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Abstract

Temporal lobe epilepsy (TLE) is the most prevalent and often devastating form of epilepsy. The molecular
mechanism underlying the development of TLE remains largely unknown, which hinders the discovery of
effective anti-epileptogenic drugs. In this study, we built a systems-level analytic framework which
integrates gene meta-signatures, gene coexpression network and cellular regulatory network to unveil the
evolution landscape of epileptogenic process and to identify key regulators that govern the transition
between different epileptogenesis stages. The time-specific hippocampal transcriptomic profiles from five
independent rodent TLE models were grouped into acute, latent and chronic stages of epileptogenesis,
and were utilized for generating stage-specific gene expression signatures. 13 cell-type specific functional
modules were identified from the epilepsy-context coexpression network, and five of them were
significantly associated with the entire epileptogenic process. By inferring the differential protein activity of
gene regulators in each stage, 265 key regulators underlying epileptogenesis were obtained. Among
them, 122 regulators were demonstrated being associated with high seizure frequency and/or
hippocampal sclerosis in human TLE patients. Importantly, we discovered four new gene regulators
(ANXAS5, FAM107A, SEPT2 and SPARC) whose upregulation may drive the process of epileptogenesis
and further lead to chronic recurrent seizures or hippocampal sclerosis. Our findings provide a landscape
of the gene network dynamics underlying epileptogenesis and uncovered candidate regulators that may
serve as potential targets for future anti-epileptogenic therapy development.

Keywords: epilepsy; epileptogenesis; gene modules; key regulators; anti-epileptogenic drugs
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37 Introduction

38 Epilepsy is a complex neurological disorder characterized by recurrent unprovoked seizures, of
39  which temporal lobe epilepsy (TLE) is the most prevalent form [1]. The term epileptogenesis refers to the
40  gradual process through which normal neuronal networks are altered resulting in the generation of
41 chronic spontaneous seizures [2, 3]. The process can be triggered by diverse brain insults, including
42 traumatic brain injury, stroke, infections and prolonged seizures such as status epilepticus (SE), and is
43 typically thought to involve three stages [4, 5]. The first is the acute phase right after the brain insult, in
44 which a cascade of morphologic and biologic changes occurs in the injured area. This is followed by a
45 variable latent period during which behavioral seizures are not observed. The third stage is chronic,
46  established epilepsy with the emergence of spontaneous seizures. ldentifying the multiple dysregulated
47 gene regulators that contribute to epileptogenesis in TLE is crucial for developing effective
48  anti-epileptogenic drugs [6]. Several large-scale molecular signaling cascades such as mTOR,
49 BDNF-TrkB and REST/NRSF pathways, have been demonstrated playing a role in epileptogenesis [7-9].
5o  However, the detailed molecular mechanisms underlying the evolution process of epileptogenesis remain
51 largely unknown.

52 The presence of various high-throughput omics technologies offers a great opportunity to unveil the
53 molecular and cellular dynamics underlying epileptogenesis. Recently, a large-scale transcriptomic
54 profiling of surgically resected hippocampi from TLE patients has been generated and used to identify
55 gene-regulatory networks and regulators genetically associated with epilepsy [10, 11]. However, there are
56  obvious limitations and challenges in exploring the process of epileptogenesis in human epileptic tissues.
57 One drawback is that omics studies of human TLE generally lack appropriate control samples of healthy
58  brain tissues. Furthermore, the specimens collected from hippocampus surgery for TLE patients are
59 usually at an advanced stage and have been subjected to the treatment of various antiepileptic drugs
60 (AEDs) [12]. Alternatively, well-characterized animal TLE models which mimic prominent
61  histopathological and electroencephalographic features of human TLE can be employed to examine the
62  key molecular alterations during epileptogenesis [13]. Only a few reports have studied the genome-wide
63  molecular changes throughout epileptogenesis using animal TLE models [14, 15]. While other studies
64  covered time points more closely related with either acute responses to SE or cumulative effects of
65  chronic spontaneous seizures [16, 17]. As the modeling approaches and tissue dissection time varies
66  across these studies, a systematic integration analysis of the existing datasets will likely provide a more
67 comprehensive and robust molecular profiling for the epileptogenic process from the early hippocampal
68  injury to the onset of chronic epilepsy.

69 Systems biology-based approaches that utilize network theory to organize transcriptome datasets
70  have been used to prioritize candidate disease genes or to discern transcriptional regulatory programs
71 [18-20]. One method to infer critical genes (hubs) and gene set—phenotype associations from gene
72  expression data is the coexpression network analysis, which builds scale-free gene networks based on
73 the pairwise gene expression correlations [21]. Genes with higher similarity scores tend to co-activate in a
74 specific biological condition. Although coexpression analysis can help identify genes or gene modules
75 that associate with the disease or biological phenotypes, it normally does not infer causality or distinguish
76  between regulatory and regulated genes [22]. The algorithm for the reconstruction of accurate cellular
77  networks (ARACNe) uses an information theoretic approach to eliminate most indirect interactions
78  inferred by co-expression methods, leaving those expected to be regulatory [23]. Although originally being
79  applied to infer the relationship between transcription factors and their target genes, the method can also
80 be adapted to infer the indirect transcriptional targets for other kind of regulators, such as signaling
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81  proteins [24]. Using these methods, the observed gene expression changes can be placed into a systems
82  context that was related to the underlying disease biology.

83 In this study, we proposed a systems-level analytic framework which integrates gene
84  meta-signatures, gene coexpression network and cellular regulatory network to reveal the evolution
85  landscape of epileptogenic process and distinguish key regulators that govern the transition between
86  different epileptogenesis stages (Fig. 1). The time-specific hippocampal transcriptomic profiles of rodent
87 TLE models were collected and classified into acute, latent and chronic stages of epileptogenesis. These
88  profiles were then utilized for generating stage-specific gene expression signatures. Functional modules
89  were detected from the coexpression network and their association with each epileptogenesis stage was
90 assessed. Further, key gene regulators underlying epileptogenesis were identified by inferring the
g1  differential protein activity of regulators in each stage compared to control group. The influence of key
92  regulators on synaptic signaling pathways were also explored. Finally, the validity of these key regulators
93 was proved by their association with seizure frequency and hippocampal sclerosis in human TLE

94  patients.
95

96

g7 Methods

98 Data collection and preprocessing

99 We searched the Gene Expression Omnibus (GEO) database using key words “temporal lobe
100  epilepsy”, “TLE” or “MTLE", and restricted the study type as “Expression profiling by array, or by high
1012 throughput sequencing”. The organisms of samples were limited to Homo sapiens, Rattus norvegicus and
102 Mus musculus. After manually checking all resulting datasets, we obtained five microarray datasets of
103  rodent TLE models that covered different time points following SE and two human TLE patient RNA-seq
104  datasets with epilepsy symptom information (seizure frequency or hippocampal sclerosis). Details about
105 these datasets, including accession numbers, platforms and references, were listed in Table 1. For
106  microarray datasets, the series matrix files were downloaded and then subjected to quality assessment
107  using the arrayQualityMetrics package from Bioconductor [25]. Outliers were identified using heatmaps
108 and dendrograms based on inter-array expression distances, and also boxplots and density estimate
109  plots. For samples from GSE27166 and GSE73878, which contain both sides of hippocampus, only the
110  expression profiles of the ipsilateral hippocampi were included. For RNA-seq datasets, the matrices of
111 raw gene counts were downloaded from GEO database. Genes with very low counts across samples
112 were filtered out based on the count-per-million (CPM) as implemented in the R package ‘edgeR’ (for
113  detailed threshold, see the section “Human TLE patient RNA-seq data analysis”) [26]. To detect outlier
114  across samples, the counts were normalized by the size factor of each library, and then log2 transformed
115 and subjected to hierarchical clustering. Samples that did not show class-based clustering were removed
116  in further analysis.

117
128  Principal component analysis
119 Unsupervised principal component analysis (PCA) was performed to further visualize the correlations

120 among samples belonging to different epileptogenesis stages or epilepsy symptoms. All datasets were
122 normalized and log2 transformed, and then analyzed using the prcomp function from the “stats” module in
122 R. PCA methodology captures the inherent gene expression patterns in the data by projecting multivariate
123  data objects onto a lower dimensional space while retaining much of the original variance [27].
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124
125 Differential gene expression analysis for individual datasets
126 For individual microarray datasets, we used the limma [28] and RankProd (RP) [29] packages from

127  Bioconductor for differential expression analysis between sham control and epileptic samples of different
128  epileptogenesis stages. The limma approach compare groups of samples by fitting gene-wise linear
129  models and applying empirical Bayes methods to identify differentially expressed genes (DEGSs). The
130  genes with absolute log,FC (fold change). >0.5 and adjusted P-value for multiple comparison (FDR)
131 <| 0.05 were considered significantly differentially expressed. RP is a non-parametric statistical method
132 used to detect variables consistently upregulated or downregulated in replicate samples. It provides
133  several advantages over linear modeling, including the biologically intuitive criterion, fewer model
134  assumptions, and increased performance with noisy data. The DEGs were identified only based on the
135  percentage of false predictions (pfp < 0.05) without any fold change restrictions. The list of DEGs
136 identified by the two methods for each dataset was compared using Venn diagrams created by jvenn [30].

137
138  Gene meta-signatures for specific epileptogenesis stages
139 For each epileptogenesis stage, the gene expression matrices of samples belonging to the

140  corresponding stage were integrated from multiple datasets and meta-analysis was performed to
141 evaluate the differential gene expression using the RankProd package [29]. Though the RP method was
142 initially developed to detect DEGs in a single experiment, it is able to integrate datasets from multiple
143  origins and overcome the heterogeneity among them because of the use of ranks instead of actual
144  expression values. The four microarray platforms GPL1261, GPL2896, GPL6247 and GPL6885 for the
145  rodent TLE model datasets contain 21720, 12733, 15124 and 17125 unique genes, respectively, of which
146 9139 genes were common across all platforms. The expression values of these common genes in each
147  dataset were then extracted. For multiple probes that correspond to the same gene in a dataset, the
148  probe with maximum mean expression values was retained to represent that gene. The RP method was
149  then applied to the combined datasets of each epileptogenesis stage to assess the differential expression
150 of genes. As RP employs separate ranks for up- and down-regulated genes, we integrated the two rank
151 lists using the following equation (Eq. 1).

_ Ryp—1
max(Rep)’
Rdown—1

—1+——"—, averagelog,FC <0

max(Raown) ’

average log,FC > 0
1)

152 Rnorm =

153  The gene lists with the normalized rank (Rnom) and average log,FC was then served as gene
154 meta-signatures for the three epileptogenesis stages.

155
156 Gene coexpression network construction and module detection.
157 To construct a epileptogenesis-context gene coexpression network, we subjected the dataset

158  containing the entire process of epileptogenesis to weighted gene coexpression network analysis
159  (WGCNA) [19, 21]. To overcome outlier bias, a robust correlation measure, biweight midcorrelation, was
160 used to quantify the co-expression similarity s; between each pair of genes [31]. Then, a weighted
161 network adjacency matrix A = [a;] was computed by applying a power function on all positive gene
162  correlations, and was set to be zero when two genes have negative (or zero) correlations (Eq. 2).

163 a;; = {Siéﬁ SS;] ;g (2)

164 This ensures the connections of all gene pairs have the same direction and reduces the strength of
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165  weak correlations while preserving connection strength of highly correlated genes. The connectivity k for
166  each gene was then defined as k; = }7.; a;; and was used for the network analysis. To balance the
167  scale-free topology (i.e. p(k) ~ k™) and the sparsity of connections between genes in the network, a set of
168 B values was evaluated to obtain the optimal specificity and sensitivity. To detect modules from the gene
169  coexpression network, the topological overlap matrix (TOM), which reflects the relative
170  interconnectedness between each pair of genes, was calculated. Based on the topological overlap
171 dissimilarity (1-TOM) between genes, a gene dendrogram was generated using average hierarchical
172 clustering. The dynamic branch cutting method was then used for detecting gene coexpression clusters
173 (modules) in the dendrogram depending on its shape. Module eigengene, which is the first principal
174  component of gene expression, was calculated to summarize the gene expression within a module and to
175 merge modules with high similarities.

176
177  Cell-type enrichment analysis
178 For the cell-type enrichment, marker genes of nine brain cell types were obtained from the single-cell

179  RNA-seq profiles of the mouse cortex and hippocampus [32]. These include three types of neurons
180  (cortical pyramidal neurons, CA1l pyramidal neurons and interneurons), four types of glia cells (astrocytes,
181  oligodendrocytes, microglia and ependymal cells), and the vascular endothelial and mural cells.
182 Enrichment between modules and the cell-type marker genes was measured using the hypergeometric
183  test with subsequent BH correction for multiple comparison as implemented in the userListEnrichment
184  function in the WGCNA package [21].

185
186  Functional enrichment analysis
187 Functional meta-analysis for multiple gene sets (modules) was performed via Metascape [33]

188  express analysis. Redundant terms were clustered into groups based on their similarities and the top 20
189  scored clusters were used as the final functional annotation for modules. Functional enrichment analysis
190 against the KEGG pathway database for the key regulator list was performed using DAVID v6.8 [34].

191
192 Module association score (MAS) with different epileptogenesis stages
193 To evaluate the association degree of modules with a specific epileptogenesis stage, a module

194  association score (MAS) was defined to reflect the overrepresentation degree of a module at the
195  extremes (top or bottom) of a ranked gene signature. For each module, only genes with the scaled
196  intramodular connectivity greater than 0.2 were kept to represent the module. This reduced the noise for
197  calculating MAS as genes with lower connectivity within a module typically contribute less to its functions.
198  The MAS and the corresponding significance level were then calculated using the fgsea R package [35]
199  against the gene meta-signature of each epileptogenesis stage. The fgsea method implements a special
200 algorithm for fast gene set enrichment analysis. The significance of gene set enrichment was determined
201 using the empirical enrichment score null distributions simultaneously calculated for all the gene set sizes.
202 Module MAS with the adjusted P-value less than 0.05 was considered to be significantly associated with a
203  specific epileptogenesis stage.

204
205  Gene regulatory network construction
206 Candidate gene regulators were collected from three aspects. 1) Transcription factors or regulators

207 (TFs). Transcription factors were obtained by extracting genes annotated in GO molecular function as
208  G0:0003700, “DNA binding transcription factor activity”. Transcription regulators were the intersection of
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209  genes annotated as GO:0003677 “DNA binding” and genes annotated with GO:0140110, ‘transcription
210 regulator activity’ or GO:0003612 “transcription coregulator activity” or G0O:0006355, “regulation of
211 transcription, DNA-templated”. 2) Synaptic proteins (SPs). SPs are regarded as genes annotated in GO
212 cellular component as G0:0045202, ‘synapse’ or GO:0030424, “axon” or GO:0030425, “dendrite”. 3)
213  Signaling proteins (Signal), which were built upon genes annotated in GO Biological Process
214  G0O:0007165 “signal transduction” and not overlapping with above two gene list. The genes corresponded
215  tothese GO terms were extracted using the biomaRt package [36]. These candidate regulators along with
216  the gene expression matrix were subjected to the ARACNe-AP software [37] for reverse engineering a
217  gene regulatory network. ARACNe was run with 100 bootstrap iterations with parameters set to 0 DPI
218  (data processing inequality) tolerance and MI (mutual information) P-value threshold of 1078,

219
220  Protein activity inference for gene regulators
221 To infer the relative protein activity of the gene regulators at different epileptogenesis stages, we

222 applied the VIPER algorithm [24] to test for regulon (a group of genes that are regulated by the same
223  regulator) enrichment on stage-specific gene signatures. VIPER uses a probabilistic framework that
224  integrates target mode of regulation (i.e., activated, repressed or undetermined represented by an index
225 ranging from -1 to 1), statistical likelihoods of regulator-target interactions and target overlap between
226  different regulators (pleiotropy). To compute the enrichment of a protein’s regulon in differentially
227  expressed genes, an analytic rank-based enrichment analysis (aREA) method, which conduct a statistical
228  analysis based on the mean of ranks, was used. The normalized enrichment score computed by aREA for
229 each regulon were employed to quantitatively represent the relators’ relative protein activity in an
230  epileptogenesis stage compared to the control group.

231
232 Integration analysis of synaptic signaling pathways
233 To investigate the synaptic signaling variations at different epileptogenesis stages, an

234  epilepsy-context synaptic signaling pathway was integrated and characterized. The integrated pathway is
235  composed of key regulators enriched in the synapse-related pathways (i.e., the dopaminergic, cholinergic,
236  glutamatergic, serotonergic and GABAergic synapses), and critical intracellular signaling pathways
237  including MAPK signaling, calcium signaling, cGMP-PKG signaling and Ras signaling pathways. The
238  interactions between these key regulators and their regulatory relationships with biological functions were
239  extracted from the KEGG pathway database [38].

240
241 Human TLE patient RNA-seq data analysis
242 For the dataset about TLE seizure frequency (GSE127871), genes with the CPM value greater than

243 0.4 in more than 50% of the samples were retained for further analysis. While for the hippocampal
244  sclerosis dataset (GSE71058), the threshold was set to CPM > 0.1 in more than eight samples, which is
245  the minimum number of samples in the two groups (with and without HS). After hierarchical clustering and
246  PCA analysis for the samples in each dataset, the DESeq2 package [39] was used for differential
247  expression analysis. Genes with the adjusted P-value less than 0.05 were considered as DEGs, and the
248 log,FC ranked gene list were used as gene expression signatures. To make cross-species gene
249  mappings, we standardized gene identifiers from microarray probe identifiers to NCBI Entrez ID identifiers
250  and mapped mouse Entrez ID identifiers to their human ortholog using the biomaRt [36] package.

251

252


https://doi.org/10.1101/688069
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/688069; this version posted July 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

7117

253 Results

254  Gene expression meta-signatures associated with different epileptogenesis stages

255 To investigate the molecular profiles underlying the epileptogenesis, we used the time-specific
256 hippocampal transcriptome data of rodent TLE models from five independent studies (Table 1). These
257 studies contain both rat and mouse TLE models and the modeling approaches were various, including
258  systematic administration of pilocarpine, intrahippocampal KA injection and electrical stimulation of
259 amygdala. The epileptic samples from these datasets covered a wide range of time points after SE,
260 ranging from hours, to days and months. Based on the described tissue extraction time and phenotype,
261 the samples in each dataset were divided into the control group and groups of three epileptogenesis
262  stages, i.e., the acute phase, latent period and chronic epilepsy (Fig. 1 and Table 1). After data
263  normalization and preprocessing, 99 expression profiles were obtained and the individual datasets were
264  then subjected to the PCA analysis. All datasets showed good separation among control samples and
265 samples of different epileptogenesis stages along the first two PCs, of which PC1 accounted for the
266  highest variation (27.8-49.8%) (Fig. 2).

267 To evaluate the differential gene expression between control samples and epileptic samples of each
268  epileptogenesis stage, we first applied the limma method [28] to individual datasets. The differentially
269  expressed genes (DEGs) were defined as those that achieved an absolute log,FC (fold change)_>L0.5
270 and a FDRL <L 0.05 between control and epilepsy. There were four, three and two datasets that contain
271 samples of the acute, latent and chronic stages, respectively. For the acute and latent stages, the
272 differential expression analysis yielded gene lists with very small overlap across the datasets. While for
273 the chronic phase, no DEGs were detected in one of the two datasets (Supplementary Fig. Sla). We
274 then applied another differential expression analysis method RP [29] that differs from the linear
275 modeling-based approaches. RP is a rank-based technique that detects genes that consistently appear
276 ~ among the most highly ranked genes (either strongly upregulated or downregulated) in a number of
277  replicate samples. It identifies DEGs based on the estimated percentage of false predictions
278  (pfp! <I 0.05). The RP-based method depicts a slightly better but still small overlap of DEGs among
279 datasets (Supplementary Fig. S1b). These results suggest that direct comparison across individual
280  datasets was not feasible due to the heterogeneity of experimental approaches and profiling platforms.
281 Since the RP algorithm transforms the actual expression values into ranks, it has the ability to handle
282  variability among datasets and can be adapt to integrate datasets from multiple origins [40]. We thus
283  adopted the RP for meta-analysis for each of the three epileptogenesis stages. We obtained a set of 2404,
284 1000 and 373 DEGs (pfp < 0.05) for the acute, latent and chronic stages, respectively. The top 100 DEGs
285  of each stage were shown in Supplementary Fig. S2. It is evident from the heatmap that DEGs identified
286  using the RP meta-analysis were consistently up- or down-regulated across most datasets. Among those
287  top genes, 21 genes were dysregulated across all three epileptogenesis stages, including 14 upregulated
288  genes (i.e. C3, Cartpt, Cd44, Cd74, Cd9, Gfap, Ifitm3, Lcn2, Lgals3, Lyz2, Nptx2, Serpingl, Timpl and
289  Vim) and 7 downregulated genes (i.e. Bcllla, Cdh8, Cygb, Fibcdl, Kctd4, Pkp2 and Scn3b), among
290  which Gfap and Scn3b were widely described as biomarkers of the epileptogenesis [9, 41]. Besides, the
291 mMRNA expression of the “immediate early gene” (IEG) Fos and neural activity-dependent gene Bdnf was
292 markedly induced in the acute and chronic stages, respectively, consistent with their reported roles in
293  seizures and epilepsy [42]. Though the latent and chronic stages have less DEGs than the acute phase,
294  this could be part of the result of different numbers of samples for each stage. As increased number of
295  samples raises the power of the statistical test, leading to a higher number of selected genes. Therefore,
296  we further extracted the whole RP-ranked gene list with genes’ average log,FC for each epileptogenesis
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297  stage, serving as the stage-specific gene expression signatures.

298
299  Network functional dynamics during epileptogenesis
300 The gene meta-signatures associated with different epileptogenesis stages provide a significant

301 starting point for dissecting the development of epilepsy. However, it is difficult to pinpoint epileptogenic
302  mechanisms without considering the functional organization of these genes. To this aim, an
303  epilepsy-context gene coexpression network was built using WGCNA [21] based on the dataset that
304  contains samples of all three epileptogenesis stages. 13 gene modules (M1-M13), with their size varied
305 from 44 to 1,896 genes, were identified (Fig. 3a). To investigate the cell-based context of these modules,
306  we performed enrichment analysis against marker genes of nine brain cell types including neurons, glial
307  cells and endothelial cells which were derived from single-cell RNA-seq analysis of the mouse cortex and
308  hippocampus [32]. Module M1, the largest module with 1896 genes, was significantly enriched with three
309 types of glial cells, among which microglia was the most enriched cell type (adjusted P-value = 4.0E-55)
310  (Supplementary Fig. S3). Modules M3, 6, 7, 8 and 9 were specifically enriched for pyramidal neurons
312 and/or interneurons. And modules M12 and 13 were enriched in the ependymal cell and mural cell.

312 Functional meta-analysis of these modules showed that module M1 mainly participated in GO
313  biological processes of “positive regulation of cell migration”, “cytokine production”, “regulation of cell
314 adhesion” and “apoptotic signaling pathway” (Fig. 3b). Moreover, M1 and modules M2, 4, 5 were all
315 enriched with items of “neuron death” and “negative regulation of intracellular signal transduction”.
316  Consistent with their enrichment for neuronal marker genes, modules M3, 6, 7, 8, 9, 10 and 11 were
317  mainly involved in functions of the synapse, such as “regulation of ion transport”, “signal release”,
318  “transmission across chemical synapses”, “regulation of vesicle-mediated transport” and
319  ‘“second-messenger-mediated signaling” (Fig. 3c).

320 To investigate how the expression of these modules was regulated at different epileptogenesis
322 stages, we defined a module association score (MAS) to reflect the degree of which a module was
322 enriched at the top or bottom of the stage-specific gene signatures. All modules were significantly
323  associated with at least one epileptogenesis stage, among which five modules (M1, 8 and M5, 6, 7) were
324  consistently up- or down- regulated in all three stages (Fig. 3d). The two positively associated modules
325 M1 and 8 were mainly related to the inflammatory response and increased intracellular signaling activity.
326  While the negatively associated modules M5, 6 and 7 may imply an impairment of the synapse function
327 after SE. M4, 3 and 13 exhibited a specific association with the acute, latent and chronic stage,
328  respectively. Module M9 was downregulated in the acute and latent phases but not the chronic epilepsy
329 stage. Overall, these results provide a landscape of functional organization underlying epilepsy
330 development, and also the functional dynamic changes during epileptogenesis.

331
332 Identification of gene regulators driving epileptogenesis
333 To discover gene regulators controlling the transition from acute to latent and chronic stages of

334  epileptogenesis, we interrogated the time-specific hippocampal transcriptome profiles using the VIPER
335  algorithm [24] to infer the protein activity change of regulators in a specific stage. VIPER infers protein
336  activity by systematically analyzing the expression of a protein’'s regulon, which refers to the
337  transcriptional targets of that protein. The ARACNe technique [37] which detect maximum information
338  path targets was used to systematically infer regulons from epilepsy-specific gene expression data,
339 resulting in an gene regulatory interactome of 41,364 interactions between 1,493 regulators and 5,695
340  target genes. VIPER then compute the enrichment of a protein’s regulon in differentially expressed genes
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341  based on a probabilistic framework that directly integrates target mode of regulation, regulator-target
342  interaction confidence and target overlap between different regulators.

343 Differential protein activities of 521 regulators were obtained for all three epileptogenesis stages. For
344  each stage, key regulators were defined as those with absolute differential protein activity score greater
345  than two, which represents a significant activity alteration compared to the control group (Fig. 4a). There
346  were 214, 198 and 156 key regulators respectively associated with the acute, latent and chronic stage
347  (Fig. 4b). 43% of the key regulators were dysregulated in all three stages, indicating that these regulators
348  were immediately involved in the epileptogenesis following SE, and exhibited continuing changes
349  extending into the chronic epilepsy period. Modules M1, 3, 6, 7 and 8 have the highest numbers of key
350  regulators (Supplementary Fig. S4). Regulator activities in both M1 and M8 were upregulated during the
351 epileptogenesis, yet their activities exhibited opposite changing trends. Whereas M1 regulators were
352  mainly associated with acute response after the SE, M8 regulators may play major roles in the latent and
353  chronic epilepsy stages (Fig. 4c). Regulators in M3, 6 and 7 show constant downregulated activity at all
354  three epileptogenesis stages.

355 To understand the molecular processes affected by these key regulators, we performed enrichment
356  analysis against the KEGG pathways database [38]. The analysis showed that the key regulators were
357 involved in signaling pathways related to chemical synaptic transmission, immune response, growth
358  factor signaling, and pathways related to cell proliferation and death (Fig. 4d). Among the synaptic
359  transmission -related pathways, Dopaminergic synapse was the top enriched pathway (adjusted
360 P-value_ =l 1.4E-05), followed by Cholinergic, Glutamatergic, Serotonergic and GABAergic synapses.
361  Besides, the Retrograde endocannabinoid signaling, which can suppress both excitatory and some
362  inhibitory synapses, was also enriched with the key regulators (adjusted P-valuel = 1.7E-04).
363 Endocannabinoids and their receptors are altered by epileptic seizures and can in turn control key
364  epileptogenic circuits by inhibiting synaptic transmission in the hippocampus [43]. Multiple immune
365  response-related pathways were also highly enriched, including the Toll-like receptor signaling,
366  Chemokine signaling and TNF signaling pathways (adjusted P-value rangel_=L8.7E-05 to 8.3E-04). The
367  Neurotrophin signaling pathway (adjusted P-value =!I 1.7E-03) which can be activated by nerve growth
368  factor (NGF) and brain-derived neurotrophic factor (BDNF) is an important pathway involved in the
369  survival, development, and function of neurons. Other enriched pathways include the MAPK signaling,
370  Calcium signaling, cGMP-PKG signaling and Ras signaling pathways (adjusted P-value
371 rangel = 3.4E-04 to 2.3E-03), which are critical intracellular signaling pathways related to multiple
372 cellular functions.

373
374  Variations of synaptic signaling at different epileptogenesis stages.
375 A thorough knowledge of signaling pathways involved in both acute- and long-term responses to SE

376  is crucial to unravel the origins of epilepsy [42]. To better understand the regulatory mechanism of
377  synaptic transmission between neurons underlying epileptogenesis, we integrated and characterized an
378  epilepsy-context synaptic signaling pathway that composed of the key regulators involved in
379  synapse-related functions (Fig. 5a). A heatmap of the protein activities of these key regulators in different
380  epileptogenesis stages was shown in Fig. 5b, in which the regulator types and modules were marked on
381 the top.

382 We first examined the activity changes of key regulators located on synaptic membrane. For
383  ionotropic glutamate receptors, only the kainate receptor (KAR) subunit 1 (GRIK1) was strikingly
384  downregulated in the acute and latent stages. While regulators GRIN1, GRIA1 and GRIA2, which are the
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385 subunits of NMDAR and AMPAR, also exhibited downregulation after SE, though not significant. Two
386  subunits of GABAA receptor (GABRB3 and GABRG2) showed opposite changing trends during the
387  epileptogenesis. GABRB3 was significantly downregulated in the acute phase, while GABRG2 was
388 gradually upregulated in the latent and chronic periods. Besides, decreased activity of acetylcholine
389  receptors (CHRNB2 and CHRM3) and serotonin receptor (HTR1A) was also observed. Among these
390  genes, mutations of GRIN1, GABRB3, GABRG2 and CHRNB2 have been reported associating with some
3912 familial epilepsy syndromes [44]. Notably, increased activity of glutamate transporters (SLC1A2 and
392  SLC1A3) and decreased activity of GABA transporters (SLC6A1 and SLC32A1) further support the idea
393 that imbalance between excitation and inhibition and altered threshold for neural excitation are underlying
394  epileptic behaviors. The voltage-gated potassium channel Kv3.1 (KCNC1, alpha subunit) was markedly
395 downregulated in the acute stage, implying the inability of the neuron to normally depolarize following SE.
396  The accessory subunits of Kvl (KCNAB1 and KCNAB2) and Kv4 (KCNIP3) also display stage-specific
397  activity changes. No significant variation was found for the activity of voltage-gated sodium or calcium
398 channels.

399 Constant upregulation of BDNF and TrkB (NTRK2) was observed during the entire epileptogenesis,
4oo  which further activated the adaptor proteins SHC1, GAB1 and PLCy (PLCG2). This result is consistent
401 with previous studies reporting that excessive activation of TrkB caused by SE promotes development of
402 TLE [45, 46]. The two Gq subunits of G; (GNAI2) and G4 (GNA15), which can inhibit adenylate cyclase
403  (AC) and activate phospholipase C (PLC), exhibit significant upregulation, while the Gg and Gy subunits
404 (GNB5 and GNG3) of the G, complex were downregulated strikingly in the acute stage. In accord with
4o5  this, protein activity of PLC isotypes (PLCB2, PLCB3, and PLCD4) were also upregulated. This further
406  activates the calcium signaling and protein kinase C (PKC), which can activate downstream transcription
4o7  factors NFKB1 and RELA, inducing the transcription of target genes, like c-fos and BCL-2. For MAPK
408  signaling, though there were increased activity of upstream Ras (RRAS), Raf (ARAF) and MAP3K8, both
409 ERK (MAPK1) and JNK (MAPKS) activities were downregulated, along with the downregulation of
410  activating transcription factor 2 (ATF2). Finally, the PI3K-AKT-CREB pathway, CaM kinase (CAMK2B) and
411 calcium binding protein SCGN all exhibited decreased activity. In sum, these results demonstrate that the
412 synapse-to-nucleus signaling underlying epileptogenesis were not simply up- or down-regulated, but
413 displayed a complex restructured system related to neuronal hyperexcitation and impaired synaptic
414 plasticity.

415
416  Key regulators associated with seizure frequency and hippocampal sclerosis in human TLE
417 One of the direct outcomes of the epileptogenesis is the presence of spontaneous recurrent seizures.

418  To investigate whether the identified key regulators were involved in controlling seizure frequency in
419  patients with TLE, we utilized an RNA-Seq dataset of the hippocampal tissue resected from 12 medically
420  intractable TLE patients with seizure frequencies ranging from 0.33 to 120 seizures per month.
421 Hierarchical clustering and PCA analysis of the normalized profiles led to three clusters that can be
422  regarded as the low (mean = 4.11 seizures/month), medium (mean = 13.2 seizures/month) and high
423 (mean = 90 seizures/month) seizure frequency groups (Supplementary Fig. 5a). Differential expression
424  analysis was then conducted between low or medium versus high SF groups to get both DEGs and gene
425 expression signatures. Based on seizure frequency-associated gene signatures, we first tested whether
426  the epileptogenesis-related functional modules were also disturbed in the higher seizure frequency group.
427  The MAS calculated on low versus high SF gene expression signature demonstrated that module M1,
428  which relate to acute inflammatory response, was the most strongly upregulated module, whereas
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429  modules M3, 5, 6, 7 and 9, which are related to synaptic transmission, were downregulated, in line with
430  these modules’ expression changes in the epileptogenesis (Fig. 6a). For medium verse high SF gene
431 expression changes, only modules M8 and M13 were significantly upregulated (Fig. 6b). As M8 and M13
432  were activated mainly in the chronic epilepsy stage, these results indicate that TLE patients with high
433  seizure frequency indeed exhibit similar functional alterations detected on rodent TLE models undergo
434  the epileptogenesis. We further examined whether the expression of key regulators was significantly
435  altered in the high SF group, and found 108 (41%) key regulators overlap with DEGs detected in high
436 versus low or medium SF groups.

437 Hippocampal sclerosis (HS) is a common neuropathological condition encountered in TLE patients. It
438 s featured with severe neuronal cell loss and gliosis in the hippocampus and can be both the cause and
439  outcomes of the epileptogenesis [47]. Utilizing the RNA-seq profiles of dentate granule of MTLE patients
440 with and without HS, we investigated how the epileptogenesis-associated functional modules and key
441 regulators were modulated by HS (Supplementary Fig. 5b). Modules’ MASs on the HS-related gene
442 signature showed that M1 had the highest MAS value (adjusted P-value = 0.0504). In addition, modules
443 M8, 11, 12 and 13 were significantly upregulated and M6 was downregulated. 25 key regulators were
444 found to be differentially expressed in patients with HS. By checking these regulators, we discovered 11
445 regulators that were associated with both hippocampal sclerosis and seizure frequency, namely ANXAS,
446  ATF3, FAM107A, KCNK1, MAP7, NFIL3, RPS4X, SEPT2, SNAP23, SPARC and SV2B (Fig. 6¢c and
447  Supplementary Fig. S6). Further analysis revealed that five of these key regulators (ANXA5, FAM107A,
448  SEPT2, SNAP23 and SPARC) exhibit the same changing patterns (all upregulated) across the
449  epileptogenesis and conditions of high seizure frequency and HS (Fig. 6¢). Among them, SPARC
450  (secreted protein acidic and rich in cysteine) was the most highly upregulated gene in both high SF
451 (logoFC = 2.36, adj-P = 1.2E-05) and HS (log,FC = 2.24, adj-P = 1.2E-04) groups. Only SNAP23
452  (synaptosome associated protein 23), which is a vesical-associated protein, has been previously reported
453 exhibiting upregulation in TLE patients with sclerotic hippocampus [48], while other four proteins have not
454  been associated with epilepsy yet. Altogether, 122 out of 265 key regulators of epileptogenesis were
455  associated with high seizure frequency and/or hippocampal sclerosis, indicating that our systems-level
456 analysis has provided a valuable set of genes that may serve as potential therapeutic targets for epilepsy.
457

458

459 Discussion

460 Epilepsy is a heterogeneous disorder with multiple origins and many different mechanisms of
461  pathogenesis among patients [49]. To better understand the molecular mechanisms underlying
462  epileptogenesis, it is necessary to take advantage of multiple animal epilepsy models with different origins
463 and phenotypes. In this study, we performed an integration analysis on time-specific transcriptome
464  profiles of various rodent TLE models, which include both chemical and electrical kindling models of
465 epilepsy. Direct comparison of DEGs identified from individual datasets led to very limited information,
466  indicating there need more systematic analysis to detect genes that are consistently up- or
467  down-regulated across datasets of different origins. By applying a rank-based meta-analysis method RP
468  tothe gene expression matrix of each epileptogenesis stage, we obtained stage-specific gene expression
469  signatures to depict the molecular features of the three epileptogenesis stages at a genome-wide level.
470  Compared to using DEGs based on arbitrary cutoffs as gene signatures for a specific phenotype, gene
471 lists with the relative fold change or rank information for each gene provide a more comprehensive
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472  molecular representation for each epileptogenesis stage.

473 Based on the stage-specific gene meta-signatures of epileptogenesis, we proposed a MAS value to
474  assess the differences of cellular and molecular functions between stages. For example, the
475  microglia-associated module M1, which is involved in multiple inflammation and immune response
476  processes, was constantly upregulated throughout the entire epileptogenic process. This provides
477  evidence to support the idea that inflammatory processes within the brain constitute a common and
478  crucial mechanism in the pathophysiology of seizures and epilepsy [50]. Besides, we also observed that
479  pyramidal neuron-enriched modules, M3 and M6, and interneuron-enriched module M7 were
480  downregulated in all three epileptogenesis stages, which indicates that the synaptic transmission is
481  severely impaired between these two types of neurons, leading to the excitation/inhabitation imbalance
482  and circuit-level dysfunction in the hippocampus [3]. The consistency between the cell-type specificity and
483  functional annotation of modules also demonstrates the biological significance of the identified modules in
484  the context of epileptogenesis. The dynamic changes of modules’ association with different stages thus
485  provide us a global landscape of the evolution process of epileptogenesis.

486 The expression dynamics of the functional modules are typically drove by defects in multiple gene
487  regulators which exhibit concurrent and aberrant activities. For identifying key gene regulators, we
488 inferred the differential protein activity of regulators in the three epileptogenesis stages. The regulator
489  types include not only TFs, which are commonly regarded as the direct regulators controlling transition
490  between different biological conditions [51], but also proteins on the synaptic membrane and intracellular
491  signaling proteins. Given that various proteins located at the membrane of pre- or post-synapse are under
492  the most directly impact when seizure activity occurs, the inclusion of synaptic and signaling proteins can
493  help better depict the abnormalities of the synapse-to-nuclear signaling underlying epileptogenesis.
494  Furthermore, the changing pattern of relative regulator activity in a module offers a straightforward
495 illustration of how the regulators were modulated along with the development of epilepsy (Fig. 4c). For
496  instance, we found that regulator activity of M8 exhibit gradual upregulation during epileptogenesis,
497  implying these key regulators were remarkedly activated in the latent and chronic phases and may thus
498  contribute to the formation of a brain state that supports recurrent, unprovoked seizures.

499 We further utilized transcriptome datasets of human TLE patients with or without hippocampal
5oo  sclerosis and patients with different seizure frequencies to test the validity of key regulators detected from
501 rodent TLE models. Hippocampal sclerosis is the most frequent cause of drug-resistant TLE, and
;o2  presents a broad spectrum of electroclinical, structural and molecular pathology patterns [52]. We
503  discovered four new gene regulators (ANXA5, FAM107A, SEPT2 and SPARC) from module M1 whose
504  upregulation may contribute to higher seizure frequency and hippocampal sclerosis in TLE. Though the
o5 precise functions of these regulators are not fully understood, most of them are involved in the functions
506  of the synapse and may have a potential role in maintaining synaptic plasticity. Detailed mechanisms of
so7  how these regulators drive the process of epileptogenesis and further lead to chronic recurrent seizures
508  or hippocampal sclerosis need to be investigated using appropriate animal models of epilepsy in the
sog  future. In summary, our work provides a landscape of the gene network dynamics underlying
510  epileptogenesis and highlighted candidate regulators controlling epileptogenesis that may warrant further
511 investigation as potential anti-epileptogenic targets.
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643  Figure legends

644  Fig. 1. Schematic overview of the study design. To investigate the molecular mechanisms underlying
645  the epileptogenic process, we proposed an analytic framework which comprises four steps. Firstly, the
646  hippocampal transcriptome datasets of rodent TLE models were collected and divided into the acute,
647 latent and chronic stages based on the described tissue extraction time and phenotypes. Meta-analysis
648  was then performed using the RankProd method to evaluate differential gene expression and to generate
649 the gene meta-signature for each stage. Secondly, to elucidate the functional organization of genes under
650 the epilepsy context, gene coexpression network was constructed and used for identifying functional
651 modules. A module association score (MAS) was then defined to quantify a module’s association degree
652  with an epileptogenesis stage. Thirdly, to identify key regulators controlling the transition between stages,
653  a gene regulatory network was constructed and the VIPER algorithm was employed to infer regulator
654  activity changes in epileptic samples. Finally, using the RNA-seq profiles of human TLE patients with
655  recurrent seizures and hippocampal sclerosis, key regulators associated with both conditions were
656  screened out.

657

658  Fig. 2. Principal component analysis (PCA) for microarrays of rodent TLE models. The variances
659  captured by the first two PCs are shown along the respective axes. Samples belonging to the acute, latent
660  and chronic stages are colored in red, blue and green, and control samples in gray. In all datasets, control
661  samples and epileptic samples of different epileptogenesis stages form separate clusters.

662

663  Fig. 3. Network functional dynamics during epileptogenesis. a. Dendrogram showing clustering of
664 8,384 genes based on the topological overlap dissimilarity of genes in the gene coexpression network.
665  Bottom color bar indicates the 13 gene coexpression modules (M1-M13) and their corresponding sizes
666  (i.e. the number of genes in a module). b and c. Heatmaps showing the functional meta-analysis results
667  for modules enriched with glia marker genes (M1, 2, 4 and 5) (b) and modules enriched with neuron
668  marker genes (M3, 6, 7, 8, 9, 10 and 11) (c). The top 20 enriched functional terms are shown as rows and
669  columns show modules. The heatmap is colored by the p-values. d. The MASs and corresponding
670  significance levels (-logio(adjusted P-value)) of modules at the three epileptogenesis stages. The size of
671 circle is proportional to the number of genes in each module used for calculating MAS.

672

673  Fig. 4. Identification of gene regulators driving epileptogenesis. a. Heatmap of the relative protein
674  activity of 265 key regulators at the three epileptogenesis stages compared to the sham control group,
675  with red denoting upregulation and blue denoting downregulation. The modules and types of these
676  regulators are displayed at the left. SP, synaptic protein; Signal, signaling protein; TF, transcription factor.
677 b. Venn plot showing the overlap of key regulators in the three epileptogenesis stages. ¢c. Module-based
678  regulator activity dynamics during epileptogenesis indicated by the mean and standard deviation of
679 relative activities of key regulators in a module. d. KEGG pathway enrichment analysis for the 265 key
680  regulators. The y-axis represents the top 15 significantly affected canonical pathways and x-axis the
681  —logio transformed BH adjusted P-values.

682

683 Fig. 5. Variations of synaptic signaling at different epileptogenesis stages. a. The integrated
684  synaptic signaling pathway showing the relationship between key regulators (KRs) and their activity
685  changes during epileptogenesis (red, upregulated KR; blue, downregulated KR; white, other proteins). b.
686  Heatmap showing differential protein activity of key regulators of the synaptic signaling pathway in three
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687  epileptogenesis stages. Dysregulated key regulators in the pathway are shown as rows and columns
688  show differential protein activity in the acute, latent and chronic stage, respectively. The types and
689  modules of these key regulators are shown on the top. SP, synaptic protein; Signal, signaling protein; TF,
690  transcription factor.
691
692 Fig. 6. Modules and key regulators associated with seizure frequency and hippocampal sclerosis
693 in human TLE. a. The MAS and corresponding significance level (-log;o(adjusted P-value)) of modules
694  calculated on gene expression signatures of low versus high seizure frequency (SF) group and medium
695  versus high SF group. b. The same as a but calculated on the gene expression signature associated with
696  hippocampal sclerosis (HS). In a and b, the size of circle is proportional to the number of genes in each
697  module used for calculating the MAS. c. Boxplots showing the log,-scaled normalized counts of the five
698  key regulators in TLE patients with different seizure frequency, and patients with and without HS. Bottom
699  of each plot showing the adjusted P-values of genes derived from differential expression analysis using
700  the DESeg2 package.
701
702
703
704  Tables
705  Table 1. List of rodent TLE model microarray datasets used for epileptogenesis analysis and human
706  TLE patient RNA-seq datasets used for validation.
Dataset Number of Epileptogenesis stages References
Species ] Acute Latent Chronic Model type/Disease Platforms
accession ID samples (PMID)
phase period epilepsy
Rat GSE14763 18 + + Pilocarpine GE Bioarray 20377889
GSE27166 24 + intrahippocampal KA GE Bioarray 21695113
GSE49849 20 + + electrical stimulation Affymetrix Array 24146813
of amygdala
Mouse GSE73878 80 + + + intrahippocampal KA lllumina Beadchip NA
GSEB88992 17 + ditto Affymetrix Array 30114263
TLE with low or high
Human GSE127871 12 + ) lllumina HiSeq NA
seizure frequency
TLE with and without
GSE71058 22 + . . lllumina HiSeq 26799155
hippocampal sclerosis
707 KA, kainic acid; NA, not available; PMID, PubMed ID
708
709

710
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