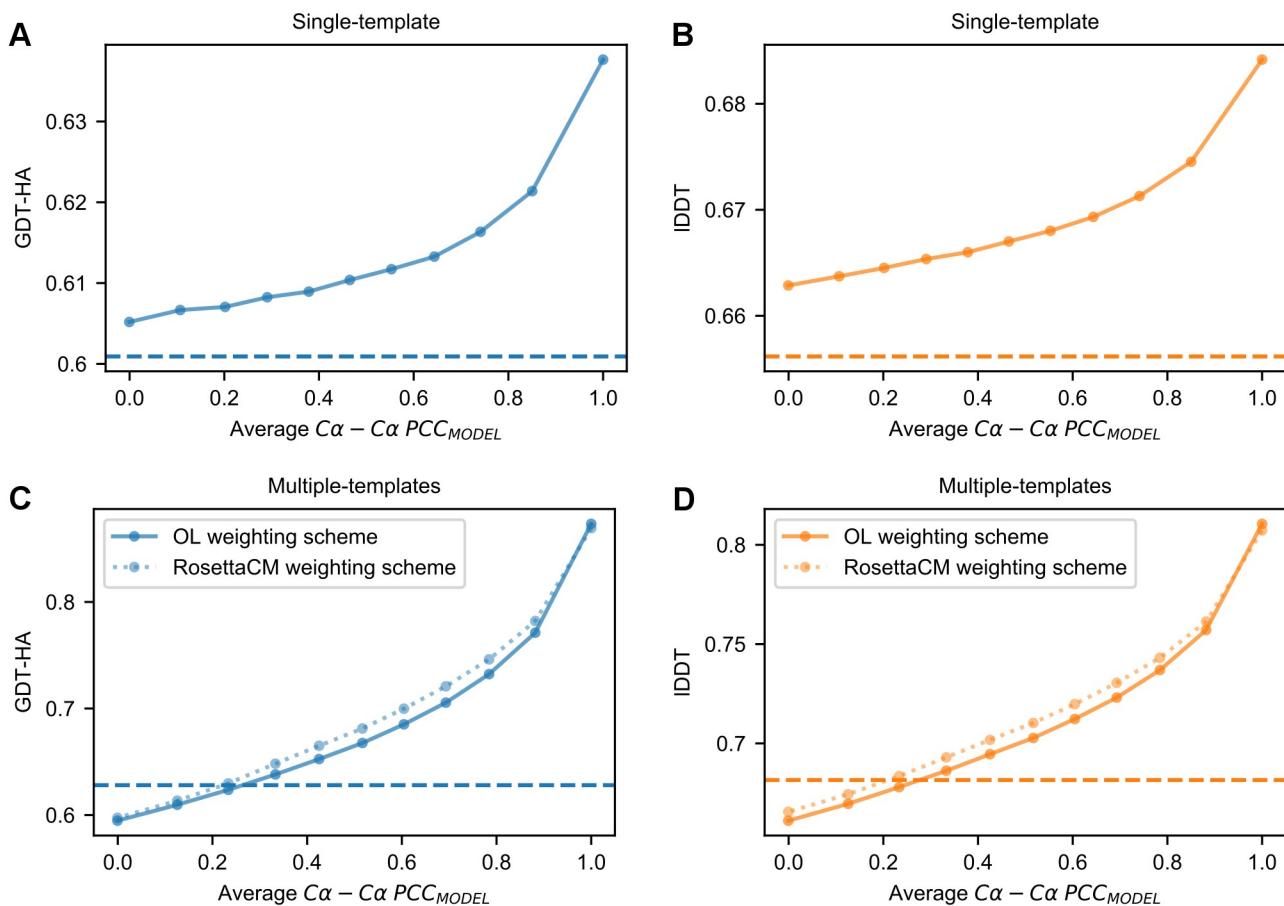
372 **Fig 4. Correlation between σ_{MOD} and $|\Delta d_n|$ values in the AS models.** (A) Distributions for the PCCs
373 between σ_{MOD} and $|\Delta d_n|$ values for the HDDRs of the 225 AS models. (B) PCC distributions for the AS
374 models rebuilt with TM-align alignments.

375

376 In the previous section we have seen that the use of optimal σ values greatly improves MODELLER's
377 predictions. However, since $|\Delta d_n|$ values can not be directly inferred without the prior knowledge of the
378 actual 3D structure that we are trying to predict, a strategy to improve MODELLER would consist in
379 accurately estimating them. Irrespective of the predictive algorithm, it is reasonable to suppose that $|\Delta d_n|$
380 estimations will always bear a certain amount of error. In order to understand how 3D modeling
381 quality changes as a function of this error, we rebuilt the models of the analysis set by perturbing their $|\Delta d_n|$
382 values with random noise.

383 **Effects on single-template modeling.** **Fig 5A** shows how the average GDT-HA of the AS models
384 changes when increasing the fraction of $|\Delta d_n|$ values substituted with a random σ (see **Fig 5B** for the
385 relationship with IDDT). In the absence of any perturbation, the average GDT-HA is at its maximum of
386 0.6377. When substituting just 10% of the $|\Delta d_n|$ values, the mean C α -C α PCC_{MODEL} of the models
387 becomes 0.85 and the average GDT-HA decreases by 2.6%. Further increasing the fraction of random σ
388 values leads to a continuous decrease in quality. When all the restraints have a random σ , the average
389 C α -C α PCC_{MODEL} approximates 0 and the average GDT-HA is 0.6052 (resulting in a 5.1% decrease with
390 respect to the optimal state). This score is 0.7% higher than the average GDT-HA obtained using the
391 default σ_{MOD} values, which is 0.6009. Although the difference between these two scores is statistically
392 significant (Wilcoxon signed-rank test, p-value = 3.7e-4) it is only minimal from a structural point of
393 view. In other words, in single-template modeling, provided that the average σ of a model does not
394 surpass a certain threshold (that is, the average $|\Delta d_n|$ observed in nature), randomly generated σ values
395 are surprisingly as effective as those generated by the MODELLER histogram-based approach. This is
396 also confirmed by the fact that the use of uniform σ values < 1.0 Å does not significantly alter the GDT-
397 HA and IDDT scores of models with respect to the standard MODELLER algorithm (see **Fig 2A** and
398 **2B**).

399



400 **Fig 5. Effect of $|\Delta d_n|$ perturbation on 3D modeling.** (A) and (B) Average GDT-HA and IDDT scores
 401 of the AS models as a function of their average $C\alpha - C\alpha PCC_{MODEL}$ values (see the Methods section). (C)
 402 and (D) Similar data obtained for the multiple-templates AM models. Blue triangles represent the
 403 scores obtained by applying the template-weighting scheme described in [34] instead of the OL scheme
 404 applied for the rest of the data. In (A) through (D), the dashed horizontal lines represent the average
 405 quality scores obtained by the default MODELLER.

406

407 **Effects on multiple-template modeling.** Next, we performed perturbation experiments with multiple-
 408 template models (see **Fig 5C** and **5D**). Again, the average quality decreases as perturbation increases.

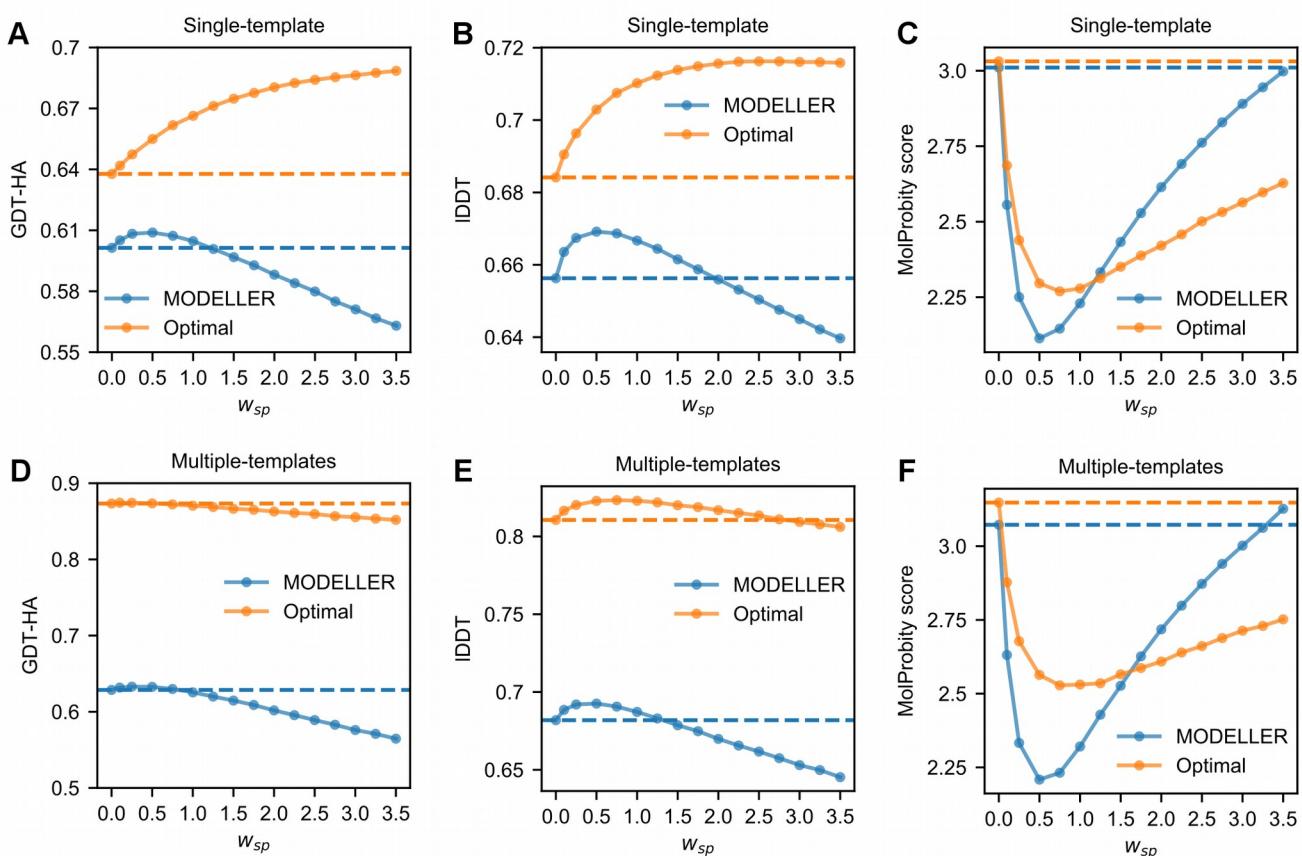
409 However, when $|\Delta d_n|$ values are fully perturbed, the average GDT-HA now becomes 5.3% lower than
410 the one obtained using the default MODELLER. This behavior is explained by the fact that in
411 perturbation experiments the OL template weighting scheme was employed. When this scheme is
412 applied with optimal (or near-optimal) σ values, it boosts 3D modeling quality, but when it is applied
413 with σ values being weakly correlated with $|\Delta d_n|$ values, it has a detrimental effect (since for each
414 HDDR it uses only the contribution of a randomly chosen template, while the contribution from the
415 best template is likely to be suppressed). In order to make modeling quality less sensitive to errors in $|\Delta d_n|$
416 estimations, the template weighting scheme of RosettaCM [34] was adopted. In this scheme, the
417 template with the lowest σ value is still assigned the highest weight, but also other templates are given
418 non-zero weights. Using this scheme with a parameter $k = 50.0$ makes modeling quality more tolerant
419 with respect to the amount of $|\Delta d_n|$ perturbation (see **Fig 5C**).

420 This data shows that if we were able to predict $|\Delta d_n|$ values with sufficiently high accuracy, the
421 performance of MODELLER would greatly increase. In single-template modeling, obtaining
422 predictions with a PCC of ~ 0.6 would lead to an increase in GDT-HA of $\sim 2.0\%$, while in multiple-
423 template modeling, the same PCC would increase GDT-HA by $\sim 11.0\%$ (when using a template-
424 weighting scheme possessing robustness with respect to errors in $|\Delta d_n|$ estimations, such as the
425 RosettaCM scheme).

426 **Modifying the objective function of MODELLER with statistical potential terms**

427 **Effect on single-template modeling.** In order to identify the optimal way to incorporate the DOPE
428 potential within MODELLER, we performed benchmarks with the AS single-template models by
429 tuning w_{SP} values from 0.1 to 3.5 and by employing HDDRs bearing either σ_{MOD} or $|\Delta d_n|$ values. **Fig 6A**
430 to **6C** show that, with both types of σ , the inclusion of DOPE leads to improvements in 3D modeling.
431 Strikingly, depending on the type of σ , the amount of improvement and the best w_{SP} vary greatly.

432



433 **Fig 6. Average quality scores of the models of the analysis set as a function of the w_{SP} with which**
434 **the DOPE potential has been included in the objective function of MODELLER. (A) to (C)**
435 Quality scores of the AS models. (D) to (F) Quality scores of the AM models. (A) through (F) The
436 horizontal dashed lines correspond to the scores obtained when modeling with MODELLER-generated
437 (blue color) or optimal (orange) HDDRs without the use of DOPE.

438

439 With σ_{MOD} values, the maximum increase in GDT-HA is observed with a w_{SP} of 0.5. As shown in **Table**
440 **3**, when employing DOPE with this w_{SP} , the average GDT-HA improves by a statistically significant
441 1.3% with respect to the default MODELLER. At the same time, the average IDDT score increases by

442 2.0%, showing that the use of DOPE also aids local modeling. Of note, when applying DOPE along
443 with the *slow* MDSA protocol, an additional improvement is obtained: the average GDT-HA and lDDT
444 scores now increase by 1.6% and 2.8%.

445

446 **Table 3. 3D modeling qualities of the AS single-template models built by including DOPE in the**
447 **objective function of MODELLER.**

Strategy	GDT-HA	lDDT	MolProbity score
MODELLER	0.6014 (-)	0.6563 (-)	3.0104 (-)
OPTIMAL	0.6377 (+6.0%)*	0.6842 (+4.2%)*	3.0311 (+0.7%)*
MODELLER-DOPE-0.5 ^a	0.6089 (+1.3%)*	0.6692 (+2.0%)*	2.1138 (-29.8%)*
MODELLER-SLOW-DOPE-0.5	0.6112 (+1.6%)*	0.6746 (+2.8%)*	2.0344 (-32.4%)*
MODELLER-DOPE-3.5	0.5631 (-6.4%)*	0.6397 (-2.5%)*	2.9977 (-0.4%)
OPTIMAL-DOPE-0.5	0.6549 (+8.9%)*	0.7029 (+7.1%)*	2.2960 (-23.7%)*
OPTIMAL-DOPE-3.5	0.6885 (+14.5%)*	0.7158 (+9.1%)*	2.6280 (-12.7%)

448 See **Table 1** for the description of contents, columns and most modeling strategies names. See **S3 Table**
449 for a full list of the numerical p-values. ^aThe “DOPE-X.X” suffix indicates the use of DOPE with a w_{SP}
450 of X.X.

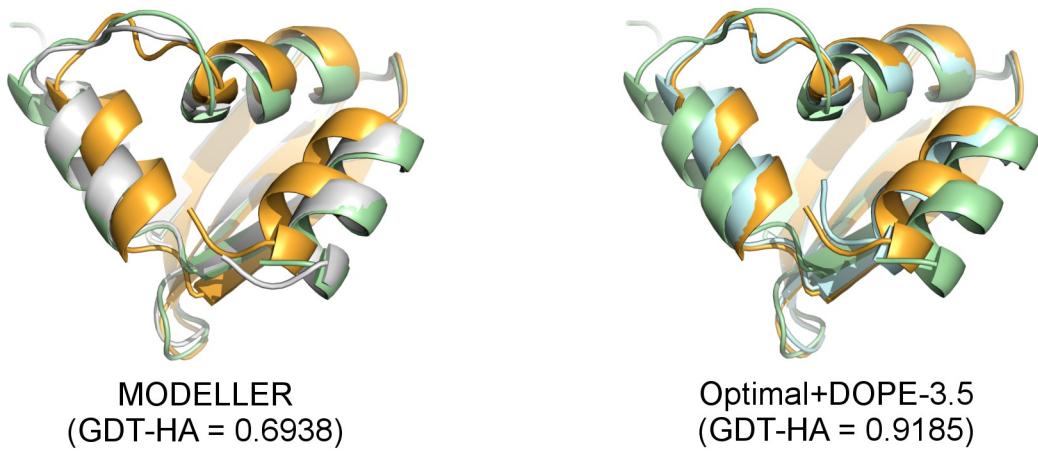
451

452 When modeling with $|\Delta d_n|$ values, the best results are instead obtained with a w_{SP} of 3.5. In this case,
453 DOPE increases the average GDT-HA and lDDT scores by 8.0% and 4.6% with respect to the scores
454 obtained with the same restraints and the standard objective function of MODELLER. The increments
455 in these two metrics are extremely large if computed with respect to the default MODELLER protocol
456 (14.5% and 9.1%). **Fig 7** shows that with the default MODELLER, secondary structure elements that

457 show divergence in the target and template structures are most often modeled in the template
458 conformation. By using optimal HDDRs and DOPE, it is common to see these elements shifting
459 towards target conformations.

460

461



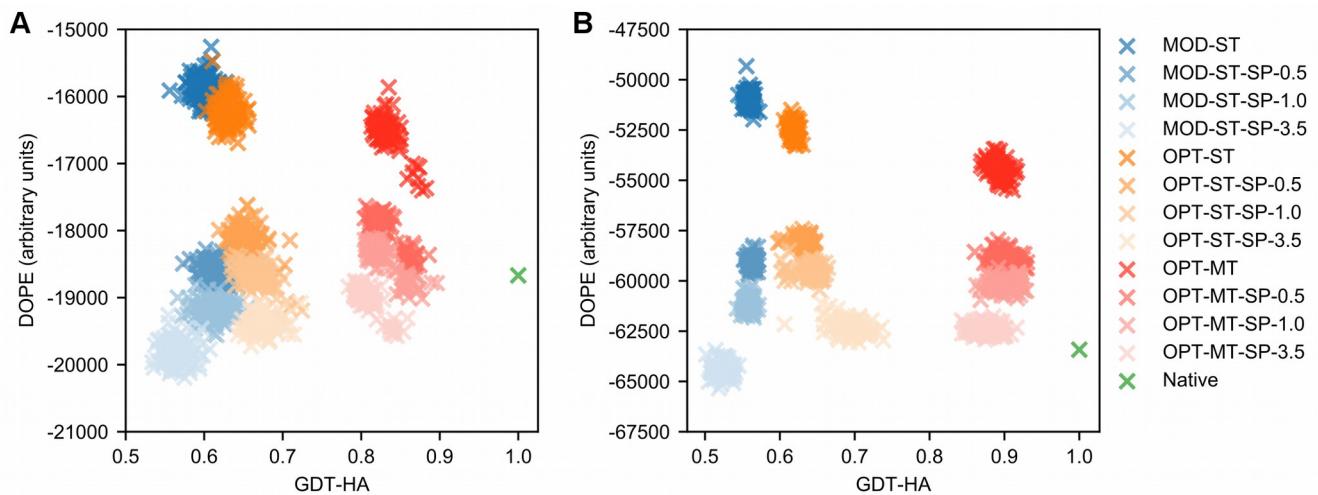
462 **Fig 7. Effects on 3D modeling of optimal σ values and DOPE.** Effects brought by the use $|\Delta d_n|$
463 values and DOPE (with a w_{SP} of 3.5) on the 3D modeling of target *1yd0_chain_A* (colored in orange)
464 using as a template *1yd6_chain_D* (pale green). In the model built using the default MODELLER
465 (colored in white, superposed to its target and template on the left image) the three helices shown in the
466 image are positioned in the same conformation of the template. In the model built employing $|\Delta d_n|$
467 values and DOPE with a w_{SP} of 3.5 (pale cyan, shown on the right) the helices are repositioned in a
468 native-like conformation. Figures rendered with PyMOL [37].

469

470 Remarkably, the same w_{SP} of 3.5 leads to a large decrease in modeling quality when DOPE is applied
471 along with σ_{MOD} values: in this case, the average GDT-HA and IDDT scores decrease by a large 6.4%
472 and 2.5% with respect to the score obtained without using DOPE.

473 This data shows that in single-template modeling, the addition of DOPE is much more effective with $|\Delta d_n|$ values than with σ_{MOD} values. Additional insights into this behaviour were provided by the analysis
474 of DOPE energetic landscapes. **Fig 8** shows the representative case of the *1lam_chain_A* and
475 *1dk8_chain_A* targets, where the DOPE energies of models are plotted as a function of their GDT-HA
476 scores. When using single-template HDDRs with σ_{MOD} values, applying DOPE with increasingly high
477 w_{SP} values leads to a decrease in both GDT-HA and DOPE energies. These energies eventually become
478 even lower than the native target structure one. It seems that in the DOPE landscape, near-native
479 conformations are not at an absolute minimum. On the other hand, when modeling with single-template
480 optimal HDDRs, increasing w_{SP} values leads to improvements in GDT-HA while maintaining DOPE
481 energies relatively high. Similar trends are observed in the landscapes of almost all AS models. We
482 speculate that this behaviour is caused by the fact that optimal HDDRs strongly restrain those regions
483 of models which are structurally conserved between the native structures and templates, while they
484 weakly restrain divergent regions. This probably allows to pinpoint the effect of DOPE in the divergent
485 regions (where its addition likely improves modeling over the use of the standard MODELLER
486 objective function) and to keep “rigid” the conserved regions (which are already extremely well-
487 modeled and where DOPE can hardly improve the situation), thus giving rise to a synergistic effect.

489



490 **Fig 8. DOPE energy landscapes.** DOPE energy landscapes for target (A) *1dk8_chain_A* and (B)
491 *1lam_chain_A* modeled using different strategies. 100 decoys were built for each strategy and their
492 GDT-HA scores are plotted here against their DOPE energies. The strategies with the “MOD-ST”
493 prefix adopted MODELLER-generated HDDRs and a single template (blue-shaded dots), those with
494 the “OPT-ST” prefix adopted optimal HDDRs and a single template (orange-shaded dots) and those
495 with the “OPT-MT” prefix adopted optimal HDDRs and multiple templates (red-shaded dots). The
496 “SP-X.X” suffix indicates the use of DOPE with a w_{SP} of X.X. The green dots correspond to the DOPE-
497 minimized native target structure.

498

499 **Effect on multiple-template modeling.** Next, we explored the effect of DOPE in multiple-template
500 modeling (see **Fig 6D to 6F**). The trend observed when employing MODELLER-generated restraints is
501 reminiscent of the single-template modeling one, although the improvements are slightly smaller. **Table**
502 **4** shows that the best w_{SP} is 0.5, which results in an average increase in GDT-HA and IDDT of 0.6% and
503 1.6% with respect to the scores obtained with the default MODELLER. By employing DOPE with this
504 w_{SP} along with the *slow* MDSA protocol, an additional improvement can be reached: the average GDT-

505 HA and IDDT scores now improve by 1.0% and 2.2%. When further increasing w_{SP} , we assist to a
506 decrease in 3D modeling qualities.

507

508 **Table 4. 3D modeling qualities of the AM multiple-template models built by including DOPE in**
509 **the objective function of MODELLER.**

Strategy	GDT-HA	IDDT	MolProbity score
MODELLER	0.6287 (-)	0.6819 (-)	3.0725 (-)
OPTIMAL	0.8733 (+38.9%)*	0.8106 (+18.9%)*	3.1478 (+2.4%)
MODELLER-DOPE-0.5	0.6327 (+0.6%)*	0.6926 (+1.6%)*	2.2086 (-28.1%)*
MODELLER-SLOW-DOPE-0.5	0.6347 (+1.0%)*	0.6971 (+2.2%)*	2.1152 (-31.2%)*
MODELLER-DOPE-3.5	0.5646 (-10.2%)*	0.6453 (-5.4%)*	3.1267 (+1.8%)*
OPTIMAL-DOPE-0.5	0.8736 (+39.0%)*	0.8229 (+20.7%)*	2.5635 (-16.6%)*
OPTIMAL-DOPE-3.5	0.8519 (+35.5%)*	0.8061 (+18.2%)*	2.7520 (-10.4%)*

510 See **Table 1** for the description of contents, columns and most modeling strategies names. See **S4 Table**
511 for a full list of the numerical p-values.

512

513 The results observed when combining DOPE with optimal multiple-template HDDRs are different. No
514 value of w_{SP} is able to bring a relevant improvement in GDT-HA. As w_{SP} increases over 1.0, the scores
515 even start to decrease in a significant way, although it seems that DOPE is able to bring at least a small
516 improvement in IDDT.

517 This counterintuitive behaviour can in part be explained from the analysis of DOPE energy landscapes.
518 **Fig 8** shows that when using optimal multiple-template HDDRs, the quality of models is already higher

519 than the one obtained with optimal single-template HDDRs. In this case, applying large w_{SP} values
520 leads to a decrease in DOPE energies and GDT-HA. The plots show that the models built with optimal
521 HDDRs seem to be attracted towards a local energy minimum of DOPE, which does not correspond to
522 the native state, but is located relatively near it. Therefore, when using optimal restraints, minimizing
523 the DOPE of a structure distant from the native state (like in the case of single-template modeling),
524 tends to increase its GDT-HA, but when the structure is already very close to the native state (such as in
525 the case of multiple-template modeling), it tends to decrease its GDT-HA.

526 **Effects on stereochemical quality.** In terms of stereochemical quality, the use of DOPE seems to be
527 highly beneficial in both single and multiple-template modeling and with both MODELLER-generated
528 and optimal HDDRs (see **Fig 6**, **Table 3** and **4**). For example, when employing σ_{MOD} values and DOPE
529 with a w_{SP} of 0.5, the average MolProbity score of the AS models decreases by a large 29.8% with
530 respect to the default MODELLER. Additional improvements in MolProbity scores are observed when
531 coupling DOPE to the *slow* MDSA protocol. We found that the MolProbity score component in which
532 DOPE brings the largest improvement is by far the “Clash Score”, meaning that the potential helps to
533 remove steric clashes from models. Therefore, the inclusion of DOPE in the objective function of
534 MODELLER represents a fast and effective way of improving the stereochemical quality of its models.
535 This approach increases computational times by a factor of ~6.5 when employing the *very_fast* MDSA
536 protocol (and ~16.5 with the *slow* protocol), but on modern hardware the default MODELLER
537 algorithm usually takes a few seconds to complete a model, therefore in absolute terms the model
538 building process is still relatively fast.

539 **Comparison between DOPE and DFIRE in 3D modeling.** We also tested the effect of adding DFIRE
540 in the objective function of MODELLER. Overall, DFIRE seems to have very similar effects to the
541 ones described for DOPE (see **S3 Table**, **S4 Table** and **S5 Fig**), because their terms have very similar

542 forms (see **S3 FigB**). However, when modeling with σ_{MOD} values, DOPE seems to slightly outperform
543 DFIRE in terms of all-atom local quality (expressed by IDDT scores). When using a w_{SP} of 0.5 and
544 σ_{MOD} values, DOPE yields for the AS models an average IDDT score 0.5% higher than the one obtained
545 with DFIRE, a small but statistically significant improvement (Wilcoxon signed-rank test, p-value =
546 4.6e-35). Therefore, we suggest that in MODELLER, DOPE should be preferred over DFIRE.

547 **Discussion**

548 Improving the quality of HM predictions is clearly an area of great relevance in Biomedical Research
549 [38], given that the applicability of this methodology is expected to increase in the next years [29].
550 Right now, a large portion of targets can be modeled only with low accuracy, due to the remote
551 homology relationship (under 30% SeqId) with their templates. A solution to this problem could
552 potentially come from advances in 3D model building or refinement algorithms. In this work, we have
553 explored two main promising strategies to increase the accuracy of the original MODELLER
554 algorithm.

555 The use of optimal σ values (that is, $|\Delta d_n|$ values) greatly increases the 3D modeling quality of the
556 program. Since $|\Delta d_n|$ values can only be obtained by knowing the exact amount of divergence between
557 the structure of a target and its templates, they can not be used in real-life protein structure prediction
558 scenarios (where the target structure is of course unknown).

559 However, as first shown by the Lee group [19], $|\Delta d_n|$ values may be estimated through a machine
560 learning system. These authors developed a random forest which obtained estimations with an average
561 C α -C α PCC of ~0.35. The use of this predictor led to only a very small improvement in terms of 3D
562 modeling quality. Our data (which describes the relationship between 3D modeling quality and errors
563 in $|\Delta d_n|$ estimations) shows that increasing the PCC of a similar predictor by at least 0.2-0.3 units could
564 translate in a significant improvement of MODELLER.

565 The other strategy that we have investigated is the inclusion of statistical potential terms, such as
566 DOPE, in the objective function of MODELLER. We show that employing such potentials in the 3D
567 model building phase of MODELLER robustly increases 3D modeling quality and provides a fast and
568 effective way to improve the stereochemical details models. In order to allow the user community of
569 MODELLER to deploy this strategy in their modeling pipelines, we share the Python code
570 implementing it. In future research, it will be interesting to see if there exist potentials with an even
571 more beneficial effect on 3D model building in MODELLER.

572 Our results have implications also for other Structural Bioinformatics tools. RosettaCM and I-TASSER
573 borrow from MODELLER the use of HDDRs [34, 39-40] and programs like MULTICOM [41] and
574 Pcons [42] implement MODELLER at some point in their protein modeling pipelines. The strategies
575 presented in this work can certainly be implemented in these protocols to improve their quality.

576 Of note, in the protein structure refinement field, restraints are built from a starting model and the aim
577 is to guide the model towards its native conformation [43]. While in the HM context we may estimate |
578 Δd_n values between a target native structure and a template, in protein structure refinement they could
579 be similarly estimated between a native structure and its unrefined model. Methods to predict the local
580 accuracy of 3D models already reach good performances [44]. It is reasonable to think that with a
581 sufficiently accurate predictor, the $|\Delta d_n|$ prediction strategy could also lead to improvements in current
582 refinement strategies.

583 The development of deep learning techniques [45] has recently brought advances in the field of contact
584 and distance map prediction [46]. We suggest that such methodologies could be well adapted to the
585 problem of $|\Delta d_n|$ estimation. In future studies, we will concentrate on using this type approach to tackle
586 the problem of σ values assignment. Since a machine learning model usually performs predictions in a
587 relatively small amount of time, the $|\Delta d_n|$ estimation approach has the potential to greatly improve the

588 “modeling by satisfaction of spatial restraints” strategy of MODELLER at the price of small
589 computational cost.

590 **Acknowledgements**

591 The authors wish to acknowledge Fabio Mastrantuono and Fransceso Pesce for helpful discussions and
592 their precious help.

593 This work is dedicated to the memory of our beloved mentor Prof. Francesco Bossa.

594 **References**

- 595 1. Rigden DJ, editor. From Protein Structure to Function with Bioinformatics. 2nd ed. Springer
596 Netherlands; 2017.
- 597 2. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of
598 methods of protein structure prediction (CASP)-Round XII. *Proteins*. 2018;86 Suppl 1: 7–15.
599 doi:10.1002/prot.25415
- 600 3. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and
601 PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.*
602 1997;25: 3389–3402.
- 603 4. Söding J. Protein homology detection by HMM-HMM comparison. *Bioinformatics*. 2005;21:
604 951–960. doi:10.1093/bioinformatics/bti125
- 605 5. Yan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20
606 representative sequence alignment methods for protein structure prediction. *Sci Rep*. 2013;3:
607 2619. doi:10.1038/srep02619

608 6. Kryshtafovych A, Monastyrskyy B, Fidelis K, Moult J, Schwede T, Tramontano A. Evaluation
609 of the template-based modeling in CASP12. *Proteins*. 2018;86 Suppl 1: 321–334.
610 doi:10.1002/prot.25425

611 7. Meier A, Söding J. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-
612 template Homology Modeling. *PLoS Comput Biol*. 2015;11: e1004343.
613 doi:10.1371/journal.pcbi.1004343

614 8. Park H, Ovchinnikov S, Kim DE, DiMaio F, Baker D. Protein homology model refinement by
615 large-scale energy optimization. *Proc Natl Acad Sci USA*. 2018;115: 3054–3059.
616 doi:10.1073/pnas.1719115115

617 9. Heo L, Feig M. Experimental accuracy in protein structure refinement via molecular dynamics
618 simulations. *Proc Natl Acad Sci USA*. 2018;115: 13276–13281. doi:10.1073/pnas.1811364115

619 10. Webb B, Sali A. Comparative Protein Structure Modeling Using MODELLER. *Curr Protoc*
620 *Bioinformatics*. 2016;54: 5.6.1-5.6.37. doi:10.1002/cpb1.3

621 11. Wallner B, Elofsson A. All are not equal: a benchmark of different homology modeling
622 programs. *Protein Sci*. 2005;14: 1315–1327. doi:10.1110/ps.041253405

623 12. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. *J Mol*
624 *Biol*. 1993;234: 779–815. doi:10.1006/jmbi.1993.1626

625 13. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the
626 biomolecular simulation program. *J Comput Chem*. 2009;30: 1545–1614.
627 doi:10.1002/jcc.21287

628 14. Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A Completely
629 Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. *J Mol Biol.*
630 2017; doi:10.1016/j.jmb.2017.12.007

631 15. Joo K, Lee J, Sim S, Lee SY, Lee K, Heo S, et al. Protein structure modeling for CASP10 by
632 multiple layers of global optimization. *Proteins.* 2014;82 Suppl 2: 188–195.
633 doi:10.1002/prot.24397

634 16. Joo K, Joung I, Lee SY, Kim JY, Cheng Q, Manavalan B, et al. Template based protein structure
635 modeling by global optimization in CASP11. *Proteins.* 2016;84 Suppl 1: 221–232.
636 doi:10.1002/prot.24917

637 17. Hong SH, Joung I, Flores-Canales JC, Manavalan B, Cheng Q, Heo S, et al. Protein structure
638 modeling and refinement by global optimization in CASP12. *Proteins.* 2018;86 Suppl 1: 122–
639 135. doi:10.1002/prot.25426

640 18. Joo K, Lee J, Seo J-H, Lee K, Kim B-G, Lee J. All-atom chain-building by optimizing
641 MODELLER energy function using conformational space annealing. *Proteins.* 2009;75: 1010–
642 1023. doi:10.1002/prot.22312

643 19. Lee J, Lee K, Joung I, Joo K, Brooks BR, Lee J. Sigma-RF: prediction of the variability of
644 spatial restraints in template-based modeling by random forest. *BMC Bioinformatics.* 2015;16:
645 94. doi:10.1186/s12859-015-0526-z

646 20. Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived
647 potentials of mean force for structure selection and stability prediction. *Protein Sci.* 2002;11:
648 2714–2726. doi:10.1110/ps.0217002

649 21. Lee J, Lee J, Sasaki TN, Sasai M, Seok C, Lee J. De novo protein structure prediction by
650 dynamic fragment assembly and conformational space annealing. *Proteins*. 2011;79: 2403–
651 2417. doi:10.1002/prot.23059

652 22. Kortemme T, Morozov AV, Baker D. An orientation-dependent hydrogen bonding potential
653 improves prediction of specificity and structure for proteins and protein-protein complexes. *J
654 Mol Biol*. 2003;326: 1239–1259.

655 23. Shen M-Y, Sali A. Statistical potential for assessment and prediction of protein structures.
656 *Protein Sci*. 2006;15: 2507–2524. doi:10.1110/ps.062416606

657 24. Larsson P, Wallner B, Lindahl E, Elofsson A. Using multiple templates to improve quality of
658 homology models in automated homology modeling. *Protein Sci*. 2008;17: 990–1002.
659 doi:10.1110/ps.073344908

660 25. Wang G, Dunbrack RL. PISCES: recent improvements to a PDB sequence culling server.
661 *Nucleic Acids Res*. 2005;33: W94–98. doi:10.1093/nar/gki402

662 26. Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score.
663 *Nucleic Acids Res*. 2005;33: 2302–2309. doi:10.1093/nar/gki524

664 27. Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template
665 quality. *Proteins*. 2004;57: 702–710. doi:10.1002/prot.20264

666 28. Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5?
667 *Bioinformatics*. 2010;26: 889–895. doi:10.1093/bioinformatics/btq066

668 29. Schwede T. Protein modeling: what happened to the “protein structure gap”? *Structure*.
669 2013;21: 1531–1540. doi:10.1016/j.str.2013.08.007

670 30. Dawson NL, Lewis TE, Das S, Lees JG, Lee D, Ashford P, et al. CATH: an expanded resource
671 to predict protein function through structure and sequence. *Nucleic Acids Res.* 2017;45: D289–
672 D295. doi:10.1093/nar/gkw1098

673 31. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast iterative protein sequence
674 searching by HMM-HMM alignment. *Nat Methods.* 2011;9: 173–175. doi:10.1038/nmeth.1818

675 32. Mariani V, Biasini M, Barbato A, Schwede T. IDDT: a local superposition-free score for
676 comparing protein structures and models using distance difference tests. *Bioinformatics.*
677 2013;29: 2722–2728. doi:10.1093/bioinformatics/btt473

678 33. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity:
679 all-atom structure validation for macromolecular crystallography. *Acta Crystallogr D Biol
680 Crystallogr.* 2010;66: 12–21. doi:10.1107/S0907444909042073

681 34. Thompson J, Baker D. Incorporation of evolutionary information into Rosetta comparative
682 modeling. *Proteins.* 2011;79: 2380–2388. doi:10.1002/prot.23046

683 35. Rykunov D, Fiser A. New statistical potential for quality assessment of protein models and a
684 survey of energy functions. *BMC Bioinformatics.* 2010;11: 128. doi:10.1186/1471-2105-11-128

685 36. Chopra G, Kalisman N, Levitt M. Consistent refinement of submitted models at CASP using a
686 knowledge-based potential. *Proteins.* 2010;78: 2668–2678. doi:10.1002/prot.22781

687 37. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. 2015.

688 38. Schwede T, Sali A, Honig B, Levitt M, Berman HM, Jones D, et al. Outcome of a workshop on
689 applications of protein models in biomedical research. *Structure.* 2009;17: 151–159.
690 doi:10.1016/j.str.2008.12.014

691 39. Song Y, DiMaio F, Wang RY-R, Kim D, Miles C, Brunette T, et al. High-resolution comparative
692 modeling with RosettaCM. *Structure*. 2013;21: 1735–1742. doi:10.1016/j.str.2013.08.005

693 40. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and
694 function prediction. *Nat Methods*. 2015;12: 7–8. doi:10.1038/nmeth.3213

695 41. Wang Z, Eickholt J, Cheng J. MULTICOM: a multi-level combination approach to protein
696 structure prediction and its assessments in CASP8. *Bioinformatics*. 2010;26: 882–888.
697 doi:10.1093/bioinformatics/btq058

698 42. Wallner B, Fang H, Elofsson A. Automatic consensus-based fold recognition using Pcons,
699 ProQ, and Pmodeller. *Proteins*. 2003;53 Suppl 6: 534–541. doi:10.1002/prot.10536

700 43. Feig M. Computational protein structure refinement: Almost there, yet still so far to go. Wiley
701 Interdiscip Rev Comput Mol Sci. 2017;7. doi:10.1002/wcms.1307

702 44. Uziela K, Menéndez Hurtado D, Shu N, Wallner B, Elofsson A. ProQ3D: improved model
703 quality assessments using deep learning. *Bioinformatics*. 2017;33: 1578–1580.
704 doi:10.1093/bioinformatics/btw819

705 45. LeCun Y, Bengio Y, Hinton G. Deep learning. *Nature*. 2015;521: 436–444.
706 doi:10.1038/nature14539

707 46. Schaarschmidt J, Monastyrskyy B, Kryshtafovych A, Bonvin AMJJ. Assessment of contact
708 predictions in CASP12: Co-evolution and deep learning coming of age. *Proteins*. 2018;86 Suppl
709 1: 51–66. doi:10.1002/prot.25407

710 **Supporting Information**

711 **S1 Table. Physical terms of the MODELLER objective function.** Note how by default the objective
712 function does not include any “physical” attractive term between non-bonded atoms (Lennard-Jones
713 and Coulomb potential terms from CHARMM22 [Brooks et al., 2009] are missing). The only attractive
714 terms in the objective function are homology-derived distance restraints (see **S2 Table**).

715 **S2 Table. Homology-derived terms of the MODELLER objective function.**

716 **S3 Table. 3D modeling qualities of the AS single-template models built with different modeling
717 strategies.** See **Table 1** in the main text for the description of contents, columns and most modeling
718 strategies names.

719 **S4 Table. 3D modeling qualities of the AM multiple-templates models built with different
720 modeling strategies.** See **Table 1** and **2** in the main text and **S3 Table** for the description of contents,
721 columns and most modeling strategies names.

722 **S1 Fig. Properties of the analysis set.** (A) SeqId histogram of the pairwise target-template alignments
723 in the AS models obtained using TM-align and HHalign. (B) Target coverage histograms of the same
724 alignments. (C) Chain length histograms of the 225 AS targets, the 118 AM targets and all the 472
725 template chains of the analysis set. (D) CATH classes frequencies of the AS and AM targets compared
726 to those in the entire CATH 4.2.0 database [Dawson et al., 2017].

727 **S2 Fig. Average PCC_{MODEL} values in $|\Delta d_n|$ perturbation experiments plotted as a function of f_e .** Data
728 for the four HDDRs groups of MODELLER is shown. As f_e (that is, the fraction of perturbed $|\Delta d_n|$
729 values in models) increases, the average correlation between $|\Delta d_n|$ values and their perturbed
730 counterpart decreases. (A) AS models. (B) AM models.

731 **S3 Fig. Analysis of the terms of the DOPE and DFIRE potentials.** (A) Forms of the 12561 terms of
732 DOPE [Shen and Sali, 2006]. Each term is associated to a couple of heavy atom types from the 20
733 standard residues. Irrespective of the atom types, all the functions start to acquire a flat shape above the
734 8.0 Å threshold. (B) Confrontation of DOPE and DFIRE [Zhou and Zhou, 2002] terms. An hexbin
735 density plot compares 364269 data points from all the 12561 terms of DOPE (x-axis) and DFIRE (y-
736 axis) (each term has 29 points, which report the score of the potential in a linear space from 0.75 to
737 14.75 Å). The scores of the two potentials are highly correlated (Pearson correlation coefficient = 0.99).

738 **S4 Fig. Accuracy of the pairwise target-template HHalign alignments of the AS models.** The x-axis
739 reports the SeqId between the target and template sequences in TM-align alignments. The y-axis
740 reports the accuracy of the corresponding HHalign alignment. The accuracy is computed as the ratio
741 H_m/T_m , where T_m is the total number of matches in the TM-align alignment and H_m is the number of
742 “correct” matches in HHalign alingsments (that is, those HHalign matches which are also found in the
743 TM-align alignment). The average accuracy is 0.87.

744 **S5 Fig. Average quality scores of the analysis set models as a function of the w_{sp} value with which
745 the DFIRE or DOPE statistical potentials have been included in the objective function of
746 MODELLER.** The horizontal dashed lines correspond to the scores obtained when modeling with
747 MODELLER-generated (blue color) or optimal (orange) HDDRs without the use of statistical
748 potentials. (A) to (C) quality scores of the AS models. (D) to (F) quality scores of the AM models.

749 **S1 Text. Description of the GDT-HA and IDDT metrics for model quality evaluation.**

750 **S2 Text. Obtaining optimal parameters for single-template HDDRs.**

751 **S3 Text. Obtaining optimal parameters for multiple-template HDDRs.**