

Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy

Yingxue Fu ^{1,2}, Zihu Guo ^{2,3}, Ziyin Wu ^{2,3}, Liyang Chen ¹, Yaohua Ma ³,
Zhenzhong Wang ², Wei Xiao ^{2,*}, Yonghua Wang ^{1,2,3,*}

¹ Center for Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.

² State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China.

³ Lab of systems pharmacology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China

* Corresponding authors: Yonghua Wang, yh_wang@nwafu.edu.cn, and Wei Xiao, xw_kanion@163.com.

Abstract

Temporal lobe epilepsy (TLE) is the most prevalent and often devastating form of epilepsy. The molecular mechanism underlying the development of TLE remains largely unknown, which hinders the discovery of effective anti-epileptogenic drugs. In this study, we built a systems-level analytic framework which integrates gene meta-signatures, gene coexpression network and cellular regulatory network to unveil the evolution landscape of epileptogenic process and to identify key regulators that govern the transition between different epileptogenesis stages. The time-specific hippocampal transcriptomic profiles from five independent rodent TLE models were grouped into acute, latent and chronic stages of epileptogenesis, and were utilized for generating stage-specific gene expression signatures. 13 cell-type specific functional modules were identified from the epilepsy-context coexpression network, and five of them were significantly associated with the entire epileptogenic process. By inferring the differential protein activity of gene regulators in each stage, 265 key regulators underlying epileptogenesis were obtained. Among them, 122 regulators were demonstrated being associated with high seizure frequency and/or hippocampal sclerosis in human TLE patients. Importantly, we discovered four new gene regulators (*ANXA5*, *FAM107A*, *SEPT2* and *SPARC*) whose upregulation may drive the process of epileptogenesis and further lead to chronic recurrent seizures or hippocampal sclerosis. Our findings provide a landscape of the gene network dynamics underlying epileptogenesis and uncovered candidate regulators that may serve as potential targets for future anti-epileptogenic therapy development.

Keywords: epilepsy; epileptogenesis; gene modules; key regulators; anti-epileptogenic drugs

37 **Introduction**

38 Epilepsy is a complex neurological disorder characterized by recurrent unprovoked seizures, of
39 which temporal lobe epilepsy (TLE) is the most prevalent form [1]. The term epileptogenesis refers to the
40 gradual process through which normal neuronal networks are altered resulting in the generation of
41 chronic spontaneous seizures [2, 3]. The process can be triggered by diverse brain insults, including
42 traumatic brain injury, stroke, infections and prolonged seizures such as status epilepticus (SE), and is
43 typically thought to involve three stages [4, 5]. The first is the acute phase right after the brain insult, in
44 which a cascade of morphologic and biologic changes occurs in the injured area. This is followed by a
45 variable latent period during which behavioral seizures are not observed. The third stage is chronic,
46 established epilepsy with the emergence of spontaneous seizures. Identifying the multiple dysregulated
47 gene regulators that contribute to epileptogenesis in TLE is crucial for developing effective
48 anti-epileptogenic drugs [6]. Several large-scale molecular signaling cascades such as mTOR,
49 BDNF-TrkB and REST/NRSF pathways, have been demonstrated playing a role in epileptogenesis [7-9].
50 However, the detailed molecular mechanisms underlying the evolution process of epileptogenesis remain
51 largely unknown.

52 The presence of various high-throughput omics technologies offers a great opportunity to unveil the
53 molecular and cellular dynamics underlying epileptogenesis. Recently, a large-scale transcriptomic
54 profiling of surgically resected hippocampi from TLE patients has been generated and used to identify
55 gene-regulatory networks and regulators genetically associated with epilepsy [10, 11]. However, there are
56 obvious limitations and challenges in exploring the process of epileptogenesis in human epileptic tissues.
57 One drawback is that omics studies of human TLE generally lack appropriate control samples of healthy
58 brain tissues. Furthermore, the specimens collected from hippocampus surgery for TLE patients are
59 usually at an advanced stage and have been subjected to the treatment of various antiepileptic drugs
60 (AEDs) [12]. Alternatively, well-characterized animal TLE models which mimic prominent
61 histopathological and electroencephalographic features of human TLE can be employed to examine the
62 key molecular alterations during epileptogenesis [13]. Only a few reports have studied the genome-wide
63 molecular changes throughout epileptogenesis using animal TLE models [14, 15]. While other studies
64 covered time points more closely related with either acute responses to SE or cumulative effects of
65 chronic spontaneous seizures [16, 17]. As the modeling approaches and tissue dissection time varies
66 across these studies, a systematic integration analysis of the existing datasets will likely provide a more
67 comprehensive and robust molecular profiling for the epileptogenic process from the early hippocampal
68 injury to the onset of chronic epilepsy.

69 Systems biology-based approaches that utilize network theory to organize transcriptome datasets
70 have been used to prioritize candidate disease genes or to discern transcriptional regulatory programs
71 [18-20]. One method to infer critical genes (hubs) and gene set-phenotype associations from gene
72 expression data is the coexpression network analysis, which builds scale-free gene networks based on
73 the pairwise gene expression correlations [21]. Genes with higher similarity scores tend to co-activate in a
74 specific biological condition. Although coexpression analysis can help identify genes or gene modules
75 that associate with the disease or biological phenotypes, it normally does not infer causality or distinguish
76 between regulatory and regulated genes [22]. The algorithm for the reconstruction of accurate cellular
77 networks (ARACNe) uses an information theoretic approach to eliminate most indirect interactions
78 inferred by co-expression methods, leaving those expected to be regulatory [23]. Although originally being
79 applied to infer the relationship between transcription factors and their target genes, the method can also
80 be adapted to infer the indirect transcriptional targets for other kind of regulators, such as signaling

81 proteins [24]. Using these methods, the observed gene expression changes can be placed into a systems
82 context that was related to the underlying disease biology.

83 In this study, we proposed a systems-level analytic framework which integrates gene
84 meta-signatures, gene coexpression network and cellular regulatory network to reveal the evolution
85 landscape of epileptogenic process and distinguish key regulators that govern the transition between
86 different epileptogenesis stages (**Fig. 1**). The time-specific hippocampal transcriptomic profiles of rodent
87 TLE models were collected and classified into acute, latent and chronic stages of epileptogenesis. These
88 profiles were then utilized for generating stage-specific gene expression signatures. Functional modules
89 were detected from the coexpression network and their association with each epileptogenesis stage was
90 assessed. Further, key gene regulators underlying epileptogenesis were identified by inferring the
91 differential protein activity of regulators in each stage compared to control group. The influence of key
92 regulators on synaptic signaling pathways were also explored. Finally, the validity of these key regulators
93 was proved by their association with seizure frequency and hippocampal sclerosis in human TLE
94 patients.

95
96

97 **Methods**

98 **Data collection and preprocessing**

99 We searched the Gene Expression Omnibus (GEO) database using key words “temporal lobe
100 epilepsy”, “TLE” or “MTLE”, and restricted the study type as “Expression profiling by array, or by high
101 throughput sequencing”. The organisms of samples were limited to *Homo sapiens*, *Rattus norvegicus* and
102 *Mus musculus*. After manually checking all resulting datasets, we obtained five microarray datasets of
103 rodent TLE models that covered different time points following SE and two human TLE patient RNA-seq
104 datasets with epilepsy symptom information (seizure frequency or hippocampal sclerosis). Details about
105 these datasets, including accession numbers, platforms and references, were listed in **Table 1**. For
106 microarray datasets, the series matrix files were downloaded and then subjected to quality assessment
107 using the *arrayQualityMetrics* package from Bioconductor [25]. Outliers were identified using heatmaps
108 and dendograms based on inter-array expression distances, and also boxplots and density estimate
109 plots. For samples from GSE27166 and GSE73878, which contain both sides of hippocampus, only the
110 expression profiles of the ipsilateral hippocampi were included. For RNA-seq datasets, the matrices of
111 raw gene counts were downloaded from GEO database. Genes with very low counts across samples
112 were filtered out based on the count-per-million (CPM) as implemented in the R package ‘edgeR’ (for
113 detailed threshold, see the section “Human TLE patient RNA-seq data analysis”) [26]. To detect outlier
114 across samples, the counts were normalized by the size factor of each library, and then log2 transformed
115 and subjected to hierarchical clustering. Samples that did not show class-based clustering were removed
116 in further analysis.

117

118 **Principal component analysis**

119 Unsupervised principal component analysis (PCA) was performed to further visualize the correlations
120 among samples belonging to different epileptogenesis stages or epilepsy symptoms. All datasets were
121 normalized and log2 transformed, and then analyzed using the *prcomp* function from the “stats” module in
122 R. PCA methodology captures the inherent gene expression patterns in the data by projecting multivariate
123 data objects onto a lower dimensional space while retaining much of the original variance [27].

124

125 Differential gene expression analysis for individual datasets

126 For individual microarray datasets, we used the *limma* [28] and *RankProd* (RP) [29] packages from
127 Bioconductor for differential expression analysis between sham control and epileptic samples of different
128 epileptogenesis stages. The *limma* approach compare groups of samples by fitting gene-wise linear
129 models and applying empirical Bayes methods to identify differentially expressed genes (DEGs). The
130 genes with absolute \log_2FC (fold change) > 0.5 and adjusted P-value for multiple comparison (FDR)
131 < 0.05 were considered significantly differentially expressed. RP is a non-parametric statistical method
132 used to detect variables consistently upregulated or downregulated in replicate samples. It provides
133 several advantages over linear modeling, including the biologically intuitive criterion, fewer model
134 assumptions, and increased performance with noisy data. The DEGs were identified only based on the
135 percentage of false predictions ($pfp < 0.05$) without any fold change restrictions. The list of DEGs
136 identified by the two methods for each dataset was compared using Venn diagrams created by *jvenn* [30].
137

138

138 Gene meta-signatures for specific epileptogenesis stages

139 For each epileptogenesis stage, the gene expression matrices of samples belonging to the
140 corresponding stage were integrated from multiple datasets and meta-analysis was performed to
141 evaluate the differential gene expression using the *RankProd* package [29]. Though the RP method was
142 initially developed to detect DEGs in a single experiment, it is able to integrate datasets from multiple
143 origins and overcome the heterogeneity among them because of the use of ranks instead of actual
144 expression values. The four microarray platforms GPL1261, GPL2896, GPL6247 and GPL6885 for the
145 rodent TLE model datasets contain 21720, 12733, 15124 and 17125 unique genes, respectively, of which
146 9139 genes were common across all platforms. The expression values of these common genes in each
147 dataset were then extracted. For multiple probes that correspond to the same gene in a dataset, the
148 probe with maximum mean expression values was retained to represent that gene. The RP method was
149 then applied to the combined datasets of each epileptogenesis stage to assess the differential expression
150 of genes. As RP employs separate ranks for up- and down-regulated genes, we integrated the two rank
151 lists using the following equation (Eq. 1).

$$152 R_{\text{norm}} = \begin{cases} 1 - \frac{R_{\text{up}} - 1}{\max(R_{\text{up}})}, & \text{average } \log_2FC > 0 \\ -1 + \frac{R_{\text{down}} - 1}{\max(R_{\text{down}})}, & \text{average } \log_2FC < 0 \end{cases} \quad (1)$$

153 The gene lists with the normalized rank (R_{norm}) and average \log_2FC was then served as gene
154 meta-signatures for the three epileptogenesis stages.
155

156 Gene coexpression network construction and module detection.

157 To construct a epileptogenesis-context gene coexpression network, we subjected the dataset
158 containing the entire process of epileptogenesis to weighted gene coexpression network analysis
159 (WGCNA) [19, 21]. To overcome outlier bias, a robust correlation measure, biweight midcorrelation, was
160 used to quantify the co-expression similarity s_{ij} between each pair of genes [31]. Then, a weighted
161 network adjacency matrix $A = [a_{ij}]$ was computed by applying a power function on all positive gene
162 correlations, and was set to be zero when two genes have negative (or zero) correlations (Eq. 2).
163

$$a_{ij} = \begin{cases} s_{ij}^\beta & s_{ij} > 0 \\ 0 & s_{ij} \leq 0 \end{cases} \quad (2)$$

164 This ensures the connections of all gene pairs have the same direction and reduces the strength of

165 weak correlations while preserving connection strength of highly correlated genes. The connectivity k for
166 each gene was then defined as $k_i = \sum_{j \neq i}^n a_{ij}$ and was used for the network analysis. To balance the
167 scale-free topology (i.e. $p(k) \sim k^{-\gamma}$) and the sparsity of connections between genes in the network, a set of
168 β values was evaluated to obtain the optimal specificity and sensitivity. To detect modules from the gene
169 coexpression network, the topological overlap matrix (TOM), which reflects the relative
170 interconnectedness between each pair of genes, was calculated. Based on the topological overlap
171 dissimilarity (1-TOM) between genes, a gene dendrogram was generated using average hierarchical
172 clustering. The dynamic branch cutting method was then used for detecting gene coexpression clusters
173 (modules) in the dendrogram depending on its shape. Module eigengene, which is the first principal
174 component of gene expression, was calculated to summarize the gene expression within a module and to
175 merge modules with high similarities.

176

177 **Cell-type enrichment analysis**

178 For the cell-type enrichment, marker genes of nine brain cell types were obtained from the single-cell
179 RNA-seq profiles of the mouse cortex and hippocampus [32]. These include three types of neurons
180 (cortical pyramidal neurons, CA1 pyramidal neurons and interneurons), four types of glia cells (astrocytes,
181 oligodendrocytes, microglia and ependymal cells), and the vascular endothelial and mural cells.
182 Enrichment between modules and the cell-type marker genes was measured using the hypergeometric
183 test with subsequent BH correction for multiple comparison as implemented in the *userListEnrichment*
184 function in the WGCNA package [21].

185

186 **Functional enrichment analysis**

187 Functional meta-analysis for multiple gene sets (modules) was performed via Metascape [33]
188 express analysis. Redundant terms were clustered into groups based on their similarities and the top 20
189 scored clusters were used as the final functional annotation for modules. Functional enrichment analysis
190 against the KEGG pathway database for the key regulator list was performed using DAVID v6.8 [34].

191

192 **Module association score (MAS) with different epileptogenesis stages**

193 To evaluate the association degree of modules with a specific epileptogenesis stage, a module
194 association score (MAS) was defined to reflect the overrepresentation degree of a module at the
195 extremes (top or bottom) of a ranked gene signature. For each module, only genes with the scaled
196 intramodular connectivity greater than 0.2 were kept to represent the module. This reduced the noise for
197 calculating MAS as genes with lower connectivity within a module typically contribute less to its functions.
198 The MAS and the corresponding significance level were then calculated using the *fgsea* R package [35]
199 against the gene meta-signature of each epileptogenesis stage. The *fgsea* method implements a special
200 algorithm for fast gene set enrichment analysis. The significance of gene set enrichment was determined
201 using the empirical enrichment score null distributions simultaneously calculated for all the gene set sizes.
202 Module MAS with the adjusted P-value less than 0.05 was considered to be significantly associated with a
203 specific epileptogenesis stage.

204

205 **Gene regulatory network construction**

206 Candidate gene regulators were collected from three aspects. 1) Transcription factors or regulators
207 (TFs). Transcription factors were obtained by extracting genes annotated in GO molecular function as
208 GO:0003700, "DNA binding transcription factor activity". Transcription regulators were the intersection of

209 genes annotated as GO:0003677 “DNA binding” and genes annotated with GO:0140110, ‘transcription
210 regulator activity’ or GO:0003612 “transcription coregulator activity” or GO:0006355, “regulation of
211 transcription, DNA-templated”. 2) Synaptic proteins (SPs). SPs are regarded as genes annotated in GO
212 cellular component as GO:0045202, ‘synapse’ or GO:0030424, “axon” or GO:0030425, “dendrite”. 3)
213 Signaling proteins (Signal), which were built upon genes annotated in GO Biological Process
214 GO:0007165 “signal transduction” and not overlapping with above two gene list. The genes corresponded
215 to these GO terms were extracted using the *biomaRt* package [36]. These candidate regulators along with
216 the gene expression matrix were subjected to the ARACNe-AP software [37] for reverse engineering a
217 gene regulatory network. ARACNe was run with 100 bootstrap iterations with parameters set to 0 DPI
218 (data processing inequality) tolerance and MI (mutual information) *P*-value threshold of 10^{-8} .
219

220 **Protein activity inference for gene regulators**

221 To infer the relative protein activity of the gene regulators at different epileptogenesis stages, we
222 applied the VIPER algorithm [24] to test for regulon (a group of genes that are regulated by the same
223 regulator) enrichment on stage-specific gene signatures. VIPER uses a probabilistic framework that
224 integrates target mode of regulation (i.e., activated, repressed or undetermined represented by an index
225 ranging from -1 to 1), statistical likelihoods of regulator-target interactions and target overlap between
226 different regulators (pleiotropy). To compute the enrichment of a protein’s regulon in differentially
227 expressed genes, an analytic rank-based enrichment analysis (aREA) method, which conduct a statistical
228 analysis based on the mean of ranks, was used. The normalized enrichment score computed by aREA for
229 each regulon were employed to quantitatively represent the regulators’ relative protein activity in an
230 epileptogenesis stage compared to the control group.

231 **Integration analysis of synaptic signaling pathways**

232 To investigate the synaptic signaling variations at different epileptogenesis stages, an
233 epilepsy-context synaptic signaling pathway was integrated and characterized. The integrated pathway is
234 composed of key regulators enriched in the synapse-related pathways (i.e., the dopaminergic, cholinergic,
235 glutamatergic, serotonergic and GABAergic synapses), and critical intracellular signaling pathways
236 including MAPK signaling, calcium signaling, cGMP-PKG signaling and Ras signaling pathways. The
237 interactions between these key regulators and their regulatory relationships with biological functions were
238 extracted from the KEGG pathway database [38].
239

240 **Human TLE patient RNA-seq data analysis**

241 For the dataset about TLE seizure frequency (GSE127871), genes with the CPM value greater than
242 0.4 in more than 50% of the samples were retained for further analysis. While for the hippocampal
243 sclerosis dataset (GSE71058), the threshold was set to CPM > 0.1 in more than eight samples, which is
244 the minimum number of samples in the two groups (with and without HS). After hierarchical clustering and
245 PCA analysis for the samples in each dataset, the DESeq2 package [39] was used for differential
246 expression analysis. Genes with the adjusted *P*-value less than 0.05 were considered as DEGs, and the
247 log₂FC ranked gene list were used as gene expression signatures. To make cross-species gene
248 mappings, we standardized gene identifiers from microarray probe identifiers to NCBI Entrez ID identifiers
249 and mapped mouse Entrez ID identifiers to their human ortholog using the *biomaRt* [36] package.
250

251
252

253 **Results**

254 **Gene expression meta-signatures associated with different epileptogenesis stages**

255 To investigate the molecular profiles underlying the epileptogenesis, we used the time-specific
256 hippocampal transcriptome data of rodent TLE models from five independent studies (**Table 1**). These
257 studies contain both rat and mouse TLE models and the modeling approaches were various, including
258 systematic administration of pilocarpine, intrahippocampal KA injection and electrical stimulation of
259 amygdala. The epileptic samples from these datasets covered a wide range of time points after SE,
260 ranging from hours, to days and months. Based on the described tissue extraction time and phenotype,
261 the samples in each dataset were divided into the control group and groups of three epileptogenesis
262 stages, i.e., the acute phase, latent period and chronic epilepsy (**Fig. 1** and **Table 1**). After data
263 normalization and preprocessing, 99 expression profiles were obtained and the individual datasets were
264 then subjected to the PCA analysis. All datasets showed good separation among control samples and
265 samples of different epileptogenesis stages along the first two PCs, of which PC1 accounted for the
266 highest variation (27.8–49.8%) (**Fig. 2**).

267 To evaluate the differential gene expression between control samples and epileptic samples of each
268 epileptogenesis stage, we first applied the *limma* method [28] to individual datasets. The differentially
269 expressed genes (DEGs) were defined as those that achieved an absolute \log_2FC (fold change) > 0.5
270 and a $FDR < 0.05$ between control and epilepsy. There were four, three and two datasets that contain
271 samples of the acute, latent and chronic stages, respectively. For the acute and latent stages, the
272 differential expression analysis yielded gene lists with very small overlap across the datasets. While for
273 the chronic phase, no DEGs were detected in one of the two datasets (**Supplementary Fig. S1a**). We
274 then applied another differential expression analysis method RP [29] that differs from the linear
275 modeling-based approaches. RP is a rank-based technique that detects genes that consistently appear
276 among the most highly ranked genes (either strongly upregulated or downregulated) in a number of
277 replicate samples. It identifies DEGs based on the estimated percentage of false predictions
278 ($pfp < 0.05$). The RP-based method depicts a slightly better but still small overlap of DEGs among
279 datasets (**Supplementary Fig. S1b**). These results suggest that direct comparison across individual
280 datasets was not feasible due to the heterogeneity of experimental approaches and profiling platforms.

281 Since the RP algorithm transforms the actual expression values into ranks, it has the ability to handle
282 variability among datasets and can be adapt to integrate datasets from multiple origins [40]. We thus
283 adopted the RP for meta-analysis for each of the three epileptogenesis stages. We obtained a set of 2404,
284 1000 and 373 DEGs ($pfp < 0.05$) for the acute, latent and chronic stages, respectively. The top 100 DEGs
285 of each stage were shown in **Supplementary Fig. S2**. It is evident from the heatmap that DEGs identified
286 using the RP meta-analysis were consistently up- or down-regulated across most datasets. Among those
287 top genes, 21 genes were dysregulated across all three epileptogenesis stages, including 14 upregulated
288 genes (i.e. *C3*, *Cartpt*, *Cd44*, *Cd74*, *Cd9*, *Gfap*, *Ifitm3*, *Lcn2*, *Lgals3*, *Lyz2*, *Nptx2*, *Serp1*, *Timp1* and
289 *Vim*) and 7 downregulated genes (i.e. *Bcl11a*, *Cdh8*, *Cygb*, *Fibcd1*, *Kctd4*, *Pkp2* and *Scn3b*), among
290 which *Gfap* and *Scn3b* were widely described as biomarkers of the epileptogenesis [9, 41]. Besides, the
291 mRNA expression of the “immediate early gene” (IEG) *Fos* and neural activity-dependent gene *Bdnf* was
292 markedly induced in the acute and chronic stages, respectively, consistent with their reported roles in
293 seizures and epilepsy [42]. Though the latent and chronic stages have less DEGs than the acute phase,
294 this could be part of the result of different numbers of samples for each stage. As increased number of
295 samples raises the power of the statistical test, leading to a higher number of selected genes. Therefore,
296 we further extracted the whole RP-ranked gene list with genes’ average \log_2FC for each epileptogenesis

297 stage, serving as the stage-specific gene expression signatures.

298

299 **Network functional dynamics during epileptogenesis**

300 The gene meta-signatures associated with different epileptogenesis stages provide a significant
301 starting point for dissecting the development of epilepsy. However, it is difficult to pinpoint epileptogenic
302 mechanisms without considering the functional organization of these genes. To this aim, an
303 epilepsy-context gene coexpression network was built using WGCNA [21] based on the dataset that
304 contains samples of all three epileptogenesis stages. 13 gene modules (M1–M13), with their size varied
305 from 44 to 1,896 genes, were identified (Fig. 3a). To investigate the cell-based context of these modules,
306 we performed enrichment analysis against marker genes of nine brain cell types including neurons, glial
307 cells and endothelial cells which were derived from single-cell RNA-seq analysis of the mouse cortex and
308 hippocampus [32]. Module M1, the largest module with 1896 genes, was significantly enriched with three
309 types of glial cells, among which microglia was the most enriched cell type (adjusted P -value = 4.0E-55)
310 (Supplementary Fig. S3). Modules M3, 6, 7, 8 and 9 were specifically enriched for pyramidal neurons
311 and/or interneurons. And modules M12 and 13 were enriched in the ependymal cell and mural cell.

312 Functional meta-analysis of these modules showed that module M1 mainly participated in GO
313 biological processes of “positive regulation of cell migration”, “cytokine production”, “regulation of cell
314 adhesion” and “apoptotic signaling pathway” (Fig. 3b). Moreover, M1 and modules M2, 4, 5 were all
315 enriched with items of “neuron death” and “negative regulation of intracellular signal transduction”.
316 Consistent with their enrichment for neuronal marker genes, modules M3, 6, 7, 8, 9, 10 and 11 were
317 mainly involved in functions of the synapse, such as “regulation of ion transport”, “signal release”,
318 “transmission across chemical synapses”, “regulation of vesicle-mediated transport” and
319 “second-messenger-mediated signaling” (Fig. 3c).

320 To investigate how the expression of these modules was regulated at different epileptogenesis
321 stages, we defined a module association score (MAS) to reflect the degree of which a module was
322 enriched at the top or bottom of the stage-specific gene signatures. All modules were significantly
323 associated with at least one epileptogenesis stage, among which five modules (M1, 8 and M5, 6, 7) were
324 consistently up- or down- regulated in all three stages (Fig. 3d). The two positively associated modules
325 M1 and 8 were mainly related to the inflammatory response and increased intracellular signaling activity.
326 While the negatively associated modules M5, 6 and 7 may imply an impairment of the synapse function
327 after SE. M4, 3 and 13 exhibited a specific association with the acute, latent and chronic stage,
328 respectively. Module M9 was downregulated in the acute and latent phases but not the chronic epilepsy
329 stage. Overall, these results provide a landscape of functional organization underlying epilepsy
330 development, and also the functional dynamic changes during epileptogenesis.

331

332 **Identification of gene regulators driving epileptogenesis**

333 To discover gene regulators controlling the transition from acute to latent and chronic stages of
334 epileptogenesis, we interrogated the time-specific hippocampal transcriptome profiles using the VIPER
335 algorithm [24] to infer the protein activity change of regulators in a specific stage. VIPER infers protein
336 activity by systematically analyzing the expression of a protein’s regulon, which refers to the
337 transcriptional targets of that protein. The ARACNe technique [37] which detect maximum information
338 path targets was used to systematically infer regulons from epilepsy-specific gene expression data,
339 resulting in an gene regulatory interactome of 41,364 interactions between 1,493 regulators and 5,695
340 target genes. VIPER then compute the enrichment of a protein’s regulon in differentially expressed genes

341 based on a probabilistic framework that directly integrates target mode of regulation, regulator-target
342 interaction confidence and target overlap between different regulators.

343 Differential protein activities of 521 regulators were obtained for all three epileptogenesis stages. For
344 each stage, key regulators were defined as those with absolute differential protein activity score greater
345 than two, which represents a significant activity alteration compared to the control group (**Fig. 4a**). There
346 were 214, 198 and 156 key regulators respectively associated with the acute, latent and chronic stage
347 (**Fig. 4b**). 43% of the key regulators were dysregulated in all three stages, indicating that these regulators
348 were immediately involved in the epileptogenesis following SE, and exhibited continuing changes
349 extending into the chronic epilepsy period. Modules M1, 3, 6, 7 and 8 have the highest numbers of key
350 regulators (**Supplementary Fig. S4**). Regulator activities in both M1 and M8 were upregulated during the
351 epileptogenesis, yet their activities exhibited opposite changing trends. Whereas M1 regulators were
352 mainly associated with acute response after the SE, M8 regulators may play major roles in the latent and
353 chronic epilepsy stages (**Fig. 4c**). Regulators in M3, 6 and 7 show constant downregulated activity at all
354 three epileptogenesis stages.

355 To understand the molecular processes affected by these key regulators, we performed enrichment
356 analysis against the KEGG pathways database [38]. The analysis showed that the key regulators were
357 involved in signaling pathways related to chemical synaptic transmission, immune response, growth
358 factor signaling, and pathways related to cell proliferation and death (**Fig. 4d**). Among the synaptic
359 transmission -related pathways, Dopaminergic synapse was the top enriched pathway (adjusted
360 P-value $\leq 1.4E-05$), followed by Cholinergic, Glutamatergic, Serotonergic and GABAergic synapses.
361 Besides, the Retrograde endocannabinoid signaling, which can suppress both excitatory and some
362 inhibitory synapses, was also enriched with the key regulators (adjusted P-value $\leq 1.7E-04$). Endocannabinoids
363 and their receptors are altered by epileptic seizures and can in turn control key
364 epileptogenic circuits by inhibiting synaptic transmission in the hippocampus [43]. Multiple immune
365 response-related pathways were also highly enriched, including the Toll-like receptor signaling,
366 Chemokine signaling and TNF signaling pathways (adjusted P-value range $\leq 8.7E-05$ to $8.3E-04$). The
367 Neurotrophin signaling pathway (adjusted P-value $\leq 1.7E-03$) which can be activated by nerve growth
368 factor (NGF) and brain-derived neurotrophic factor (BDNF) is an important pathway involved in the
369 survival, development, and function of neurons. Other enriched pathways include the MAPK signaling,
370 Calcium signaling, cGMP-PKG signaling and Ras signaling pathways (adjusted P-value
371 range $\leq 3.4E-04$ to $2.3E-03$), which are critical intracellular signaling pathways related to multiple
372 cellular functions.

373

374 **Variations of synaptic signaling at different epileptogenesis stages.**

375 A thorough knowledge of signaling pathways involved in both acute- and long-term responses to SE
376 is crucial to unravel the origins of epilepsy [42]. To better understand the regulatory mechanism of
377 synaptic transmission between neurons underlying epileptogenesis, we integrated and characterized an
378 epilepsy-context synaptic signaling pathway that composed of the key regulators involved in
379 synapse-related functions (**Fig. 5a**). A heatmap of the protein activities of these key regulators in different
380 epileptogenesis stages was shown in **Fig. 5b**, in which the regulator types and modules were marked on
381 the top.

382 We first examined the activity changes of key regulators located on synaptic membrane. For
383 ionotropic glutamate receptors, only the kainate receptor (KAR) subunit 1 (*GRIK1*) was strikingly
384 downregulated in the acute and latent stages. While regulators *GRIN1*, *GRIA1* and *GRIA2*, which are the

385 subunits of NMDAR and AMPAR, also exhibited downregulation after SE, though not significant. Two
386 subunits of GABA_A receptor (*GABRB3* and *GABRG2*) showed opposite changing trends during the
387 epileptogenesis. *GABRB3* was significantly downregulated in the acute phase, while *GABRG2* was
388 gradually upregulated in the latent and chronic periods. Besides, decreased activity of acetylcholine
389 receptors (*CHRN2* and *CHRM3*) and serotonin receptor (*HTR1A*) was also observed. Among these
390 genes, mutations of *GRIN1*, *GABRB3*, *GABRG2* and *CHRN2* have been reported associating with some
391 familial epilepsy syndromes [44]. Notably, increased activity of glutamate transporters (*SLC1A2* and
392 *SLC1A3*) and decreased activity of GABA transporters (*SLC6A1* and *SLC32A1*) further support the idea
393 that imbalance between excitation and inhibition and altered threshold for neural excitation are underlying
394 epileptic behaviors. The voltage-gated potassium channel Kv3.1 (*KCNC1*, alpha subunit) was markedly
395 downregulated in the acute stage, implying the inability of the neuron to normally depolarize following SE.
396 The accessory subunits of Kv1 (*KCNAB1* and *KCNAB2*) and Kv4 (*KCNIP3*) also display stage-specific
397 activity changes. No significant variation was found for the activity of voltage-gated sodium or calcium
398 channels.

399 Constant upregulation of *BDNF* and TrkB (*NTRK2*) was observed during the entire epileptogenesis,
400 which further activated the adaptor proteins SHC1, GAB1 and PLC γ (*PLCG2*). This result is consistent
401 with previous studies reporting that excessive activation of TrkB caused by SE promotes development of
402 TLE [45, 46]. The two G α subunits of G i (*GNAI2*) and G q (*GNA15*), which can inhibit adenylate cyclase
403 (AC) and activate phospholipase C (PLC), exhibit significant upregulation, while the G β and G γ subunits
404 (*GNB5* and *GNG3*) of the G $\beta\gamma$ complex were downregulated strikingly in the acute stage. In accord with
405 this, protein activity of PLC isotypes (*PLCB2*, *PLCB3*, and *PLCD4*) were also upregulated. This further
406 activates the calcium signaling and protein kinase C (PKC), which can activate downstream transcription
407 factors NFKB1 and RELA, inducing the transcription of target genes, like *c-fos* and *BCL-2*. For MAPK
408 signaling, though there were increased activity of upstream Ras (*RRAS*), Raf (*ARAF*) and *MAP3K8*, both
409 ERK (*MAPK1*) and JNK (*MAPK8*) activities were downregulated, along with the downregulation of
410 activating transcription factor 2 (*ATF2*). Finally, the PI3K-AKT-CREB pathway, CaM kinase (*CAMK2B*) and
411 calcium binding protein SCGN all exhibited decreased activity. In sum, these results demonstrate that the
412 synapse-to-nucleus signaling underlying epileptogenesis were not simply up- or down-regulated, but
413 displayed a complex restructured system related to neuronal hyperexcitation and impaired synaptic
414 plasticity.

415

416 **Key regulators associated with seizure frequency and hippocampal sclerosis in human TLE**

417 One of the direct outcomes of the epileptogenesis is the presence of spontaneous recurrent seizures.
418 To investigate whether the identified key regulators were involved in controlling seizure frequency in
419 patients with TLE, we utilized an RNA-Seq dataset of the hippocampal tissue resected from 12 medically
420 intractable TLE patients with seizure frequencies ranging from 0.33 to 120 seizures per month.
421 Hierarchical clustering and PCA analysis of the normalized profiles led to three clusters that can be
422 regarded as the low (mean = 4.11 seizures/month), medium (mean = 13.2 seizures/month) and high
423 (mean = 90 seizures/month) seizure frequency groups (**Supplementary Fig. 5a**). Differential expression
424 analysis was then conducted between low or medium versus high SF groups to get both DEGs and gene
425 expression signatures. Based on seizure frequency-associated gene signatures, we first tested whether
426 the epileptogenesis-related functional modules were also disturbed in the higher seizure frequency group.
427 The MAS calculated on low versus high SF gene expression signature demonstrated that module M1,
428 which relate to acute inflammatory response, was the most strongly upregulated module, whereas

429 modules M3, 5, 6, 7 and 9, which are related to synaptic transmission, were downregulated, in line with
430 these modules' expression changes in the epileptogenesis (**Fig. 6a**). For medium verse high SF gene
431 expression changes, only modules M8 and M13 were significantly upregulated (**Fig. 6b**). As M8 and M13
432 were activated mainly in the chronic epilepsy stage, these results indicate that TLE patients with high
433 seizure frequency indeed exhibit similar functional alterations detected on rodent TLE models undergo
434 the epileptogenesis. We further examined whether the expression of key regulators was significantly
435 altered in the high SF group, and found 108 (41%) key regulators overlap with DEGs detected in high
436 versus low or medium SF groups.

437 Hippocampal sclerosis (HS) is a common neuropathological condition encountered in TLE patients. It
438 is featured with severe neuronal cell loss and gliosis in the hippocampus and can be both the cause and
439 outcomes of the epileptogenesis [47]. Utilizing the RNA-seq profiles of dentate granule of MTLE patients
440 with and without HS, we investigated how the epileptogenesis-associated functional modules and key
441 regulators were modulated by HS (**Supplementary Fig. 5b**). Modules' MASs on the HS-related gene
442 signature showed that M1 had the highest MAS value (adjusted P-value = 0.0504). In addition, modules
443 M8, 11, 12 and 13 were significantly upregulated and M6 was downregulated. 25 key regulators were
444 found to be differentially expressed in patients with HS. By checking these regulators, we discovered 11
445 regulators that were associated with both hippocampal sclerosis and seizure frequency, namely ANXA5,
446 ATF3, FAM107A, KCNK1, MAP7, NFIL3, RPS4X, SEPT2, SNAP23, SPARC and SV2B (**Fig. 6c** and
447 **Supplementary Fig. S6**). Further analysis revealed that five of these key regulators (ANXA5, FAM107A,
448 SEPT2, SNAP23 and SPARC) exhibit the same changing patterns (all upregulated) across the
449 epileptogenesis and conditions of high seizure frequency and HS (**Fig. 6c**). Among them, SPARC
450 (secreted protein acidic and rich in cysteine) was the most highly upregulated gene in both high SF
451 ($\log_2\text{FC} = 2.36$, adj-P = 1.2E-05) and HS ($\log_2\text{FC} = 2.24$, adj-P = 1.2E-04) groups. Only SNAP23
452 (synaptosome associated protein 23), which is a vesical-associated protein, has been previously reported
453 exhibiting upregulation in TLE patients with sclerotic hippocampus [48], while other four proteins have not
454 been associated with epilepsy yet. Altogether, 122 out of 265 key regulators of epileptogenesis were
455 associated with high seizure frequency and/or hippocampal sclerosis, indicating that our systems-level
456 analysis has provided a valuable set of genes that may serve as potential therapeutic targets for epilepsy.
457
458

459 Discussion

460 Epilepsy is a heterogeneous disorder with multiple origins and many different mechanisms of
461 pathogenesis among patients [49]. To better understand the molecular mechanisms underlying
462 epileptogenesis, it is necessary to take advantage of multiple animal epilepsy models with different origins
463 and phenotypes. In this study, we performed an integration analysis on time-specific transcriptome
464 profiles of various rodent TLE models, which include both chemical and electrical kindling models of
465 epilepsy. Direct comparison of DEGs identified from individual datasets led to very limited information,
466 indicating there need more systematic analysis to detect genes that are consistently up- or
467 down-regulated across datasets of different origins. By applying a rank-based meta-analysis method RP
468 to the gene expression matrix of each epileptogenesis stage, we obtained stage-specific gene expression
469 signatures to depict the molecular features of the three epileptogenesis stages at a genome-wide level.
470 Compared to using DEGs based on arbitrary cutoffs as gene signatures for a specific phenotype, gene
471 lists with the relative fold change or rank information for each gene provide a more comprehensive

472 molecular representation for each epileptogenesis stage.

473 Based on the stage-specific gene meta-signatures of epileptogenesis, we proposed a MAS value to
474 assess the differences of cellular and molecular functions between stages. For example, the
475 microglia-associated module M1, which is involved in multiple inflammation and immune response
476 processes, was constantly upregulated throughout the entire epileptogenic process. This provides
477 evidence to support the idea that inflammatory processes within the brain constitute a common and
478 crucial mechanism in the pathophysiology of seizures and epilepsy [50]. Besides, we also observed that
479 pyramidal neuron-enriched modules, M3 and M6, and interneuron-enriched module M7 were
480 downregulated in all three epileptogenesis stages, which indicates that the synaptic transmission is
481 severely impaired between these two types of neurons, leading to the excitation/inhibition imbalance
482 and circuit-level dysfunction in the hippocampus [3]. The consistency between the cell-type specificity and
483 functional annotation of modules also demonstrates the biological significance of the identified modules in
484 the context of epileptogenesis. The dynamic changes of modules' association with different stages thus
485 provide us a global landscape of the evolution process of epileptogenesis.

486 The expression dynamics of the functional modules are typically drove by defects in multiple gene
487 regulators which exhibit concurrent and aberrant activities. For identifying key gene regulators, we
488 inferred the differential protein activity of regulators in the three epileptogenesis stages. The regulator
489 types include not only TFs, which are commonly regarded as the direct regulators controlling transition
490 between different biological conditions [51], but also proteins on the synaptic membrane and intracellular
491 signaling proteins. Given that various proteins located at the membrane of pre- or post-synapse are under
492 the most directly impact when seizure activity occurs, the inclusion of synaptic and signaling proteins can
493 help better depict the abnormalities of the synapse-to-nuclear signaling underlying epileptogenesis.
494 Furthermore, the changing pattern of relative regulator activity in a module offers a straightforward
495 illustration of how the regulators were modulated along with the development of epilepsy (**Fig. 4c**). For
496 instance, we found that regulator activity of M8 exhibit gradual upregulation during epileptogenesis,
497 implying these key regulators were markedly activated in the latent and chronic phases and may thus
498 contribute to the formation of a brain state that supports recurrent, unprovoked seizures.

499 We further utilized transcriptome datasets of human TLE patients with or without hippocampal
500 sclerosis and patients with different seizure frequencies to test the validity of key regulators detected from
501 rodent TLE models. Hippocampal sclerosis is the most frequent cause of drug-resistant TLE, and
502 presents a broad spectrum of electroclinical, structural and molecular pathology patterns [52]. We
503 discovered four new gene regulators (ANXA5, FAM107A, SEPT2 and SPARC) from module M1 whose
504 upregulation may contribute to higher seizure frequency and hippocampal sclerosis in TLE. Though the
505 precise functions of these regulators are not fully understood, most of them are involved in the functions
506 of the synapse and may have a potential role in maintaining synaptic plasticity. Detailed mechanisms of
507 how these regulators drive the process of epileptogenesis and further lead to chronic recurrent seizures
508 or hippocampal sclerosis need to be investigated using appropriate animal models of epilepsy in the
509 future. In summary, our work provides a landscape of the gene network dynamics underlying
510 epileptogenesis and highlighted candidate regulators controlling epileptogenesis that may warrant further
511 investigation as potential anti-epileptogenic targets.

512

513

514 **Competing interests**

515 The authors declare that they have no competing interests.

516 **Funding**

517 This work was supported by the by the National Natural Science Foundation of China (NO.
518 U1603285 and NO. 81803960)

519 **Authors' contributions**

520 Conceptualization: YXF; investigation: YXF; technical support: ZHG, ZYW, LYC and YHM; writing
521 (original draft): YXF; writing (review and editing): YXF, ZHG, ZYW and YHW; supervision: ZZW and YHW;
522 funding acquisition: YHW and WX. All authors read and approved the final manuscript.

523
524

525 **References**

- 526 1. Moshe SL, Perucca E, Ryvlin P, Tomson T: **Epilepsy: new advances.** *Lancet* 2015, **385**:884-898.
- 527 2. Pitkänen A, Lukasiuk K: **Mechanisms of epileptogenesis and potential treatment targets.** *Lancet Neurol* 2011,
528 **10**:173-186.
- 529 3. Goldberg EM, Coulter DA: **Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction.**
530 *Nat Rev Neurosci* 2013, **14**:337-349.
- 531 4. Herman ST: **Epilepsy after brain insult: targeting epileptogenesis.** *Neurology* 2002, **59**:S21-26.
- 532 5. Maguire J: **Epileptogenesis: More Than Just the Latent Period.** *Epilepsy Curr* 2016, **16**:31-33.
- 533 6. Sloviter RS, Bumanglag AV: **Defining "epileptogenesis" and identifying "antiepileptogenic targets" in**
534 **animal models of acquired temporal lobe epilepsy is not as simple as it might seem.** *Neuropharmacology*
535 2013, **69**:3-15.
- 536 7. Citraro R, Leo A, Constanti A, Russo E, De Sarro G: **mTOR pathway inhibition as a new therapeutic strategy**
537 **in epilepsy and epileptogenesis.** *Pharmacol Res* 2016, **107**:333-343.
- 538 8. Heinrich C, Lahteeni S, Suzuki F, Anne-Marie L, Huber S, Haussler U, Haas C, Larmet Y, Castren E, Depaulis A:
539 **Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial**
540 **temporal lobe epilepsy.** *Neurobiol Dis* 2011, **42**:35-47.
- 541 9. McClelland S, Brennan GP, Dube C, Rajpara S, Iyer S, Richichi C, Bernard C, Baram TZ: **The transcription**
542 **factor NRSF contributes to epileptogenesis by selective repression of a subset of target genes.** *Elife* 2014,
543 **3**:e01267.
- 544 10. Johnson MR, Behmoaras J, Bottolo L, Krishnan ML, Pernhorst K, Santoscoy PLM, Rossetti T, Speed D,
545 Srivastava PK, Chadeau-Hyam M, et al: **Systems genetics identifies Sestrin 3 as a regulator of a**
546 **proconvulsant gene network in human epileptic hippocampus.** *Nat Commun* 2015, **6**:6031.
- 547 11. Srivastava PK, van Eyll J, Godard P, Mazzuferi M, Delahaye-Duriez A, Steenwinckel JV, Gressens P, Danis B,
548 Vandenplas C, Foerch P, et al: **A systems-level framework for drug discovery identifies Csf1R as an**
549 **anti-epileptic drug target.** *Nat Commun* 2018, **9**:3561.
- 550 12. Thom M: **Review: Hippocampal sclerosis in epilepsy: a neuropathology review.** *Neuropathol Appl Neurobiol*
551 2014, **40**:520-543.
- 552 13. Mazzuferi M, Kumar G, Rospo C, Kaminski RM: **Rapid epileptogenesis in the mouse pilocarpine model:**
553 **video-EEG, pharmacokinetic and histopathological characterization.** *Exp Neurol* 2012, **238**:156-167.
- 554 14. Okamoto OK, Janjoppi L, Bonone FM, Pansani AP, da Silva AV, Scorza FA, Cavalheiro EA: **Whole transcriptome**
555 **analysis of the hippocampus: toward a molecular portrait of epileptogenesis.** *BMC Genomics* 2010, **11**:230.
- 556 15. Bot AM, Debski KJ, Lukasiuk K: **Alterations in miRNA levels in the dentate gyrus in epileptic rats.** *PLoS One*
557 2013, **8**:e76051.
- 558 16. Kalozoumi G, Kel-Margoulis O, Vafiadaki E, Greenberg D, Bernard H, Soreq H, Depaulis A, Sanoudou D: **Glial**
559 **responses during epileptogenesis in *Mus musculus* point to potential therapeutic targets.** *PLoS One* 2018,

560 13:e0201742.

561 17. Winden KD, Karsten SL, Bragin A, Kudo LC, Gehman L, Ruidera J, Geschwind DH, Engel J, Jr.: **A systems level, functional genomics analysis of chronic epilepsy.** *PLoS One* 2011, **6**:e20763.

562 18. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: **Hierarchical organization of modularity in metabolic networks.** *Science* 2002, **297**:1551-1555.

563 19. Zhang B, Horvath S: **A general framework for weighted gene co-expression network analysis.** *Stat Appl Genet Mol Biol* 2005, **4**:Article17.

564 20. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A: **Reverse engineering of regulatory networks in human B cells.** *Nat Genet* 2005, **37**:382-390.

565 21. Langfelder P, Horvath S: **WGCNA: an R package for weighted correlation network analysis.** *BMC Bioinformatics* 2008, **9**:559.

566 22. van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP: **Gene co-expression analysis for functional classification and gene-disease predictions.** *Brief Bioinform* 2018, **19**:575-592.

567 23. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: **ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context.** *BMC Bioinformatics* 2006, **7 Suppl 1**:S7.

568 24. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, Califano A: **Functional characterization of somatic mutations in cancer using network-based inference of protein activity.** *Nat Genet* 2016, **48**:838-847.

569 25. Kauffmann A, Gentleman R, Huber W: **arrayQualityMetrics--a bioconductor package for quality assessment of microarray data.** *Bioinformatics* 2009, **25**:415-416.

570 26. Robinson MD, McCarthy DJ, Smyth GK: **edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.** *Bioinformatics* 2010, **26**:139-140.

571 27. Yeung KY, Ruzzo WL: **Principal component analysis for clustering gene expression data.** *Bioinformatics* 2001, **17**:763-774.

572 28. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: **limma powers differential expression analyses for RNA-sequencing and microarray studies.** *Nucleic Acids Res* 2015, **43**:e47.

573 29. Del Carratore F, Jankevics A, Eisinga R, Heskes T, Hong F, Breitling R: **RankProd 2.0: a refactored bioconductor package for detecting differentially expressed features in molecular profiling datasets.** *Bioinformatics* 2017, **33**:2774-2775.

574 30. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C: **jvenn: an interactive Venn diagram viewer.** *BMC Bioinformatics* 2014, **15**:293.

575 31. Hardin J, Mitani A, Hicks L, VanKoten B: **A robust measure of correlation between two genes on a microarray.** *BMC Bioinformatics* 2007, **8**:220.

576 32. Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, et al: **Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.** *Science* 2015, **347**:1138-1142.

577 33. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK: **Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.** *Nat Commun* 2019, **10**:1523.

578 34. Huang da W, Sherman BT, Lempicki RA: **Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.** *Nat Protoc* 2009, **4**:44-57.

579 35. Sergushichev A: **An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation.** *BioRxiv* 2016:060012.

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604 36. Durinck S, Spellman PT, Birney E, Huber W: **Mapping identifiers for the integration of genomic datasets with**
605 **the R/Bioconductor package biomaRt.** *Nat Protoc* 2009, **4**:1184-1191.

606 37. Lachmann A, Giorgi FM, Lopez G, Califano A: **ARACNe-AP: gene network reverse engineering through**
607 **adaptive partitioning inference of mutual information.** *Bioinformatics* 2016, **32**:2233-2235.

608 38. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: **KEGG for integration and interpretation of large-scale**
609 **molecular data sets.** *Nucleic Acids Res* 2012, **40**:D109-114.

610 39. Love MI, Huber W, Anders S: **Moderated estimation of fold change and dispersion for RNA-seq data with**
611 **DESeq2.** *Genome Biol* 2014, **15**:550.

612 40. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: **RankProd: a bioconductor package for**
613 **detecting differentially expressed genes in meta-analysis.** *Bioinformatics* 2006, **22**:2825-2827.

614 41. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, Friedman A: **Astrocytic dysfunction in**
615 **epileptogenesis: consequence of altered potassium and glutamate homeostasis?** *J Neurosci* 2009,
616 **29**:10588-10599.

617 42. Bozzi Y, Dunleavy M, Henshall DC: **Cell signaling underlying epileptic behavior.** *Front Behav Neurosci* 2011,
618 **5**:45.

619 43. Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M,
620 et al: **The endocannabinoid system controls key epileptogenic circuits in the hippocampus.** *Neuron* 2006,
621 **51**:455-466.

622 44. Fukata Y, Fukata M: **Epilepsy and synaptic proteins.** *Curr Opin Neurobiol* 2017, **45**:1-8.

623 45. Gu B, Huang YZ, He XP, Joshi RB, Jang W, McNamara JO: **A Peptide Uncoupling BDNF Receptor TrkB from**
624 **Phospholipase Cgamma1 Prevents Epilepsy Induced by Status Epilepticus.** *Neuron* 2015, **88**:484-491.

625 46. Liu G, Gu B, He XP, Joshi RB, Wackerle HD, Rodriguez RM, Wetsel WC, McNamara JO: **Transient inhibition of**
626 **TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy.** *Neuron* 2013,
627 **79**:31-38.

628 47. Walker MC: **Hippocampal Sclerosis: Causes and Prevention.** *Semin Neurol* 2015, **35**:193-200.

629 48. Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, et al: **Gene**
630 **expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes.** *Mol*
631 *Med* 2007, **13**:1-13.

632 49. Watanabe S, Yamamori S, Otsuka S, Saito M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M: **Epileptogenesis**
633 **and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice.** *Epilepsy Res* 2015,
634 **115**:30-44.

635 50. Vezzani A, French J, Bartfai T, Baram TZ: **The role of inflammation in epilepsy.** *Nat Rev Neuro* 2011, **7**:31-40.

636 51. Lefebvre C, Rajbhandari P, Alvarez MJ, Bandaru P, Lim WK, Sato M, Wang K, Sumazin P, Kustagi M, Bisikirska
637 BC, et al: **A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in**
638 **germinal centers.** *Mol Syst Biol* 2010, **6**:377.

639 52. Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A, Bernasconi N, Bien CG, Cendes F,
640 Coras R, et al: **International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a**
641 **Task Force report from the ILAE Commission on Diagnostic Methods.** *Epilepsia* 2013, **54**:1315-1329.

642

643 **Figure legends**

644 **Fig. 1. Schematic overview of the study design.** To investigate the molecular mechanisms underlying
645 the epileptogenic process, we proposed an analytic framework which comprises four steps. Firstly, the
646 hippocampal transcriptome datasets of rodent TLE models were collected and divided into the acute,
647 latent and chronic stages based on the described tissue extraction time and phenotypes. Meta-analysis
648 was then performed using the RankProd method to evaluate differential gene expression and to generate
649 the gene meta-signature for each stage. Secondly, to elucidate the functional organization of genes under
650 the epilepsy context, gene coexpression network was constructed and used for identifying functional
651 modules. A module association score (MAS) was then defined to quantify a module's association degree
652 with an epileptogenesis stage. Thirdly, to identify key regulators controlling the transition between stages,
653 a gene regulatory network was constructed and the VIPER algorithm was employed to infer regulator
654 activity changes in epileptic samples. Finally, using the RNA-seq profiles of human TLE patients with
655 recurrent seizures and hippocampal sclerosis, key regulators associated with both conditions were
656 screened out.

657

658 **Fig. 2. Principal component analysis (PCA) for microarrays of rodent TLE models.** The variances
659 captured by the first two PCs are shown along the respective axes. Samples belonging to the acute, latent
660 and chronic stages are colored in red, blue and green, and control samples in gray. In all datasets, control
661 samples and epileptic samples of different epileptogenesis stages form separate clusters.

662

663 **Fig. 3. Network functional dynamics during epileptogenesis.** **a.** Dendrogram showing clustering of
664 8,384 genes based on the topological overlap dissimilarity of genes in the gene coexpression network.
665 Bottom color bar indicates the 13 gene coexpression modules (M1–M13) and their corresponding sizes
666 (i.e. the number of genes in a module). **b** and **c**. Heatmaps showing the functional meta-analysis results
667 for modules enriched with glia marker genes (M1, 2, 4 and 5) (**b**) and modules enriched with neuron
668 marker genes (M3, 6, 7, 8, 9, 10 and 11) (**c**). The top 20 enriched functional terms are shown as rows and
669 columns show modules. The heatmap is colored by the p-values. **d.** The MASs and corresponding
670 significance levels ($-\log_{10}(\text{adjusted } P\text{-value})$) of modules at the three epileptogenesis stages. The size of
671 circle is proportional to the number of genes in each module used for calculating MAS.

672

673 **Fig. 4. Identification of gene regulators driving epileptogenesis.** **a.** Heatmap of the relative protein
674 activity of 265 key regulators at the three epileptogenesis stages compared to the sham control group,
675 with red denoting upregulation and blue denoting downregulation. The modules and types of these
676 regulators are displayed at the left. SP, synaptic protein; Signal, signaling protein; TF, transcription factor.
677 **b.** Venn plot showing the overlap of key regulators in the three epileptogenesis stages. **c.** Module-based
678 regulator activity dynamics during epileptogenesis indicated by the mean and standard deviation of
679 relative activities of key regulators in a module. **d.** KEGG pathway enrichment analysis for the 265 key
680 regulators. The y-axis represents the top 15 significantly affected canonical pathways and x-axis the
681 $-\log_{10}$ transformed BH adjusted P-values.

682

683 **Fig. 5. Variations of synaptic signaling at different epileptogenesis stages.** **a.** The integrated
684 synaptic signaling pathway showing the relationship between key regulators (KRs) and their activity
685 changes during epileptogenesis (red, upregulated KR; blue, downregulated KR; white, other proteins). **b.**
686 Heatmap showing differential protein activity of key regulators of the synaptic signaling pathway in three

687 epileptogenesis stages. Dysregulated key regulators in the pathway are shown as rows and columns
688 show differential protein activity in the acute, latent and chronic stage, respectively. The types and
689 modules of these key regulators are shown on the top. SP, synaptic protein; Signal, signaling protein; TF,
690 transcription factor.

691

692 **Fig. 6. Modules and key regulators associated with seizure frequency and hippocampal sclerosis**
693 **in human TLE.** **a.** The MAS and corresponding significance level ($-\log_{10}(\text{adjusted } P\text{-value})$) of modules
694 calculated on gene expression signatures of low versus high seizure frequency (SF) group and medium
695 versus high SF group. **b.** The same as **a** but calculated on the gene expression signature associated with
696 hippocampal sclerosis (HS). In **a** and **b**, the size of circle is proportional to the number of genes in each
697 module used for calculating the MAS. **c.** Boxplots showing the \log_2 -scaled normalized counts of the five
698 key regulators in TLE patients with different seizure frequency, and patients with and without HS. Bottom
699 of each plot showing the adjusted P-values of genes derived from differential expression analysis using
700 the DESeq2 package.

701

702

703

704 **Tables**

705 **Table 1. List of rodent TLE model microarray datasets used for epileptogenesis analysis and human**
706 **TLE patient RNA-seq datasets used for validation.**

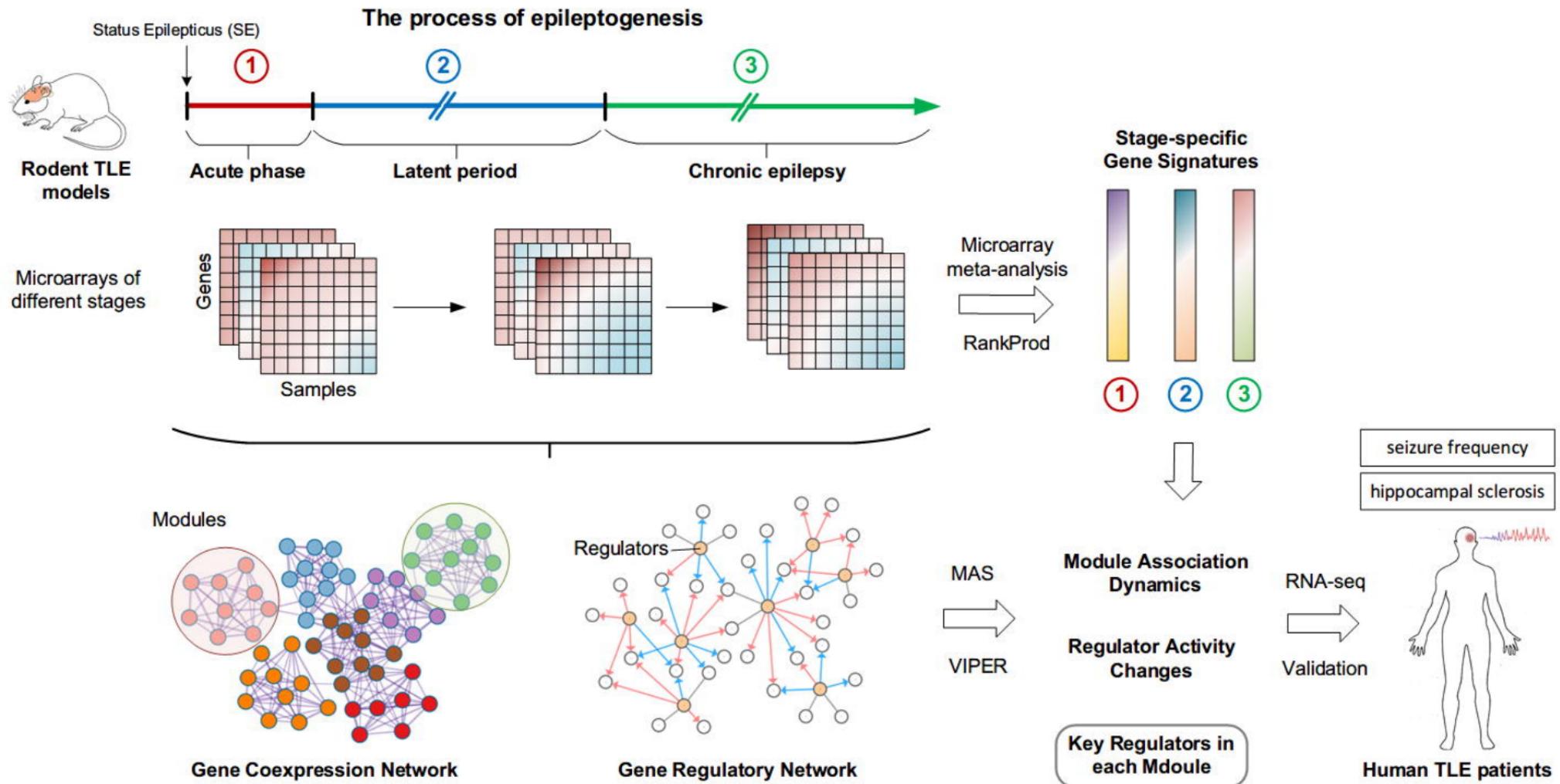
Species	Dataset accession ID	Number of samples	Epileptogenesis stages			Model type/Disease	Platforms	References (PMID)
			Acute phase	Latent period	Chronic epilepsy			
Rat	GSE14763	18	+	+		Pilocarpine	GE Bioarray	20377889
	GSE27166	24			+	intrahippocampal KA	GE Bioarray	21695113
	GSE49849	20	+	+		electrical stimulation of amygdala	Affymetrix Array	24146813
Mouse	GSE73878	80	+	+	+	intrahippocampal KA	Illumina Beadchip	NA
	GSE88992	17	+			ditto	Affymetrix Array	30114263
Human	GSE127871	12			+	TLE with low or high seizure frequency	Illumina HiSeq	NA
	GSE71058	22			+	TLE with and without hippocampal sclerosis	Illumina HiSeq	26799155

707 KA, kainic acid; NA, not available; PMID, PubMed ID

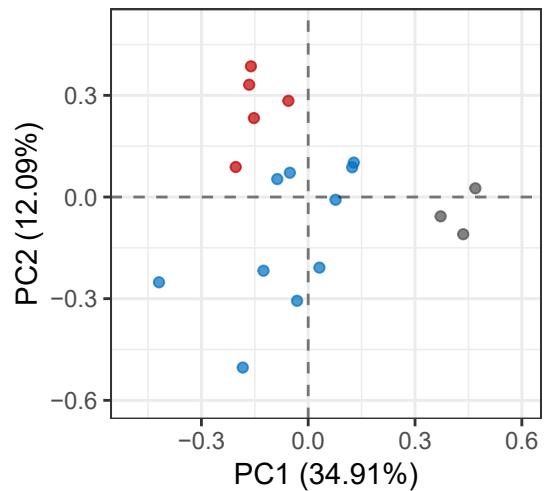
708

709

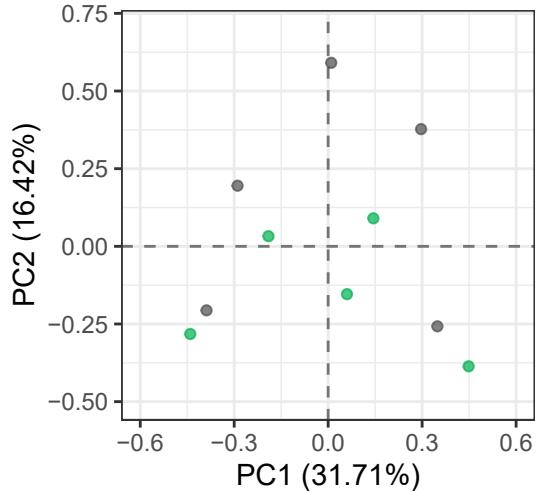
710



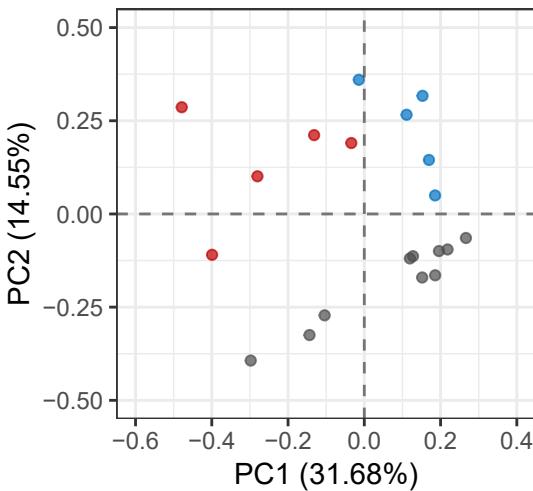
GSE14763



GSE27166



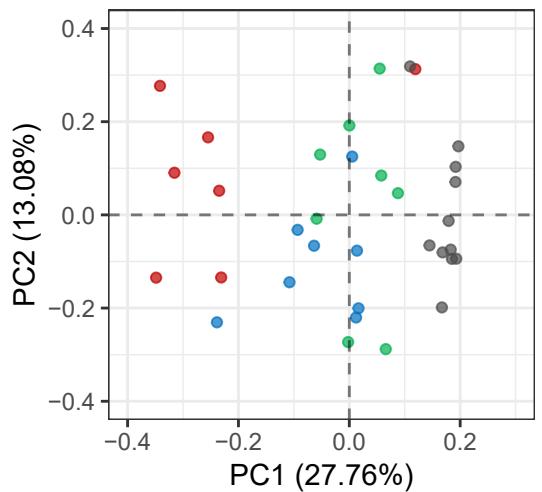
GSE49849



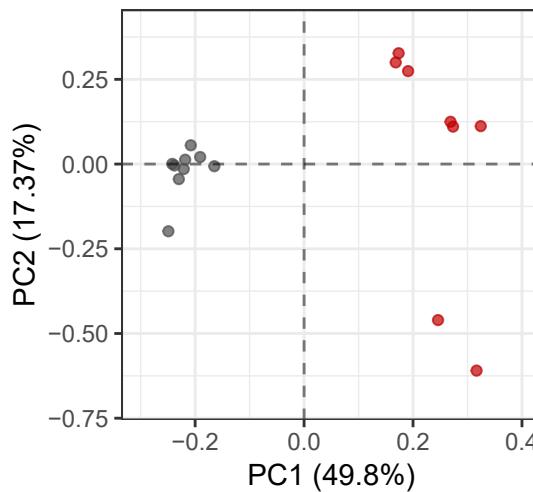
Groups

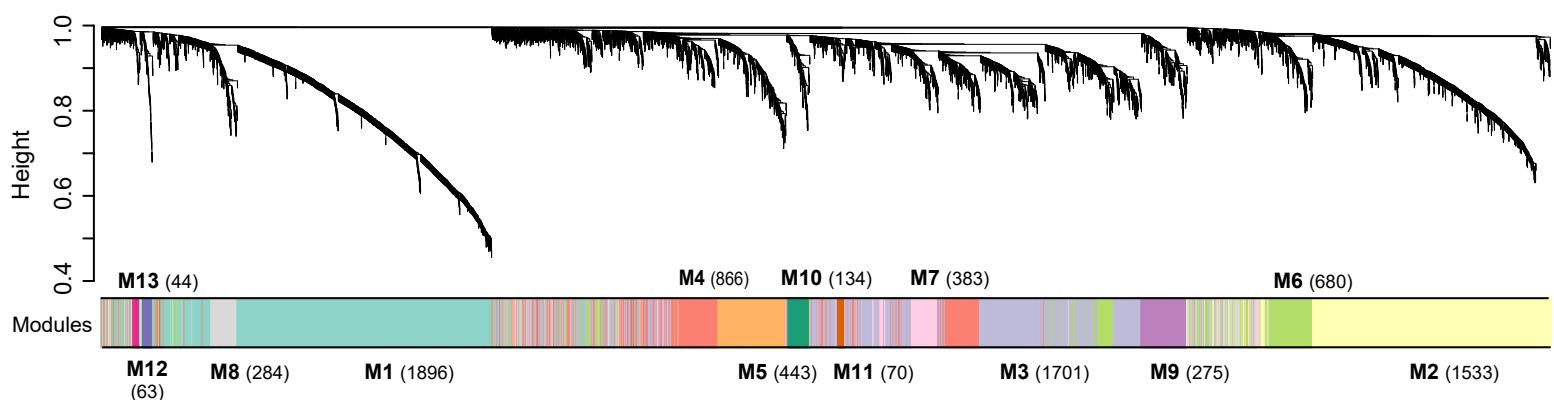
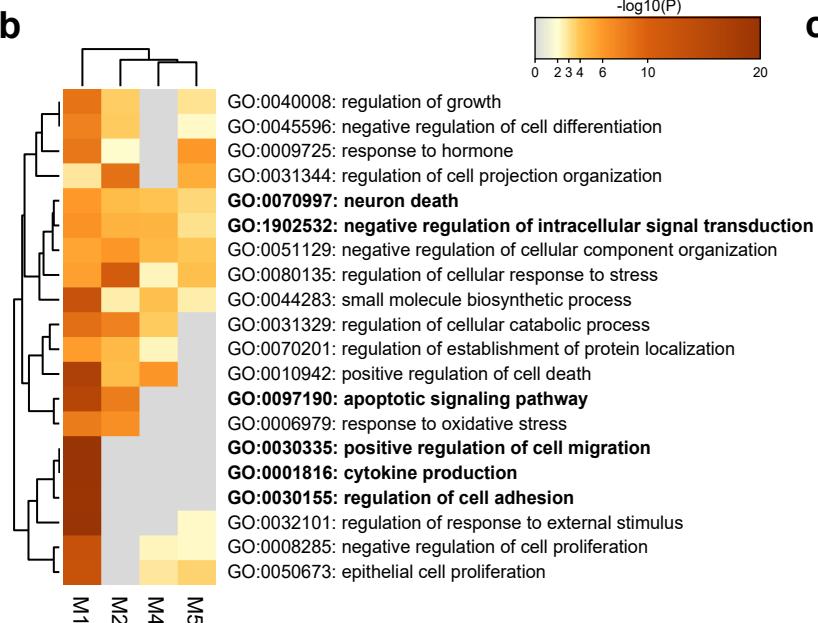
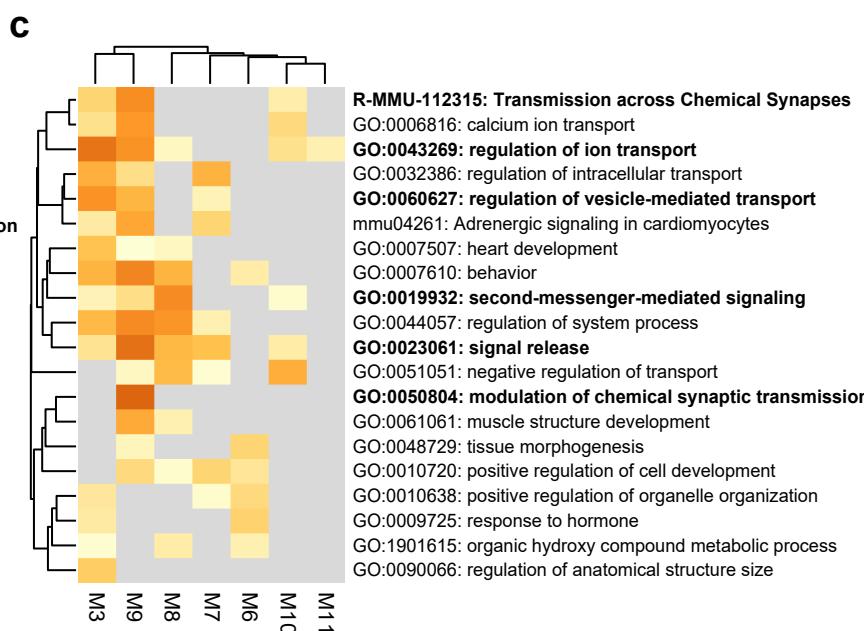
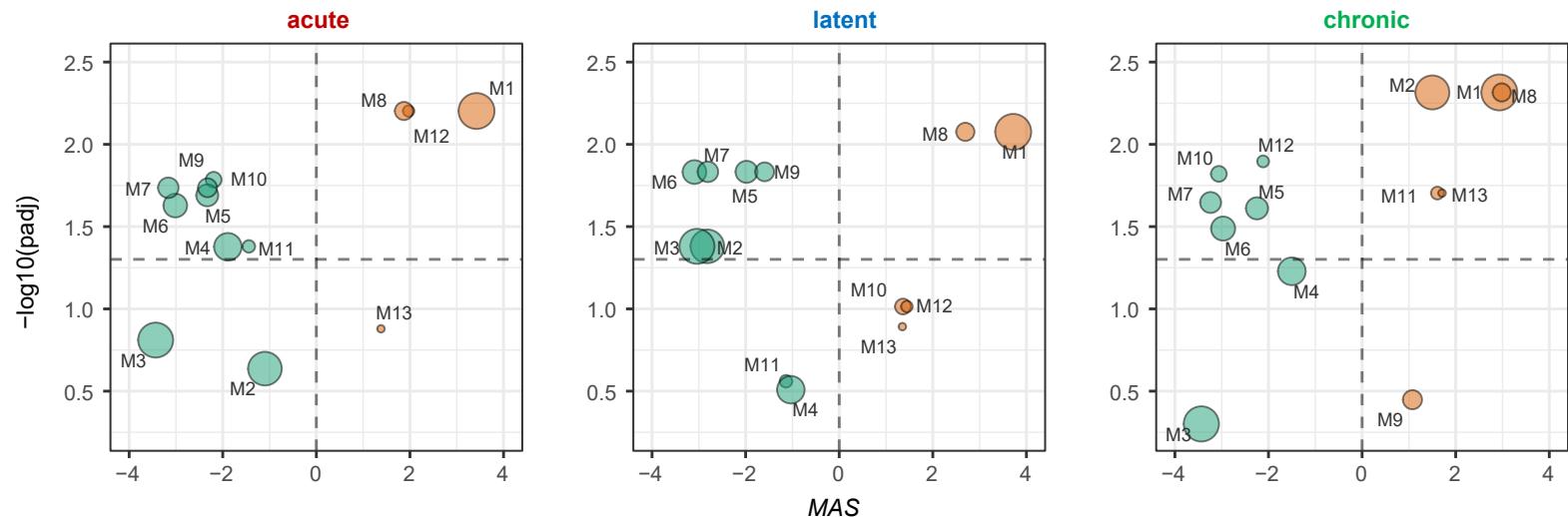
- Sham control
- Acute phase
- Latent period
- Chronic epilepsy

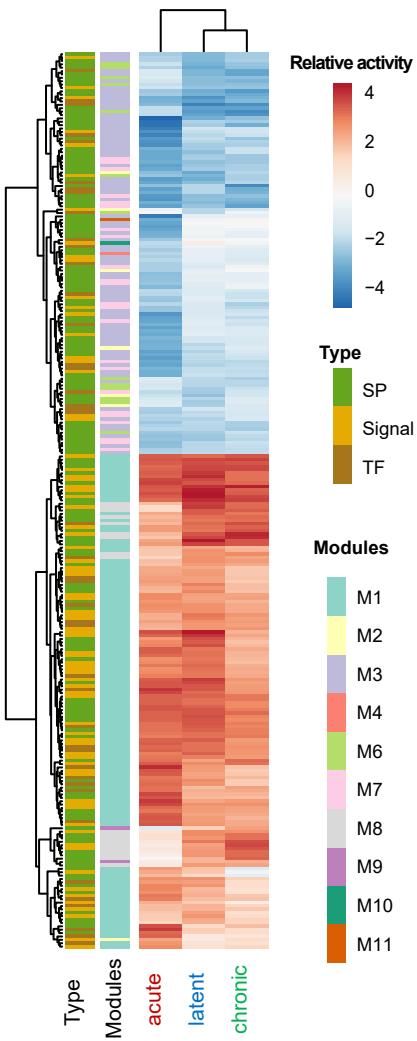
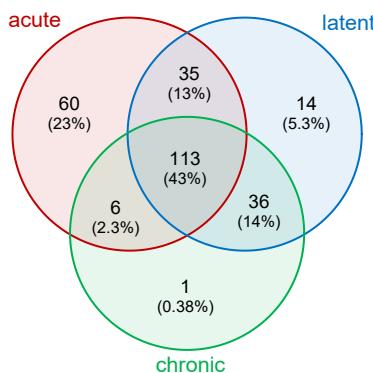
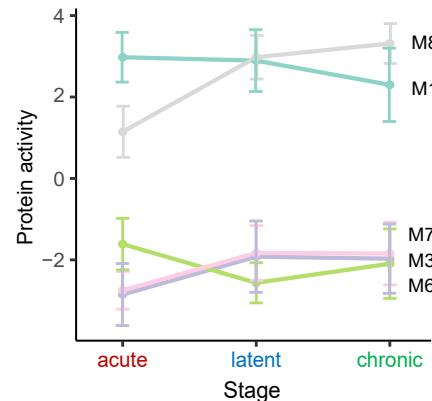
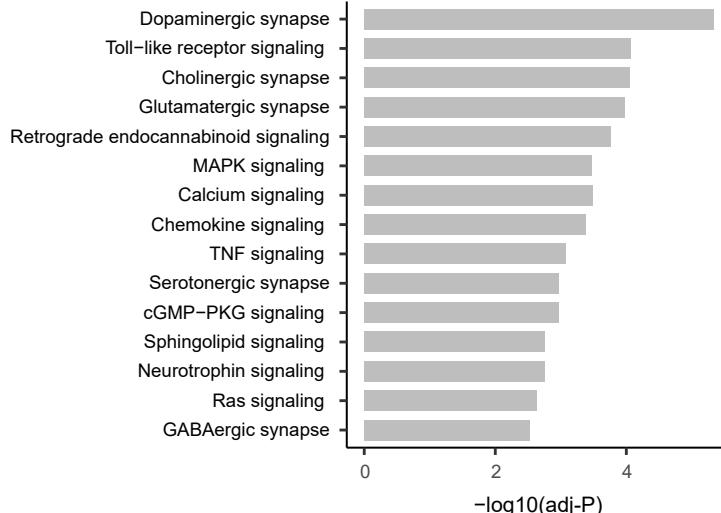
GSE73878



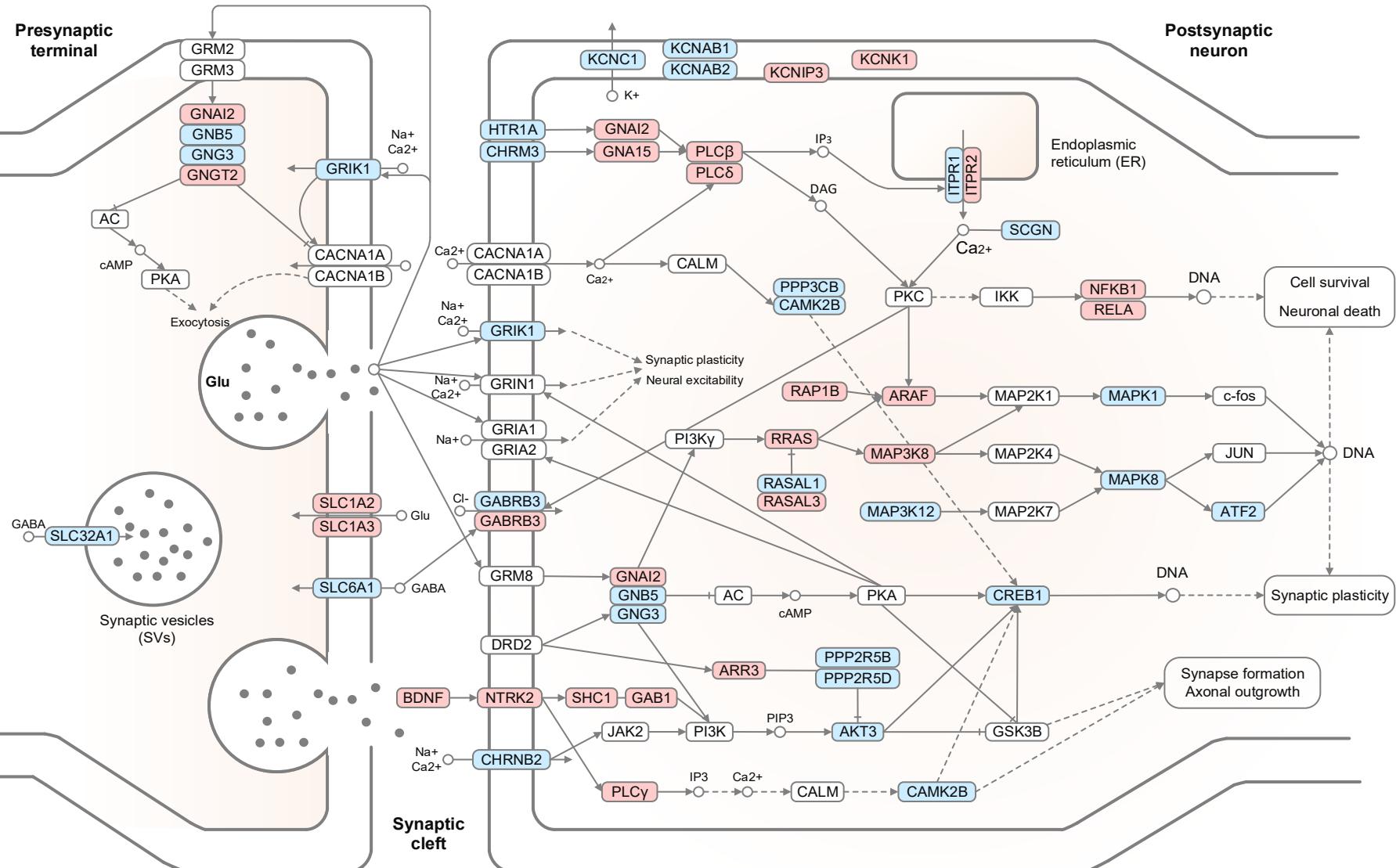
GSE88992



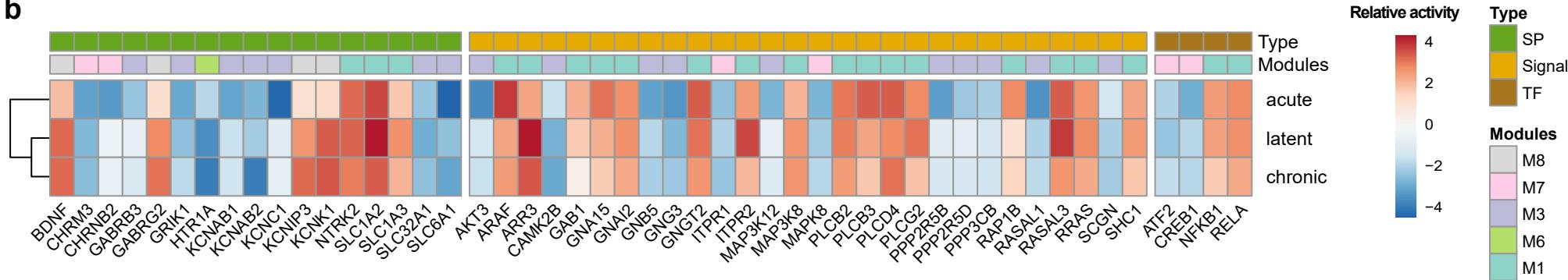


a**b****c****d**

a

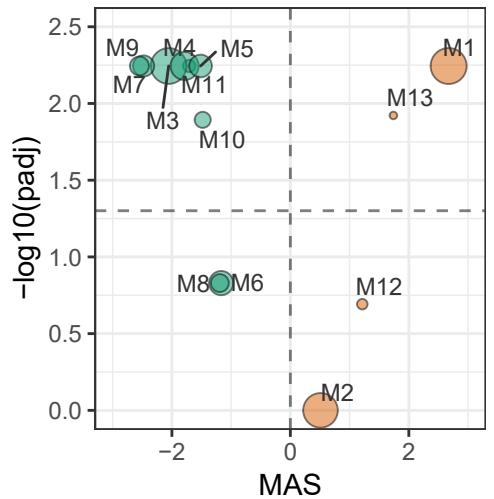


b

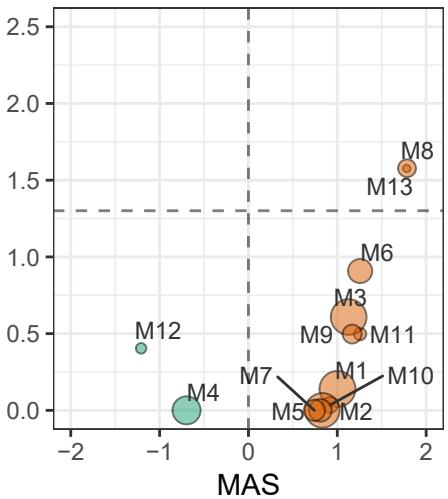


a

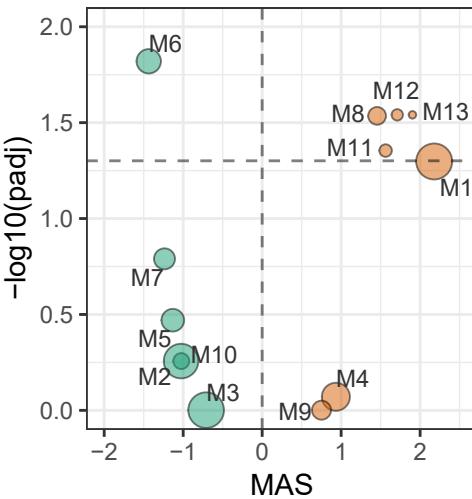
Low vs. High SF



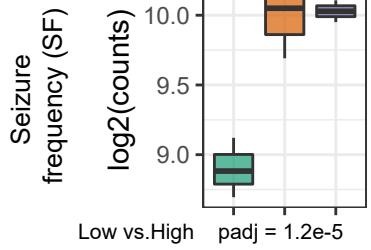
Medium vs. High SF

**b**

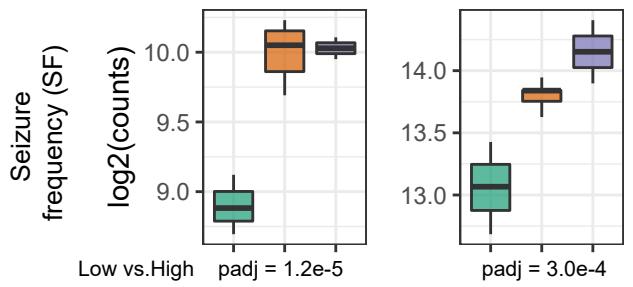
No HS vs. HS

**c**

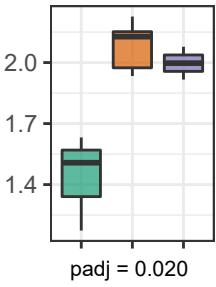
ANXA5



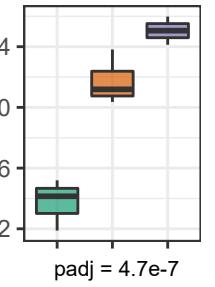
FAM107A



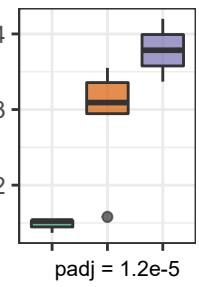
SEPT2



SNAP23



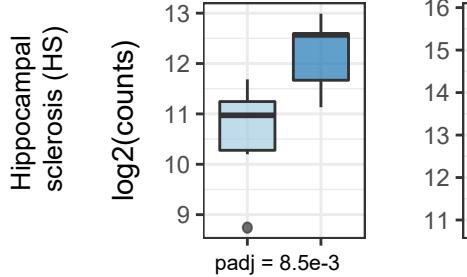
SPARC



frequency

- Low (green)
- Medium (orange)
- High (purple)

Hippocampal sclerosis (HS)



padj = 8.5e-3

padj = 0.048

padj = 0.021

padj = 0.038

padj = 1.2e-4

diagnosis

- No HS (light blue)
- HS (dark blue)