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Abstract	
Background:	Mosaic	mutations	acquired	during	early	embryogenesis	can	lead	to	severe	early-
onset	genetic	disorders	and	cancer	predisposition,	but	are	often	undetectable	in	blood	samples.	
The	 rate	 and	mutational	 spectrum	 of	 embryonic	mosaic	mutations	 (EMMs)	 have	 only	 been	
studied	 in	 few	 tissues	and	 their	 contribution	 to	genetic	disorders	 is	unknown.	Therefore,	we	
investigated	how	frequent	mosaic	mutations	occur	during	embryogenesis	across	all	germ	layers	
and	tissues.		
	
Results:	 Using	 RNA	 sequencing	 data	 from	 the	 Genotype-Tissue	 Expression	 (GTEx)	 cohort	
comprising	49	normal	tissues	and	570	individuals,	we	found	that	new-borns	on	average	harbour	
0.5	-	1	EMMs	in	the	exome	affecting	multiple	organs	(1.3230	x	10-8	per	nucleotide	per	individual),	
a	 similar	 frequency	 as	 reported	 for	 germline	 de	 novo	 mutations.	 Our	 multi-tissue,	 multi-
individual	 study	design	allowed	us	 to	distinguish	mosaic	mutations	acquired	during	different	
stages	of	embryogenesis	and	adult	life,	as	well	as	to	provide	insights	into	the	rate	and	spectrum	
of	 mosaic	 mutations.	 We	 observed	 that	 EMMs	 are	 dominated	 by	 a	 mutational	 signature	
associated	 with	 spontaneous	 deamination	 of	 methylated	 cytosines	 and	 the	 number	 of	 cell	
divisions.	After	birth,	 cells	 continue	 to	accumulate	 somatic	mutations,	which	can	 lead	 to	 the	
development	of	cancer.	Investigation	of	the	mutational	spectrum	of	the	gastrointestinal	tract	
revealed	a	mutational	pattern	associated	with	the	food-borne	carcinogen	aflatoxin,	a	signature	
that	has	so	far	only	been	reported	in	liver	cancer.	
	
Conclusion:	 In	 summary,	 our	 multi-tissue,	 multi-individual	 study	 reveals	 a	 surprisingly	 high	
number	 of	 embryonic	 mosaic	 mutations	 in	 coding	 regions,	 implying	 novel	 hypotheses	 and	
diagnostic	procedures	for	investigating	genetic	causes	of	disease	and	cancer	predisposition.	
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Background	
	
Genetic	 mosaicism	 describes	 the	 co-existence	 of	 genetically	 different	 cell	 populations	 in	 an	
individual	developing	from	a	single	fertilized	egg	(Youssoufian	and	Pyeritz,	2002;	Biesecker	and	
Spinner,	2013;	Acuna-Hidalgo	et	al.,	2016).	Mosaicism	has	been	associated	with	a	broad	range	
of	genetic	diseases	(Campbell	et	al.,	2015),	including	neurological	disorders	(Poduri	et	al.,	2013;	
Halvorsen	et	al.,	2016),	brain	malformation	and	overgrowth	syndromes	(Lindhurst	et	al.,	2011;	
Rivière	et	al.,	2012),	autism	spectrum	disorders	(Yurov	et	al.,	2007),	and	cancer	predisposition	
syndromes	 (Prochazkova	 et	 al.,	 2009;	 Ruark	 et	 al.,	 2013).	 Mosaicism	 can	 lead	 to	 genetic	
disorders	that	are	embryonic	lethal	when	occurring	in	germ	cells	(Happle,	1987),	or	result	in	a	
milder	 phenotype	 than	 a	 constitutive	mutation	 (Plant	 et	 al.,	 2000).	 The	 timing	 of	mutations	
during	embryogenesis	(e.g.	cleavage,	blastulation,	implantation,	gastrulation,	neurulation	and	
organogenesis)	influences	the	fraction	of	affected	cells	and	organs	in	the	organism	(Campbell	et	
al.,	2015;	Acuna-Hidalgo	et	al.,	2017).	Moreover,	when	occurring	during	gametogenesis	mosaic	
mutations	can	be	passed	on	constitutionally	to	multiple	offspring	(Acuna-Hidalgo	et	al.,	2016).		
	
As	 expected,	 mosaic	 mutations	 are	 found	 in	 the	 form	 of	 single	 nucleotide	 variants	 (SNVs),	
insertions	and	deletions	(indels)	and	copy	number	variants	(CNVs),	and	have	been	studied	using	
array	technology	(Pham	et	al.,	2014)	as	well	as	Next	Generation	Sequencing	(NGS)	(Huang	et	al.,	
2014;	 Acuna-Hidalgo	 et	 al.,	 2015).	 A	 SNParray-based	 study	 of	 the	 Children’s	 Hospital	 of	
Philadelphia	found	that	17%	of	the	diagnosed	cases	were	caused	by	mosaic	aneuploidies	(Conlin	
et	al.,	2010).	Acuna-Hidalgo	and	colleagues	suggested	that	around	7%	of	presumed	germline	de	
novo	mutations	are	 in	 fact	post-zygotic	mosaic	mutations	 (Acuna-Hidalgo	et	al.,	2015).	Using	
whole-genome	sequencing	of	normal	blood	from	241	adults	Ju	et	al.	(Ju	et	al.,	2017)	estimated	
that	 approximately	 three	 mutations	 are	 accumulated	 per	 cell	 division	 during	 early	
embryogenesis.	 However,	 despite	 their	 potential	 importance	 for	 human	 disease,	 previous	
studies	of	mosaic	mutations	have	focused	on	only	one	or	few	tissues	or	organs,	e.g.	using	whole	
exome	sequencing	data	of	brain	tissues	(Wei	et	al.,	2018a)	or	blood	(Acuna-Hidalgo	et	al.,	2015).	
Therefore,	a	comprehensive	view	of	mosaic	mutations	arising	during	embryogenesis,	including	
their	rate	and	mutational	spectrum,	is	missing.	Here,	we	exploit	10,097	RNA-seq	samples	from	
49	 different	 tissues	 and	 570	 individuals	 of	 the	 Genotype-Tissue	 Expression	 (GTEx)	 cohort	
(Lonsdale	et	al.,	2013)	to	uncover	the	rate	and	spectrum	of	mosaic	mutations	acquired	post-
zygotic	during	early	embryogenesis.	
	

	
Results	
	
Somatic	variant	calling	in	RNA-seq	data	
	
Somatic	variant	detection	using	RNA-seq	data	is	challenging,	especially	if	subclonal	mutations	
with	allele	fractions	as	low	as	5%	are	of	interest	(Yizhak	et	al.,	2019).	We	therefore	developed	a	
highly	accurate	multi-sample	variant	calling	procedure,	which	models	nucleotide-specific	errors,	
removes	germline	variants	and	confounders	such	as	RNA	editing	sites,	and	generates	a	multi-
individual,	multi-tissue	call	matrix	 (3D	genotype	matrix)	by	re-genotyping	potentially	variable	
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sites	 across	 thousands	 of	 GTEx	 RNA-seq	 samples	 (Figure	 1a).	 We	 trained	 a	 random	 forest	
classifier	(RF-RNAmut)	to	distinguish	true	from	false	variant	calls	using	whole	exome	sequencing	
(WES)	and	RNA-seq	data	from	the	ICGC	Chronic	Lymphocytic	Leukaemia	project	(Puente	et	al.,	
2015)	for	generating	training	and	test	data	(Methods).	High	confidence	somatic	variant	calls	with	
>0.15	 VAF	 in	 tumour	 WES	 data	 were	 identified	 in	 RNA-seq	 with	 71%	 sensitivity	 and	 85%	
precision,	and	sensitivity	was	positively	correlated	with	VAF	(Supp.	Table	1).	Germline	variants	
found	in	tumour	and	normal	WES	data,	although	not	our	interest	in	this	study,	were	identified	
in	RNA-seq	data	with	86%	sensitivity	and	95%	precision.	

	

	

Figure	1	|	Identification	of	mosaic	mutations	acquired	during	various	developmental	stages	and	adult	life.	
a)	10,097	RNA-seq	samples	from	49	tissues	and	570	individuals	(GTEx	release	7)	were	used	to	generate	a	
3D	genotype	matrix,	which	facilitated	the	identification	mosaic	mutations	and	determination	of	their	germ	
layer	or	organ	of	origin.	b)	Definition	of	mosaic	mutation	 types	depending	on	 the	developmental	 stage	
during	which	they	occur:	early-embryonic	mosaic	mutations	(EEMMs)	occurring	during	the	first	few	cell	
divisions	 of	 the	 zygote	 until	 implantation	 of	 the	 embryo,	 mid-embryonic	 mosaic	 mutations	 (MEMMs)	
acquired	during	gastrulation	or	neurulation	 (example	 in	 image:	mutation	 in	endoderm),	 late	embryonic	
mosaic	mutations	 (LEMMs)	acquired	during	early	organogenesis,	 and	 somatic	mutations	acquired	after	
birth.	See	also	Supp.	Figure	1	for	the	embryogenesis	lineage	tree	used	in	the	study.	
	

	
Rate	and	spectrum	of	early	mosaic	mutations	during	embryogenesis	
	
In	order	to	identify	mosaic	mutations	acquired	during	embryonic	development,	we	computed	
the	 3D	 genotype	 matrix	 for	 9,704	 samples	 of	 the	 GTEx	 cohort	 comprising	 526	 cancer-free	
individuals	and	49	 tissues	 (see	Methods	 for	sample	selection	criteria).	We	contrasted	 the	3D	
genotype	matrix	with	the	embryogenesis	lineage	tree	(Supp.	Figure	1)	to	identify	the	most	likely	
germ	 layer	 or	 tissue	 of	 origin	 of	 each	 mutation.	 We	 first	 removed	 variants	 occurring	 in	 all	
expressed	 tissues	with	average	VAF	greater	0.35,	 as	 they	might	 constitute	de	novo	 germline	
variants.	 Then,	 we	 defined	 three	 types	 of	 embryonic	mosaic	mutations	 (EMMs):	 early	 (pre-
implantation),	mid	(gastrulation	and	neurulation)	and	 late	 (organogenesis)	embryonic	mosaic	
mutations	 (EEMMs,	 MEMMs,	 LEMMs	 in	 Figure	 1b).	 EEMMs	 appeared	 during	 the	 first	 few	
divisions	of	the	zygote	(cleavage,	blastulation,	 implantation)	and	therefore	are	present	 in	the	
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Ectoderm	and	Mesendoderm	(Mesoderm	and/or	Endoderm).	MEMMs	are	mutations	found	in	
at	least	two	tissues	of	the	same	individual	that	originate	from	the	same	germ	layer.	We	define	
LEMMs	 as	 mutations	 present	 in	 a	 large	 cell	 fraction	 of	 a	 single	 organ,	 which	 are	 not	 the	
consequence	of	 somatic	 clonal	 expansions.	 Finally,	we	also	 screened	 for	postnatal	 and	adult	
somatic	mutations	in	the	transcriptome	of	all	cancer-free	individuals.	

To	 minimize	 false	 negatives	 we	 focused	 our	 analysis	 on	 housekeeping	 genes	 constitutively	
expressed	in	the	majority	of	tissues	and	samples	(7,630	genes	with	TPM	>	5	in	at	least	75%	of	
tissues).	After	strict	 filtering	 (Methods),	we	 identified	58	putative	EEMMs	and	37	MEMMS	 in	
7630	constitutively	expressed	genes.	We	estimated	a	rate	of	8.1164	x	10-9	(CI	(95%)	=	[7.0973	x	
10-9	to	9.1292	x	10-9])	EEMMs	and	a	rate	of	5.1166	x	10-9	(CI	(95%)	=	[4.5592	x	10-9	to	5.6740	x	
10-9])	 MEMMs	 per	 nucleotide	 and	 individual	 for	 exonic	 regions.	 Following	 an	 approach	 for	
extrapolating	 tumour	 mutation	 burden	 (TMB)	 from	 gene	 panels	 to	 exomes	 (45Mbp	 exonic	
regions)	(Chalmers	et	al.,	2017),	we	estimated	a	mean	of	0.37	exonic	EEMMs	(Figure	2a)	and	
0.23	exonic	MEMMs	(Figure	2b)	per	individual	(0.44	and	0.275	when	correcting	for	precision	and	
sensitivity	 of	 our	 variant	 calling	 algorithm).	 Using	 different	 thresholds	 for	 constitutively	
expressed	genes	only	marginally	affected	the	estimated	rate	of	EEMMs	or	MEMMs	(Figure	2a-
b,	Supp.	Table	2).		
	

	
Figure	 2	 |	 Rate	 and	mutational	 signatures	 of	 mosaic	mutations	 in	 healthy	 individuals	 acquired	 during	
embryogenesis.	For	a)	and	b),	the	left	Y-axis	represents	the	mutational	rate	per	nucleotide,	the	right	Y-axis	
represents	 the	 extrapolated	 number	 of	mosaic	mutations	 expected	 in	 45	Mbps	 coding	 exons,	 and	 the	
dashed	 red	 line	 indicates	 the	 mean	 rate/number	 between	 different	 parameter	 setting	 (i.e.	 different	
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definitions	 of	 constitutively	 expressed	 genes).	 a)	 Rate	 of	 early-embryonic	 mosaic	 mutations	 (EEMMs)	
acquired	during	the	first	few	divisions	of	the	zygote.	We	estimated	a	mean	rate	of	EEMMs	per	base	and	
individual	of	8.1164	x	10-9	(CI	(95%)	=	[7.0973	x	10-9	to	9.1292	x	10-9]).	b)	Mid-embryonic	mosaic	mutations	
(MEMM)	affecting	at	least	2	tissues.	We	estimated	a	mean	of	5.1166	x	10-9	MEMMs	per	nucleotide	and	
individual	 (CI	 (95%)	=	 [4.5592	x	10-9	to	5.6740	x	10-9]).	 c)	Mutational	 signature	of	early-	 (EEMMs),	mid-	
(MEMMs)	and	late-embryonic	mosaic	mutations	(LEMMs).	

	
	
On	average,	a	specific	EEMM	was	detectable	in	63.6%	of	the	tissues	of	an	individual	expressing	
the	respective	gene,	consistent	with	the	assumption	that	they	arose	during	the	first	divisions	of	
the	zygote.	Interestingly,	only	41%	of	EEMMs	in	genes	expressed	in	blood	were	detectable	in	
blood	 samples,	 which	 could	 be	 explained	 by	 the	 asymmetric	 cell	 doubling	 model	 (unequal	
contribution	of	early	embryonic	cells	to	adult	somatic	tissues)	suggested	by	Jue	et	al	(Ju	et	al.,	
2017).	Hence,	a	 large	 fraction	of	mosaic	mutations	would	be	missed	by	blood-based	genetic	
diagnostic	 tests.	 As	 expected,	we	 observed	 a	 positive	 correlation	 between	 the	 variant	 allele	
fraction	of	 EEMMs/MEMMs	and	 the	number	of	 tissues	 supporting	 the	 variant	 (Rho=0.56;	 p-
value=3.24	x	10-9).	Moreover,	mutations	occurring	earlier	in	development	also	showed	a	greater	
proportion	of	cells	carrying	the	variant	(Rho=-0.39;	p-value=7.83	x	10-5,	Supp.	Figure	2).		
	
The	combined	rate	of	EEMMs	and	MEMMs	of	1.32	x	10-8	is	comparable	to	the	estimated	rate	of	
de	novo	germline	mutations	reported	in	the	literature	(Acuna-Hidalgo	et	al.,	2015,	2016),	ranging	
from	1.0	to	1.8×10–8	per	nucleotide	per	generation	 (44	to	82	mutations	per	genome	(Acuna-
Hidalgo	et	al.,	2016),	or	~0.5	–	1	mutations	per	exome	(45Mbp)	per	individual).	Recently,	several	
genetic	disease	studies	indicated	that	more	than	50%	of	sporadic	cases	can	be	explained	by	de	
novo	 germline	 mutations	 (Poduri	 et	 al.,	 2013;	 Acuna-Hidalgo	 et	 al.,	 2016).	 Consequently,	
embryonic	 mosaic	 mutations	 are	 similarly	 likely	 to	 explain	 a	 significant	 fraction	 of	 sporadic	
genetic	disease	cases,	and	a	substantial	fraction	of	germline	de	novo	variants	identified	in	blood	
are	potentially	postzygotic	mutations.	Moreover,	we	likely	underestimated	the	rate	of	EEMMs	
and	MEMMs	due	to	factors	such	as	allele	specific	expression,	nonsense-mediated	decay,	and	
more	effective	transcription-coupled	repair	in	highly	expressed	genes.	As	most	of	the	disease-
causing	mosaic	mutations	cannot	be	detected	by	sequencing	blood-derived	DNA,	these	variants	
have	 likely	 been	missed	 in	 past	 studies,	 and	 could	 explain	 a	 substantial	 part	 of	 the	missing	
heritability.	
	
In	 order	 to	 identify	 the	 most	 likely	 processes	 causing	 early-	 and	 mid-embryonic	 mosaic	
mutations	we	investigated	their	mutational	signatures.	We	found	that	a	large	fraction	of	EEMMs	
and	MEMMs	(1	and	0.92)	could	be	explained	by	Signature	1	(Alexandrov	et	al.,	2013,	2015;	Nik-
Zainal	 et	 al.,	 2016)	 (Figure	 2c).	 Signature	 1	 is	 thought	 to	 be	 the	 result	 of	 an	 endogenous	
mutational	process	 initiated	by	spontaneous	deamination	of	5-methylcytosine	 leading	to	C>T	
transitions	 at	 CpG	 dinucleotides	 and	 likely	 reflects	 a	 cell-cycle-dependent	 mutational	 clock	
(Alexandrov	 et	 al.,	 2015).	 Hence,	 our	 findings	 indicate	 that	 most	 early-	 and	 mid-embryonic	
mosaic	 mutations	 occur	 spontaneously	 with	 very	 limited	 contributions	 from	 exposure	 to	
environmental	 factors	 or	 other	 endogenous	 processes.	 Furthermore,	 our	 results	 clearly	
distinguish	early	mosaic	mutations	from	germline	de	novo	mutations,	which	are	dominated	by	
Signature	5	characterised	by	A>G	transitions	(Acuna-Hidalgo	et	al.,	2016).	
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Late	embryonic	mosaic	mutations	arising	during	organogenesis	
	
Our	 definitions	 of	 EEMMs	 and	 MEMMs	 prevent	 identification	 of	 organ-specific	 mutations	
acquired	during	organogenesis.	We	 therefore	 screened	 for	 late	embryonic	mosaic	mutations	
(LEMMs,	Figure	1b),	which	we	defined	as	tissue-specific	mutations	at	high	cell	fraction	(VAF	>=	
0.2).	Here,	we	excluded	tissues	previously	shown	to	be	affected	by	clonal	expansion	of	mutated	
cells	such	as	esophagus-mucosa,	sun-exposed	skin	(Martincorena	et	al.,	2015,	2018;	Chalmers	
et	al.,	2017;	Yizhak	et	al.,	2019;	Yokoyama	et	al.,	2019)	and	whole	blood	(Acuna-Hidalgo	et	al.,	
2017),	which	also	showed	the	highest	somatic	mutation	rates	in	our	analysis	(Supp.	Figure	3).	
We	identified	377	mutations	across	all	 individuals,	considering	any	gene	expressed	in	at	least	
one	tissue,	resulting	in	an	estimate	of	2.44	x	10-9	(CI	[0.95]	=	[1.86	x	10-9	-	3.03	x	10-9])	LEMMs	
per	nucleotide	per	tissue	per	individual,	and	extrapolating	to	0.11	(CI	[0.95]	=	[0.084	-	0.137])	
mutations	 per	 exome	per	 tissue.	Notably,	 the	 average	 rate	of	 LEMMs	 (2.23	 x	 10-9)	 for	 brain	
tissues	closely	resembled	the	estimates	by	Wei	et	al.	(Wei	et	al.,	2018b)	(2.55	x	10-9)	obtained	
using	WES	data	of	brain	tissues.	In	sum	across	all	43	examined	tissues	we	estimated	4.7	LEMMs	
per	 exome	 per	 individual.	 However,	 LEMMs	 are	 indistinguishable	 from	 mutations	 in	 clonal	
expansions	acquired	after	birth	(Martincorena	et	al.,	2015,	2018;	Yizhak	et	al.,	2019),		and	the	
rate	of	LEMMs	is	therefore	likely	overestimated.	Nonetheless,	our	results	indicate	that	organ-
specific	 mosaic	 mutations	 arising	 during	 organogenesis	 could	 significantly	 contribute	 to	 the	
phenomenon	of	missing	heritability	in	rare	genetic	diseases	as	well	as	cancer	predisposition.	
	
Rate	and	mutational	signatures	of	tissue-specific	somatic	mutations	
	
To	identify	other	mutation	processes	leading	to	the	accumulation	of	somatic	mutations	during	
adult	 life,	 we	 next	 studied	 mutational	 signatures	 across	 all	 tissue-specific	 somatic	 variants	
identified	in	the	GTEx	cohort.	Considering	only	variants	with	VAF	>=	0.05,	we	identified	8,780	
somatic	mutations	in	8,351	samples	representing	46	tissues	(Methods	and	Supp.	Figure	4).	After	
removal	of	technical	confounders	(PCR	duplicate	rates,	RIN,	TRISCHD,	coverage,	laboratory),	we	
observed	the	highest	mutation	burden	for	sun-exposed	skin,	lung,	testis,	esophagus-mucosa	and	
vagina	(Figure	3a	and	Supp.	Figure	5),	as	previously	reported	(Yizhak	et	al.,	2019).	As	expected,	
sun-exposed	 skin	 showed	 significantly	 higher	 mutation	 burden	 than	 non-sun-exposed	 skin,	
while	brain	tissues	showed	the	lowest	somatic	mutation	burden.	Finally,	we	tested	if	residual	
mutation	rates	were	related	with	age	of	individuals	for	each	tissue	individually	(Figure	3b).	Only	
two	 tissues	 showed	 a	 significant	 association	 between	 age	 and	 mutational	 rates	 (after	 FDR	
correction),	namely	sun-exposed	skin	 (Rho	=	0.31;	qval	=	1.19	x	10-7)	and	esophagus-mucosa	
(Rho	 =	 0.22;	 qval	 =	 2.82	 x	 10-3),	 as	 previously	 reported	 (Martincorena	 et	 al.,	 2015,	 2018;	
Yokoyama	et	al.,	2019).	Using	dN/dS	as	a	measure	of	selection,	we	observed	a	lack	of	selection	
in	highly-expressed	genes	at	a	pan-tissue	level	(dN/dS	=	0.98,	CI[95]	=	[0.92	–	1.06]).	However,	
when	focusing	on	cancer	genes	we	observed	strong	positive	selection	for	sun-exposed	skin	and	
esophagus-mucosa	 (Supp.	 Figure	 6).	 Mutations	 in	 NOTCH1	 and	 TP53	 disproportionally	
contributed	to	the	high	dN/dS	values	and	showed	the	highest	overall	mutation	rates.	NOTCH1	
showed	stronger	positive	selection	than	TP53	in	both	esophagus-mucosa	and	skin	sun-exposed	
(dN/dS	of	8.46	vs.	4.57	and	dN/dS	of	4.01	vs.	2.85,	respectively,	Supp.	Table	3).	Interestingly,	we	
did	not	find	positive	selection	of	these	two	genes	in	any	other	tissues,	and	no	other	gene	reached	
significance	in	any	of	the	tissues.	
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Figure	3	|	Rate	of	somatic	mutations	varies	significantly	across	the	46	tissues	of	the	GTEx	cohort	(ignoring	
Kidney,	Cells-EBV-transformed	 lymphocytes	and	Cells-transformed	 fibroblasts	 for	 technical	 reasons,	 see	
Methods).	 a)	 Distribution	 of	 residuals	 of	 the	 somatic	 mutation	 rate	 per	 base	 and	 individual	 residuals	
(mutRate-residuals)	 across	 analysed	 tissues.	 MutRate-residuals	 represent	 the	 somatic	 mutation	 rates	
corrected	for	non-biological	confounders	such	as	PCR	duplication	rate,	RIN,	cohort,	and	read	coverage.	b)	
Spearman	correlation	between	mutRate-residuals	and	age	per	tissue.	Colours	show	the	significance	of	the	
correlation	test	after	FDR	correction	(q-value	<	0.05	in	red).	

	
Aflatoxin	mutational	signature	in	organs	of	the	dietary	tract	
	
Previous	studies	have	analyzed	the	spectrum	of	somatic	mutations	 in	healthy	esophagus	and	
skin	 (Martincorena	et	al.,	2015,	2018;	Yizhak	et	al.,	2019;	Yokoyama	et	al.,	2019),	 identifying	
mutational	 signatures	 (Alexandrov	 et	 al.,	 2013)	 1,	 5	 and	 7	
(https://cancer.sanger.ac.uk/cosmic/signatures_v2).	Our	analysis	of	mutational	 signatures	 for	
patients	who	died	at	advanced	age	(>=60	years	old)	revealed	that	ultraviolet-light	(UV)	exposure	
(signature	7)	was	predominant	in	sun-exposed	skin,	while	it	was	absent	from	non-sun-exposed	
skin	 (Figure	 4).	 Interestingly,	 studies	 of	 the	 mutational	 signatures	 found	 in	 healthy	 tissues	
forming	the	dietary	tract	are	lacking,	although	the	constant	exposure	to	food	likely	leads	to	a	
particular	 mutational	 spectrum.	 We	 therefore	 performed	 a	 pan-gastrointestinal-tract	
mutational	signature	analysis	considering	colon,	esophagus-mucosa,	 liver,	small	 intestine	and	
stomach.	Apart	 from	 signatures	 1	 and	 5,	which	 are	 frequently	 observed	 in	most	 tissues,	we	
found	 a	 signature	 explained	by	 the	mutagenic	 effect	 of	 dietary	 aflatoxin	 (Signature	 24).	 The	
aflatoxin	signature	explained	a	fraction	of	0.18	of	the	mutational	spectrum	in	the	tissues	of	the	
gastrointestinal	tract	(Figure	4).	Furthermore,	we	saw	a	strong	enrichment	of	the	characteristic	
CGN	>	CTN	mutations	not	observed	in	any	other	tissue.	
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Figure	4	|	Mutational	signatures	observed	in	Skin	sun-exposed,	Skin	not	sun-exposed,	Diet	exposed	tissues,	
Diet	 exposed	 (except	 liver)	 tissues,	 and	 Brain	 tissues	 (considered	 control	 tissues	with	 low	 exposure	 to	
environmental	 factors).	 Detailed	 descriptions	 of	 signatures	 are	 available	 at	
https://cancer.sanger.ac.uk/cosmic/signatures_v2.	

	
Aflatoxin	B1	(AFB1)	is	a	potent	mutagen	and	carcinogen	typically	found	in	grains	contaminated	
with	the	food	spoilage	fungus,	Aspergillus	 flavus.	Dietary	exposure	to	aflatoxin	B1	 (AFB1)	 is	a	
known	risk	factor	for	human	hepatocellular	carcinoma	(HCC),	the	third	leading	cause	of	cancer	
death	worldwide.	One	of	aflatoxins	degradation	products,	the	metabolite	exo-epoxide,	forms	a	
covalent	 bond	 with	 guanyl	 N7	 (AFB1-N7-Gua),	 ultimately	 leading	 to	 G>T	 mutations	 during	
replication.	Consistently,	 signature	24	has	previously	been	 found	 in	a	 subset	of	 liver	 cancers	
(Chawanthayatham	et	al.,	2017;	Zhang	et	al.,	2017),	but	has	not	been	reported	for	other	cancer	
entities.	We	therefore	tested,	if	the	observed	enrichment	of	signature	24	was	solely	introduced	
by	a	strong	mutagenic	effect	in	the	liver.	To	the	contrary,	when	excluding	liver	from	the	analysis,	
the	aflatoxin	signature	was	still	found	at	a	similar	level,	explaining	a	fraction	of	close	to	0.16	of	
the	mutational	spectrum.	 In	comparison,	we	did	not	 identify	signature	24	 in	any	other	tissue	
(Figure	4),	These	results	indicate	that	aflatoxin-related	mutations	are	frequent	in	all	tissues	of	
the	gastrointestinal	tract,	and	might	play	a	role	in	the	development	of	cancer	in	several	organs.	

	
Discussion	
	
The	 accumulation	 of	 DNA	 mutations	 during	 life	 is	 inevitable,	 despite	 the	 many	 cellular	
mechanisms	 involved	 in	 the	preservation	of	 genome	 integrity.	 In	 this	 study,	we	presented	 a	
novel	analysis	strategy	using	RNA-seq	data	of	multiple	tissues	per	individual	to	identify	mosaic	
mutations	 occurring	 during	 various	 stages	 of	 embryo	 development.	 Using	 the	 human	
embryogenic	lineage	tree,	we	approximated	the	time	point	of	the	mutation	events	as	well	as	
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the	affected	germ	 layer	or	developing	organ.	We	demonstrated	how	 to	distinguish,	 to	 some	
extent,	embryonic	mosaic	mutations	from	de	novo	germline	mutations	and	somatic	mutations	
in	clonal	expansions	acquired	after	birth.	
	
Analysing	RNA	sequence	data	 from	49	tissues	and	570	patients	we	found	that	new-borns	on	
average	harbour	0.5	-	1	mosaic	mutation	in	coding	exons	affecting	multiple	tissues	and	organs,	
and	 likely	 an	 even	 larger	 number	 of	 organ-specific	 coding	 mutations.	 Postzygotic	 and	 early	
embryonic	mosaic	mutation	patterns	are	dominated	by	signature	1,	which	 is	associated	with	
aging	and	cell	division.	Hence,	they	largely	result	from	spontaneous	deamination	of	methylated	
cytosines	without	showing	any	influence	of	external	mutagens.	Moreover,	our	estimates	suggest	
that	 embryonic	mosaic	mutations	 are	 as	 frequent	 as	 germline	de	novo	mutations	 and	 could	
explain	a	substantial	fraction	of	unresolved	cases	of	sporadic	and	rare	genetic	diseases,	as	well	
as	play	a	role	in	cancer	predisposition.			
	
The	 recognition	 of	 a	 widespread	 and	 under-recognised	 role	 of	mosaic	mutations	 in	 genetic	
disease	would	have	many	 implications	 for	genetic	diagnostics	procedures	 (Lupski,	2013).	We	
have	furthermore	demonstrated	that	a	substantial	fraction	of	EMMs	is	not	detectable	in	blood	
cells,	a	 finding	which	has	 important	 implications	 for	clinical	diagnostics,	as	 samples	 from	the	
affected	tissue	are	often	unavailable.	Therefore,	circulating	cell-free	DNA	could	be	an	unbiased	
source	for	detecting	mosaic	mutations	in	any	tissue.	
	
Interestingly,	 our	 method	 also	 revealed	 a	 strong	 signature	 of	 the	 food	 poison	 aflatoxin	
detectable	in	all	organs	of	the	dietary	tract.	Aflatoxin	mutations	have	previously	been	associated	
to	liver	cancer.	Our	results	indicate	that	the	role	of	aflatoxins	in	cancer	development	might	be	
more	widespread	than	previously	appreciated,	affecting	the	mutation	spectrum	of	tumours	in	
colon,	esophagus-mucosa,	liver,	small	intestine	and	stomach.	
	

Conclusion	
	
In	 this	 study,	 based	 on	 a	multi-tissue,	multi-individual	 analysis,	we	 found	 a	 surprisingly	 high	
number	of	embryonic	mosaic	mutations	in	exonic	regions	of	healthy	individuals,	implying	novel	
hypotheses	 and	 diagnostic	 procedures	 for	 investigating	 genetic	 causes	 of	 disease,	 cancer	
predisposition	and	ageing.	
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Methods	

Samples	
	
In	this	study	we	used	release	7	of	the	Genotype-Tissue	Expression	(GTEx)	(Lonsdale	et	al.,	2013)	
project	 (dbGaP	 accession	 phs000424.v7.p2),	 including	 RNA-seq	 data	 for	 49	 tissues	 from	570	
individuals.	We	included	only	individuals	for	which	Whole	Genome	Sequencing	(WGS)	data	was	
available	(necessary	for	distinguishing	somatic	from	germline	variants)	and	for	which	at	least	8	
tissues	were	analyzed	by	RNA-seq.	Furthermore,	we	only	 included	tissues	 for	which	RNA-seq	
data	from	at	least	25	donors	was	available.	Filtering	by	these	criteria	resulted	in	RNA-seq	data	
from	10,097	samples	distributed	over	570	individuals	and	49	tissues.	Additional	QC	and	filtering	
steps	were	performed	depending	on	the	specific	analysis,	as	detailed	below.	
	
Pipeline	for	somatic	variant	prediction	in	RNA-seq	data	
	
Reads	were	aligned	using	STAR	(version	2.7)	against	the	human	reference	genome	(GRCh37)	and	
the	 resulting	 BAM	 files	 were	 post-processed	 in	 order	 to	 remove	 alignment	 artefacts.	 PCR	
duplicates	were	marked	using	Picard	(version	2.10.1)	and	reads	mapping	to	different	exons	were	
split	 using	 SplitNCigar	 (part	 of	 GATK	 3.7	 package).	 Additionally,	 reads	 not	 overlapping	 with	
annotated	human	exons	 (ENSEMBL	GRCh37	release	95)	or	aligning	 to	 immunoglobulin	genes	
(potentially	 hyper-mutated)	 were	 removed	 from	 downstream	 analysis.	 Furthermore,	 reads	
aligning	with	mapping	 quality	 lower	 than	 255,	more	 than	 one	 gap	 opening	 or	more	 than	 3	
mismatches	were	filtered.	Finally,	in	order	to	avoid	systematic	alignment	errors	at	the	extremes	
of	the	reads	(which	also	include	the	‘inner	ends’	of	reads	split	across	introns,	i.e.	breakpoints	of	
spliced-reads),	we	trimmed	the	 first	and	 last	4	bases	 from	each	read-end	or	 read-breakpoint	
(BamUtil	version	1.0.14).	
	
Using	the	post-processed	BAM	files,	we	computed	a	three-dimensional	genotype-matrix	(variant	
x	tissue	x	individual)	for	all	positions	found	to	have	a	significant	alternative	allele	call	in	at	least	
one	sample.	This	algorithm	consists	of	two	main	steps:	
	
Step	 1:	 Single	 sample	 variant	 calling.	 First,	 base	 counts	 are	 obtained	with	 samtools	mpileup	
(version	 1.3.1)	 followed	 by	 post-processing	 using	 custom	 scripts	 (Python	 and	 R	 scripts).	We	
modeled	 the	 error	 rate	 (ER)	 distribution	 for	 each	 sample	 using	 a	 beta-binomial	 distribution.	
Counts	of	alternative	(non-reference)	reads	at	homozygous-reference	positions	(germline)	are	
distributed	following	a	binomial	distribution	with	parameter	P	(error	rate),	which	is	a	random	
variable	that	follows	a	Beta	distribution	with	parameters	a	and	b.	

	
Alternative	counts	~	Bin(Coverage,	error	rate)	
Error	rate	~	Beta(a,	b)	

	 	
As	the	error	rate	differs	depending	on	the	nucleotide	change	(for	example	due	to	DNA	oxidation	
artifacts	affecting	only	a	specific	base),	we	modeled	error	distributions	independently	for	each	
possible	 nucleotide	 change	 (A>C,	 A>T,	 A>G,	 C>A,	 C>T,	 C>G).	 Finally,	 we	 identified	 all	 sites	
showing	 alternative	 allele	 counts	 significantly	 deviating	 from	 the	 ER	 distribution	 after	 FDR	
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correction.	 Additional	 filtering	 criteria	 were	 applied	 for	 each	 site,	 including	 a	 minimum	
alternative	allele	count	of	4	(each	having	at	least	base	quality	of	20),	minimum	read	coverage	of	
10,	alternative	calls	presented	in	forward	and	reverse	strand	following	the	same	distribution	as	
for	reference	counts	(i.e.	no	strand	bias),	variant	allele	frequency	(VAF)	greater	or	equal	to	5%,	
and	minimum	distance	of	20	bp	between	variable	sites	in	the	same	sample.	

	
Step	2:	Multi-sample	re-calling	of	all	potentially	variable	sites	across	all	individuals	and	tissues	is	
performed	using	a	custom	algorithm	in	order	to	build	the	three-dimensional	genotype	matrix.	
To	 this	end,	 sites	passing	step	1	as	significant	 in	at	 least	one	sample	were	evaluated	 in	each	
sample	 using	 the	 beta-binomial	 distribution	 as	 described	 for	 single	 samples,	 but	 with	 less	
stringent	 post-filtering	 criteria,	 resulting	 in	 one	 of	 four	 possible	 filter	 states	 per	 sample:	
NO_EXPRESSION,	HOM_REF,	LOW_QUALITY	or	PASS.	Furthermore,	the	exact	reference-like	and	
alternative	allele	counts	are	stored	in	the	Coordinates	x	Tissue	x	Individual	matrix.	
	
A	random	forest	model	for	multi-tissue,	multi-individual	germline	and	somatic	variant	calling	
from	RNA-seq	data	
	
We	 next	 aimed	 at	 training	 a	 random	 forest	 classifier	 distinguishing	 true	 from	 false	 positive	
variant	calls	in	RNA-seq	data.	To	this	end	we	selected	40	cases	studied	as	part	of	the	ICGC	Chronic	
Lymphocytic	Leukemia	project,	for	which	whole	exome	sequencing	(WES)	data	for	tumor	and	
normal	sample	and	RNA-seq	data	for	tumor	samples	are	available.	RNA-seq	based	variant	calling	
was	performed	as	described	above	for	GTEx	samples.	Additionally,	we	obtained	the	reference	
and	alternative	allele	counts	from	tumor	and	normal	WES	data	for	all	putative	calls	identified	in	
RNA-seq	data.	Finally,	we	used	the	WES	data	to	predicted	high	quality	germline	and	somatic	
variant	calls	using	GATK	HaplotypeCaller	and	MuTect2	as	described	before	(Zapata	et	al.,	2017;	
Muyas	et	al.,	2019).	
	
Next,	variants	identified	in	RNA-seq	data	were	randomly	split	into	training	and	test	sets	for	RF	
model	training	and	testing,	with	the	restrictions	that:	

• Training	and	test	set	contain	a	similar	number	of	true	and	false	events	according	to	WES	
data	

• Training	and	test	sets	have	a	uniform	distribution	of	variant	allele	frequencies,	except	for	
variants	with	VAF	<	10%,	which	were	doubled	(in	order	to	increase	sensitivity	of	the	RF	for	
low	VAF)	

	
In	 addition,	 a	 set	 of	 non-overlapping	 high	 quality	 calls	 from	WES	 data	 was	 incorporated	 in	
training	and	test	sets.	We	labeled	as	true	variants	any	site	with	VAF	>=	5%	and	at	least	2	reads	
supporting	the	alternative	allele	in	WES	data,	and	all	other	sites	as	false	variants.	This	procedure	
resulted	in	training	and	test	datasets	of	2402	sites	each.		
	
To	 train	 the	 RF	 model	 (R	 randomForest	 package)	 for	 distinguishing	 true	 and	 false	 positive	
variants	 (germline	or	 somatic)	 called	 in	RNA-seq	data	we	 included	as	 features:	a)	alternative	
allele	 count,	 b)	 coverage,	 c)	VAF,	d)	 strand	bias,	 e)	blacklisted	genes	 (Fuentes	 Fajardo	et	 al.,	
2012),	and	f)	average	alternative	base	quality.	As	this	model,	termed	RF-RNAmut	from	here	on,	
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returned	a	response	value	between	0	and	1	for	detecting	calls,	we	chose	our	cutoff	based	on	the	
maximum	F1	score	in	the	training	set	(cutoff	=	0.19).	Sites	with	response	values	exceeding	0.19	
were	labelled	as	high	confident	variants.	To	finally	generate	the	somatic	mutation	call	set	and	
to	remove	systematic	calling	errors	we	filtered	variants	 if:	 (1)	 they	were	recurrently	called	 in	
RNA-seq	data	of	multiple	individuals,	(2)	their	population	allele	frequency	in	GnomAD	or	1000GP	
was	greater	than	1%,	(3)	they	overlapped	with	repetitive	elements	annotated	by	Repeat	Masker,	
(4)	they	overlapped	with	low	complexity	regions,	(5)	were	flagged	as	likely	systematic	analysis	
error	by	ABB	(Muyas	et	al.,	2019),	or	(6)	they	overlapped	with	a	known	RNA	editing	site	(Kiran	
et	al.,	2012;	Picardi	et	al.,	2017;	Tan	et	al.,	2017).	
	
We	measured	 the	performance	 (precision	and	recall)	of	RF-RNAmut	+	Filter	on	 identifying	a)	
germline	 and	 b)	 somatic	 variant	 calls	 using	 the	 test	 set,	 following	 the	 same	 procedure	 as	
described	 above.	 To	 calculate	 precision,	 we	 considered	 as	 true	 or	 false	 positive	 calls	 those	
variants,	which	were	found	in	RNA-seq	data	and	matched	or	not	matched	with	tumor	WES	data,	
respectively.	For	calculating	the	false	negative	rate,	we	considered	high-quality	calls	identified	
by	MuTect2	 in	 tumor-normal	paired	WES	analysis	 that	were	not	 found	 in	RNA-seq	data.	 For	
benchmarking	purposes,	we	only	analyzed	regions	overlapping	between	RNA-seq	(with	more	
than	10x	 read	coverage	 in	annotated	exons)	and	 the	WES	enrichment	kit	 (Agilent	SureSelect	
71Mb).	Again,	non-exonic	regions,	known	editing	sites	and	Immunoglobulin	genes	were	ignored.	
	
Identification	of	mosaic	mutations	in	the	GTEx	cohort	

In	order	to	obtain	true	mosaic	variant	calls	for	the	GTEx	cohort	we	first	removed	all	germline	
variants	 detected	 by	 WGS	 analysis	 in	 any	 individual	 (GATK	 HaplotypeCaller)	 from	 the	 3D	
genotype	matrix.	Additionally,	we	removed	any	site	for	which	the	minor	allele	frequency	in	the	
population	was	greater	or	equal	than	1%	in	GNOMAD	or	1000GP.	Furthermore,	we	removed	all	
variants	present	in	expressed	tissues	of	all	individuals,	as	they	likely	represent	systematic	errors,	
RNA	editing	sites	or	germline	de	novo	mutations.	To	 further	deplete	calls	produced	by	RNA-
editing	events	(mainly	A	>	I,	less	frequently	C	>	U)	we	ignored	known	editing	sites	described	in	
the	 literature	 (http://lilab.stanford.edu/	 (Tan	 et	 al.,	 2017),	 found	 in	 the	 Darned	 database	
(https://darned.ucc.ie/download/	 (Kiran	 et	 al.,	 2012))	 or	 identified	 by	 the	 GTEx	 consortium	
(http://srv00.recas.ba.infn.it/atlas/pubs.html	-	REDIportal	(Picardi	et	al.,	2017)).		

	
Next,	 we	 removed	 sites,	 which	 recurrently	 exhibit	 low	 quality	 (LQ)	 calls	 across	 multiple	
individuals,	which	are	likely	systematic	sequencing	or	alignment	errors.	Moreover,	we	filtered	
out	positions	labeled	as	systematic	errors	by	ABB	(Muyas	et	al.,	2019).	Additionally,	we	removed	
any	 variant	 overlapping	with	 low	 complexity	 regions	 or	 repeat	 regions	 annotated	by	Repeat	
Masker.	 Finally,	 as	 we	 did	 not	 expect	 mosaic	 mutations	 to	 be	 highly	 recurrent	 in	 different	
individuals,	we	removed	sites	called	in	more	than	2	individuals	of	our	cohort.	

	

Identification	of	early-	(EEMMs)	and	mid-embryonic	mosaic	mutations	(MEMMs)	

In	 order	 to	 identify	 mosaic	 mutations	 acquired	 during	 early	 embryogenesis	 (cleavage,	
blastulation,	gastrulation,	neurolation	and	early	organogenesis)	we	contrasted	the	somatic	calls	
in	the	3D	genotype	matrix	with	a	lineage	tree	of	human	embryogenesis	and	tissue	development	
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including	the	49	tissues	studied	here	(Yu	et	al.,	2010).	In	this	part	of	the	analysis,	only	individuals	
with	10	or	more	tissues	sequenced	with	at	least	two	germ	layers	represented	by	2	sequenced	
tissues	were	 included	 in	 the	analysis	 (526	 individuals).	 This	procedure	allowed	us	 to	 identify	
mosaic	mutations	affecting	at	least	two	tissues,	whose	origin	could	be	unambiguously	mapped	
to	a	specific	stage	of	development	and/or	primary	germ	layer.		
	
Mosaic	mutations	identified	in	both	the	Ectoderm	and	Mesendoderm	branches	having	zygote	
as	most	likely	ancestral	node,	 i.e.	variants	 likely	originating	from	the	first	few	divisions	of	the	
zygote	 (cleavage,	blastulation,	 implantation	stages),	were	defined	as	early-embryonic	mosaic	
mutations	(EEMMs).		In	order	to	avoid	detection	of	de	novo	germline	variants	as	EEMMs	we	only	
considered	variants	with	VAF	less	than	0.35	that	were	not	found	in	all	expressed	tissues	of	an	
individual.	
	
The	 remaining	mutations	 found	 in	at	 least	 two	 tissues	of	an	 individual	were	defined	as	mid-
embryonic	mosaic	mutations	(MEMMs)	if:	(1)	their	most	likely	ancestral	node	was	not	zygote;	
(2)	they	were	only	observed	in	either	the	ectoderm	or	the	mesendoderm	sub-tree;	and	(3)	their	
appearance	in	the	lineage	tree	was	coherent.	Contradictory	(non-coherent)	mutation	patterns	
were	 defined	 as	 alternative	 alleles,	which	were	 observed	 in	 far-apart	 nodes	 in	 the	 tree,	 but	
which	were	 undetectable	 in	 any	 node	 close	 to	 the	 affected	 tissues.	 In	 other	words,	mosaic	
mutations	that	required	the	assumption	that	they	had	occurred	multiple	times	independently	
in	different	cells	of	the	same	individual	were	not	considered	coherent	and	were	removed.	

	
Finally,	 we	 defined	 late	 embryonic	 mosaic	 mutations	 (LEMMs)	 as	 those	 mutations	 that	 are	
restricted	to	one	tissue/organ,	but	likely	occurred	early	during	organogenesis.	To	this	end,	we	
considered	variants	found	in	a	single	tissue	per	individual,	supported	by	5	or	more	reads	and	
with	VAF	of	>=	0.2.	This	procedure	cannot	distinguish	mosaic	mutations	acquired	during	 late	
embryogenesis	(organogenesis)	from	mutations	 in	clonal	expansions	acquired	after	birth.	We	
therefore	excluded	somatic	variants	from	tissues	known	to	have	detectable	clonal	expansions	
such	as	sun-exposed	skin,	esophagus-mucosa	and	whole	blood.	

	
Estimating	the	rate	of	mosaic	mutations	during	embryogenesis	
	
Reliable	 detection	 of	 mosaic	mutations	 in	 a	 gene	 using	 RNA-seq	 data	 and	 definition	 of	 the	
mutation’s	origin	in	the	lineage	tree	requires	high	gene	expression	in	a	majority	of	tissues	of	an	
individual.	In	order	to	estimate	the	rate	of	mosaic	mutations	we	therefore	focused	on	genes	that	
are	highly	and	constitutively	expressed	in	most	of	the	analyzed	tissues.	Given	a	 large	enough	
pool	of	constitutively	expressed	genes	we	can	subsequently	extrapolate	mutation	rates	to	the	
whole	exome	or	genome,	as	suggested	previously	for	measuring	genome-wide	tumor	mutation	
burden	(TMB)	using	small	cancer	gene	panels	(Chalmers	et	al.,	2017).	We	used	four	different	
thresholds	 to	 define	 sets	 of	 constitutively	 expressed	 genes.	 For	 each	 set	 we	 independently	
estimated	the	rate	of	mosaic	mutations,	to	ultimately	evaluate	the	robustness	of	our	approach	
by	comparing	the	four	estimates.	The	following	definitions	were	used	to	define	constitutively	
expressed	genes:	
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1. Genes	with	TPM	>=	5	in	more	than	75	%	of	all	total	samples	(7,630	genes).		
2. Genes	with	TPM	>=	10	in	more	than	75	%	of	the	total	samples	(5,231	genes).	
3. Genes	with	COV	>=	20	in	than	75	%	of	the	total	samples	(6,888	genes).	
4. Genes	with	COV	>=	30	in	more	than	75	%	of	the	total	samples	(5,370	genes).	

	
(TPM	=	Transcripts	per	kilobase	per	million,	COV	=	average	read	coverage	across	a	gene)	
	
Next,	we	obtained	all	mosaic	variants	identified	in	a	given	set	of	constitutively	expressed	genes	
and	calculates	the	number	of	mutations	per	base	and	individual	relative	to	the	total	length	of	
the	interrogated	region.	Finally,	we	extrapolated	this	value	to	the	approximate	total	length	of	
all	coding	exons	(45Mbp)	in	order	to	calculate	the	number	of	mosaic	coding	mutations	expected	
on	average	for	a	newborn	child.	The	procedure	was	independently	performed	for	EEMMs	and	
MEMMs.		
	
For	LEMMs,	which	were	defined	as	tissue-specific,	we	considered	any	gene	highly	expressed	in	
a	given	tissue	of	an	individual	(i.e.	a	sample).	We	normalized	the	number	of	mutations	per	base	
and	individual	relative	to	the	interrogated	region	for	a	given	sample	and	extrapolated	this	value	
to	 the	 approximate	 total	 length	 of	 all	 coding	 exons	 (45Mbp).	 Due	 to	 their	 similarity	 with	
mutations	 in	 clonal	 expansions	 the	 rates	 of	 LEMMs	 per	 exome	 per	 individual	 are	 likely	
overestimated.	
	
Tissue-specific	somatic	mutation	rates	
	
In	 order	 to	 study	 somatic	 mutations	 acquired	 after	 birth,	 the	 rate	 of	 somatic	 mutations,	
signatures	of	selection,	as	well	as	mutation	spectra	 in	a	tissue	specific	manor,	we	performed	
somatic	variant	calling	using	RF-RNAmut	without	the	restrictions	applied	for	the	detection	of	
embryonic	mosaic	mutations.	Here,	we	only	considered	somatic	mutations	identified	in	exactly	
one	tissue	per	individual	in	order	to	minimize	the	number	of	mosaic	mutations	acquired	before	
birth	in	this	set.	First,	we	performed	samples-wise	quality	control	(Supp.	Figure	4)	and	excluded	
samples	with	the	following	characteristics:	
	
• PCR	duplicate	rates	in	the	top	5	%.	
• Outliers	for	the	number	of	callable	sites	(top	and	bottom	1%	per	tissue).	We	considered	a	

site	as	callable	if	the	read	coverage	was	>=	10.		
• Outliers	for	RIN	(bottom	1	%	per	tissue)	
• Outliers	for	mutation	rate	(top	1	%	per	tissue)	
• Samples	 obtained	 from	 cell	 culture	 (Cells-EBV-transformed_lymphocytes,	 Cells-

Transformed_fibroblasts)	
• Individuals	affected	by	cancer	
	
In	order	 to	 improve	 the	 statistical	power,	we	 removed	 tissues	with	 less	 than	50	high	quality	
samples	 from	 downstream	 analysis	 (affecting	 only	 kidney	with	 38	 high	 quality	 samples,	 see	
Supp.	Figure	4d)	resulting	in	8,351	samples	from	46	tissues	and	558	individuals.	We	calculated	
the	somatic	mutation	rate	based	on	the	number	of	identified	somatic	mutations	divided	by	the	
callable	sites	per	sample.	As	quality	control	revealed	a	strong	influence	of	technical	confounders	
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(PCR	duplicate	 rate,	RIN,	average	coverage,	sequencing	center)	on	the	number	of	detectable	
mutations	we	used	 a	 linear	 regression	model	 to	 estimate	 and	 subtract	 technical	 biases.	 The	
linear	regression	model	uses	the	following	variables:	
	
Mutation	Rate	~	Duplicates	+	Cohort	+	RIN	+	TRISCHD	+	DPmedian	+	e	(mutRate	residuals)	

	
We	understand	mutRate	residuals	(e)	as	the	variability	of	the	observed	(raw)	mutational	rate,	
which	is	not	explained	by	non-biological	(technical)	features	such	as	PCR	duplicate	rates,	cohort,	
or	RIN.	In	order	to	assess	the	effect	of	age	and	tissue	on	mutation	rates,	we	assessed	the	relation	
of	the	remaining	variability	(mutRate	residuals)	and	the	age	of	an	individual	at	death,	separately	
for	each	tissue,	using	a	Spearman’s	rank	correlation	test	(all	p-values	were	corrected	with	FDR).	
		
	
Mutational	signatures	
	
Mutational	 signatures	were	computed	using	 the	R	package	deconstructSigs	 (Rosenthal	et	al.,	
2016)	and	only	signature	weights	greater	than	0.1	were	shown	in	plots.		
	
For	 computing	 mutational	 signatures	 of	 embryonic	 mosaic	 mutations	 all	 individuals	 were	
considered	for	which	at	least	10	tissues	were	sequenced.	For	calculation	of	signatures	of	somatic	
mutations	acquired	during	the	lifespan	only	individuals	older	than	60	years	were	included	in	the	
analysis	in	order	to	increase	the	number	of	mutations	related	to	mutagenic	processes.	Again,	
we	focused	on	mutations	found	in	exons	due	to	the	limited	RNA-seq	coverage	in	intergenic	and	
introic	 regions.	We	obtained	mutational	 signatures	 for	 each	 tissue	 separately,	 as	well	 as	 for	
groups	of	tissues	based	on	predominant	environmental	exposures,	with	a	specific	focus	on:	

• Sun-exposed	skin	
• Non-sun-exposed	skin	
• Exposure	to	mutagens	in	food:	colon,	esophagus-mucosa,	small	intestine,	liver	and	stomach	
• Brain	 tissues:	 Brain-Anterior_cingulate_cortex_BA24,	 Brain-Hippocampus,	 Brain-

Substantia_nigra,	 Brain-Caudate_basal_ganglia,	 Brain-Cerebellar_Hemisphere,	 Brain-
Frontal_Cortex_BA9,	Brain-Spinal_cord_cervical_c-1,	Brain-Amygdala,	Brain-Cortex,	Brain-
Cerebellum,	 Brain-Hypothalamus,	 Brain-Nucleus_accumbens_basal_ganglia,	 Brain-
Putamen_basal_ganglia	

	
Identifying	signatures	of	positive	selection	in	cancer	genes	using	dN/dS	
To	estimate	the	extent	of	selection	acting	on	somatic	mutations	in	healthy	tissues	we	used	the	
SSB-dN/dS	method	(Zapata	et	al.,	2018),	which	calculates	the	trinucleotide-corrected	ratio	of	
nonsynonymous	 to	 synonymous	 mutations	 from	 NGS	 data	 (Zapata	 et	 al.,	 2018).	 Somatic	
mutations	 identified	 by	RF-RNAmut	 were	 annotated	 using	 Variant	 Effect	 Predictor	 (VEP).	 To	
increase	statistical	power,	we	only	considered	constitutively	expressed	genes	having	more	than	
5	TPM	 in	at	 least	75%	of	patients	 for	 a	 focal	 tissue.	We	computed	SSB-dN/dS	 in	each	 tissue	
separately,	 and	 in	 the	 pan-tissues	 combinations	 listed	 above,	 using	 192	 parameters	 for	
nucleotide	bias	correction	(correcting	for	mutation	bias	in	all	possible	triplets	on	forward	and	
reverse	strand).	However,	we	only	computed	dN/dS	values	for	those	tissues	having	at	least	3	
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non-silent	or	 silent	 somatic	mutations	 in	 the	analyzed	genes.	 In	 addition	 to	 the	exome-wide	
dN/dS	provided	in	the	output	of	the	SSB-dN/dS	method,	we	calculated	the	global	dN/dS	for	198	
cancer	genes	(Martincorena	et	al.,	2015)	and	995	essential	genes	(Zapata	et	al.,	2018).	Finally,	
we	 focused	on	NOTCH1	and	TP53	 genes	 in	 order	 to	 replicate	 the	 findings	of	 strong	positive	
selection	described	recently	(Martincorena	et	al.,	2015,	2018;	Yizhak	et	al.,	2019;	Yokoyama	et	
al.,	2019).		
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