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SUMMARY:

A major challenge facing the genetics of Autism Spectrum Disorders (ASD) is the large and
growing number of candidate risk genes and gene variants of unknown functional significance.
Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-
associated genes in vivo. Using our custom machine vision system we quantified 26
phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 87
strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified
hundreds of novel genotype-phenotype relationships ranging from severe developmental
delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We
clustered genes by similarity in phenomic profiles and used epistasis analysis to discover
parallel networks centered on CHD8+chd-7 and NLGN3*nlg-1 that underlie mechanosensory
hyper-responsivity and impaired habituation learning. We then leveraged our data for in vivo
functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nig-1
mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability
of all conserved ASD-associated neuroligin variants revealed varied partial loss-of-function
despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin inducible
degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-
1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-
associated genes, offers novel in vivo variant functional assays, and potential therapeutic
targets for ASD.
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INTRODUCTION:

Autism Spectrum Disorders (ASD) encompass a clinically and genetically heterogeneous
group of neurodevelopmental disorders characterized by diverse deficits in social
communication and interaction, restrictive repetitive behaviors, and profound sensory
processing abnormalities.'™ The fifth edition of the Diagnostic and Statistical Manual of Mental
disorders combines autistic disorder, Asperger disorder, childhood disintegrative disorder and
pervasive developmental disorder not otherwise specified into the single grouping of Autism
Spectrum Disorder.” Despite extensive study, there is currently no unanimously agreed upon
structural or functional neuropathology common to all individuals with ASD and there is little
understanding of the biological mechanisms that cause ASD.? The most promising avenue for
research into ASD has stemmed from the observation that they have a strong genetic
component, with monozygotic concordance estimates of ~70-90% and several distinct highly
penetrant genetic syndromes.>®*

Rapid advances in copy number variation association, whole-exome, and more recently,
whole-genome sequencing technology and the establishment of large sequencing consortia
have dramatically increased the pace of gene discovery in ASD.">?® There are now >100
diverse genes with established ties to ASD, many of which are already being used in
diagnosis. Importantly, each of the genes individually account for <1% of cases.®**?*?*>*' Some
of these genes have fallen into an encouragingly small set of broadly defined biological
processes such as regulation of gene expression (e.g. chromatin modification) and synaptic
neuronal communication, and have begun to offer valuable insights into the biological
mechanisms underlying this heterogeneous group of disorders.>'>#2242% However, thousands
of additional mutations in these and many other genes have been identified in individuals with
ASD and their roles as causative agents, or their pathogenicity, remains ambiguous. Indeed,
our ability to sequence genomes has vastly surpassed our ability to interpret the genetic
variation we discover. Thus, there are two major challenges facing the genetics of ASD: 1) the
large, and rapidly growing number of candidate risk genes with poorly characterized biological
functions and; 2) the inability to predict the functional consequences of the large number of
rare missense variants. Difficulties in rare missense variant interpretation stem in part from

constraints on computational variant effect prediction and a paucity of in vivo experimental
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variant functional assays.*=° This lag between gene discovery and functional characterization
is even more pronounced when assessing the role of putative ASD risk genes and variants in
complex sensory and learning behaviors. Beyond limited gene level functional information
there is even less known about how ASD-associated genes functionally interact in networks.
As such, there is a great need to rapidly determine the functions of ASD-associated genes, the
functional consequences of variants of uncertain significance, and delineate complex

functional genetic networks among ASD-associated genes in vivo.

The genetic model organism Caenorhabditis elegans is a powerful system for the functional
analysis of disease-associated genetic variation, particularly for high-throughput in vivo
characterization of risk genes identified through genomics.*® C. elegans’ fully sequenced and
thoroughly annotated genome as well as its complete connectome have fueled numerous
human disease discoveries, including the role of the insulin signaling pathway in normal and
pathological aging and the identification of presenilins as part of the gamma secretase
complex.’*™** There are clear C. elegans orthologs for >50% of human genes, and human
genes have repeatedly been shown to be so structurally and functionally conserved that they
can directly replace their C. elegans ortholog.>®**™° There are well-annotated libraries of C.
elegans strains with deletion alleles available for >16,000 of the ~20,000 protein coding
genes.’®>? C. elegans small size and rapid hermaphroditic mode of reproduction (3 days from
egg to egg-laying adult) allows for the routine cultivation of large numbers of isogenic animals.
Further, CRISPR-Cas9 genome engineering has proven to be reliable and efficient in C.
elegans, and unlike most organisms analyzed to date, multiple rigorous whole-genome
sequencing studies have revealed no evidence of significant off-target effects due to CRISPR-
Cas9 genome editing in this organism.****"° Finally, we developed the Multi-Worm Tracker
(MWT), a machine vision system that allows for comprehensive phenotypic analysis of large
populations of freely behaving animals while they perform complex sensory and learning
behaviors.®®®" Multiplexing by running several trackers in parallel allows for analysis of multiple
measures of morphology, locomotion, mechanosensory sensitivity, as well as several forms of
learning in hundreds of animals simultaneously.?%*

Here, we developed a scalable phenomic characterization pipeline designed to discover the

functions of ASD-associated genes by systematically inactivating each gene in a model
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organism and observing the phenotypic consequences using machine vision (Figure 1A). We
present data summarizing scores on 26 quantitative phenotypes spanning morphology,
baseline locomotion, tactile sensitivity, and habituation learning in 87 strains of C. elegans
each carrying a mutation in an ortholog of an ASD-associated gene, revealing hundreds of
shared and unique genotype-phenotype relationships. We clustered strains based on
phenotypic similarity to discover novel functional interactions among ASD-associated genes,
which we validate with epistasis analysis. Further, we use the novel phenotypes for in vivo
functional assays to assess missense variant effect, and to determine whether phenotypic

alterations are reversible using targeted protein degradation methods based on degrons.

RESULTS:

ASD-associated genes are highly conserved to C. elegans

We set out to systematically characterize the phenomic profiles of C. elegans strains carrying
inactivating mutations in orthologs of the ASD-associated genes with the highest number of
rare likely gene-disrupting and missense variants reported in the literature. We identified C.
elegans orthologs of the top 50 ASD-associated genes by variant count according to our

)65

ongoing meta-analysis of rare variants, Varicarta (https://varicarta.msl.ubc.ca/)*>. We also

identified a large number of orthologs from SFARI gene (https://gene.sfari.org/) “Syndromic”

and “High confidence” categories.®® Of note, 72% (18/25) of genes listed in the High
confidence category of SFARI gene and 83% (20/24) of genes most confidently associated
with ASD by Satterstrom et al. (2018) have a clear C. elegans ortholog according to
OrthoList2, a compendium of human-C. elegans orthology prediction algorithm results.*® This
is substantially higher than the 53% estimated genome wide orthology between humans and
C. elegans (10,678/23,010)*° suggesting an exceptionally high conservation of biological

processes core to the pathology of ASD (Figure 1B,C).

Rapid advances in gene discovery and orthology prediction have altered the gene lists used
during the course of this project, a challenge facing similar recent systematic investigations of
ASD-associated gene function.®”®® Despite these shifts, our list still covers 82% (14/17) of the
most strongly associated genes from Satterstrom et al. and 87% (13/15) of the SFARI Gene

high confidence category listed genes (Table S1) with a viable ortholog deletion or severe
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missense allele available. This led to a mix of currently defined high- and mid-confidence ASD-
associated genes, giving us a unique opportunity to study putative ASD-associated genes of
completely unknown function alongside well established genes with known roles in
neurodevelopment and sensory processing (See Table S1 for a complete listing of

characterized strains, orthology relationships, and ASD-association confidence).

We then used our machine vision MWT (Figure 1D) to systematically characterize the 87 C.
elegans strains with a mutation in an ortholog of an ASD-associated gene (strains include 66
with mutations in different genes and 21 strains with secondary alleles to a subset of these
genes, see Table S1 and Methods). As it was unknown how perturbing many of these genes
would manifest in C. elegans phenotypic profiles, we developed software to measure a
comprehensive range of parameters while animals were subjected to an automated short-term
habituation learning behavioral paradigm (Figure 1E-l, and see Methods). We chose to
measure habituation and initial sensitivity to stimulation because habituation learning is
impaired in individuals with ASD, and abnormalities in tactile sensitivity are present in >95% of
cases.>®*"" The degree of habituation impairment in ASD patients also correlates with the
severity of social impairment, and recent studies in monogenic mouse models of ASD suggest
peripheral tactile hypersensitivity and impaired habituation precede, and may even lead, to

more complex cognitive and social impairments.’®"®

To analyze the data we wrote custom scripts to extract 26 quantitative phenotypic features that
fall into 5 categories of morphology, baseline locomotion, initial sensitivity, habituation learning,
and spontaneous recovery/short-term memory retention (Figure 1J and see Methods and
Table S2 for a complete description of phenotypic features). The features we measured were
designed to minimize redundancy while maintaining interpretability and keeping known
biological information in mind. For example, we quantified multiple features of habituation as
we have previously shown that they habituate to different extents and with different time
courses (Figure 1F-l) and because there is growing evidence that different components of a
single habituating response are mediated by different molecular mechanisms.®"79
Systematic quantification of the pairwise correlation between all possible phenotypic feature
pairs revealed expected moderate correlations (e.g. between length and width) and clustering

that reflected the feature categories we predefined (Figure 1K). The digital representations of
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all strains are freely available in their raw and processed forms
(https://doi.org/10.5683/SP2/FJWIL8), allowing the code to be modified in subsequent

analyses to extract any simple or compound phenotypic feature of choice.

Quantitative phenotypic profiles identify shared functions among ASD-associated
genes

There are many ways to visualize this data, but the most conceptually simple way is as a
series of 26 quantitative reverse genetic screens, where each strain is compared to wild-type
on each phenotypic feature to determine if and how that gene plays a role in the biological
process of interest (Figure 2 and online supplemental figure collection 1). Phenotypes
shared by a large number of ASD risk genes would be of particular interest, as they would hint
at common biological functions among these seemingly diverse genes. We found that
mutations in the vast majority of ASD-associated gene orthologs decrease multiple measures
of size, most notably length (52/87, 60%), in age-synchronized populations (Figure 2A). Thus,
the maijority of genes putatively associated with ASD/neurodevelopmental disorders delay

development or growth when inactivated.?’

Analysis of baseline locomotion features revealed that mutations in a large proportion of ASD-
associated gene orthologs increase forward movement bias (32/87, 37%) and path length
(distance travelled) compared to wild-type animals (Figure 2B). C. elegans normally spend the
majority of their time in a forward locomotion behavioral state that is intermittently interrupted
by brief spontaneous reversals.®2%® These two phenotypic changes together mean many
strains with mutations in ASD-associated gene orthologs spend more time moving forward
before eliciting a reversal. The frequency and duration of spontaneous reversals is modulated

by the integration of multiple cross-modal sensory inputs,3%8+93

suggesting a widespread
imbalance in the neural circuits that control spontaneous forward movement behavior toward

increased activity in strains harboring mutations in orthologs of ASD-associated genes.

Assessing the duration, distance, and speed of reversal responses to the first
mechanosensory stimulus indicated that mutations in orthologs of ASD-associated genes are
approximately equally likely to result in initial hyper- or hypo-responsivity to tactile stimuli

(Figure 2C; Note that bidirectional analysis of initial sensitivity was precluded only for
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response probability as there is a ceiling effect due to >90% of animals responding to the initial
stimulus). These results identify novel positive and negative roles for multiple ASD risk genes

in modulating mechanosensory processing.

Analysis of habituation learning across 87 strains revealed that mutations in many ASD-
associated gene orthologs specifically impair habituation of response probability (Figure 2D).
Indeed, even after filtering out strains with abnormal initial response probability ASD-
associated gene orthologs were >5 fold more likely to impair habituation learning than enhance
it (Figure 2F and online supplemental figure collection 1). This is a remarkably specific
phenotype that causes the neural circuit to continue responding in an inflexible manner, as
opposed to merely impairing the ability to detect stimuli or respond. Importantly, we only
observed this phenomenon for response probability; there was no such consistent pattern of
habituation impairment for the duration, distance, or speed of the same measured responses
(Figure 2F and online supplemental figure collection 1). Taken together, these results
suggest that many ASD-associated genes normally mediate plasticity of the likelihood, but not

vigor, of responding to mechanosensory stimuli.

Finally, we discovered that distinct sets of genes alter initial sensitivity, habituation learning,
and retention of the same component of the same behavioral response (Figure 2C-E and
online supplemental figure collection 1). Adding to the complexity, we also discovered that
different genes affect different components of the same behavior (e.g. some genes affect only
response duration but not probability and vice versa). These results provide direct support for
the hypothesis that habituation learning is controlled by several dissociable genetic

94,95

mechanisms, and underscore the need to assess multiple complex phenotypes to gain a

comprehensive understanding of the functions of ASD-associated genes.

Phenotypic profiles of strains with mutations in ASD-associated genes define shared
and unique functions and phenotypic modularity

As an alternative to visualizing the scores of all strains on each phenotype, one can instead
visualize the scores of each strain on all phenotypes, or the ‘phenotypic profile’ for each strain
(Figure 3 and online supplemental figure collection 2). Classical uncoordinated “unc’

mutants, such as the calcium channel subunit CACNA1C-unc-2(gk366), displayed the most
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severe overall quantitative phenotypic profiles, consistent with their documented roles in
neuronal development and function (Figure 3A). Phenotypic profiles can also reveal previously
unknown phenotypes even in well-characterized mutants. For example, B-catenin has well-
known roles in development, so it follows that CTNNB17<bar-1(ga80) mutants are smaller in
length and width than wild-type animals, but here we identify a previously unknown role for
CTNNB1+bar-1(ga80) in habituation learning, evidenced by a profound deficit in habituation of
response probability in CTNNB1+bar-1(ga80) mutants (Figure 3B). Animals carrying mutations
in, KAT2Bepcaf-1(tm3318), involved in CREB related transcription co-activation and
acetyltransferase activity, have relatively normal baseline locomotion but profound alterations
in sensory and learning behaviors that are only revealed through stimulation (Figure 3C).
Conversely and more surprisingly, animals carrying mutations in genes such as KCNJ10eirk-
3(tm7416), an inward rectifying potassium channel, have relatively normal sensory and
learning behaviors despite profoundly abnormal morphology and baseline locomotion (Figure
3D). Finally, there were many strains who were not significantly different from wild-type on
almost all phenotypic features, such as the membrane palmitoylated protein encoded by
MPPG6-C50F2.8(0k533) (Figure 3E). Taken together these results indicate a remarkable
degree of phenotypic modularity and provide a catalog of the unique phenotypic profiles of

ASD-associated genes.

A phenomic database of strains with mutations in ASD-associated genes

The most succinct and comprehensive way to visualize the data is as a phenomic heat map,
illustrating the scores of all strains on all phenotypic features (Figure 4A). Figure 4A
summarizes the scores of ~18,000 animals (~200 animals per genotype) across 87 genotypes
and 26 phenotypes for a total of 2,262 in vivo genotype-to-phenotype assessments. These
results show that for the phenotypes quantified and strains tested there is no single phenotype
affected by all putative ASD-associated gene orthologs (Figure 4A). However, all strains were
significantly different than wild-type on at least one phenotypic metric (Figure 4B). It is also
clear that some phenotypes are more or less tolerant to mutation than others, for example a
larger number of strains displayed altered morphological phenotypes compared to baseline
locomotion, sensory or learning phenotypes (Figure 4B). Finally, our results indicate that

distinct, partially overlapping sets of genes control the different classes of phenotypes (e.g.
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naive sensitivity and habituation learning are influenced by different sets of ASD-associated

genes) (Figure 4A,B).

Thus far, we have essentially conducted 2,262 exploratory analyses of which assayed
phenotypes ASD-associated genes influence, and in doing so have identified hundreds of
novel genotype-phenotype relationships. While there are many potential downstream uses for
this database, we endeavored to illustrate a few of the most promising applications. First, we
clustered the mutant strains based on their similarity in overall phenotypic profiles with the
hypothesis, supported by recent large-scale model organism phenotyping efforts, that
phenotypic similarity would enrich for functional genetic interactions among ASD-associated
genes. However, while it has been successful for C. elegans morphology and baseline
locomotion profiles in the past,”*~ "% a large-scale phenotypic clustering approach has not been
attempted in combination with complex sensory and learning phenotypes. Prior to clustering
we confirmed the sensitivity and consistency of our phenotypic measures by examining the
correlation of pairs of alleles for genes we tested. Our sample contained second alleles for 21
genes. Analysis of the distribution of the overall phenomic correlations between second allele
pairs revealed the average correlation was indeed higher than all other possible gene pairs (n
= 3720) and that the second allele pair distribution was skewed towards highly positive

correlations (Figure 4C).

With this assurance of specificity we then used several clustering methods to group genes
based on phenotypic similarity to predict genetic interactions. Hierarchical clustering accurately
identified several known interactions, such as those between the voltage-gated calcium
channel CACNA1C-unc-2 and the Rab3 binding protein RIMS1-unc-10 (Figure 4A and online
supplementary figure collections 3 & 4).'%'%° Our analysis also confirmed several recently
discovered interactions, such as those between the dual specificity kinase DYRK1A*mbk-1 and
the histone acetyltransferase CREBBP-+cbp-1, and predicted several novel interactions (Figure

4A and online supplementary figure collections 3 & 4).""°

We then investigated the overall
phenotypic architecture of ASD-associated genes. t-distributed Stochastic Neighbor
Embedding (t-SNE) and multiple other clustering methods revealed that, while all strains were
significantly different from wild-type, ASD-associated genes were largely continuously

distributed in phenotypic space (Figure 4D). Indeed, there was no evidence for a small
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number of highly discrete clusters such that one could make a claim for distinct “phenotypic

classes” of ASD-associated genes (Figure 4A,D).

We then used epistasis analysis to test some of our interactions predicted by phenotypic
proximity in vivo. Using sensory and habituation learning features for hierarchical clustering
revealed two high-confidence clusters with members that display impaired habituation of
response probability as well as hyper-responsivity to mechanosensory stimuli (increased initial
reversal response duration) (Figure 5A-D and online supplementary figure collection 4).
Genes within these clusters were selected for epistasis analysis based on confidence of ASD-
association and confirmation of genotype-to-phenotype relationships via analysis of a second
allele or transformation rescue. Crossing between members of the same cluster revealed a
novel functional interaction between the Chromodomain Helicase DNA Binding Protein
CHDS8+chd-7(gk306) and the GTPase-activating protein GAPVD171erme-6(b1014); the
impairment in habituation of response probability of double mutants was not significantly
different from single mutants, suggesting they function in the same genetic pathway to mediate
short-term behavioral plasticity (Figure 5E). A second allele of GAPVD1+rme-6(tm6649) fell in
the same cluster and displayed the same phenotypic profile as the crossed allele, and an
additional allele of CHD8+chd-7(gk209), tested after the initial large-scale characterization, also
displayed the same phenotypic profile, confirming genotype-to-phenotype relationships
(Figure S5). Importantly, CHDS is a high-confidence ASD-associated gene whereas GAPVD1
is relatively low confidence, yet when they are inactivated in a model organism they cause
strikingly similar phenotypic profiles and function together to promote normal habituation

learning.

Crossing of mutations between clusters revealed that CHD8+chd-7(gk306) and the sole C.
elegans ortholog of vertebrate neuroligins NLGN1/2/3/4X*nlg-1(0k259) function in parallel
genetic pathways, with double mutants exhibiting additive impairments in habituation learning
(Figure 5E). Interestingly, we also discovered a synthetic lethal interaction between
CHDS8+chd-7(gk306) and CTNNB1+<bar-1(ga80), suggesting that CHD8 can function
independently of its canonical role in mediating the Wnt/B-catenin signaling pathway.""" These
results are consistent with the observation that Wnt/B-catenin targets are neither upregulated

nor the cause of lethality in inviable CHD8 homozygous knockout mice,'? suggesting Wnt

10
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3 We combined our

independent functions of CHDS8 are conserved throughout evolution.
results with the recent observation that Wnt/B-catenin signaling increases expression and
synaptic clustering of NLGN3'™ to draw parallel pathways underlying impaired habituation
learning (Figure 5F). Taken together, these results demonstrate that systematic phenotypic
clustering and epistasis analysis of complex sensory and learning phenotypes present a novel
in vivo approach to map functional genetic network interactions among ASD-associated genes

and prioritize candidates that would be missed by focusing on currently high-confidence genes.

Phenomic profiles can be leveraged for in vivo variant functional assays

Another major challenge facing the genetics of ASD is the inability to interpret the functional
consequences of the large number of rare variants of uncertain significance.?®>"">""" Many of
the variants found in ASD are so rare that they preclude traditional genetic approaches to infer
pathogenicity.>*"'®""% Indeed, even for genes for which we have a good understanding of their
biological function it is often not possible to computationally predict the pathogenicity of a
particular variant with the level of precision required in the clinic.®*'%12%12" Experimental
variant functional assays, where the variant in question is introduced into a model system to
observe its effects on function, can be combined with computational approaches to more
clearly guide clinical assessment, but there is currently a paucity of such assays for most ASD-
associated genes due to a lack of understanding of their normal biological functions.''1227126
Here, we show how the phenomic functional data we generated by studying inactivating
mutations in ASD-associated gene orthologs can be combined with the genetic tractability of
C. elegans to develop transgenic rescue based in vivo variant functional assays using complex

sensory and learning behaviors as a readout.

In our large-scale characterization we discovered that mutations in the sole C. elegans
ortholog of vertebrate neuroligins cause impairments in habituation of response probability. We
generated a wild-type nlg-1::YFP fusion transgene and found that expression of this construct
in nlg-1(0k259) deletion mutants was sufficient to restore normal habituation learning behavior
(Figure 6 A-C). We then used this transgenic rescue as a platform to assess the functional
consequences of mutations equivalent to all conserved ASD-associated neuroligin missense
variants by testing their ability to rescue, revealing varied partial loss-of-function (Figure 6 D-

G). These functional results align with the effects of variants on three additional behavioral

11
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functional assays: octanal avoidance chemotaxis, thermotaxis, and sensory integration (Figure
6H-K). Each of these functional assays involve distinct neural circuits suggesting a general
partial loss-of-function mechanism due to ASD-associated neuroligin variants in whole
organism behavior. All ASD-associated variants were expressed at similar levels and properly
localized to synapses in vivo, likely ruling out a simple pathogenic mechanism of improper
trafficking or severely reduced cellular abundance (Figure 6B). Importantly, all ASD-
associated gene orthologs, including those with no prior functional annotation, were
significantly different from wild-type animals on at least one phenotypic metric in our
characterization (Figure 4B), suggesting this will be a broadly applicable approach to decipher

variants of uncertain significance.

CRISPR-Cas9 auxin inducible degradation reveals that nlg-1 phenotypes are reversible
by adult specific re-expression

Historically it was believed that the neurodevelopmental insults caused by monogenic risk
factors for ASD were so severe that they would not be reversible in adulthood, and thus any
treatment would have to be administered early to be effective.'?” The seminal discoveries that
phenotypes caused by mutations in MECPZ2 could be reversed by transgenic expression of the
protein in adulthood, after what had been presumed to be a critical developmental period had
been missed, offered tremendous hope for families suffering from Rett syndrome.'?®'?°
Conversely, the observation that inactivation of MECP2, Neuroligins, and several other ASD-
associated genes in adulthood could cause severe electrophysiological and behavioral
impairments demonstrated that they were not simply neurodevelopmental genes, and instead
that they had ongoing functions throughout the lifespan to promote normal sensory and
learning behaviors.'**"*® This information must be taken into account for any therapy designed
to treat these monogenic forms of ASD. These and other conditional rescue and inactivation
experiments are valuable to ASD research, but they are expensive, technically difficult, and
time consuming in mammalian model systems and are thus not yet practical for many ASD-
associated genes. With C. elegans, however, conditional and reversible protein depletion is
precise, rapid, and straightforward owing to their genetic tractability and the recent advent of
CRISPR-Cas9 Auxin Inducible Degradation (AID)."**"**> AID relies on transgenic expression of

TIR1, an inducible E3 ubiquitin ligase that targets any protein with an AID degron peptide tag

12


https://doi.org/10.1101/687194
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/687194; this version posted June 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

for degradation by the proteasome only when in the presence of its necessary activating
hormone auxin (Figure 7). Moreover, upon removal from auxin TIR1 is inactivated, allowing
rapid reconstitution of protein expression in large populations of freely behaving and intact

animals without the need for surgery or vector delivery."*

Despite extensive study, transgenic rescue tests of phenotypic reversibility have not been
completed for any member of the vertebrate neuroligin family.'®”"*¢"3” We used the CRISPR-
Cas9 Dual Selection Marker Cassette genome editing strategy®* to insert GFP and a short AID
degron peptide tag into the endogenous C. elegans neuroligin locus 13 residues before the
stop codon (Figure 7A). This fusion protein localized properly to synapses and is fully
functional — there were no habituation impairments or gross neuroanatomical abnormalities in
genome-edited animals (Figure 7C,D). We then crossed this strain into animals expressing
TIR1 under a ubiquitous promoter and observed that treatment with 0.025mM auxin for <10.0
hours was sufficient for complete degradation of the functional NLG-1::AID::GFP fusion protein
at multiple life stages (Figure 7D). Moreover NLG-1::AlD::GFP was partially recovered 48
hours after removal from auxin (Figure 7D). We used this approach to test several conditional
rescue and inactivation groups simultaneously (Figure 7E). Animals reared on auxin for
continuous degradation displayed habituation impairments equivalent to those of nig-1(ok259)
null mutants, confirming effective degradation (Figure 7F). Importantly, wild-type animals
continuously exposed to auxin displayed no morphological or behavioral abnormalities (Figure
7G). Strikingly, we observed that for animals reared on auxin to degrade NLG-1 throughout
development, adult specific expression of neuroligin was sufficient to partially rescue the
habituation impairment phenotype (Figure 7H). Surprisingly, adult-specific degradation of
neuroligin did not lead to impaired habituation learning behavior (Figure 71). These results
indicate a critical role for neuroligin in generating a circuit properly tuned for normal
mechanosensory processing and short-term behavioral plasticity. Further, they suggest that
behavioral disruptions caused by developmental loss of neuroligins might be at least partially
reversible by adult expression. Given the speed of machine vision phenotyping, and relative
ease of CRISPR-Cas9 genome editing in C. elegans, AID represents a scalable approach that

can be applied to diverse ASD-associated genes.
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DISCUSSION:

In total we quantified 26 phenotypes for >18,000 animals across 87 genotypes and identified
hundreds of novel genotype-phenotype relationships. Our database approximately doubles the
number of animals in a recent aggregation of all other machine vision behavioral datasets

collected in this organism to date,’®

and provides the first such systematic analysis that
includes both complex sensory and learning phenotypes. By making the raw and processed
data available online, we have created open and shareable phenotypic atlas of C. elegans
strains carrying mutations in orthologs of ASD-associated genes. We have shown how this
database can be used to identify shared functions, map genetic networks, gauge missense

variant effect, and determine reversibility of phenotypic disruptions.

We found that the vast majority of strains with mutations in ASD-associated genes displayed
delayed development, a finding consistent with a recent large-scale analysis of inactivating
mutations in constrained genes in humans.?’ As the number of genes assessed increases it
will be interesting to conduct a pathway enrichment analysis to determine if mutations in
particular pathways lead to ASD relevant phenotypes with or without developmental delay or
whether particular phenotypes are more characteristic of genes predominantly associated with
ASD versus Intellectual Disability/Developmental Delay (ID/DD).>>'®" We also found that a
large number of ASD-associated genes impair habituation, a finding that is consistent with a
recently reported large-scale analysis of ASD- and ID/DD-associated genes in Drosophila and
humans.®” Interestingly, our data show for the first time that ASD-associated genes specifically
impair habituation of response probability. These results provide a genotype-to-phenotype list
(Figure 2D) that may hint at a common pathological mechanism that impairs plasticity of a
neural circuits’ decision to respond without altering response vigor. Indeed, these Drosophila
and C. elegans results likely reflect a behavioral outcome of circuit-level hyperexcitability
recently discovered in several human iPSC derived neuronal culture models of a number of
monogenic ASD risk factors.®®'*® The results also provide a plausible explanation for
inconsistent reports of impaired habituation in humans, which variably employ diverse
response metrics most often without genetic stratification of patient populations.®® While these
shared phenotypes are exciting, our results also reveal a remarkable diversity and modularity

in phenotypic disruptions, and thus clearly indicate that single phenotype in vivo functional
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validation and characterization efforts will be insufficient to capture the complex multi-facetted

phenotypic disruptions that stem from inactivating mutations in ASD-associated genes.

Phenomic clustering and epistasis to map genetic networks among ASD-associated
genes in vivo

We combined clustering based on similarity in phenotypic profiles with epistasis analysis to
map functional genetic networks among ASD-associated genes and identified novel parallel
genetic networks centered on CHD8echd-7 and NLGN1/2/3/4X*nlg-1 that underlie hyper-
responsivity and impaired habituation learning. These results provide in vivo functional support
to the proposed broad categorization of ASD-associated genes into those involved in synaptic
neuronal communication (neuroligin) and gene expression regulation (CHD8).">*'*° An
exciting question for future research will be to determine how well the phenomic functional
interactions delineated here map on to biochemical interactions. Indeed, in vivo genetic
networks will serve as an important benchmark from which to compare and extend existing
networks of ASD-associated genes. Phenomic clustering will be particularly useful for
capturing long-range functional interactions between proteins expressed in different cells or
even different points in development, which cannot be detected by measures of direct protein-

protein interactions or co-expression.

ASD-associated genes are continuously distributed in phenotypic space

We found that the set of strains we characterized were continuously distributed in phenotypic
space, and that there were no clear highly separated discrete phenotypic clusters. Even in this
rigorously controlled genetic background and environment there is no basis for a classification
of ASD-associated genes into distinct ‘phenotypic classes.” This would suggest that the
inability to cluster the heterogeneous continuously distributed clinical population based on
shared phenotypes or symptoms does not necessarily stem from difference in genetic
background or environmental exposures. This is in contrast to the molecular level, where
multiple studies and our present work suggest there are functionally distinct classes of ASD-
associated genes.>*" While phenotypic profiles were continuously distributed, certain genes
were closer to each other than others in a manner that reflected underlying molecular

interactions. The observation that ASDs are a group of etiologically distinct and variably
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phenotypically similar disorders provides further motivation for tailored treatments designed on
3,31

the bases of shared molecular pathway disruptions.

It is also important to consider whether the functions of ASD-associated genes
discovered here will be conserved to their human orthologs, and even if they are conserved,
whether they display any specificity to ASD. Our data and the literature show that there is no
single phenotype at any level that can definitively classify an ASD-associated gene from those
causing related disorders. Regardless of the qualitative diagnostic label applied, understanding
the function of these poorly characterized neurodevelopmental disorder-associated genes will
be extremely valuable for understanding pathology and designing treatments. Several of the
shared functions for ASD-associated genes identified here, such as promoting normal
development or habituation of response probability, have concurrently been discovered in
higher model organisms and human iPSCs, suggesting that many of the other novel functions
reported here will also be conserved and relevant to ASD. It is also worth reiterating that many
human genes have repeatedly been shown to be able to functionally replace their C. elegans
orthologs. For example, human NLGN1 and NLGN4 have both been shown to rescue multiple
sensory abnormalities caused by loss of C. elegans nlg-1.“>"*! We have also recently shown
that directly replacing daf-18 with only a single copy of its human ASD-associated ortholog
PTEN at the endogenous locus using CRISPR-Cas9 is able to rescue multiple sensory
abnormalities caused by complete deletion of daf-18."*2 A recent systematic humanization
effort of 414 genes in yeast showed that >50% of human genes could functionally replace their
yeast ortholog.’*® Indeed, at this point it would not be surprising if a highly conserved human
gene could replace its C. elegans ortholog. All model systems have their relative strengths and
weaknesses, and the fastest and most generalizable insights in ASD research will undoubtedly
come from synthesis of large amounts information derived from diverse model systems and

patients.

Phenomic profiles can be leveraged for in vivo assays of missense variant effect

We used neuroligin as a proof-of-principle to show how our phenomic profiles can be
leveraged to establish in vivo variant functional assays. We found that all variants tested
displayed varied partial loss-of-function despite effective expression and proper subcellular

localization. Further, we observed that variant functional results were consistent across
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multiple behavioral functional assays involving distinct neural circuits. While the mechanisms
underlying the partial loss-of-function behavioral effects of ASD-associated neuroligin variants
currently remains controversial,'**'*® these results provide clinically relevant knowledge, as a
rationally designed treatment should be designed to increase neuroligin function while taking
into account the presence of an existing dysfunctional protein. Importantly, all strains were
significantly different from wild-type on at least one metric, opening the door for many diverse
transgenic rescue-based in vivo variant functional assessments moving forward. Many genes
were significantly different on multiple metrics, giving researchers with interests in particular
biological processes the ability to choose a phenotypic functional assay most suited to their
needs. Our results provide a critical first step in establishing variant functional assays by
systematically characterizing genotype-phenotype relationships that can be confirmed by
transformation rescue or CRISPR-Cas9 knockout. A strength of C. elegans will continue to be
the ability to rapidly assess multiple variants in complex sensory and learning behaviors in

vivo.

Harnessing phenotypic profiles for tests of adult reversibility

We found adult expression of neuroligin could partially reverse the hyper-responsivity and
impaired habituation phenotypes of animals that developed without neuroligin. Interestingly, we
also found adult specific inactivation did not produce phenotypic disruptions. These results are
surprising, as inactivation of NLGN1, NLGN2 and NLGN3 in mature vertebrates produce
abnormalities in several complex behaviors."%"*"*0 However, a plausible explanation could
be that neuroligin is only necessary in adulthood for forms of learning and memory that require
structural plasticity. Indeed, all studies reporting an adult requirement for neuroligin examined
different forms of long-term memory, which in contrast to the short-term memories studied
here, require de novo activity-dependent synapse growth and maturation. Further, the
phenotypes observed often did not manifest until weeks after neuroligins were inactivated in
adult animals.”" These results lead to a model in which neuroligin is sufficient to build a circuit
capable of normal sensitivity and short-term habituation at any point throughout the lifespan,
but once that circuit has been built its function is no longer required for short-term learning.
Continued function of neuroligin would then remain necessary only for more complex forms of

long-term learning and memory that require de novo activity-dependent growth and maturation
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of synaptic connections. There is no evidence yet of new synapse formation underlying long-
term learning in C. elegans, making this model currently difficult to test. However, an adult form
of experience/activity-dependent neural circuit remodeling has just been discovered in C.
elegans, and neuroligin was identified a critical component in this process."'*? More importantly
for individuals with ASD, these results suggest that some phenotypic alterations due to
developmental loss of neuroligin may be reversible in adulthood, and provide a rapid and
inexpensive strategy where AID can be used to test reversibility of phenotypic disruptions

caused by diverse ASD-associated genes.

Conclusions

We have provided the first systematic in vivo phenomics analysis of ASD-associated genes
and identified shared delays in development, hyperactivity, and impairments in habituation
learning. Our data adds to the recent and rapidly expanding use of model organism phenomics
to discover the functions of poorly characterized genes identified through genomic
sequencing.**1°"153-1%% \We have shown how such data can be used to identify novel genetic
interactions, establish variant functional assays, and develop tests of phenotypic reversibility.
There is substantial evidence that an insufficient understanding of the biology of many
disease-associated genes has prevented the successful development of therapies and that

159-163 |t is ideal to

preclinical research is biased towards experimentally well-accessible genes.
be systematic and unbiased whenever possible, an opportunity high-throughput model
organisms such as C. elegans afford and thus one we should continue to exploit. As we
continue to chart the phenotypic landscape of ASD-associated genes, the complicated paths to
understanding mechanisms and developing personalized treatments become simpler to

navigate.

18


https://doi.org/10.1101/687194
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/687194; this version posted June 30, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

STAR Methods
Key Resource Table (separate document)
Contact for Reagent and Resource Sharing

Further information and requests for resources and reagents should be directed to and will be

fulfilled by the Lead Contact, Catharine H. Rankin (crankin@psych.ubc.ca).

Ortholog identification and strain selection

C. elegans orthologs of human ASD-associated genes were identified by querying OrthoList
using Ensembl gene IDs, as previously described.*> Table S1 Describes all Orthology
relationships used in this study. During the course of this project The Alliance of Genome

Resources (https://www.alliancegenome.org/) created a web tool that allows for identification

of the “best” matched Ortholog, defined as the ortholog predicted in the queried species by the
highest number of gold-standard algorithms.*” The vast majority of the C. elegans orthologs
predicted by OrthoList (85%) are also defined as the best ortholog by this new tool (Table S1).
OrthoList was also updated to OrthoList2 during the course of this work. Again there is large
agreement between our orthology predictions and those made using the recently updated
OrthoList2 (95% of OrthoList relationships are supported by OrtholList2; Table S1). In
situations where multiple human ASD-associated genes share a single C. elegans ortholog
predicted by OrthoList the single C. elegans gene was used to study the larger vertebrate
family, as has been done previously.””"®*"% For example, nig-1 and shn-1 are the sole C.
elegans orthologs of all vertebrate neuroligin and shank family proteins, respectively (Table

S1). Note that throughout the manuscript the “«” symbol is used to represent the human-to-C.

elegans orthology relationship of interest, e.g. GAPVD1.rme-6(b1014).

Strains harboring mutations in orthologs of ASD-associated genes were identified using
WormBase and ordered from the Caenorhabditis Genetics Centre (CGC), the National
BioResource Project of Japan (NBRP), or received from a collaborator following a formal
request. Strains carrying putative null and loss-of-function alleles were prioritized. In many

cases multiple strains harboring distinct loss-of-function alleles were characterized. Where
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such alleles were not available, or where null alleles are known to result in lethality or fecundity
defects severe enough to impede high-throughput characterization in our assay a strain
carrying a known or predicted deleterious missense mutation was characterized instead. The

complete list of all strains and alleles used in the work are described in Table S1.

Animals

Strains were maintained on NGM (nematode growth medium) plates seeded with E. coli strain
OP50 according to standard experimental procedures. 96h post-hatch hermaphrodite animals
were used for all experiments. A complete list of strains used is available in Table S1 and the

Key Resources Table.

Microbe strains

The Escherichia coli OP50 strain was used as a food source for C. elegans.

Behavioral assays

For the mechanosensory habituation paradigm animals were cultured on Nematode Growth
Medium (NGM) seeded with Escherichia coli (OP50) and age synchronized for behavioral
tracking as described previously.”®'®®'” Animals were synchronized for behavioral testing on
Petri plates containing Nematode Growth Media (NGM) seeded with 50 pl of OP50 liquid
culture 12-24 hours before use. Five gravid adults were picked to plates and allowed to lay
eggs for 3-4 hours before removal. For all Multi-Worm Tracker experiments 3-6 plates (20-100
worms/plate) were run for each strain on each testing day. The animals were maintained in a
20°C incubator for 96 hours.

Our behavioral paradigm (Figure 1E) consisted of a 5-minute period to recover from being
placed on the tracker followed by a 5 min baseline period from which we computed multiple
measures of morphology and baseline locomotion. Beginning at 10 minutes we administered
30 mechanosensory stimuli to the Petri plate holding the animals at a 10 second interstimulus
interval (ISI) using an automated push solenoid (Figure 1A and E). Animals respond to a
mechanosensory stimulus by emitting a reversal response (crawling backwards) allowing us to

assess multiple measures of naive sensitivity (e.g. reversal likelihood, duration, etc.) (Figure
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1E-l). With repeated stimulation there is a decrease in the likelihood of a reversal, as well as
the duration, speed, and distance of reversals (habituation). Following habituation training, we
allowed a 5 minute recovery period after which we administered a 31% stimulus to gauge
spontaneous recovery from short-term habituation - an assay of short-term memory retention
(Fig 1E-I).

Standard sensory integration, octanal avoidance, and thermotaxis assays were conducted as

previously described.#"°®

Multi-Worm Tracker behavioral analysis and statistics

Multi-Worm Tracker software (version 1.2.0.2) was used for stimulus delivery and image
acquisition.®® Phenotypic quantification with Choreography software (version 1.3.0_r103552)
used “--shadowless”, “--minimum-move-body 2”, and “--minimum-time 20” filters to restrict the
analysis to animals that moved at least 2 body lengths and were tracked for at least 20 s.
Standard choreography output commands were used to output morphology and baseline
locomotion features.®® A complete description of the morphology, baseline locomotion,
sensory, and habituation learning features can be found in the Multi-Worm Tracker user guide
(https://sourceforge.net/projects/mwt/)*® and Table S2. The MeasureReversal plugin was used
to identify reversals occurring within 1s (df=1) of the mechanosensory stimulus onset.
Comparisons of “final response” comprised the average of the final three stimuli. Custom R
scripts organized and summarized Choreography output files. No blinding was necessary
because the Multi-Worm Tracker scores behavior objectively. For the initial large-scale
characterization (Figures 1-4), features were pooled across plate replicates for each mutant
strain and means were compared to the mean of the wild-type distribution with an unpaired t-
test and Benjamani-Hochberg control of the false discovery rate at 0.1."° Final figures were
generated using the ggplot2 package in R."”® For targeted confirmation and follow-up analyses
(Figures 5-7) responses were pooled across plates and compared across strains using
binomial logistic regression for habituation or one-way ANOVA for additional behavioral assays
(Figure 6 H-K) with Tukey’s honestly significant difference (HSD) criterion as previously
described.'®”'"" Each targeted confirmation and follow up experiment was independently

replicated at least twice. Alpha values of 0.001 or 0.0001 were used to determine significance
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for Logistic regression and one-way ANOVA statistical tests respectively. Final figures were
generated using the ggplot2 package in R. For all Multi-Worm Tracker experiments 3-6 plates
(20-100 worms/plate) were run for each strain on each testing day. Sample sizes for each
behavioral assay were chosen to be either equal to or greater than sample sizes reported in

the literature that were sufficient to detect biologically relevant differences.

All raw and processed data, and the results of all statistical tests can be found at
(https://doi.org/10.5683/SP2/FJWIL8), all analysis code is freely available at
(https://github.com/PavlidisLab/McDiarmid-etal-2019 Multi-Worm-Tracker-analysis).

Clustering analyses

The Student's T-statistic was used as a numerical score to represent the difference between
wild-type and mutant animals for each phenotypic feature; this created a numerical profile of
phenotypic features for further analysis. All clustering analyses were performed in R.
Correlation distributions were visualized using ggplot2. Average-linkage hierarchical clustering
was performed with pvclust using correlation as the distance measure, and 50,000 rounds of

2 t-SNE clustering was performed using the Rtsne package'”® with

bootstrapping.'’
hyperparameters: initial principal component analysis = TRUE, perplexity = 10, and theta = 0
for the final 2D and 3D visualizations. The dendrogram and heat maps were visualized with
pheatmap'™ for the correlation matrix heat map, iheatmapr'’® for the phenomic profile heat

maps, and pvclust for the dendrograms.

List of strains generated in this work

The following strains were created for this work either via standard genetic crosses for double
mutants, or via microinjection of plasmid DNA for the generation of extrachromosomal array or
CRISPR-Cas9 genome engineered transgenic lines:

VG870-871 chd-7(gk306) I; nlg-1(0k259) X

VG872-873 chd-7(gk306) I, rme-6(b1014) X

RM3540 pha-1(e2123ts); nlg-1(0k259); mdEx1035[Pnlig-1 v2.1::NLG-(R62W)1.::YFP v3; pBX]
RM3516-17 pha-1(e2123ts); nlg-1(0k259); mdEx1016-1017[Pnlg-1 v2.1::NLG-1(V397M)::YFP
v3; pBX]
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RM3536 pha-1(e2123ts); nlg-1(0k259); mdEx1033[Pnlg-1 v2.1::NLG-1(R430C)::YFP v3; pBX]
RM3537 pha-1(e2123ts); nlg-1(0k259); mdEx1034[Pnlg-1 v2.1::NLG-1(R714C)::YFP v3; pBX]
VG880 nlg-1(yv15[nig-1p:.nig-1::AID::GFP:: + LoxP pmyo-2::GFP::unc-54 UTR prps-
27::NeoR::unc-54 UTR LoxP + nlg-1 3’ UTR])

VG881 nlg-1(yv16[nig-1p::nlg-1::AID::GFP:: + LoxP + nlg-1 3’ UTR])

VG890-891 nlg-1(yv16[nig-1p:.nig-1::AID::GFP:: + LoxP + nlg-1 3 UTR]); ieSi57[eft-
3p::TIR1::mRuby::unc-54 3’ UTR + cbr-unc-119(+)] Il; unc-119(ed3) Il

Strain and plasmid generation

The neuroligin missense variant plasmids were constructed by performing standard site-
directed mutagenesis on our previously described nlg-1 YFP functional fusion protein construct
derived from the yk497a9 cDNA."®®

The Moerman lab guide selection tool (http://genome.sfu.ca/crispr/) was used to identify the
nlg-1 targeting sgRNA.>® The nlg-1 sgRNA sequence: TCACCAACGTGTCCACGTCA was
cloned into the pU6::kip-12 sgRNA vector (obtained from Calarco lab) using site-directed
mutagenesis and used for all editing experiments. The nlg-1::AID::GFP::nlg-1 upstream and
nlg-1 3 UTR downstream homology arms were synthesized by IDT and cloned into the

loxP_myo2_ neoR repair construct (obtained from Calarco lab) using Gibson Assembly.

C. elegans wild-type N2 strain was used for all CRISPR-Cas9 editing experiments. Genome
edits were created as previously described.* In brief, plasmids encoding sgRNA, Cas9 co-
transformation markers pCFJ90 and pCFJ104 (Jorgensen lab, Addgene) and the selection
cassette flanked by homology arms (~500 bp) containing AID::GFP were injected into wild-type
animals. Animals containing the desired insertions were identified by G418 resistance, loss of

extrachromosomal array markers, and uniform dim fluorescence of the inserted GFP.

Genotype confirmation
Correct insertion of the GFP::AID sequence was confirmed by amplifying the two regions
spanning the upstream and downstream insertion borders using PCR followed by Sanger

sequencing (primer binding locations depicted in Figure 7A). The genotyping strategy is
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essentially as described for deletion allele generation via DMS cassette insertion in Norris et
al. (2015).%

The forward and reverse primers used to amplify the upstream insertion region were
GAAGTTTCCAAATGGTCGTAGAAC (located within the nilg-1 genomic promoter region) and
CGAGAAGCATTGAACACCATAAC (located within GFP in the selection cassette)

respectively.

The forward and reverse primers used to amplify the downstream insertion region were
TTCCTCGTGCTTTACGGTATCG (located within the Neomycin resistance gene) and
GGTAGCTTGATTCGCCTTCTAT (located downstream of the nlg-1 genomic coding region)

respectively.

Following cassette excision via injection of cre-recombinase the nlg-1 promoter
(GAAGTTTCCAAATGGTCGTAGAAC) and nig-1 downstream
(GGTAGCTTGATTCGCCTTCTAT) primers were used to amplify and confirm error free

insertion of the AID::GFP sequence at the nlg-1 locus via Sanger sequencing (Figure 7).

Auxin administration

Auxin administration was performed as previously described.”™* Auxin treatment was
performed by transferring animals to bacteria-seeded plates containing auxin. Auxin indole-3-
acetic acid (IAA) (Thermo Fisher, Alfa Aesar™ #A1055614) was dissolved in ethanol to create
a 400 mM stock solution. The stock solution was stored at 4°C for up to one month. Auxin was
diluted into the molten NGM agar (cooled to ~50°C before Auxin addition) before pouring
plates. Auxin plates were seeded with 50 pl of OP50 liquid culture 12-24 hours before use. For
continuous exposure groups, animals were age synchronized (as described above) for
behavioral testing on auxin plates and tested at 96 hours old. For developmental exposure
animals were age synchronized and reared on auxin plates for 48 hours before being
transferred to standard OP50 seeded NGM plates, and then tested 48 hours later (96 hours
old). For adult auxin treatment groups animals were age synchronized on standard OP50
seeded NGM plates and reared for 48 hours before being transferred to auxin plates and then
tested 48 hours later (96 hours old).
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Confocal imaging

Adult animals were anesthetised on glass microscope slides in 5 mM Levamisole and 150mM
BDM (2,3-butanedione monoxime) dissolved in M9 buffer and covered with a 1.5 coverslip. A
Leica SP8 white light laser confocal microscope and 60x oil immersion lens was used for
imaging. Step size was 0.3 ym. GFP was excited using a 488 nm wavelength laser with
emitted light collected through a 493-582 nm bandpass filter. YFP was excited using a 506 nm
wavelength laser with emitted light collected through a 511-600 nm bandpass filter. mRuby
was excited using a 587 nm wavelength laser with light collected through a 592-779 nm
bandpass filter. Final figures were generated using ImagedJ (National Institutes of Health,
Bethesda, MD).""®
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Figure Legends
Main Figures

Figure 1. A scalable ASD-associated gene ortholog identification and phenomic
characterization pipeline. A) Schematic illustration of the pipeline: Animals carrying
mutations in orthologs of ASD-associated genes are systematically genetically engineered
using CRISPR-Cas9 or ordered from the Caenorhabditis Genetics Centre (CGC), large
synchronous isogenic populations of wild-type and mutant animals are grown and their
morphological, baseline locomotion, initial sensitivity, habituation learning, and memory
retention phenotypes are characterized using The Multi Worm Tracker. Novel genotype-to-
phenotype relationships derived from the machine vision data are then used to cluster strains
based on phenotypic similarity, establish variant functional assays, and test reversibility of
phenotypic alterations. B) Schematic of databases and tools used during putative risk gene list
concatenation and ortholog identification. Whole-Genome Sequencing (WGS), Whole-Exome
Sequencing (WES), Targeted Sequencing (TS). C) Orthology between human genes and C.
elegans genes. A greater proportion of high-confidence ASD-associated genes have C.
elegans orthologs (blue, 72% 18/25 SFARI Gene, 83% 20/24 Satterstrom et al., 2018)
compared to all human genes (gray, 53% 10,678/23,010). D) The Multi-Worm Tracker delivers
stimuli and performs image acquisition, object selection, and parameter selection in real time
while choreography software extracts detailed phenotypic information offline (panels) |) petri
plate of C. elegans Il) A petri plate of C. elegans selected for analysis by the Multi-Worm
Tracker 1lI) A Multi-worm tracker digital representation showing the degree of phenotypic
detail. An example behavior scored by the Multi-Worm Tracker: the C. elegans response to a
mechanosensory tap to the side of the Petri plate is brief backwards locomotion (from Il to 1V).
Scale bars are 1cm, 1cm, 0.25mm, 0.25mm from I-IV. E) Phenomic characterization
behavioral paradigm plotted alongside a single phenotype, absolute movement speed.
Following a 5min acclimation phase a further 5min period is recorded from which multiple
measures of morphology and baseline locomotion are extracted. Beginning at 10min 30
mechanosensory stimuli are delivered at a 10s ISI to which the animals initially reverse and
then habituate, allowing for assessment of multiple measures of initial sensitivity and learning.

The Habituation phase is followed by a 5min recovery period before administering a 31st
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stimulus to assess spontaneous recovery from habituation/short-term memory retention. F-l)
Multiple measures of habituation learning of the same reversal responses exhibit different
extents and rates of learned response decrement. Each point represents a reversal response.
Data are shown as meanzs.e.m using the number of plates as n. J) List of quantitative
machine vision phenotypic features computationally extracted and their predefined subclasses.
K) Hierarchically clustered correlation matrix illustrating varied moderate correlations between

features. Pearson’s r is shown.

Figure 2. Quantitative phenotypic profiles enable rapid reverse genetic screens to
identify shared functions among ASD-associated genes. All plots illustrate the sample
mean distance of each genotype group from wild-type. Strains outside the 95% confidence
interval of the wild-type distribution are labeled and colored blue. Only a maximum of ten
strains are labeled in each direction per feature to prevent over plotting. A) Sample mean
distance of length by genotype. The majority of ASD-associated gene orthologs decrease
length when mutated. B) Movement direction bias by genotype. A large proportion of ASD-
associated gene orthologs increase forward movement bias. C) Initial reversal response
duration by genotype. ASD-associated gene orthologs are roughly equally likely to increase or
decrease initial sensitivity to mechanosensory stimuli. D) Habituation of response probability
by genotype. Many ASD-associated genes impair habituation of response probability E)
Spontaneous recovery of response duration by genotype. Distinct partially overlapping sets of
ASD-associated gene orthologs alter initial sensitivity, habituation learning, and spontaneous
recovery/memory retention, indicating genetically dissociable underlying mechanisms. A-E)
Error bars represent 95% confidence intervals. F) The number of strains with normal initial
responses that either impair habituation (blue) or enhance habituation (gray) across the four

habituating response metrics quantified.

Figure 3. Phenotypic profiles of strains with mutations in ASD-associated genes define
shared and unique functions and phenotypic modularity. For all plots bars represent
directional t-statistics for each phenotypic feature listed across the x-axis in panel D. Color
coding reflects feature classification. A) Phenoytpic profile for the classical uncoordinated

mutant CACNA1C-unc-2(gk366) quantifies the extremity of phenotypic disruption across all
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logical phenotypic classes. B) Phenotypic profile for the heavily characterized CTNNB1<bar-
1(ga80) strain confirms known roles in development (decreased length, width, etc.) and
identifies a novel severe impairment in habituation of response probability. C) Phenotypic
profile for KAT2Bepcaf-1(tm3318) exemplifying genes with relatively normal baseline
locomotion behavior but more severe alteration in sensory and learning behaviors that could
only be revealed through stimulation. D) Phenotypic profile for the inward rectifying potassium
channel KCNJ10-irk-3(tm7416) exhibiting profound alterations in morphology and baseline
locomotion yet relatively normal sensory and learning behaviors. E) Phenotypic profile for
MPPG6+C50F2.8(0k533) exhibiting relatively minor phenotypic alterations.

Figure 4. A phenomic database of strains with mutations in ASD-associated genes. A)
Phenomic heat map summarizing the phenotypic profiles of 87 strains harbouring a mutation in
an ortholog of an ASD-associated gene. Cells represent directional t-statistics from
comparisons to wild-type controls. T-statistics are clipped at 20 and only cells significant at
FDR < 0.1 are colored for ease of interpretation. A heat map illustrating the full range of all t-
statistics for all strains can be found in online supplemental figure collection 3. B) The
number of significantly different features for each strain tested. Stacked bars are color coded
according to the five feature sub-classes. There was no single phenotype affected by every
gene. All strains were significantly different from wild-type on at least one metric. C) Density
plot illustrating the distribution of overall phenotypic profile Pearson correlation coefficients
between second alleles in the same gene (21 pairs, blue) and all other possible gene pairs
(3720 pairs, gray). D) 2D (left) and 3D (right) t-SNE plots illustrating the distance between the
87 strains harboring mutations in ASD-associated gene orthologs (blue) and wild-type (black)

in phenotypic space.

Figure 5. Combining phenotypic clustering and epistasis to map parallel genetic
networks underlying hyper-responsivity and impaired habituation. A&B) Hierarchical
clustering based on sensory and habituation learning features identified two sets of genes with
members who display impairments in habituation of response probability and hyper-

responsivity to mechanosensory stimuli (increased initial reversal response duration).
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Rectangles outline the largest clusters with AU p-values larger than 95%.'2 C) Sensory and
learning phenotypic profile for NLGN1/2/3/4X+nlg-1(0k259) and CTNNB1+bar-1(ga80) mutants.
Each point represents a reversal response. Data are shown as meants.e.m using the number
of plates as n. D) Sensory and learning phenotypic profile for CHD8<chd-7(gk306) and
GAPVD1-rme-6(b1014) mutants. Each point represents a reversal response. Data are shown
as meants.e.m using the number of plates as n. E) Final reversal probability across genotypes
(average of the 28th-30th reversal response). chd-7(gk306);rme-6(b1014) double mutants do
not display additive impairments in habituation, suggesting they function in the same pathway.
chd-7(gk306),;nlg-1(0k259) double mutants display additive effects on habituation of response
probability suggesting they function in parallel pathways. Dots represent individual plate

*k%k

means, horizontal lines represent median of plate replicates. p<0.001, binomial logistic
regression followed by Tukey’s HSD criterion was used to determine significance of the
habituated level (proportion reversing at tap 30) for each pair of strains. F) Parallel genetic
pathways of ASD-associated genes underlie mechanosensory hyper-responsivity and impaired

habituation learning.

Figure 6. Functional assessment of ASD-associated missense variants in Neuroligins.
A) Schematic illustration of the nlg-1(0k259) deletion allele and NLG-1::YFP fusion transgene
used for transgenic rescue based variant functional assessments. Lollipops indicate the
approximate locations of the equivalent ASD-associated missense variants assessed. Note
that the R430C variant in C. elegans NLG-1 corresponds to a mutation in human NLGN3
whereas the R62W, V397M, and R714C NLG-1 variants correspond to mutations in human
NLGN4. B) All ASD-associated neuroligin variants were expressed at similar levels and
localized to properly to synapses in the nerve ring and nerve cords. A = anterior, P = posterior,
D = dorsal, V = ventral, NR = nerve ring, scale bar = 0.02 mm. C) Expression of wild-type
NLG-1::YFP rescued nlg-1(0k259) deletion mutant impaired habituation of response
probability. D-G) Each ASD-associated neuroligin variant was scored for its ability to rescue
impaired habituation of response probability, revealing varied partial loss-of-function. C-G)

*k%*

Data are shown as meants.e.m using the number of plates as n. ***p<0.001, binomial logistic
regression followed by Tukey’s HSD criterion was used to determine significance of the

habituated level (proportion reversing at tap 30) for each pair of strains, n.s., not significant. H-
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K) Each ASD-associated neuroligin variant was scored for it's ability to rescue spontaneous
reversal frequency (H), thermotaxis (l), sensory integration (J), and octanal avoidance
chemotaxis (K) in the nlg-1(0k259) deletion mutant. Dots represent individual worm reversal
frequencies (H) or plate means (I-K), horizontal lines represent median of plate replicates. H-
K) ****p<0.0001, one-way ANOVA followed by Tukey’s HSD criterion was used to determine

significance, n.s., not significant.

Figure 7. CRISPR-Cas9 auxin Inducible Degradation reveals phenotypes caused by
developmental loss of neuroligin can be rescued by adult re-expression. A) Schematic
illustration of the modified Dual Selection Marker (DSM) Cassette® CRISPR-Cas9 genome
editing strategy used to insert GFP and a short degron peptide tag into the endogenous
neuroligin locus. The maroon line in the upstream homology arm of the repair template
indicates the location of an engineered silent mutation in the protospacer adjacent motif to
prevent cleavage of the exogenous DNA. B) Schematic illustration of the CRISPR-Cas9
engineered NLG-1::AID::GFP transgene used for AID experiments. In the presence of auxin
TIR1 (a transgenically-expressed E3-ubuiqitin ligase) is activated targeting the fusion protein
for degradation. Following auxin treatment TIR1 is inactivated allowing straight-forward
conditional degradation and re-expression of the fusion protein. C) The fusion protein is fully
functional; NLG-1::AID::GFP animals did not display habituation impairments before (top) or
after (bottom) DSM selection cassette excision. D) The fusion protein localizes properly to
synapses in the nerve ring and nerve cords (top). Treatment with 0.025 mM auxin is sufficient
for complete degradation of the fusion protein (middle) that is reversible 48 hours after removal
from auxin (bottom). A = anterior, P = posterior, D = dorsal, V = ventral, NR = nerve ring, scale
bar = 0.02 mm. E) Schematic illustration of the time period of auxin administration for each of
the conditional inactivation and rescue groups tested. F) Continuous auxin administration
recapitulated induced impairments in habituation of response probability. G) Wild-type*N2
animals continuously treated with auxin exhibited normal habituation. H) Adult specific re-
expression of neuroligin partially rescued impaired habituation of response probability. 1) Adult
specific degradation of neuroligin did not induce habituation impairments. C, F-l) ***p<0.001,

binomial logistic regression followed by Tukey’s HSD criterion was used to determine
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significance of the habituated level (proportion reversing at tap 30) for each pair of strains, n.s.,

not significant. Data are shown as meanzts.e.m using the number of plates as n.

Supplementary Figures

Figure collection S1, Related to Figure 2. Reverse genetic screens. All plots illustrate the
sample mean distance of each genotype group from wild-type. Strains outside the 95%
confidence interval of the wild-type distribution are labeled and colored blue. Only a maximum

of ten strains are labeled in each direction per feature to prevent over plotting.

Figure collection S2, Related to Figure 2. Phenotypic profiles. For all plots bars represent
directional t-statistics from an unpaired t-test comparing the indicated mutant to wild-type for

each phenotypic feature listed across the x-axis. Color coding reflects feature classification.

Figure collection S3, Related to Figure 4. Phenomic Heatmaps. Phenomic heat maps
summarizing the phenotypic profiles of 87 strains harbouring a mutation in an ortholog of an
ASD-associated gene. Cells represent directional t-statistics from comparisons to wild-type
controls. T-statistics are shown unclipped and at various clippings (t clipped at £10, +20, etc.).
On select indicated heat maps, only cells significant at FDR < 0.1 are colored for ease of
interpretation. The heat maps are interactive allowing for more detailed inspection of selected
observations. Absolute t-statics values are clipped at 3.0, 10.0 and 20.0 in the last three

figures.

Figure collection S4, Related to Figure 4. Pvclust dendrograms. Dendrograms depict
hierarchical clustering of strains based on similarity in their phenotypic profiles. The Student’'s
T-statistic was used as a numerical score to represent the difference between wild-type and
mutant animals for each phenotypic feature; this created a numerical profile of phenotypic
features for further analysis. Average-linkage hierarchical clustering was performed with
pvclust using correlation as the distance measure, and 50,000 rounds of bootstrapping.
Clustering was performed on all features as well as the morphology features only and sensory

and learning features only.
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Figure S5, Related to Figure 5. Second alleles of GAPVD1+rme-6(tm6649) and CHD8-chd-
7(gk209) also display increased initial reversal response duration and impaired
habituation of response probability. A) Sensory and learning phenotypic profile for
GAPVD1+rme-6(tm6659) and B) CHDS8-chd-7(gk209) mutants. Data are shown as

*k%k

meants.e.m using the number of plates as n. ***p<0.001, binomial logistic regression followed
by Tukey’s HSD criterion was used to determine significance of the habituated level

(proportion reversing at tap 30) for each pair of strains, n.s., not significant.
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