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Abstract 14 

Temporal lobe epilepsy (TLE) is the most prevalent and often devastating form of epilepsy. The molecular 15 

mechanism underlying the development of TLE remains largely unknown, which hinders the discovery of 16 

effective anti-epileptogenic drugs. In this study, we built a systems-level analytic framework which 17 

integrates gene meta-signatures, gene coexpression network and cellular regulatory network to unveil the 18 

evolution landscape of epileptogenic process and to identify key regulators that govern the transition 19 

between different epileptogenesis stages. The time-specific hippocampal transcriptomic profiles from five 20 

independent rodent TLE models were grouped into acute, latent and chronic stages of epileptogenesis, 21 

and were utilized for generating stage-specific gene expression signatures. 13 cell-type specific functional 22 

modules were identified from the epilepsy-context coexpression network, and five of them were 23 

significantly associated with the entire epileptogenic process. By inferring the differential protein activity of 24 

gene regulators in each stage, 265 key regulators underlying epileptogenesis were obtained. Among 25 

them, 122 regulators were demonstrated being associated with high seizure frequency and/or 26 

hippocampal sclerosis in human TLE patients. Importantly, we discovered four new gene regulators 27 

(ANXA5, FAM107A, SEPT2 and SPARC) whose upregulation may drive the process of epileptogenesis 28 

and further lead to chronic recurrent seizures or hippocampal sclerosis. Our findings provide a landscape 29 

of the gene network dynamics underlying epileptogenesis and uncovered candidate regulators that may 30 

serve as potential targets for future anti-epileptogenic therapy development.  31 
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Introduction 37 

Epilepsy is a complex neurological disorder characterized by recurrent unprovoked seizures, of 38 

which temporal lobe epilepsy (TLE) is the most prevalent form [1]. The term epileptogenesis refers to the 39 

gradual process through which normal neuronal networks are altered resulting in the generation of 40 

chronic spontaneous seizures [2, 3]. The process can be triggered by diverse brain insults, including 41 

traumatic brain injury, stroke, infections and prolonged seizures such as status epilepticus (SE), and is 42 

typically thought to involve three stages [4, 5]. The first is the acute phase right after the brain insult, in 43 

which a cascade of morphologic and biologic changes occurs in the injured area. This is followed by a 44 

variable latent period during which behavioral seizures are not observed. The third stage is chronic, 45 

established epilepsy with the emergence of spontaneous seizures. Identifying the multiple dysregulated 46 

gene regulators that contribute to epileptogenesis in TLE is crucial for developing effective 47 

anti-epileptogenic drugs [6]. Several large-scale molecular signaling cascades such as mTOR, 48 

BDNF-TrkB and REST/NRSF pathways, have been demonstrated playing a role in epileptogenesis [7-9]. 49 

However, the detailed molecular mechanisms underlying the evolution process of epileptogenesis remain 50 

largely unknown.  51 

The presence of various high-throughput omics technologies offers a great opportunity to unveil the 52 

molecular and cellular dynamics underlying epileptogenesis. Recently, a large-scale transcriptomic 53 

profiling of surgically resected hippocampi from TLE patients has been generated and used to identify 54 

gene-regulatory networks and regulators genetically associated with epilepsy [10, 11]. However, there are 55 

obvious limitations and challenges in exploring the process of epileptogenesis in human epileptic tissues. 56 

One drawback is that omics studies of human TLE generally lack appropriate control samples of healthy 57 

brain tissues. Furthermore, the specimens collected from hippocampus surgery for TLE patients are 58 

usually at an advanced stage and have been subjected to the treatment of various antiepileptic drugs 59 

(AEDs) [12]. Alternatively, well-characterized animal TLE models which mimic prominent 60 

histopathological and electroencephalographic features of human TLE can be employed to examine the 61 

key molecular alterations during epileptogenesis [13]. Only a few reports have studied the genome-wide 62 

molecular changes throughout epileptogenesis using animal TLE models [14, 15]. While other studies 63 

covered time points more closely related with either acute responses to SE or cumulative effects of 64 

chronic spontaneous seizures [16, 17]. As the modeling approaches and tissue dissection time varies 65 

across these studies, a systematic integration analysis of the existing datasets will likely provide a more 66 

comprehensive and robust molecular profiling for the epileptogenic process from the early hippocampal 67 

injury to the onset of chronic epilepsy.  68 

Systems biology-based approaches that utilize network theory to organize transcriptome datasets 69 

have been used to prioritize candidate disease genes or to discern transcriptional regulatory programs 70 

[18-20]. One method to infer critical genes (hubs) and gene set–phenotype associations from gene 71 

expression data is the coexpression network analysis, which builds scale-free gene networks based on 72 

the pairwise gene expression correlations [21]. Genes with higher similarity scores tend to co-activate in a 73 

specific biological condition. Although coexpression analysis can help identify genes or gene modules 74 

that associate with the disease or biological phenotypes, it normally does not infer causality or distinguish 75 

between regulatory and regulated genes [22]. The algorithm for the reconstruction of accurate cellular 76 

networks (ARACNe) uses an information theoretic approach to eliminate most indirect interactions 77 

inferred by co-expression methods, leaving those expected to be regulatory [23]. Although originally being 78 

applied to infer the relationship between transcription factors and their target genes, the method can also 79 

be adapted to infer the indirect transcriptional targets for other kind of regulators, such as signaling 80 
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proteins [24]. Using these methods, the observed gene expression changes can be placed into a systems 81 

context that was related to the underlying disease biology.  82 

In this study, we proposed a systems-level analytic framework which integrates gene 83 

meta-signatures, gene coexpression network and cellular regulatory network to reveal the evolution 84 

landscape of epileptogenic process and distinguish key regulators that govern the transition between 85 

different epileptogenesis stages (Fig. 1). The time-specific hippocampal transcriptomic profiles of rodent 86 

TLE models were collected and classified into acute, latent and chronic stages of epileptogenesis. These 87 

profiles were then utilized for generating stage-specific gene expression signatures. Functional modules 88 

were detected from the coexpression network and their association with each epileptogenesis stage was 89 

assessed. Further, key gene regulators underlying epileptogenesis were identified by inferring the 90 

differential protein activity of regulators in each stage compared to control group. The influence of key 91 

regulators on synaptic signaling pathways were also explored. Finally, the validity of these key regulators 92 

was proved by their association with seizure frequency and hippocampal sclerosis in human TLE 93 

patients. 94 

 95 

 96 

Methods 97 

Data collection and preprocessing 98 

We searched the Gene Expression Omnibus (GEO) database using key words “temporal lobe 99 

epilepsy”, “TLE” or “MTLE”, and restricted the study type as “Expression profiling by array, or by high 100 

throughput sequencing”. The organisms of samples were limited to Homo sapiens, Rattus norvegicus and 101 

Mus musculus. After manually checking all resulting datasets, we obtained five microarray datasets of 102 

rodent TLE models that covered different time points following SE and two human TLE patient RNA-seq 103 

datasets with epilepsy symptom information (seizure frequency or hippocampal sclerosis). Details about 104 

these datasets, including accession numbers, platforms and references, were listed in Table 1. For 105 

microarray datasets, the series matrix files were downloaded and then subjected to quality assessment 106 

using the arrayQualityMetrics package from Bioconductor [25]. Outliers were identified using heatmaps 107 

and dendrograms based on inter-array expression distances, and also boxplots and density estimate 108 

plots. For samples from GSE27166 and GSE73878, which contain both sides of hippocampus, only the 109 

expression profiles of the ipsilateral hippocampi were included. For RNA-seq datasets, the matrices of 110 

raw gene counts were downloaded from GEO database. Genes with very low counts across samples 111 

were filtered out based on the count-per-million (CPM) as implemented in the R package ‘edgeR’ (for 112 

detailed threshold, see the section “Human TLE patient RNA-seq data analysis”) [26]. To detect outlier 113 

across samples, the counts were normalized by the size factor of each library, and then log2 transformed 114 

and subjected to hierarchical clustering. Samples that did not show class-based clustering were removed 115 

in further analysis. 116 

 117 

Principal component analysis 118 

Unsupervised principal component analysis (PCA) was performed to further visualize the correlations 119 

among samples belonging to different epileptogenesis stages or epilepsy symptoms. All datasets were 120 

normalized and log2 transformed, and then analyzed using the prcomp function from the “stats” module in 121 

R. PCA methodology captures the inherent gene expression patterns in the data by projecting multivariate 122 

data objects onto a lower dimensional space while retaining much of the original variance [27].  123 
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 124 

Differential gene expression analysis for individual datasets 125 

For individual microarray datasets, we used the limma [28] and RankProd (RP) [29] packages from 126 

Bioconductor for differential expression analysis between sham control and epileptic samples of different 127 

epileptogenesis stages. The limma approach compare groups of samples by fitting gene-wise linear 128 

models and applying empirical Bayes methods to identify differentially expressed genes (DEGs). The 129 

genes with absolute log2FC (fold change)�>0.5 and adjusted P-value for multiple comparison (FDR) 130 

<�0.05 were considered significantly differentially expressed. RP is a non-parametric statistical method 131 

used to detect variables consistently upregulated or downregulated in replicate samples. It provides 132 

several advantages over linear modeling, including the biologically intuitive criterion, fewer model 133 

assumptions, and increased performance with noisy data. The DEGs were identified only based on the 134 

percentage of false predictions (pfp < 0.05) without any fold change restrictions. The list of DEGs 135 

identified by the two methods for each dataset was compared using Venn diagrams created by jvenn [30]. 136 

 137 

Gene meta-signatures for specific epileptogenesis stages 138 

For each epileptogenesis stage, the gene expression matrices of samples belonging to the 139 

corresponding stage were integrated from multiple datasets and meta-analysis was performed to 140 

evaluate the differential gene expression using the RankProd package [29]. Though the RP method was 141 

initially developed to detect DEGs in a single experiment, it is able to integrate datasets from multiple 142 

origins and overcome the heterogeneity among them because of the use of ranks instead of actual 143 

expression values. The four microarray platforms GPL1261, GPL2896, GPL6247 and GPL6885 for the 144 

rodent TLE model datasets contain 21720, 12733, 15124 and 17125 unique genes, respectively, of which 145 

9139 genes were common across all platforms. The expression values of these common genes in each 146 

dataset were then extracted. For multiple probes that correspond to the same gene in a dataset, the 147 

probe with maximum mean expression values was retained to represent that gene. The RP method was 148 

then applied to the combined datasets of each epileptogenesis stage to assess the differential expression 149 

of genes. As RP employs separate ranks for up- and down-regulated genes, we integrated the two rank 150 

lists using the following equation (Eq. 1). 151 

����� � � 1 � �����

��	
����
, ��	
��	 log�FC � 0

�1 � �������

��	
������
, ��	
��	 log�FC � 0�                          (1) 152 

The gene lists with the normalized rank (Rnorm) and average log2FC was then served as gene 153 

meta-signatures for the three epileptogenesis stages. 154 

 155 

Gene coexpression network construction and module detection. 156 

To construct a epileptogenesis-context gene coexpression network, we subjected the dataset 157 

containing the entire process of epileptogenesis to weighted gene coexpression network analysis 158 

(WGCNA) [19, 21]. To overcome outlier bias, a robust correlation measure, biweight midcorrelation, was 159 

used to quantify the co-expression similarity sij between each pair of genes [31]. Then, a weighted 160 

network adjacency matrix A = [aij] was computed by applying a power function on all positive gene 161 

correlations, and was set to be zero when two genes have negative (or zero) correlations (Eq. 2).  162 

��� �  �����      ��� � 0  0        ��� � 0 �                                     (2) 163 

This ensures the connections of all gene pairs have the same direction and reduces the strength of 164 
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weak correlations while preserving connection strength of highly correlated genes. The connectivity k for 165 

each gene was then defined as �� � ∑ ����
���  and was used for the network analysis. To balance the 166 

scale-free topology (i.e. p(k) ~ k-γ) and the sparsity of connections between genes in the network, a set of 167 

β values was evaluated to obtain the optimal specificity and sensitivity. To detect modules from the gene 168 

coexpression network, the topological overlap matrix (TOM), which reflects the relative 169 

interconnectedness between each pair of genes, was calculated. Based on the topological overlap 170 

dissimilarity (1–TOM) between genes, a gene dendrogram was generated using average hierarchical 171 

clustering. The dynamic branch cutting method was then used for detecting gene coexpression clusters 172 

(modules) in the dendrogram depending on its shape. Module eigengene, which is the first principal 173 

component of gene expression, was calculated to summarize the gene expression within a module and to 174 

merge modules with high similarities.  175 

 176 

Cell-type enrichment analysis 177 

For the cell-type enrichment, marker genes of nine brain cell types were obtained from the single-cell 178 

RNA-seq profiles of the mouse cortex and hippocampus [32]. These include three types of neurons 179 

(cortical pyramidal neurons, CA1 pyramidal neurons and interneurons), four types of glia cells (astrocytes, 180 

oligodendrocytes, microglia and ependymal cells), and the vascular endothelial and mural cells. 181 

Enrichment between modules and the cell-type marker genes was measured using the hypergeometric 182 

test with subsequent BH correction for multiple comparison as implemented in the userListEnrichment 183 

function in the WGCNA package [21]. 184 

 185 

Functional enrichment analysis 186 

Functional meta-analysis for multiple gene sets (modules) was performed via Metascape [33] 187 

express analysis. Redundant terms were clustered into groups based on their similarities and the top 20 188 

scored clusters were used as the final functional annotation for modules. Functional enrichment analysis 189 

against the KEGG pathway database for the key regulator list was performed using DAVID v6.8 [34].  190 

 191 

Module association score (MAS) with different epileptogenesis stages  192 

To evaluate the association degree of modules with a specific epileptogenesis stage, a module 193 

association score (MAS) was defined to reflect the overrepresentation degree of a module at the 194 

extremes (top or bottom) of a ranked gene signature. For each module, only genes with the scaled 195 

intramodular connectivity greater than 0.2 were kept to represent the module. This reduced the noise for 196 

calculating MAS as genes with lower connectivity within a module typically contribute less to its functions. 197 

The MAS and the corresponding significance level were then calculated using the fgsea R package [35] 198 

against the gene meta-signature of each epileptogenesis stage. The fgsea method implements a special 199 

algorithm for fast gene set enrichment analysis. The significance of gene set enrichment was determined 200 

using the empirical enrichment score null distributions simultaneously calculated for all the gene set sizes. 201 

Module MAS with the adjusted P-value less than 0.05 was considered to be significantly associated with a 202 

specific epileptogenesis stage. 203 

 204 

Gene regulatory network construction 205 

Candidate gene regulators were collected from three aspects. 1) Transcription factors or regulators 206 

(TFs). Transcription factors were obtained by extracting genes annotated in GO molecular function as 207 

GO:0003700, “DNA binding transcription factor activity”. Transcription regulators were the intersection of 208 
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genes annotated as GO:0003677 “DNA binding” and genes annotated with GO:0140110, ‘transcription 209 

regulator activity’ or GO:0003612 “transcription coregulator activity” or GO:0006355, “regulation of 210 

transcription, DNA-templated”. 2) Synaptic proteins (SPs). SPs are regarded as genes annotated in GO 211 

cellular component as GO:0045202, ‘synapse’ or GO:0030424, “axon” or GO:0030425, “dendrite”. 3) 212 

Signaling proteins (Signal), which were built upon genes annotated in GO Biological Process 213 

GO:0007165 “signal transduction” and not overlapping with above two gene list. The genes corresponded 214 

to these GO terms were extracted using the biomaRt package [36]. These candidate regulators along with 215 

the gene expression matrix were subjected to the ARACNe-AP software [37] for reverse engineering a 216 

gene regulatory network. ARACNe was run with 100 bootstrap iterations with parameters set to 0 DPI 217 

(data processing inequality) tolerance and MI (mutual information) P-value threshold of 10−8.  218 

 219 

Protein activity inference for gene regulators 220 

To infer the relative protein activity of the gene regulators at different epileptogenesis stages, we 221 

applied the VIPER algorithm [24] to test for regulon (a group of genes that are regulated by the same 222 

regulator) enrichment on stage-specific gene signatures. VIPER uses a probabilistic framework that 223 

integrates target mode of regulation (i.e., activated, repressed or undetermined represented by an index 224 

ranging from -1 to 1), statistical likelihoods of regulator-target interactions and target overlap between 225 

different regulators (pleiotropy). To compute the enrichment of a protein’s regulon in differentially 226 

expressed genes, an analytic rank-based enrichment analysis (aREA) method, which conduct a statistical 227 

analysis based on the mean of ranks, was used. The normalized enrichment score computed by aREA for 228 

each regulon were employed to quantitatively represent the relators’ relative protein activity in an 229 

epileptogenesis stage compared to the control group.  230 

 231 

Integration analysis of synaptic signaling pathways 232 

To investigate the synaptic signaling variations at different epileptogenesis stages, an 233 

epilepsy-context synaptic signaling pathway was integrated and characterized. The integrated pathway is 234 

composed of key regulators enriched in the synapse-related pathways (i.e., the dopaminergic, cholinergic, 235 

glutamatergic, serotonergic and GABAergic synapses), and critical intracellular signaling pathways 236 

including MAPK signaling, calcium signaling, cGMP-PKG signaling and Ras signaling pathways. The 237 

interactions between these key regulators and their regulatory relationships with biological functions were 238 

extracted from the KEGG pathway database [38].  239 

 240 

Human TLE patient RNA-seq data analysis 241 

For the dataset about TLE seizure frequency (GSE127871), genes with the CPM value greater than 242 

0.4 in more than 50% of the samples were retained for further analysis. While for the hippocampal 243 

sclerosis dataset (GSE71058), the threshold was set to CPM > 0.1 in more than eight samples, which is 244 

the minimum number of samples in the two groups (with and without HS). After hierarchical clustering and 245 

PCA analysis for the samples in each dataset, the DESeq2 package [39] was used for differential 246 

expression analysis. Genes with the adjusted P-value less than 0.05 were considered as DEGs, and the 247 

log2FC ranked gene list were used as gene expression signatures. To make cross-species gene 248 

mappings, we standardized gene identifiers from microarray probe identifiers to NCBI Entrez ID identifiers 249 

and mapped mouse Entrez ID identifiers to their human ortholog using the biomaRt [36] package.  250 

 251 

 252 
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Results 253 

Gene expression meta-signatures associated with different epileptogenesis stages 254 

To investigate the molecular profiles underlying the epileptogenesis, we used the time-specific 255 

hippocampal transcriptome data of rodent TLE models from five independent studies (Table 1). These 256 

studies contain both rat and mouse TLE models and the modeling approaches were various, including 257 

systematic administration of pilocarpine, intrahippocampal KA injection and electrical stimulation of 258 

amygdala. The epileptic samples from these datasets covered a wide range of time points after SE, 259 

ranging from hours, to days and months. Based on the described tissue extraction time and phenotype, 260 

the samples in each dataset were divided into the control group and groups of three epileptogenesis 261 

stages, i.e., the acute phase, latent period and chronic epilepsy (Fig. 1 and Table 1). After data 262 

normalization and preprocessing, 99 expression profiles were obtained and the individual datasets were 263 

then subjected to the PCA analysis. All datasets showed good separation among control samples and 264 

samples of different epileptogenesis stages along the first two PCs, of which PC1 accounted for the 265 

highest variation (27.8−49.8%) (Fig. 2). 266 

To evaluate the differential gene expression between control samples and epileptic samples of each 267 

epileptogenesis stage, we first applied the limma method [28] to individual datasets. The differentially 268 

expressed genes (DEGs) were defined as those that achieved an absolute log2FC (fold change)�>�0.5 269 

and a FDR�<�0.05 between control and epilepsy. There were four, three and two datasets that contain 270 

samples of the acute, latent and chronic stages, respectively. For the acute and latent stages, the 271 

differential expression analysis yielded gene lists with very small overlap across the datasets. While for 272 

the chronic phase, no DEGs were detected in one of the two datasets (Supplementary Fig. S1a). We 273 

then applied another differential expression analysis method RP [29] that differs from the linear 274 

modeling-based approaches. RP is a rank-based technique that detects genes that consistently appear 275 

among the most highly ranked genes (either strongly upregulated or downregulated) in a number of 276 

replicate samples. It identifies DEGs based on the estimated percentage of false predictions 277 

(pfp�<�0.05). The RP-based method depicts a slightly better but still small overlap of DEGs among 278 

datasets (Supplementary Fig. S1b). These results suggest that direct comparison across individual 279 

datasets was not feasible due to the heterogeneity of experimental approaches and profiling platforms. 280 

Since the RP algorithm transforms the actual expression values into ranks, it has the ability to handle 281 

variability among datasets and can be adapt to integrate datasets from multiple origins [40]. We thus 282 

adopted the RP for meta-analysis for each of the three epileptogenesis stages. We obtained a set of 2404, 283 

1000 and 373 DEGs (pfp < 0.05) for the acute, latent and chronic stages, respectively. The top 100 DEGs 284 

of each stage were shown in Supplementary Fig. S2. It is evident from the heatmap that DEGs identified 285 

using the RP meta-analysis were consistently up- or down-regulated across most datasets. Among those 286 

top genes, 21 genes were dysregulated across all three epileptogenesis stages, including 14 upregulated 287 

genes (i.e. C3, Cartpt, Cd44, Cd74, Cd9, Gfap, Ifitm3, Lcn2, Lgals3, Lyz2, Nptx2, Serping1, Timp1 and 288 

Vim) and 7 downregulated genes (i.e. Bcl11a, Cdh8, Cygb, Fibcd1, Kctd4, Pkp2 and Scn3b), among 289 

which Gfap and Scn3b were widely described as biomarkers of the epileptogenesis [9, 41]. Besides, the 290 

mRNA expression of the “immediate early gene” (IEG) Fos and neural activity-dependent gene Bdnf was 291 

markedly induced in the acute and chronic stages, respectively, consistent with their reported roles in 292 

seizures and epilepsy [42]. Though the latent and chronic stages have less DEGs than the acute phase, 293 

this could be part of the result of different numbers of samples for each stage. As increased number of 294 

samples raises the power of the statistical test, leading to a higher number of selected genes. Therefore, 295 

we further extracted the whole RP-ranked gene list with genes’ average log2FC for each epileptogenesis 296 
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stage, serving as the stage-specific gene expression signatures.  297 

 298 

Network functional dynamics during epileptogenesis 299 

The gene meta-signatures associated with different epileptogenesis stages provide a significant 300 

starting point for dissecting the development of epilepsy. However, it is difficult to pinpoint epileptogenic 301 

mechanisms without considering the functional organization of these genes. To this aim, an 302 

epilepsy-context gene coexpression network was built using WGCNA [21] based on the dataset that 303 

contains samples of all three epileptogenesis stages. 13 gene modules (M1−M13), with their size varied 304 

from 44 to 1,896 genes, were identified (Fig. 3a). To investigate the cell-based context of these modules, 305 

we performed enrichment analysis against marker genes of nine brain cell types including neurons, glial 306 

cells and endothelial cells which were derived from single-cell RNA-seq analysis of the mouse cortex and 307 

hippocampus [32]. Module M1, the largest module with 1896 genes, was significantly enriched with three 308 

types of glial cells, among which microglia was the most enriched cell type (adjusted P-value = 4.0E−55) 309 

(Supplementary Fig. S3). Modules M3, 6, 7, 8 and 9 were specifically enriched for pyramidal neurons 310 

and/or interneurons. And modules M12 and 13 were enriched in the ependymal cell and mural cell.  311 

Functional meta-analysis of these modules showed that module M1 mainly participated in GO 312 

biological processes of “positive regulation of cell migration”, “cytokine production”, “regulation of cell 313 

adhesion” and “apoptotic signaling pathway” (Fig. 3b). Moreover, M1 and modules M2, 4, 5 were all 314 

enriched with items of “neuron death” and “negative regulation of intracellular signal transduction”. 315 

Consistent with their enrichment for neuronal marker genes, modules M3, 6, 7, 8, 9, 10 and 11 were 316 

mainly involved in functions of the synapse, such as “regulation of ion transport”, “signal release”, 317 

“transmission across chemical synapses”, “regulation of vesicle-mediated transport” and 318 

“second-messenger-mediated signaling” (Fig. 3c).  319 

To investigate how the expression of these modules was regulated at different epileptogenesis 320 

stages, we defined a module association score (MAS) to reflect the degree of which a module was 321 

enriched at the top or bottom of the stage-specific gene signatures. All modules were significantly 322 

associated with at least one epileptogenesis stage, among which five modules (M1, 8 and M5, 6, 7) were 323 

consistently up- or down- regulated in all three stages (Fig. 3d). The two positively associated modules 324 

M1 and 8 were mainly related to the inflammatory response and increased intracellular signaling activity. 325 

While the negatively associated modules M5, 6 and 7 may imply an impairment of the synapse function 326 

after SE. M4, 3 and 13 exhibited a specific association with the acute, latent and chronic stage, 327 

respectively. Module M9 was downregulated in the acute and latent phases but not the chronic epilepsy 328 

stage. Overall, these results provide a landscape of functional organization underlying epilepsy 329 

development, and also the functional dynamic changes during epileptogenesis. 330 

 331 

Identification of gene regulators driving epileptogenesis 332 

To discover gene regulators controlling the transition from acute to latent and chronic stages of 333 

epileptogenesis, we interrogated the time-specific hippocampal transcriptome profiles using the VIPER 334 

algorithm [24] to infer the protein activity change of regulators in a specific stage. VIPER infers protein 335 

activity by systematically analyzing the expression of a protein’s regulon, which refers to the 336 

transcriptional targets of that protein. The ARACNe technique [37] which detect maximum information 337 

path targets was used to systematically infer regulons from epilepsy-specific gene expression data, 338 

resulting in an gene regulatory interactome of 41,364 interactions between 1,493 regulators and 5,695 339 

target genes. VIPER then compute the enrichment of a protein’s regulon in differentially expressed genes 340 
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based on a probabilistic framework that directly integrates target mode of regulation, regulator-target 341 

interaction confidence and target overlap between different regulators.  342 

Differential protein activities of 521 regulators were obtained for all three epileptogenesis stages. For 343 

each stage, key regulators were defined as those with absolute differential protein activity score greater 344 

than two, which represents a significant activity alteration compared to the control group (Fig. 4a). There 345 

were 214, 198 and 156 key regulators respectively associated with the acute, latent and chronic stage 346 

(Fig. 4b). 43% of the key regulators were dysregulated in all three stages, indicating that these regulators 347 

were immediately involved in the epileptogenesis following SE, and exhibited continuing changes 348 

extending into the chronic epilepsy period. Modules M1, 3, 6, 7 and 8 have the highest numbers of key 349 

regulators (Supplementary Fig. S4). Regulator activities in both M1 and M8 were upregulated during the 350 

epileptogenesis, yet their activities exhibited opposite changing trends. Whereas M1 regulators were 351 

mainly associated with acute response after the SE, M8 regulators may play major roles in the latent and 352 

chronic epilepsy stages (Fig. 4c). Regulators in M3, 6 and 7 show constant downregulated activity at all 353 

three epileptogenesis stages.  354 

To understand the molecular processes affected by these key regulators, we performed enrichment 355 

analysis against the KEGG pathways database [38]. The analysis showed that the key regulators were 356 

involved in signaling pathways related to chemical synaptic transmission, immune response, growth 357 

factor signaling, and pathways related to cell proliferation and death (Fig. 4d). Among the synaptic 358 

transmission -related pathways, Dopaminergic synapse was the top enriched pathway (adjusted 359 

P-value�=�1.4E−05), followed by Cholinergic, Glutamatergic, Serotonergic and GABAergic synapses. 360 

Besides, the Retrograde endocannabinoid signaling, which can suppress both excitatory and some 361 

inhibitory synapses, was also enriched with the key regulators (adjusted P-value�=�1.7E−04). 362 

Endocannabinoids and their receptors are altered by epileptic seizures and can in turn control key 363 

epileptogenic circuits by inhibiting synaptic transmission in the hippocampus [43]. Multiple immune 364 

response-related pathways were also highly enriched, including the Toll-like receptor signaling, 365 

Chemokine signaling and TNF signaling pathways (adjusted P-value range�=�8.7E−05 to 8.3E−04). The 366 

Neurotrophin signaling pathway (adjusted P-value�=�1.7E−03) which can be activated by nerve growth 367 

factor (NGF) and brain-derived neurotrophic factor (BDNF) is an important pathway involved in the 368 

survival, development, and function of neurons. Other enriched pathways include the MAPK signaling, 369 

Calcium signaling, cGMP-PKG signaling and Ras signaling pathways (adjusted P-value 370 

range�=�3.4E−04 to 2.3E−03), which are critical intracellular signaling pathways related to multiple 371 

cellular functions.  372 

 373 

Variations of synaptic signaling at different epileptogenesis stages. 374 

A thorough knowledge of signaling pathways involved in both acute- and long-term responses to SE 375 

is crucial to unravel the origins of epilepsy [42]. To better understand the regulatory mechanism of 376 

synaptic transmission between neurons underlying epileptogenesis, we integrated and characterized an 377 

epilepsy-context synaptic signaling pathway that composed of the key regulators involved in 378 

synapse-related functions (Fig. 5a). A heatmap of the protein activities of these key regulators in different 379 

epileptogenesis stages was shown in Fig. 5b, in which the regulator types and modules were marked on 380 

the top. 381 

We first examined the activity changes of key regulators located on synaptic membrane. For 382 

ionotropic glutamate receptors, only the kainate receptor (KAR) subunit 1 (GRIK1) was strikingly 383 

downregulated in the acute and latent stages. While regulators GRIN1, GRIA1 and GRIA2, which are the 384 
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subunits of NMDAR and AMPAR, also exhibited downregulation after SE, though not significant. Two 385 

subunits of GABAA receptor (GABRB3 and GABRG2) showed opposite changing trends during the 386 

epileptogenesis. GABRB3 was significantly downregulated in the acute phase, while GABRG2 was 387 

gradually upregulated in the latent and chronic periods. Besides, decreased activity of acetylcholine 388 

receptors (CHRNB2 and CHRM3) and serotonin receptor (HTR1A) was also observed. Among these 389 

genes, mutations of GRIN1, GABRB3, GABRG2 and CHRNB2 have been reported associating with some 390 

familial epilepsy syndromes [44]. Notably, increased activity of glutamate transporters (SLC1A2 and 391 

SLC1A3) and decreased activity of GABA transporters (SLC6A1 and SLC32A1) further support the idea 392 

that imbalance between excitation and inhibition and altered threshold for neural excitation are underlying 393 

epileptic behaviors. The voltage-gated potassium channel Kv3.1 (KCNC1, alpha subunit) was markedly 394 

downregulated in the acute stage, implying the inability of the neuron to normally depolarize following SE. 395 

The accessory subunits of Kv1 (KCNAB1 and KCNAB2) and Kv4 (KCNIP3) also display stage-specific 396 

activity changes. No significant variation was found for the activity of voltage-gated sodium or calcium 397 

channels. 398 

Constant upregulation of BDNF and TrkB (NTRK2) was observed during the entire epileptogenesis, 399 

which further activated the adaptor proteins SHC1, GAB1 and PLCγ (PLCG2). This result is consistent 400 

with previous studies reporting that excessive activation of TrkB caused by SE promotes development of 401 

TLE [45, 46]. The two Gα subunits of Gi (GNAI2) and Gq (GNA15), which can inhibit adenylate cyclase 402 

(AC) and activate phospholipase C (PLC), exhibit significant upregulation, while the Gβ and Gγ subunits 403 

(GNB5 and GNG3) of the Gβγ complex were downregulated strikingly in the acute stage. In accord with 404 

this, protein activity of PLC isotypes (PLCB2, PLCB3, and PLCD4) were also upregulated. This further 405 

activates the calcium signaling and protein kinase C (PKC), which can activate downstream transcription 406 

factors NFKB1 and RELA, inducing the transcription of target genes, like c-fos and BCL-2. For MAPK 407 

signaling, though there were increased activity of upstream Ras (RRAS), Raf (ARAF) and MAP3K8, both 408 

ERK (MAPK1) and JNK (MAPK8) activities were downregulated, along with the downregulation of 409 

activating transcription factor 2 (ATF2). Finally, the PI3K-AKT-CREB pathway, CaM kinase (CAMK2B) and 410 

calcium binding protein SCGN all exhibited decreased activity. In sum, these results demonstrate that the 411 

synapse-to-nucleus signaling underlying epileptogenesis were not simply up- or down-regulated, but 412 

displayed a complex restructured system related to neuronal hyperexcitation and impaired synaptic 413 

plasticity. 414 

 415 

Key regulators associated with seizure frequency and hippocampal sclerosis in human TLE  416 

One of the direct outcomes of the epileptogenesis is the presence of spontaneous recurrent seizures. 417 

To investigate whether the identified key regulators were involved in controlling seizure frequency in 418 

patients with TLE, we utilized an RNA-Seq dataset of the hippocampal tissue resected from 12 medically 419 

intractable TLE patients with seizure frequencies ranging from 0.33 to 120 seizures per month. 420 

Hierarchical clustering and PCA analysis of the normalized profiles led to three clusters that can be 421 

regarded as the low (mean = 4.11 seizures/month), medium (mean = 13.2 seizures/month) and high 422 

(mean = 90 seizures/month) seizure frequency groups (Supplementary Fig. 5a). Differential expression 423 

analysis was then conducted between low or medium versus high SF groups to get both DEGs and gene 424 

expression signatures. Based on seizure frequency-associated gene signatures, we first tested whether 425 

the epileptogenesis-related functional modules were also disturbed in the higher seizure frequency group. 426 

The MAS calculated on low versus high SF gene expression signature demonstrated that module M1, 427 

which relate to acute inflammatory response, was the most strongly upregulated module, whereas 428 
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modules M3, 5, 6, 7 and 9, which are related to synaptic transmission, were downregulated, in line with 429 

these modules’ expression changes in the epileptogenesis (Fig. 6a). For medium verse high SF gene 430 

expression changes, only modules M8 and M13 were significantly upregulated (Fig. 6b). As M8 and M13 431 

were activated mainly in the chronic epilepsy stage, these results indicate that TLE patients with high 432 

seizure frequency indeed exhibit similar functional alterations detected on rodent TLE models undergo 433 

the epileptogenesis. We further examined whether the expression of key regulators was significantly 434 

altered in the high SF group, and found 108 (41%) key regulators overlap with DEGs detected in high 435 

versus low or medium SF groups.  436 

Hippocampal sclerosis (HS) is a common neuropathological condition encountered in TLE patients. It 437 

is featured with severe neuronal cell loss and gliosis in the hippocampus and can be both the cause and 438 

outcomes of the epileptogenesis [47]. Utilizing the RNA-seq profiles of dentate granule of MTLE patients 439 

with and without HS, we investigated how the epileptogenesis-associated functional modules and key 440 

regulators were modulated by HS (Supplementary Fig. 5b). Modules’ MASs on the HS-related gene 441 

signature showed that M1 had the highest MAS value (adjusted P-value = 0.0504). In addition, modules 442 

M8, 11, 12 and 13 were significantly upregulated and M6 was downregulated. 25 key regulators were 443 

found to be differentially expressed in patients with HS. By checking these regulators, we discovered 11 444 

regulators that were associated with both hippocampal sclerosis and seizure frequency, namely ANXA5, 445 

ATF3, FAM107A, KCNK1, MAP7, NFIL3, RPS4X, SEPT2, SNAP23, SPARC and SV2B (Fig. 6c and 446 

Supplementary Fig. S6). Further analysis revealed that five of these key regulators (ANXA5, FAM107A, 447 

SEPT2, SNAP23 and SPARC) exhibit the same changing patterns (all upregulated) across the 448 

epileptogenesis and conditions of high seizure frequency and HS (Fig. 6c). Among them, SPARC 449 

(secreted protein acidic and rich in cysteine) was the most highly upregulated gene in both high SF 450 

(log2FC = 2.36, adj-P = 1.2E−05) and HS (log2FC = 2.24, adj-P = 1.2E−04) groups. Only SNAP23 451 

(synaptosome associated protein 23), which is a vesical-associated protein, has been previously reported 452 

exhibiting upregulation in TLE patients with sclerotic hippocampus [48], while other four proteins have not 453 

been associated with epilepsy yet. Altogether, 122 out of 265 key regulators of epileptogenesis were 454 

associated with high seizure frequency and/or hippocampal sclerosis, indicating that our systems-level 455 

analysis has provided a valuable set of genes that may serve as potential therapeutic targets for epilepsy.  456 

 457 

 458 

Discussion 459 

Epilepsy is a heterogeneous disorder with multiple origins and many different mechanisms of 460 

pathogenesis among patients [49]. To better understand the molecular mechanisms underlying 461 

epileptogenesis, it is necessary to take advantage of multiple animal epilepsy models with different origins 462 

and phenotypes. In this study, we performed an integration analysis on time-specific transcriptome 463 

profiles of various rodent TLE models, which include both chemical and electrical kindling models of 464 

epilepsy. Direct comparison of DEGs identified from individual datasets led to very limited information, 465 

indicating there need more systematic analysis to detect genes that are consistently up- or 466 

down-regulated across datasets of different origins. By applying a rank-based meta-analysis method RP 467 

to the gene expression matrix of each epileptogenesis stage, we obtained stage-specific gene expression 468 

signatures to depict the molecular features of the three epileptogenesis stages at a genome-wide level. 469 

Compared to using DEGs based on arbitrary cutoffs as gene signatures for a specific phenotype, gene 470 

lists with the relative fold change or rank information for each gene provide a more comprehensive 471 
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molecular representation for each epileptogenesis stage.  472 

Based on the stage-specific gene meta-signatures of epileptogenesis, we proposed a MAS value to 473 

assess the differences of cellular and molecular functions between stages. For example, the 474 

microglia-associated module M1, which is involved in multiple inflammation and immune response 475 

processes, was constantly upregulated throughout the entire epileptogenic process. This provides 476 

evidence to support the idea that inflammatory processes within the brain constitute a common and 477 

crucial mechanism in the pathophysiology of seizures and epilepsy [50]. Besides, we also observed that 478 

pyramidal neuron-enriched modules, M3 and M6, and interneuron-enriched module M7 were 479 

downregulated in all three epileptogenesis stages, which indicates that the synaptic transmission is 480 

severely impaired between these two types of neurons, leading to the excitation/inhabitation imbalance 481 

and circuit-level dysfunction in the hippocampus [3]. The consistency between the cell-type specificity and 482 

functional annotation of modules also demonstrates the biological significance of the identified modules in 483 

the context of epileptogenesis. The dynamic changes of modules’ association with different stages thus 484 

provide us a global landscape of the evolution process of epileptogenesis.  485 

The expression dynamics of the functional modules are typically drove by defects in multiple gene 486 

regulators which exhibit concurrent and aberrant activities. For identifying key gene regulators, we 487 

inferred the differential protein activity of regulators in the three epileptogenesis stages. The regulator 488 

types include not only TFs, which are commonly regarded as the direct regulators controlling transition 489 

between different biological conditions [51], but also proteins on the synaptic membrane and intracellular 490 

signaling proteins. Given that various proteins located at the membrane of pre- or post-synapse are under 491 

the most directly impact when seizure activity occurs, the inclusion of synaptic and signaling proteins can 492 

help better depict the abnormalities of the synapse-to-nuclear signaling underlying epileptogenesis. 493 

Furthermore, the changing pattern of relative regulator activity in a module offers a straightforward 494 

illustration of how the regulators were modulated along with the development of epilepsy (Fig. 4c). For 495 

instance, we found that regulator activity of M8 exhibit gradual upregulation during epileptogenesis, 496 

implying these key regulators were remarkedly activated in the latent and chronic phases and may thus 497 

contribute to the formation of a brain state that supports recurrent, unprovoked seizures. 498 

We further utilized transcriptome datasets of human TLE patients with or without hippocampal 499 

sclerosis and patients with different seizure frequencies to test the validity of key regulators detected from 500 

rodent TLE models. Hippocampal sclerosis is the most frequent cause of drug-resistant TLE, and 501 

presents a broad spectrum of electroclinical, structural and molecular pathology patterns [52]. We 502 

discovered four new gene regulators (ANXA5, FAM107A, SEPT2 and SPARC) from module M1 whose 503 

upregulation may contribute to higher seizure frequency and hippocampal sclerosis in TLE. Though the 504 

precise functions of these regulators are not fully understood, most of them are involved in the functions 505 

of the synapse and may have a potential role in maintaining synaptic plasticity. Detailed mechanisms of 506 

how these regulators drive the process of epileptogenesis and further lead to chronic recurrent seizures 507 

or hippocampal sclerosis need to be investigated using appropriate animal models of epilepsy in the 508 

future. In summary, our work provides a landscape of the gene network dynamics underlying 509 

epileptogenesis and highlighted candidate regulators controlling epileptogenesis that may warrant further 510 

investigation as potential anti-epileptogenic targets. 511 
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Figure legends 643 

Fig. 1. Schematic overview of the study design. To investigate the molecular mechanisms underlying 644 

the epileptogenic process, we proposed an analytic framework which comprises four steps. Firstly, the 645 

hippocampal transcriptome datasets of rodent TLE models were collected and divided into the acute, 646 

latent and chronic stages based on the described tissue extraction time and phenotypes. Meta-analysis 647 

was then performed using the RankProd method to evaluate differential gene expression and to generate 648 

the gene meta-signature for each stage. Secondly, to elucidate the functional organization of genes under 649 

the epilepsy context, gene coexpression network was constructed and used for identifying functional 650 

modules. A module association score (MAS) was then defined to quantify a module’s association degree 651 

with an epileptogenesis stage. Thirdly, to identify key regulators controlling the transition between stages, 652 

a gene regulatory network was constructed and the VIPER algorithm was employed to infer regulator 653 

activity changes in epileptic samples. Finally, using the RNA-seq profiles of human TLE patients with 654 

recurrent seizures and hippocampal sclerosis, key regulators associated with both conditions were 655 

screened out.  656 

 657 

Fig. 2. Principal component analysis (PCA) for microarrays of rodent TLE models. The variances 658 

captured by the first two PCs are shown along the respective axes. Samples belonging to the acute, latent 659 

and chronic stages are colored in red, blue and green, and control samples in gray. In all datasets, control 660 

samples and epileptic samples of different epileptogenesis stages form separate clusters.  661 

 662 

Fig. 3. Network functional dynamics during epileptogenesis. a. Dendrogram showing clustering of 663 

8,384 genes based on the topological overlap dissimilarity of genes in the gene coexpression network. 664 

Bottom color bar indicates the 13 gene coexpression modules (M1−M13) and their corresponding sizes 665 

(i.e. the number of genes in a module). b and c. Heatmaps showing the functional meta-analysis results 666 

for modules enriched with glia marker genes (M1, 2, 4 and 5) (b) and modules enriched with neuron 667 

marker genes (M3, 6, 7, 8, 9, 10 and 11) (c). The top 20 enriched functional terms are shown as rows and 668 

columns show modules. The heatmap is colored by the p-values. d. The MASs and corresponding 669 

significance levels (−log10(adjusted P-value)) of modules at the three epileptogenesis stages. The size of 670 

circle is proportional to the number of genes in each module used for calculating MAS.  671 

 672 

Fig. 4. Identification of gene regulators driving epileptogenesis. a. Heatmap of the relative protein 673 

activity of 265 key regulators at the three epileptogenesis stages compared to the sham control group, 674 

with red denoting upregulation and blue denoting downregulation. The modules and types of these 675 

regulators are displayed at the left. SP, synaptic protein; Signal, signaling protein; TF, transcription factor. 676 

b. Venn plot showing the overlap of key regulators in the three epileptogenesis stages. c. Module-based 677 

regulator activity dynamics during epileptogenesis indicated by the mean and standard deviation of 678 

relative activities of key regulators in a module. d. KEGG pathway enrichment analysis for the 265 key 679 

regulators. The y-axis represents the top 15 significantly affected canonical pathways and x-axis the 680 

–log10 transformed BH adjusted P-values.  681 

 682 

Fig. 5. Variations of synaptic signaling at different epileptogenesis stages. a. The integrated 683 

synaptic signaling pathway showing the relationship between key regulators (KRs) and their activity 684 

changes during epileptogenesis (red, upregulated KR; blue, downregulated KR; white, other proteins). b. 685 

Heatmap showing differential protein activity of key regulators of the synaptic signaling pathway in three 686 
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epileptogenesis stages. Dysregulated key regulators in the pathway are shown as rows and columns 687 

show differential protein activity in the acute, latent and chronic stage, respectively. The types and 688 

modules of these key regulators are shown on the top. SP, synaptic protein; Signal, signaling protein; TF, 689 

transcription factor. 690 

 691 

Fig. 6. Modules and key regulators associated with seizure frequency and hippocampal sclerosis 692 

in human TLE. a. The MAS and corresponding significance level (−log10(adjusted P-value)) of modules 693 

calculated on gene expression signatures of low versus high seizure frequency (SF) group and medium 694 

versus high SF group. b. The same as a but calculated on the gene expression signature associated with 695 

hippocampal sclerosis (HS). In a and b, the size of circle is proportional to the number of genes in each 696 

module used for calculating the MAS. c. Boxplots showing the log2-scaled normalized counts of the five 697 

key regulators in TLE patients with different seizure frequency, and patients with and without HS. Bottom 698 

of each plot showing the adjusted P-values of genes derived from differential expression analysis using 699 

the DESeq2 package.  700 

 701 

 702 

 703 

Tables 704 

Table 1. List of rodent TLE model microarray datasets used for epileptogenesis analysis and human 705 

TLE patient RNA-seq datasets used for validation. 706 

Species 
Dataset  

accession ID 

Number of 

samples 

Epileptogenesis stages 

Model type/Disease Platforms  
References 

(PMID) 
Acute 

phase 

Latent 

period 

Chronic 

epilepsy 

Rat GSE14763 18 + +  Pilocarpine GE Bioarray 20377889 

 GSE27166 24   + intrahippocampal KA GE Bioarray 21695113 

 
GSE49849 20 + +  

electrical stimulation  

of amygdala 
Affymetrix Array  24146813 

Mouse GSE73878 80 + + + intrahippocampal KA Illumina Beadchip NA 

 GSE88992 17 +   ditto Affymetrix Array 30114263 

Human GSE127871 12   + 
TLE with low or high  

seizure frequency 
Illumina HiSeq  NA 

 
GSE71058 22   + 

TLE with and without 

hippocampal sclerosis 
Illumina HiSeq  26799155 

KA, kainic acid; NA, not available; PMID, PubMed ID 707 

 708 

 709 

 710 
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