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Abstract:  

Perception reflects not only input from the sensory periphery, but also the endogenous neural 

state when sensory inputs enter the brain. Whether endogenous neural states influence perception 

only through global mechanisms, such as arousal, or can also perception in a neural circuit and 

stimulus specific manner remains largely unknown. Intracranial recordings from 30 pre-surgical 

epilepsy patients showed that endogenous activity independently modulated the strength of trial-

by-trial neural tuning of different visual category-selective neural circuits. Furthermore, the same 

aspect of the endogenous activity that influenced tuning in a particular neural circuit also 

correlated with reaction time only for trials with the category of image that circuit was selective 

for. These results suggest that endogenous activity may influence neural tuning and perception 

through circuit-specific predictive coding processes. 
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Main Text:  Perception depends on not only sensory input, but also the neural and cognitive 

state when a stimulus is presented. Traditionally, this endogenous activity has been treated as 

random biological noise(1). However, studies in both humans and animals demonstrate that 

rather than being a noise process, endogenous activity reflects fluctuations of neural activity that 

influence neural processing in a behaviorally relevant manner. Specifically, endogenous 

fluctuations in neural activity influence both coarse aspects of the neural response to sensory 

input(2-5) and the behavioral response to that input(5-9). Endogenous activity has rich structure, 

reflecting the stimulus processing properties of the local neural circuitry(10), broad scale brain 

network architecture(11), and may reflect statistically optimal representations of the 

environment(12). Fuctuations in endogenous processes such as arousal(13-15) and alertness(16, 

17) can influence stimulus processing and behavior. Some theoretical accounts posit that 

fluctuations of endogenous activity can reflect predictive processes(18) that facilitate stimulus 

processing in a stimulus-specific manner. However, most studies have only examined 

nonspecific mechanisms, such as arousal and alertness(13-17). Thus, there is a dearth of 

empirical evidence testing whether endogenous processes can influence neural tuning and 

influence behavior in a circuit and stimulus-specific manner as required by models of predictive 

processing.  

Data were acquired from 30 human neurosurgical patients with implanted intracranial 

electroencephalography (iEEG) while they viewed images of faces, bodies, words, hammers, 

houses, and scrambled non-objects and performed a 1-back, repeat detection task. Stimuli were 

balanced across categories and presented in a random order to reduce any potential cognitive or 

strategic processes that might favor one stimulus over another. This allowed us to probe the 

relationship between endogenous activity, visual category tuning, and behavior separately for 
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different categories of stimuli and separately for the cortical circuits selective to these categories 

without bias. Analyses identified 246 iEEG electrodes selective for one of these visual categories 

that were then used for the primary analyses examining the effects of endogenous activity on 

category selectivity. These iEEG electrodes were distributed across the cortex, though 

concentrated in the bilateral ventral temporal cortex (VTC) (Fig. 1, Table 1). Three main 

hypotheses were tested sequentially: 1. endogenous activity modulates the strength of category 

tuning in response to visual stimuli; 2. the same aspect of the endogenous activity that modulates 

tuning also correlates with behavioral perception in a region-by-stimulus specific manner, where 

endogenous activity in regions selective for a particular stimulus will only correlate with 

behavior for that stimulus (e.g. endogenous activity in regions selective for faces will correlate 

with behavioral performance for face stimuli); 3. the aspect of endogenous activity that 

modulates tuning and behavior is uncorrelated across regions selective for different visual 

categories. Support for these three hypotheses would suggest that endogenous fluctuations can 

modulate stimulus-specific visual category tuning, the same aspect of the activity that modulates 

tuning also influences behavior, and that this modulation does not reflect an unspecific 

phenomenon, such as arousal, but rather differentially and independently influences circuits 

selective for different categories of visual stimuli. Additional analyses elucidated further details 

about what aspects of the endogenous activity modulate stimulus-specific category tuning and 

behavior. 

Previous studies in humans have established the relationship between features of 

endogenous activity and the evoked response, including oscillatory phase and power/amplitude 

of the event-related response (19-21) or blood oxygen-level dependent (BOLD) signal (22). 

While these studies show that endogenous activity may affect the stimulus evoked response, they 
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do not establish whether it can modulate the quality of the neural representation for stimuli in 

ways that are related to perception, such as the strength of tuning for particular stimuli. A 

common way to study population-level neural tuning is to use a multivariate discriminant model 

to assess the separability of the population neural activity with regard to different categories(23, 

24). Specifically, discriminant models extract critical dimensions in the space of evoked response 

that discriminate the preferred category from the others (24).  

To evaluate the modulation effect along the critical discriminant dimensions, pre-

stimulus activity, including single-trial field potential (stFP), single-trial broadband high-

frequency activity (stBHA), and phases at different frequencies, was used as a proxy for the 

endogenous neural state of the brain at the time of stimulus presentation. Specifically, a model 

was used to modulate classification boundary along the critical discriminating directions, based 

on the pre-stimulus activity, and the resulting improvement in accuracy was examined. Because 

the pre-stimulus activity contains no information about the conditions (see supplemental results), 

the only way classification accuracy can be improved using this model is if the pre-stimulus 

activity contains information about how strongly tuned the stimulus response along the critical 

dimensions will be on a particular trial.  

The algorithm is designed to use this pre-stimulus information, if it is present, to adjust 

the classification boundary, i.e. trial-by-trial tuning, in the discriminant dimension on each trial 

to optimize classification. Comparing classification accuracy with and without this adjustment 

tests the first hypothesis that endogenous activity modulates neural tuning. In addition, this 

adjustment provides a trial-by-trial measure of how much influence endogenous activity has on 

neural tuning, which we term the “modulation index” (MI). The correlation between MI and 

behavioral reaction time on a simple perceptual task tests the second hypothesis that the same 
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aspect of the endogenous activity that modulates tuning also correlates with behavioral 

perception. Comparing the correlation of the MI between pairs of electrodes that record from 

areas selective for the same versus different categories of visual stimuli test the third hypothesis 

that the aspect of the endogenous activity that modulates tuning is stimulus-specific and thus 

uncorrelated across circuits selective for different stimuli. 

The results indicated that conditioning the model on pre-stimulus activity improved the 

classification accuracy for all visual categories, compared to the classification accuracy using 

only post-stimulus activity (Fig. 2A, Table 1). One potential confound is the pre-stimulus activity 

could reflect cognition related to the previous trial and particularly repetitions of the same 

condition. For example, if subjects were presented two face trials in a row, the pre-stimulus 

activity for the second trial could reflect lingering activity from the first trial. This potential 

confound was addressed by demonstrating that classification accuracy improves with inclusion 

of the pre-stimulus activity, even after accounting for trial order effects, particularly repetitions 

of the same condition (Table S1). These results show that critical features of pre-stimulus 

activity relate to the strength of neural tuning and that modifying the discriminant model based 

on this relationship improves classification accuracy. Therefore, these results support the first 

hypothesis that endogenous activity modulates the degree of category tuning in response to 

visual stimuli.  

The strength of tuning is believed to reflect the quality of the neural representation(25), 

which in turn influences the quality of perception(26-28). To make a connection between the 

aspect of endogenous activity that modulates tuning and perception, the degree to which the 

algorithm adjusted the classification boundary on a trial-by-trial basis was determined (the 

aforementioned “modulation index”; MI). The MI was correlated to reaction times for the 
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“preferred” condition for each electrode (face trials for electrodes recording from face selective 

regions, word trials for electrodes recording from word selective regions, etc.), but not the “non-

preferred condition (non-face trials for electrodes recording from face selective regions, etc.; Fig 

2B). Furthermore, reaction times were 18.7 ms faster on average for the bottom quarter of trials 

than the top quarter of trials indexed by MI for the preferred condition, but was not significantly 

different for the non-preferred condition (Fig. 2C). These results show that the same aspect of the 

endogenous activity that influences tuning in a region also correlates with the trial-by-trial 

response time on a perceptual task in a region-by-stimulus specific manner, which supports the 

second hypothesis.  

While the majority of the category-selective electrodes were located in the VTC, similar 

effects are seen in the non-VTC recordings as well. Specifically, the mean sensitivity index d’ = 

1.00 and 0.83 with and without conditioning on prestimulus activity respectively (t(15) = 3.76, p 

= 0.002); the reaction times were 55.9 ms faster on average for the bottom quarter of trials than 

the top quarter of trials indexed by MI for the preferred condition (did not reach p < 0.05, but the 

effect is in the same direction as in VTC).  

If fluctuations of endogenous activity can influence neural coding and behavior in a 

stimulus-specific manner then these fluctuations should be uncorrelated across regions selective 

for different visual stimulus categories. In particular, endogenous fluctuations could be a 

reflection of changes in global cognitive state, such as arousal, or general task effects, such as 

changes in alertness. In these cases, the MI would correlate across the brain involved in the task, 

regardless of category-selectivity of a particular region. However, cross-electrode correlation in 

MI was weakly, though statistically significantly, correlated only between electrodes that share 

the same category-selectivity and not for electrodes of different category-selectivity (Fig. 2D). 
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Significantly larger correlation was seen between electrodes of the same category-selectivity 

than electrodes of different category-selectivity (Fig. 2D). As a result, the endogenous 

modulation is partially a reflection of correlated fluctuations within category-specific networks 

(although the effect size is weak), but it does not seem to be a reflection of non-specific 

processes, such as arousal or alertness, because correlations are not seen across all category 

selective electrodes, which supports the third hypothesis. 

The results above support our three major hypotheses and shows that pre-stimulus 

activity can influence neural tuning and behavior in a stimulus-specific manner. A number of 

questions regarding the nature of the endogenous activity that influences tuning and perception 

remain. To evaluate the contribution of different aspects of the endogenous features, the same 

model was applied using different subsets of the pre-stimulus features. This analysis showed that 

the pre-stimulus stFP, which is dominated by the low frequency component, the pre-stimulus 

stBHA, which reflects the power of high frequency broadband activity, and the pre-stimulus 

oscillatory phase all contributed to the modulation of category tuning (Fig. 3A). The trials were 

then ranked by their MI and the mean and standard deviation in their pre-stimulus stFP and 

stBHA were compared. The bottom quarter of trials had significant lower mean and variance for 

both stBHA and absolute stFP during the pre-stimulus period, compared to the top quarter of 

trials (Fig. 3B). Given that lower MI trials corresponde to shorter RTs, the decreased pre-

stimulus mean and variance may be an indication of lower endogenous noise (29) or fluctuations 

of stimulus-specific attention (30), which leads to shorter RTs. A further analysis into the 

distribution of non-zero weights in the sparse GLM suggests that the alpha/beta phases, peaked 

at 15 Hz, showed a consistent pattern of modulation on post-stimulus category tuning (Fig. 3C), 

suggesting a role for the phase of endogenous oscillations in this frequency range when visual 
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stimuli are presented. Recent studies have shown that deployment of endogenous attention 

reflects neural coherence in a similar frequency range as the one seen in the current study(31), 

suggesting the prestimulus facilitation seen here may reflect an active neural process. 

Previous studies have shown that infra-slow fluctuations of activity, seen in “resting-

state” studies, are associated with fluctuations of behavior and perception(32-34). If the aspect of 

the endogenous activity that modulates tuning and behavior seen in the present study were a 

reflection of these intra-slow fluctuations, there would be significant auto-correlation within each 

channel between consecutive trials for the MI. The auto-correlation of MI across consecutive 

trials for each electrode was computed, and 40 out of the 246 electrodes (~15%) showed 

significant auto-correlation across trials at p < 0.05 uncorrected level (Fig. 4). While this is more 

than would be expected by chance, it is a relatively small subset of the electrodes, suggesting that 

there is a mix of infra-slow and transient effects in the endogenous activity, with transient effects 

being the dominant proportion. 

Taken together these results suggest a model for how endogenous states can influence 

neural activity to modulate the perception of specific visual stimuli. If the stimulus is presented 

when endogenous activity in regions selective to that type of stimulus is relatively low, as 

indicated by lower pre-stimulus mean and variance, and when the phases of endogenous 

oscillations in the alpha/beta frequency range are optimal, then neural tuning will be stronger and 

behavior will be facilitated. It has been suggested that endogenous fluctuations may reflect a 

priming-like pre-activation of a predicted stimulus(35), for example a prior in the Bayesian 

sense(36). However, pre-activation would likely correspond to a higher pre-stimulus response in 

regions that process a particular stimulus type, not lower as was seen here. Prior studies in early 

visual cortex in monkeys also showed that lower pre-stimulus activity is associated with 
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improved tuning and behavior(16, 17, 37). The results of the present study show that these 

faciliatory effects can be differentially focused in circuits associated with processing specific 

stimulus types in higher-level visual regions and in regions outside of visual cortex in humans. 

Lower pre-stimulus mean and variance may reflect an optimization of the dynamic range or 

gain(37) potentially through normalization(38) in neural circuits responsible for processing 

particular stimulus types to enhance information pick-up for those stimuli(39). While reduced 

pre-stimulus activity and variance is not consistent with a priming-like prior, the results here do 

provide a potential foundation for endogenous activity to reflect predictive processing(18), 

though through a non-priming mechanism, such as circuit-specific optimization of processing. 

Given the random stimulus presentation in the present study, facilitating one stimulus 

over another on a trial-by-trial basis does not provide a behavioral advantage. Therefore, it is 

unclear if the endogenous activity seen here reflects stochastic dynamics in brain circuits, such a 

fluctuations of neurotransmitter levels(40), or strategic processes, such as fluctuations in 

stimulus-specific attention or preference(41), that may reflect pattern detection and strategies 

primates adopt even when stimuli are presented randomly(42). In natural contexts, free viewing, 

and other contexts where facilitating the process of particular stimuli may be advantageous, the 

stimulus-specificity of endogenous optimization may reflect a prediction of the next stimulus 

viewed based on internal models of the environment(35). Active sensing in natural settings may 

organize the processes that underlie this optimization(43) and/or these active processes may 

synchronize to fluctuations in endogenous activity so that deployment of overt and covert 

attention occurs at temporally optimal times for information gathering(44).  
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Taken together, our results provide empirical support for a mechanism in which the 

present neural state influences the perception of sensory input in a stimulus-specific manner by 

modulating the tuning properties of neural circuits selective for those stimuli. 
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Fig. 1. Behavioral task and the localization of the category-selective electrodes.  

A) Experimental paradigm in which the subject is shown a series of images and performs a 1-

back repeat detection task. 180 images from 6 categories (faces, bodies, words, tools, houses, 

scrambled non-objects) were used. Each image was presented for 900 ms, with 900 ms inter-

stimulus interval.  

B) The left lateral and bilateral ventral views of the locations of the 246 category-selective 

electrodes mapped onto a common brain surface. The category-selectivity was determined based 

on 1) significant sensitivity index (d’) for certain category using a 6-way classifier; 2) larger 

event-related potential (mean stFP) or mean stHFA over other categories.   
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Fig. 2. Pre-stimulus endogenous activity influenced post-stimulus category tuning and perceptual 

behavior in a neural circuit and stimulus specific manner. 

A) Category classification accuracy (mean sensitivity index d’) before (post only) and after (pre 

+ post) conditioning on endogenous activity. Mean d’ = 1.06 without conditioning on pre-

stimulus activity versus mean d’ = 1.19 after conditioning on pre-stimulus activity (t(245)= 

12.39; p < 1x10-5, paired t-test; see Table 1 for detailed results; * p < 0.05, ** p < 0.01, *** p < 

0.001)  

B) Trial-by-trial reaction time was significantly correlated to the MI for the preferred conditions 

across electrodes (mean Spearman’s  rho = 0.051, p = 0.0059, two-sample t-test), but not for the 
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non-preferred conditions (mean Spearman’s rho = 0.0031, p = 0.71, t-test) and the correlation 

was greater for the preferred than non-preferred conditions (p = 0.017, two-sample t-test).  

C) (left) the averaged reaction time for low MI and high MI trials in the preferred condition of 

the electrode (RTlow = 663.2 ms, RThigh = 681.9 ms, p = 0.014, permutation test); (right) the 

averaged reaction time for low MI and high MI trials in the non-preferred conditions of the 

electrode. (RTlow = 669.9 ms, RThigh = 669.6 ms, p > 0.1, permutation test)  

D) The mean correlation coefficient (Spearman’s rho) for cross-electrode correlation in the pre-

stimulus MI between a pair of electrodes with the same category selectivity (left bar; mean 

Spearman’s rho = 0.076, *** p < 0.001, permutation test) versus a pair of electrodes with 

different category selectivity (right bar; mean Spearman’s rho = -0.0092, p > 0.1, permutation 

test). 
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Fig. 3. Different aspects of pre-stimulus features contributed to the modulation model.  

A) from left to right, the averaged classification d' across all electrodes for: (Post) post-stimulus 

features only, (Post+Pre) including all pre-stimulus features, (stBHA) including pre-stimulus 
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stBHA features only, (stFP) including pre-stimulus stFP features only, (Ph) including pre-

stimulus phase features only, (stBHA+stFP) including pre-stimulus stBHA and stFP features, 

(stBHA+Ph) including pre-stimulus stBHA and phase features, (stFP+Ph) including pre-

stimulus stFP and phase features (*** p < 0.001, paired t-test);  

B) from left to right, 1) the averaged z-scored stBHA power, 2) the standard deviation of z-

scored stBHA power, 3) the averaged absolute value of stFP, 4) the standard deviation of stFP, 

within [-500ms,-100ms] pre-stimulus time window for low MI and high MI trials in each 

electrode (*** p < 0.001, permutation test);  

C) the averaged empirical probability of having non-zero weights in the sparse GLM model for 

different pre-stimulus phase features of different frequency (shaded area: bootstrapped 95% 

confidence interval of being selected in the sparse GLM with random feature selection that has 

the same L0-norm as the current solutions); 
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Fig. 4. The pre-stimulus modulation effect is mostly transient. 

The temporal auto-correlation for MI across consecutive trials in each category-selective 

channel. The blue solid line indicates the average auto-correlation across all electrodes. 40/246 

electrodes showed significant auto-correlation ( p < 0.05, uncorrected). The dashed lines 

correspond to p = 0.05 threshold, uncorrected. 

 
 

Table 1. Number of electrodes showing significant category sensitivity for each of the stimulus 

categories, and the comparisons of classification results from the two-stage GLM 

Category Bodies Faces Words Tools Houses Scrambled 
non-objects 

# of electrodes 9 56 92 16 37 36 

d’ (evoked only)  1.1822 1.3957 0.9252 0.7289 1.0585 0.8219 

d’ (evoked + 
endogenous) 

1.3093 1.5072 1.0628 0.8334 1.2046 1.0105 

p-value 0.0264 < 10-5 < 10-5 0.0024 < 10-5 < 10-5 
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Supplementary Materials  
 

 
 
Materials and Methods 5 

Subjects 

The experimental protocols were approved by the Institutional Review Board of the University 

of Pittsburgh. Written informed consent was obtained from all participants. 30 human subjects 

(11 male, 19 female) underwent surgical placement of subdural electrocorticographic electrodes 

or stereotactic electroencephalography (together electrocorticography and stereotactic 10 

electroencephalography are referred to here as iEEG) as standard of care for seizure onset zone 

localization. The ages of the subjects ranged from 19 to 64 years old (mean = 38.2, SD = 11.9). 

None of the participants showed evidence of epileptic activity on the electrodes used in this 

study nor any ictal events during experimental sessions.  

 15 

Stimuli 

In each session, 180 images of faces (50% male), bodies (50% male), words, hammers, houses, 

and phase scrambled faces were used as visual stimuli. Each of the six categories contained 30 

images, and each image was presented twice. At random, 1/3 of the time an image would be 

repeated, which yielded 480 independent trials in each session. 20 

 

Paradigms 

In the experiment, each image was presented for 900 ms with 900 ms inter-trial interval during 

which a fixation cross was presented at the center of the screen (~ 10˚ x 10˚of visual angle). At 
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random, 1/3 of the time an image would be repeated, which yielded 480 independent trials in 

each session. Participants were instructed to press a button on a button box when an image was 

repeated (1-back), and their reaction time between stimulus onset and button press was recorded. 

Paradigms were programmed in MATLABTM using Psychtoolbox and custom written code. All 

stimuli were presented on an LCD computer screen placed approximately 150 cm from 5 

participants’ heads.   

 

Data preprocessing 

The electrophysiological activity was recorded using iEEG electrodes at 1000 Hz. Common 

reference and ground electrodes were placed subdurally at a location distant from any recording 10 

electrodes, with contacts oriented toward the dura. The 60 Hz line noise was removed using a 

forth order Butterworth filter with 55-65 Hz stop-band. Single-trial field potential (stFP) signal 

was extracted by band-passing filtering the raw data between 0.2-115 Hz using a fourth order 

Butterworth filter to remove slow and linear drift, and high frequency noise. The stFP signal was 

sampled at 1000 Hz. 15 

The single trial broadband high-frequency (stBHA) activity was defined as the mean z-scored 

PSD across 40-100 Hz on each trial. Specifically, power spectrum density (PSD) at 2 – 100 Hz 

with bin size of 2 Hz and time-step size of 10 ms was estimated for each trial using multi-taper 

power spectrum analysis with Hann tapers, using FieldTrip toolbox (45). We define the neural 

activity within the [-500, -100] ms interval relative to the stimulus onset as the pre-stimulus 20 

activity, and the neural activity within the [100, 500] ms interval relative to the stimulus onset as 

the post-stimulus activity. For each channel, the PSD at each frequency was z-scored with 
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respect to the mean and variance of the baseline activity to correct for the power scaling over 

frequency at each channel. The stBHA was sampled at 100 Hz.  

The pre-stimulus phase information was also extracted from each trial. Specifically, discrete 

time Fourier transform was applied to the raw signal in the [-500, -100] ms time interval, which 

had a total length of 400 points sampled at 1000 Hz. As a result, the phase information between 5 

0-1000 Hz was extracted with a step-size of 2.5 Hz. The phases from 0 to 150 Hz were used as 

the pre-stimulus phase features yielding 60 phase features. 

To reduce potential artifacts in the data, raw data were inspected for ictal events, and none 

were found during experimental recordings. Trials with maximum amplitude 5 standard 

deviations above the mean across all the trials were eliminated. In addition, trials with a change 10 

of more than 25 µV between consecutive sampling points were eliminated. These criteria 

resulted in the elimination of less than 1% of trials.  

Electrode localization 

Coregistration of grid electrodes and electrode strips was adapted from the method of 

Hermes, Miller, Noordmans, Vansteensel and Ramsey (46). Electrode contacts were segmented 15 

from high resolution post-operative CT scans of patients coregistered with anatomical MRI scans 

before neurosurgery and electrode implantation. The Hermes method accounts for shifts in 

electrode location due to the deformation of the cortex by utilizing reconstructions of the cortical 

surface with FreeSurferTM software and co-registering these reconstructions with a high-

resolution post-operative CT scan.  SEEG electrodes were localized with Brainstorm software 20 

(47) using post-operative MRI co-registered with  pre-operative MRI images. 

 

Electrode selection 
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Category-selective electrodes were selected based on a 6-way classifier. Specifically, we 

trained a multinomial logistic regression model to classify the post-stimulus neural activity with 

respect to the 6 different categories from each other. The sensitivity index (d’) for each category 

was then computed as d’ = Z(true positive rate) – Z(false positive rate), where Z(x) is the inverse 

function of the cumulative density function of standard normal distribution. An electrode was 5 

selected as category-selective if the maximum d’ across all categories is greater than 0.5 (p < 

0.01, permutation test). The selected electrode was then assigned to the category with maximum 

d’. 

 

Two-stage generalized linear model (GLM) 10 

We designed a two-stage regularized GLM (logistic regression) model to evaluate the pre-

stimulus modulation on category representation.  

In the first stage, logistic regression was directly applied to the post-stimulus activity to 

extract the critical discriminant dimensions for category classification. In other words, we solved 

for 15 

𝛽"#$∗ = argmin
-./0

	ℓ(𝑋"#$𝛽"#$) + 𝜆8𝑃:(𝛽"#$)   (Eq.1) 

where ℓ(𝑥) = −𝑦>𝑥 + 𝟏>log(1 + exp(𝑥)) is the cross-entropy loss for logistic regression, 

and 𝑃:"#$(𝛽"#$) =
(8F:)
G

‖𝛽"#$‖GG + 𝛼‖𝛽"#$‖8 is the standard elastic-net penalty term to account 

for the high-dimensional settings (48). This results in a trial-by-trial neural metric, 𝑋"#$𝛽"#$ , 

which corresponds to the signed distance to the classification boundary and quantifies the post-20 

stimulus category selectivity. 
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In the second stage, we fixed the optimal dimension 𝛽"#$∗  and optimized the model to 

modulate classification boundary along the critical discriminating directions found in the first 

stage, based on the pre-stimulus activity. Specifically, we solved  

𝛽JK"∗ = argmin
-LM.

	ℓN𝛽"#$∗ , 𝛽JK"P + 𝜆G𝑃:(𝛽JK")   (Eq.2) 

Where ℓN𝛽"#$∗ , 𝛽JK"P = −𝑦>N𝑋"#$𝛽"#$∗ − 𝑋JK"𝛽JK"P + 𝟏>log(1 + exp(𝑋"#$𝛽"#$∗ −5 

𝑋JK"𝛽JK")), and 𝑃:
JK"(𝛽JK") is a similar elastic-net penalty but with group structure to account 

for the phase features (see below for a detailed description of the penalty structure). This stage 

provides a neural metric 𝑋JK"𝛽JK"  in pre-stimulus activity that quantifies the amount of influence 

from pre-stimulus activity on the post-stimulus category selectivity on a trial-by-trial basis. We 

defined 𝑀𝐼 = 𝑋JK"𝛽JK" as the pre-stimulus modulation index (MI).  10 

We considered the neural activity within the [-500, -100] ms pre-stimulus time interval as 

proxy for the endogenous activity, noted as 𝑋JK" ∈ ℝU×WX , where N is the number of trials and T1 

is the number of features in the pre-stimulus time window; and we used neural activity from the 

[100, 500] ms time interval relative to stimulus onset as the post-stimulus evoked activity that 

encodes category information, noted as 𝑋"#$ ∈ ℝU×WY , where T2 is the number of features in the 15 

post-stimulus time window. The regularization parameters 𝜆8 and 𝜆G were selected using cross-

validation based on minimizing the deviance.  

 

The (group) elastic-net penalty 

For the post-stimulus part, we only considered the stFP and stBHA features, noted as 𝑥"#$ =20 

[𝑥"#$[\ , 𝑥"#$]^_], with the corresponding weights 𝛽"#$ = [𝛽"#$[\ , 𝛽"#$]^_], and we applied regularization 
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term 𝑃:"#$(𝛽"#$) =
(8F:)
G

‖𝛽"#$‖GG + 𝛼‖𝛽"#$‖8 in (Eq.2). For the pre-stimulus part, we used stFP, 

stBHA and phase features, noted as 𝑥JK" = [𝑥JK"[\ , 𝑥JK"]^_, 𝑥JK"
Jabc"], and the corresponding weights 

𝛽JK" = [𝛽JK"[\ , 𝛽JK"]^_, 𝛽JK"
Jabc"]. Assume that we have phase [𝜃8,… , 𝜃f], where 𝜃 ∈ (−2𝜋, 2𝜋], 

corresponding to frequencies of interest [𝑓8, … , 𝑓f]. To transfer the circular phase value onto the 

real axis in order to facilitate the ℓ8-norm penalty, we consider feature vector 𝑥JK"
Jabc" =5 

[sin𝜃8,cos𝜃8, … ,sin𝜃f,cos𝜃f], where sin𝜃,	cos𝜃 ∈ [−1,1], and group lasso penalty term 

𝒢N𝛽JK"
Jabc"P = √2∑ m(𝛽JK",(n,8)

Jabc" )G + (𝛽JK",(n,G)
Jabc" )Gf

no8 , where [𝛽JK",(n,8)
Jabc" , 𝛽JK",(n,G)

Jabc" ] are the pair of 

weights corresponding to phase feature pair [sin𝜃n,cos𝜃n]. This group structure would ensure that 

the penalty is invariant to the overall direction of the phase, which a typical ℓ8-norm penalty 

would not do. As a result, the group elastic-net penalty for the pre-stimulus weights can be 10 

written as 𝑃:
JK"N𝛽JK"P =

(8F:)
G

p𝛽JK"pG
G
+ 𝛼p𝛽JK"[\ p

8
+ 𝛼p𝛽JK"]^_p

8
+ 𝛼𝒢N𝛽JK"

Jabc"P. 

 

Cross-electrode correlation in pre-stimulus MI 

To evaluate the spatial properties of the pre-stimulus modulation effect, we computed the 

correlation of the single trial pre-stimulus MI between category-selective electrodes in each 15 

subject. For the i-th category-selective electrode, we got 𝑀𝐼n = 𝑋JK",n𝛽JK",n from the GLM. The 

cross-electrode correlation between two category-selective electrodes i and j was estimated by 

computing the correlation coefficient between 𝑀𝐼n and 𝑀𝐼q across all trials. To avoid 

confounding effect from local spatial correlation between two nearby electrodes, we only 

considered a pair of electrodes that were > 2cm apart from each other. For each subject, the mean 20 
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cross-electrode correlation was estimated by averaging the pairwise correlation coefficients 

across all such pairs of category-selective electrodes.  

Permutation testing was used to test for significance of the cross-electrode MI correlations 

(Fig. 2D). Specifically, for each permutation, we randomly shuffled the category condition of all 

the trials and repeat the above analysis to compute the mean cross-electrode correlation 5 

coefficients for electrodes with the same/different category selectivity. This process was repeated 

for 1000 times to get the histogram of the null distribution of the averaged correlation 

coefficient. 

 

Autocorrelation in pre-stimulus MI 10 

To evaluate the temporal properties of the pre-stimulus modulation effect, we computed the 

autocorrelation of the single trial pre-stimulus MI between consecutive trials with lags ranging 

from 1 to 20 in each category-selective electrodes. Specifically, for any given electrode, the 

autocorrelation with lag k is 𝑟$ =
∑ (st(u)Fstvvvv)((st(uw0)Fstvvvv))xy0
uzX
∑ (st(u)Fstvvvv)((st(u)Fstvvvv))x
uzX

. To evaluate the temporal property, 

we tested for the significance of the first-order autocorrelation, since it is essential for any 15 

temporal dependencies caused by slow-fluctuation in the signal. Specifically, the upper bound of 

the 95% confidence interval was approximately estimated as 2/√𝑇 where T is the total number 

of trials. 

 

Permutation test for differences based on high vs low pre-stimulus MI 20 

Permutation test was used to test for significance of the differences in RT, pre-stimulus stFP, 

and pre-stimulus stHBA based on pre-stimulus MI in this study (Figure 2B, 2C, Figure 3B). In 
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order to construct a surrogated distribution of the pre-stimulus MI, in the i-th permutation we 

generated random projection weight vector 𝛽(n) = [𝛽8
(n), … , 𝛽WX

(n)] ∈ ℝWX	, such that }𝛽(n)}
~
=

p𝛽JK"p~. Specifically, let 𝑛 = p𝛽JK"p~, we randomly drew {𝑝8, … , 𝑝�} ⊂ {1,… , 𝑇8}, and then 

𝛽J
(n) ∼ 𝑁(0,1) if 𝑝 ∈ {𝑝8, … , 𝑝�}, 𝛽J

(n) = 0 otherwise. Then we computed 𝑀𝐼 = 𝑋JK"𝛽
(n) and 

sorted the trials according to this permuted MI in order to compute the differences in RT, pre-5 

stimulus stFP, and pre-stimulus stHBA between trials in the top quarter and trials in the bottom 

quarter. We repeated this process 1000 times for each electrode, and the histograms of those 

differences were used as the null distributions based on permuted pre-stimulus MI.  

 
 10 

Classification using only pre-stimulus features 

To validate that there was no discriminant information in the pre-stimulus activity, for each of 

the category-selective electrode, we trained a classifier using only the pre-stimulus activity. 

Across the 246 electrodes no significant discriminant information was presented in the pre-

stimulus activity (average d’ = 0.023; t(245) = 1.44; p > 0.1). 15 

 

Concerns about category-level repetition 

A possible confounding factor is the long-lasting activity from the prior trial, likely induced by 

the one-back task, which has been demonstrated in previous studies (49). This could become 

problematic when two consecutive trials shared the same category conditions but did not exactly 20 

repeat at the exemplar level. However, as shown in Table S1, with category-level repetitions 
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completely removed from the trials, similar modulation effects were still found when comparing 

the classification accuracy with and without conditioning on the pre-stimulus activity.  

Predicting distance to post-stimulus decision boundary 

In addition to the two-stage GLM presented in the main text, a linear regression model was 

directly applied to evaluate the relationship between pre-stimulus activity and the absolute 5 

distance to the decision boundary in the post-stimulus discriminant model. Specifically, we 

solved the following linear regression problem: 

�𝑋"#$𝛽"#$� = 𝑋JK"𝛽JK" 

Similar to the main results presented in Figure 2 and Table 1, we found significant correlation 

between pre-stimulus activity and absolute distance to the decision boundary in all categories 10 

(Table S2). This suggests that the pre-stimulus activity predicts the distance to classification 

boundary on a trial-by-trial basis.  

 

 
  15 
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Table S1. The comparisons of classification results from the two-stage GLM when 
excluding all repeated trials with the same category as the 1-back trial 

Category Bodies Faces Words Tools Houses Scrambled 
non-objects 

# of electrodes 9 56 92 16 37 36 

d’ (evoked 
only)  

1.1018 1.5301 1.0847 0.7881 1.0594 0.8677 

d’ (evoked + 
endogenous) 

1.1936 1.6091 1.1904 0.8990 1.1948 1.0651 

p-value 0.0908 1.6 × 10-5 < 10-5 9.7 × 10-4 < 10-5 < 10-5 

 5 

Table S2. The R2 of the linear regression model between pre-stimulus activity and the 
absolute distance to the decision boundary in the post-stimulus discriminant model. (p-
value estimated using the Fisher Z-transformation).  

Category Bodies Faces Words Tools Houses Scrambled 
non-objects 

# of electrodes 9 56 92 16 37 36 

R2  0.0717 0.0507 0.0377 0.0275 0.0361 0.0221 

p-value 0.0327 < 10-5 2.78× 10-4 0.0150 0.0017 0.0678 

 
 10 
 
 
 
 
  15 
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