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Abstract 

Cognitive deficits are important predictors for outcome, independence and quality of life after 

stroke, but often remain unnoticed and unattended because other impairments are more 

evident. Computerized cognitive training (CCT) is among the candidate interventions that 

may alleviate cognitive difficulties, but the evidence supporting its feasibility and 

effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring. 

Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and 

outcome prediction. By integrating information not only about lesion extent and localization, 

but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides 

relevant information for developing better prediction models in order to tailor cognitive 

intervention for patients, especially in a chronic phase. 

Using brain age prediction based on MRI based brain morphometry and machine 

learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative 

to their chronological age perform better on cognitive tests and benefit more from cognitive 

training compared to patients with an older-appearing brain. In this randomized double-blind 

study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7 

at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In 

addition, patients were randomized to one of two groups receiving either active or sham 

transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap 

(estimated age – chronological age) on cognitive performance, and associations between 

brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age 

gap during the intervention were sensitive to treatment response. Briefly, our results suggest 

that longitudinal brain age prediction based on automated brain morphometry is feasible and 

reliable in stroke patients. However, no significant association between brain age and both 

performance and response to cognitive training were found. 
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Introduction 

Stroke is among the most common causes of acquired cognitive disabilities during adulthood, 

with a projected increase in prevalence over the next decades due to the aging population 

(Feigin et al. 2014; Feigin et al. 2017). Despite recent reductions in stroke-related mortalities, 

largely due to major improvements in acute health care and treatment (Zhang et al. 2012) 

many stroke survivors suffer from long-term and pervasive cognitive deficits (Barbay et al. 

2018; Barker-Collo et al. 2010; Cumming et al. 2014; Haacke et al. 2006; Nakling et al. 

2017; Patel et al. 2002) that often remain unnoticed by the health care system due to its 

typically delayed manifestation (Jacova et al. 2012; Kalaria et al. 2016). 

Previous studies and treatment programs have largely targeted patients in the acute 

and sub-acute phase, as it has been assumed that recovery and cognitive rehabilitation are 

more likely to be successful during a limited time window following the insult (Zucchella et 

al. 2014). Whereas the temporal aspects of cognitive interventions following stroke is 

important, evidence suggests that recovery can also occur in chronic stages, i.e. years after 

the insult (Berthier et al. 2011; Moss & Nicholas 2006). As a result, there is an increasing 

need for developing and validating tools that can be used to predict long-term outcome and 

for monitoring of the effects of cognitive rehabilitation after stroke (Hope et al. 2013).  

Advanced neuroimaging techniques based on magnetic resonance imaging (MRI) 

offer a range of candidate markers for disease monitoring and outcome prediction. In addition 

to providing detailed information about the localization and extent of the lesion, which 

represent key clinical information in the acute phase, imaging techniques allow for a 
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characterization of the structural and functional integrity of the whole brain, including areas 

not directly damaged by the stroke (Kalaria et al. 2016; Werden et al. 2017). This information 

is highly relevant in a cognitive rehabilitation context, where the potential for improvement 

and recovery are not only defined by the lesion itself, but by the integrity and efficiency of 

the unaffected brain regions (Ihle-Hansen et al. 2014). Further, it is widely acknowledged 

that the brain systems supporting cognitive functions are broadly distributed, supporting a 

network-based conceptualization of the functional neuroanatomy of cognitive functions. 

Hence, lesions in widely different parts of the brain may result in overlapping cognitive 

symptoms, depending on the brain networks involved (Guggisberg et al. 2019). A direct 

implication of this is that both the degree of cognitive impairment and the individual potential 

for improvement in response to intervention may be less dependent on the exact 

characteristics of the lesion than the structural integrity of the unaffected brain networks.  

Here, we test this concept by utilizing multivariate brain age prediction using machine 

learning and sensitive measures of brain morphometry. Briefly, combining a wide array of 

informative brain imaging features in a prediction model allows for an accurate prediction of 

the age of an unseen individual (Franke et al. 2012; Franke et al. 2010). The degree to which 

the model under- or over-estimate the individual’s age has been shown to be sensitive to a 

variety of health- related characteristics, including cognitive function and mortality (Boyle et 

al. 2019; Cole & Franke 2017; Cole et al. 2018; Richard et al. 2018), and brain age prediction 

using MRI data has recently been shown to be sensitive both to the clinical manifestation and 

polygenic risk of various brain disorders (Høgestøl et al. 2019a; Kaufmann et al. 2018).  

Based on the notion that brain age prediction offers a sensitive summary measure of 

brain health and integrity, we first tested whether brain age is sensitive to cognitive function 

in chronic stroke patients. Next, to assess the predictive value of brain age prediction in a 

cognitive rehabilitation context, we tested if brain age prior to the intervention is associated 
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with response to an intensive computerized cognitive training (CCT) program. As a follow-

up analysis to a previous study (Kolskår et al. 2019) reporting no robust beneficial effects of 

transcranial direct brain stimulation (tDCS) on cognitive improvement, we assessed if any 

beneficial effects of tDCS (active vs sham) would be dependent on brain age. Finally, we 

tested to which degree longitudinal changes in brain age during the course of the intervention 

are sensitive to treatment response. We hypothesized that (1) brain age prediction would 

constitute a reliable and sensitive method for characterizing individual level brain health. We 

further anticipated that (2) patients with a relatively low brain age (which may imply higher 

cognitive or brain reserve) would show better cognitive function at baseline, and (3) would 

show larger improvements in task performance. Lastly, to the extent that intensive cognitive 

training shows beneficial effects on cognitive performance and the brain (Engvig et al. 2010), 

we hypothesized that (4) cognitive gains would be reflected in longitudinal changes in brain 

age during the course of the intervention.  

We tested these hypotheses in a group of 54 chronic patients who suffered mild stroke 

(> 6 months since hospital admission, NIHSS < 7 at hospital discharge) invited to take part in 

a randomized, double blind study aimed to test the utility of tDCS in combination with CCT 

to improve cognitive performance following stroke (Kolskår et al. 2019; Ulrichsen et al. 

2019). For unbiased brain age prediction, we utilized a large independent training set, and 

employed stringent procedures for multiple comparison correction to increase the robustness 

of the results.  

 

Materials and methods  

Table 1 summarizes key clinical and demographic information for the patient group. Patients 

were recruited with the main aim of testing the clinical feasibility of combining CCT and 

tDCS to improve cognitive function in chronic stroke patients. Description of the extent and 
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localization of individual patient lesions, as well as recruitment procedures are detailed in 

(Kolskår et al. 2019). Briefly, patients admitted to the Stroke Unit at Oslo University Hospital 

and at Diakonhjemmet Hospital, Oslo, Norway during 2013-2016 were invited to participate 

through letters. Stroke was defined as any form of strokes of either ischemic or hemorrhagic 

etiology; transient ischemic attacks (TIA) were excluded. Additional exclusion criteria 

included MRI contraindications and other neurological diseases diagnosed prior to the stroke.  

Approximately 250 patients responded to the letter, of which 72 completed the first 

assessment and 54 patients completed the full protocol; including three MRI brain scan 

sessions, three sessions with cognitive assessments, one EEG assessment, and seven CCT 

sessions in addition to 10 CCT sessions performed at home.  

Four patients were excluded from the analysis in the current study. Two were 

excluded based on poor quality or incomplete MRI data, one based on incomplete cognitive 

assessment at baseline and one due to lack of confirmed stroke. The remaining 68 patients 

were included in the brain age estimation and associations with baseline cognitive 

performance (age = 24.3-81.8, mean = 67.98, SD = 10.24, 19 females). All 54 patients who 

completed the training sessions were included in the remaining analyses (age = 47.8-82.0, 

mean = 69.72, SD = 7.46, 14 females).  

 

 Training sample 

Cam-CAN 

 Test sample 

StrokeMRI 

Baseline 

 

 

Longitudinal 

 

 Healthy controls  Stroke patients  Stroke patients  

 Mean (SD) Range Mean (SD) Range Mean (SD) Range 

Total N (% 

females) 

628 (51.6%)  68 (27.9%)  54 (25.9%)  

Age 54.2 (18.3) 18-87 67.98 (10.24) 24.3-81.8 69.72 (7.46) 47.8-82.0 

Education (in 

years) 

- - 14.32 (3.78) 7-30 14.38 (3.75) 9-30 

MMSE1 - - 27.91 (1.97) 22-30 28.00 (1.87) 22-30 
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MoCA1 - - 25.70 (3.15) 14-30 25.92 (2.77) 17-30 

 Months since stroke 26.67 (9.13) 6-45 25.74 (9.17) 6-45 

  NIHSS2 1.31 (1.52) 0-7 1.33 (1.53) 0-7 

TOAST classification for ischemic stroke3 Large artery artherosclerosis (23)  

Cardioembolism (7) 

Small vessel occlusion (21) 

Other (17) 

 

Large artery artherosclerosis (20)  

Cardioembolism (6) 

Small vessel occlusion (18) 

Other (10) 

 

Stroke location Right (30) 

Left (22) 

Brain stem / Cerebellum (9) 

Bilateral (7) 

Right (23) 

Left (18) 

Brain stem / Cerebellum (8) 

Bilateral (5) 

 
Table 1. Demographics and sample characteristics. 1MMSE and MoCA scores at inclusion. 2NIHSS 
score at hospital discharge. 3One patient had intracerebral hemorrhage (Kolskår et al. 2019; Ulrichsen 
et al. 2019).  
 

Training set for brain age prediction   

The healthy controls used as training set for the age prediction model were obtained from the 

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) sample (http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/; (Shafto et al. 2014; Taylor et al. 2017)). Briefly, volunteers 

were recruited to Cam-CAN through a large-scale collaborative research project funded by 

the Biotechnology and Biological Sciences Research Council (BBSRC, grant number 

BB/H008217/1), the UK Medical Research Council and University of Cambridge. For more 

information, see http://www.cam-can.org. Data from 628 individuals (age = 18-87, mean = 

54.2, SD = 18.3, 324 females) were included in the training set (Richard et al. 2018). 

 

Cognitive assessment at baseline 

Similar to our recent study (Richard et al. 2018), cognitive performance at baseline was 

assessed with a set of neuropsychological and computerized tests assumed to be sensitive to 

cognitive aging, including the Montreal Cognitive Assessment (MoCA; Nasreddine et al. 

2005), the vocabulary and matrix subtests of the Wechsler Abbreviated Scale of Intelligence 

(WASI; Wechsler 1999), the California Verbal Learning Test (CVLT-II; Delis et al. 2000), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2019. ; https://doi.org/10.1101/687079doi: bioRxiv preprint 

https://doi.org/10.1101/687079
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

and the Delis-Kaplan Executive Function System (D-KEFS) color word interference test 

(Stroop; Delis et al. 2001). We included several computerized tests from the Cognitive 

Assessment at Bedside for iPAD (CABPad; Willer et al. 2016), including motor speed, verbal 

fluency (phonological and semantic), working memory (forward and backward memory 

span), spatial Stroop (executive control of attention), spatial attention span, and symbol digit 

coding tests. Further, a computerized test based on the Theory of Visual Attention (TVA; 

Bundesen 1990; Bundesen & Habekost 2008; Dyrholm et al. 2011) provided measures of 

visual short-term memory capacity (K), processing speed (C), and perceptual threshold (t0). 

Several variables were highly correlated, and we used the clustering solution from Richard et 

al. (2018), which included seven broad cognitive domains. Cluster 1 reflected memory and 

learning (CVLT, attention span, MoCA), cluster 2 visual processing speed (TVA-parameters 

C and t0), cluster 3 verbal skills (phonological and semantic flow), cluster 4 attentional 

control and speed (spatial Stroop), cluster 5 executive control and speed (color-word Stroop), 

cluster 6 reasoning and psychomotor speed (matrix, symbol coding and motor speed, visual 

short-term memory capacity (TVA-parameter K)), and cluster 7 working memory (forward 

and backward memory span). Briefly, the clusters were computed using normalized sum 

scores of highly correlated test scores. Prior to calculating summary scores based on the 

seven clusters mentioned above, we used outlierTest from the car package (Fox & Weisberg 

2011) to identify the most extreme observations based on a linear model, including age and 

sex. 17 observations were identified as outliers based on a Bonferroni corrected p < 0.05 and 

treated as missing values, we then replaced these extremes and imputed the 75 missing values 

(2.63% of the scores were missing/incomplete) using predictive mean matching (pmm) 

method from the mice package in R (multivariate imputation by chained equations; Buuren & 

Groothuis-Oudshoorn 2011). 
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CCT protocol 

All patients completed a computerized working memory training program consisting of 25 

online training sessions (Cogmed Systems AB, Stockholm, Sweden). Similar to our recent 

study (Kolskår et al. 2019), we used data from 17 of the 25 training sessions over a period of 

three to four weeks, corresponding to approximately five weekly training sessions. Seven 

sessions were carried out at the hospital, of which six were in combination with tDCS (either 

sham or active stimulation). On average, patients received two training sessions with tDCS 

per week with a minimum of one day between each session. The remaining 10 training 

sessions were home-training. Each training session took approximately 45 minutes in which 

the participant completed eight different exercises. In total, 10 different tasks targeting verbal 

and visuospatial working memory were used, i.e. Grid, Hidden, Cube, Sort, Digits, 3D Cube, 

Twist, Assembly, Rotating and Chaos. The difficulty level of each task is adapted to the 

participant’s performance, and in general, for each task, it takes approximately two sessions 

for the difficulty level to be appropriately adjusted to the individual level of performance. 

Thus, we discarded the two first training sessions of each task from our analysis. In addition, 

we included only tasks with a minimum of three training sessions after exclusion of the two 

first sessions, discarding Assembly and Chaos from further analysis. 

 

tDCS protocol 

The tDCS protocol has been described in details in a prior publication (Kolskår et al. 2019). 

Participants were randomly assigned to an active or a sham condition, using an in-house 

Matlab script to randomly generate a code for each participant while ensuring that each block 

of 20 participants was balanced across conditions. Both the participant and the experimenter 

remained blinded throughout the experiment. Stimulation was delivered using a battery-

driven direct current stimulator (Neuroconn DC-STIMULATOR PLUS, neuroConn GmbH, 
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Illmenau, Germany), through 5 x 7 cm rubber pads using the following parameters: DC 

current = 1 mA, total duration = 20 minutes, ramp-up = 120 seconds, fade-out = 30 seconds, 

and current density = 28.57 µA/cm2. The sham stimulation followed the factory settings 

which include a ramp-up and a fade-out period. We used the 10-20 system for the electrode 

location, with the anodal electrode covering F3 and the cathodal electrode placed over O2, 

and fixated with rubber bands. The pads were covered with high-conductive gel (Abralyt 

HiCl, Falk Minow Services Herrsching, Germany) to keep the impedance threshold under < 

20 kΩ. For security reason, the device has an absolute impedance threshold of 40 kΩ. 

Following each stimulation period, participants were asked to fill in a side-effect form. In 

addition, after the last stimulation session, they were asked to make a guess whether they 

thought they received active stimulation or sham stimulation and the reason for their guess.  

 

MRI acquisition 

Patients were scanned on a 3T GE 750 Discovery MRI scanner with a 32-channel head coil at 

Oslo University Hospital. Paddings were used to reduce head motion. T1-weighted data was 

acquired using a 3D IR-prepared FSPGR (BRAVO) with the following parameters: repetition 

time (TR): 8.16 ms, echo time (TE): 3.18 ms, inversion time (TI): 450 ms, flip angle (FA): 

12º, voxel size: 1 × 1 × 1 mm, field of view (FOV): 256 x 256 mm, 188 sagittal slices, scan 

time: 4:43 minutes.  

Cam-CAN participants were scanned on a 3T Siemens TIM Trio scanner with a 32-

channel head-coil at Medical Research Council (UK) Cognition and Brain Sciences Unit 

(MRC-CBSU) in Cambridge, UK. High-resolution 3D T1-weighted data was acquired using 

a magnetization prepared rapid gradient echo (MPRAGE) sequence with the following 

parameters: TR: 2250 ms, TE: 2.99 ms, TI: 900 ms, FA: 9°, FOV of 256 x 240 x 192 mm; 
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voxel size =1 mm3 isotropic, GRAPPA acceleration factor of 2, scan time 4:32 minutes 

(Shafto et al. 2014).  

 

MRI processing 

All T1-weighted images were processed using FreeSurfer 5.3 

(http://surfer.nmr.mgh.harvard.edu; (Dale et al. 1999)) including brain extraction, intensity 

normalization, automated tissue segmentation, generation of white and pial surfaces (Dale et 

al. 1999). All reconstructions were visually assessed and corrected as appropriate, and data 

with excessive motion or other major artefacts were discarded. 

For StrokeMRI, images were processed with the longitudinal Freesurfer pipeline 

(Reuter & Fischl 2011; Reuter et al. 2012), which substantially increases reliability and 

power (Reuter et al. 2012). For each individual dataset, we extracted mean cortical thickness, 

area and volumes from 180 regions of interests (ROIs) per hemisphere based on a surface-

based atlas (Glasser et al. 2016), yielding 1080 structural brain features per individual.  

 

Age prediction  

Based on a recent implementation (Kaufmann et al. 2018), brain age estimation was 

performed both using global and regional features as input. The regional brain age 

estimations were based on lobesStrict segmentation (occipital, frontal, temporal, parietal, 

cingulate and insulate) from Freesurfer (Dale et al. 1999). Overall, one global and 12 

hemisphere specific lobe-based models were trained to estimate age in 628 healthy controls 

from the Cam-CAN cohort, using the same pipeline as previously described (Richard et al. 

2018). We used xgboost package in R (extreme gradient boosting) (Chen & Guestrin 2016; 

Chen et al. 2017) with the following parameters: learning rate (eta) = 0.1, nround = 1500, 

gamma = 1, max_depth = 6, subsample=0.5, to build the prediction models. For each model, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 4, 2019. ; https://doi.org/10.1101/687079doi: bioRxiv preprint 

https://doi.org/10.1101/687079
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

the performance was estimated using a 10-fold cross-validation procedure within the training 

set. 

 Next, we tested the performance of our trained models by predicting age in unseen 

subjects in the test sample. More specifically, we calculated the Pearson correlation between 

the predicted and the chronological, as well as the mean absolute error (MAE) in years. For 

each individual and for each model, we calculated the brain age gap (BAG), i.e. the 

difference between the estimated and chronological age, yielding 13 BAGs per individuals. 

Next, in order to account for age-related bias in the age prediction (Le et al. 2018), we used 

linear modeling to regress out the main effect of age, age2 and sex from each BAG, resulting 

in 13 residualized BAG (BAGR) used in the calculation of MAE and further analyses.  

In some instances, the stroke lesions interfered with the cortical reconstruction 

process in Freesurfer, which inevitably influences the estimated morphometric parameters in 

the relevant part of the brain. In order to assess the influence of the stroke lesion on the brain 

age estimates, we used outlierTest from the car package (Fox & Weisberg, 2011) to identify 

the most extreme morphometric estimations based on a linear model, including age, age2 and 

sex. We identified 479 observations (0.24% of all observations) as extreme and replaced 

them using predictive mean matching (pmm) method from the mice package in R 

(multivariate imputation by chained equations; Buuren & Groothuis-Oudshoorn 2011). Next, 

we estimated brain age using the resulting data frame containing imputed estimations and 

compared it with the original estimations. Subsequent analyses were performed both with and 

without the outliers included. Briefly, the estimated brain age based on the original Freesurfer 

estimations and the estimations after imputing realistic values to replace outliers resulted in 

nearly identical outcomes. (See supplemental results for the analyses performed after 

removing the outliers.) 
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In addition to the global model including all T1 features, we calculated a robust brain 

age based on the median of the 12 regional brain ages. 

 

Processing of Cogmed data 

For each participant and for each included tasks, we used linear modeling to quantify the 

changes in performance across the training period, i.e. the cognitive improvement, using 

performance as dependent variable and session number as independent variable (Kolskår et 

al. 2019). In addition, we used the generic function predict in R (Chambers & Hastie 1992) to 

estimate the baseline score and the final score using the resulting individual linear models for 

each trained task. To derive a common score across the trained tasks, we performed a 

principal component analysis (PCA) on the performance improvement scores and we used 

the first component as the individual’s performance improvement (Kolskår et al. 2019). All 

test scores were zero-centered and standardized prior to running the PCA. 

 

Statistical analysis  

Statistical analyses were performed using R version 3.3.3 (2017-03-06) (R Core Team 2017). 

We assessed the reliability of the age estimations using intra-class coefficient (ICC) using 

ICCest function from the ICC R package (Wolak et al. 2012) across the two baseline MRI 

and across all three MRI sessions.  

To test if patients with relative low brain age show better cognitive performance at 

baseline, we employed linear models with the seven summary scores based on the clustering 

solution from (Richard et al. 2018) as independent variable and each BAGR as the dependent 

variable, including age and sex as covariates. To test if patients with relative low brain age 

would show larger improvement in task performance, we employed linear models with 

Cogmed performance gain score derived from the PCA as independent variable and each 
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BAGR as dependent variable, including age and sex as covariates. For transparency, we 

report both uncorrected p-values and p-values adjusted using false discovery rate (FDR; 

Benjamini & Hochberg 1995) from the p.adjust function from the stats R package (R Core 

Team 2017). We have previously reported no significant beneficial effects of tDCS on 

cognitive improvement in response to the intervention (Kolskår et al. 2019). Here, as a 

follow-up analysis, we added tDCS group (sham vs experimental) as an additional variable 

and tested for interactions between tDCS and BAGR on training gain to assess if any 

beneficial effects of tDCS would be dependent on BAGR.     

Lastly, in order to assess if cognitive improvements in response to intensive cognitive 

training is associated with reduced brain age during the course of the intervention, we tested 

for associations between cognitive performance and BAGR by time interaction in a 

longitudinal context using linear mixed effects models (LME). For each trained task, we used 

the estimated baseline and final scores from the individual linear models, and we used BAGR 

from scan number 2 and 3 as timepoint one and two, respectively. Estimated task 

performance was entered as dependent variable, with BAGR, time, BAGR by time 

interaction, age and sex as fixed factors, and participant as random factor. 

 

Results 

Brain age predictions 

Ten-fold cross-validation on the training sample (Cam-CAN) revealed relatively high 

correlations between chronological and predicted age for each of the 13 models, confirming 

reasonable model performance. Supplementary Fig. 1 shows Pearson correlation with 

confidence intervals between estimated brain age and chronological age within the training 

sample for each of the 13 trained models ranging from r = .84 (CI=.81-.86) for the full model 

to r = .61 (CI=.56-.66) for the model based on right cingulate features.  
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Table 2 shows Pearson correlation between estimated brain age and chronological age 

with their 95 % confidence intervals on the test sample at baseline (stroke patients) for each 

model, in addition to the MAE calculated from BAGR. The correlations ranged from r = .58 

(CI=.40-.72, MAE=4.27) for the most comprehensive model based on the median of the 12 

regional models to r = .09 (CI=-.16-.32 MAE=7.29) for the left cingulate model. See Suppl. 

Table 1 for the model performance after replacing outliers by imputed values. 

 

models r lowerCI upperCI MAE 
Global     
all_T1 0.550 0.358 0.697 5.506 
median 0.579 0.395 0.718 4.271 
Regional     
left_frontal 0.448 0.234 0.620 5.799 
right_frontal 0.403 0.182 0.585 5.663 
left_parietal 0.413 0.194 0.593 6.287 
right_parietal 0.460 0.248 0.629 6.086 
left_occipital 0.221 -0.019 0.436 7.642 
right_occipital 0.206 -0.034 0.423 6.953 
left_temporal 0.416 0.198 0.596 7.588 
right_temporal 0.455 0.242 0.625 5.733 
left_cingulate 0.086 -0.156 0.317 6.953 
right_cingulate 0.439 0.224 0.613 8.804 
left_insula 0.309 0.076 0.510 7.732 
right_insula 0.366 0.140 0.556 6.277 

Table 2. Pearson correlation between estimated brain age and chronological age with their confidence 
intervals on the test sample at baseline (stroke patients from StrokeMRI sample) for each model, and 
the MAE calculated from BAGR. 

 

Table 3 shows ICC with their confidence intervals for each model for the two baselines and 

for the three timepoints ranging from .89 (CI=.82-.94) for the right parietal model to .68 

(CI=.50-.80) for the left cingulate model across the two baseline assessments, and ranging 

from .86 (CI=.79-.91) for the right parietal model to .70 (CI=.57-.80) for the left cingulate 

model across the three timepoints. See Suppl. Table 2 for the estimation after replacing 

outliers by imputed values. 
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 Baseline (scan 1 and 2) All time points (scan 1 to 3) 
models ICC lowerCI upperCI ICC lowerCI upperCI 
Global       
BAGR_all_T1 0.788 0.661 0.871 0.783 0.686 0.859 
BAGR_median 0.887 0.813 0.932 0.831 0.750 0.891 
Regional       
BAGR_left_frontal 0.790 0.664 0.872 0.812 0.724 0.879 
BAGR_right_frontal 0.761 0.622 0.854 0.74 0.628 0.829 
BAGR_left_parietal 0.803 0.684 0.880 0.805 0.714 0.874 
BAGR_right_parietal 0.891 0.819 0.935 0.856 0.786 0.908 
BAGR_left_occipital 0.823 0.715 0.893 0.815 0.728 0.881 
BAGR_right_occipital 0.786 0.658 0.870 0.811 0.723 0.878 
BAGR_left_temporal 0.800 0.679 0.878 0.807 0.718 0.876 
BAGR_right_temporal 0.726 0.572 0.831 0.754 0.646 0.839 
BAGR_left_cingulate 0.677 0.503 0.799 0.700 0.577 0.801 
BAGR_right_cingulate 0.814 0.700 0.887 0.802 0.711 0.872 
BAGR_left_insula 0.809 0.693 0.884 0.802 0.711 0.872 
BAGR_right_insula 0.791 0.666 0.873 0.789 0.693 0.863 

Table 3. Intra-class correlation (ICC) with their confidence interval of the estimated brain age for the 
two baseline scans (scan one and two), and for the three timepoints (scan one, two and three). 

 

Table 4 and Table 5 show summary statistics from the linear models testing for associations 

between cognitive performance at baseline and Cogmed performance gain, respectively, and 

BAGR, including age and sex in the models. As expected, we found a main effect of age on 

cognitive performance at baseline. However, the analyses revealed no significant associations 

between cognitive performance at baseline and BAGR after FDR correction for multiple 

comparisons. Amongst the non-significant findings, the strongest associations were found 

between cluster 5 (executive control and speed) and the right cingulate, cluster 7 (working 

memory) and the right cingulate, and cluster 4 (attentional control and speed) and the right 

temporal BAGR. Further, we did not find any significant associations between performance 

improvement score and BAGR, nor main effect of age, nor sex on the performance 

improvement score after FDR corrections. Amongst the non-significant findings, the 

strongest associations with Cogmed performance gain were found for the left frontal and left 

parietal models, indicating higher cognitive gain for participants with lower BAGR.  
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clusters models Bagr (t (p)) Age (t (p)) Sex (t (p)) 

Cluster1 all_T1 0.152 (0.880) -4.884 (<0.001) -2.200 (0.032) 
Cluster1 median -0.095 (0.925) -4.886 (<0.001) -2.220 (0.030) 
Cluster1 left_frontal -0.032 (0.975) -4.886 (<0.001) -2.201 (0.031) 
Cluster1 right_frontal -0.795 (0.43) -4.933 (<0.001) -2.169 (0.034) 
Cluster1 left_parietal -0.356 (0.723) -4.879 (<0.001) -2.227 (0.030) 
Cluster1 right_parietal 0.466 (0.643) -4.902 (<0.001) -2.187 (0.032) 
Cluster1 left_occipital -0.797 (0.429) -4.957 (<0.001) -2.281 (0.026) 
Cluster1 right_occipital 0.478 (0.634) -4.846 (<0.001) -2.182 (0.033) 
Cluster1 left_temporal -0.283 (0.778) -4.893 (<0.001) -2.232 (0.029) 
Cluster1 right_temporal -0.495 (0.622) -4.906 (<0.001) -2.246 (0.028) 
Cluster1 left_cingulate 1.018 (0.313) -4.910 (<0.001) -2.146 (0.036) 
Cluster1 right_cingulate -0.330 (0.742) -4.843 (<0.001) -2.230 (0.029) 
Cluster1 left_insula -0.898 (0.373) -4.921 (<0.001) -2.322 (0.024) 
Cluster1 right_insula -0.651 (0.518) -4.922 (<0.001) -2.176 (0.033) 

Cluster2 all_T1 0.277 (0.783) -3.716 (<0.001) 1.853 (0.069) 
Cluster2 median 0.263 (0.793) -3.723 (<0.001) 1.848 (0.069) 
Cluster2 left_frontal 0.120 (0.905) -3.721 (<0.001) 1.821 (0.073) 
Cluster2 right_frontal -0.754 (0.454) -3.753 (<0.001) 1.884 (0.064) 
Cluster2 left_parietal 0.304 (0.762) -3.729 (<0.001) 1.840 (0.070) 
Cluster2 right_parietal -0.012 (0.991) -3.718 (<0.001) 1.830 (0.072) 
Cluster2 left_occipital 0.122 (0.903) -3.700 (<0.001) 1.838 (0.071) 
Cluster2 right_occipital -0.931 (0.355) -3.806 (<0.001) 1.782 (0.08) 
Cluster2 left_temporal 1.283 (0.204) -3.752 (<0.001) 1.927 (0.058) 
Cluster2 right_temporal 0.345 (0.731) -3.713 (<0.001) 1.851 (0.069) 
Cluster2 left_cingulate 0.498 (0.62) -3.716 (<0.001) 1.870 (0.066) 
Cluster2 right_cingulate -0.431 (0.668) -3.679 (<0.001) 1.833 (0.072) 
Cluster2 left_insula -0.482 (0.632) -3.728 (<0.001) 1.773 (0.081) 
Cluster2 right_insula -0.658 (0.513) -3.750 (<0.001) 1.880 (0.065) 
Cluster3 all_T1 -0.497 (0.621) -2.96 (0.004) -3.072 (0.003) 
Cluster3 median -0.529 (0.599) -2.947 (0.004) -3.068 (0.003) 
Cluster3 left_frontal 0.986 (0.328) -2.996 (0.004) -3.119 (0.003) 
Cluster3 right_frontal -0.744 (0.460) -2.977 (0.004) -2.997 (0.004) 
Cluster3 left_parietal -0.808 (0.422) -2.935 (0.005) -3.063 (0.003) 
Cluster3 right_parietal 0.796 (0.429) -2.971 (0.004) -2.995 (0.004) 
Cluster3 left_occipital -0.608 (0.545) -2.992 (0.004) -3.079 (0.003) 
Cluster3 right_occipital 0.243 (0.809) -2.919 (0.005) -3.013 (0.004) 
Cluster3 left_temporal 0.264 (0.793) -2.945 (0.004) -3.016 (0.004) 
Cluster3 right_temporal -0.901 (0.371) -2.985 (0.004) -3.096 (0.003) 
Cluster3 left_cingulate -0.462 (0.646) -2.959 (0.004) -3.066 (0.003) 
Cluster3 right_cingulate -1.708 (0.092) -2.87 (0.006) -3.118 (0.003) 
Cluster3 left_insula -1.207 (0.232) -2.987 (0.004) -3.183 (0.002) 
Cluster3 right_insula -1.909 (0.061) -3.086 (0.003) -2.983 (0.004) 
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Cluster4 all_T1 -1.687 (0.096) -4.182 (<0.001) -0.170 (0.866) 
Cluster4 median -1.990 (0.051) -4.166 (<0.001) -0.142 (0.887) 
Cluster4 left_frontal -0.833 (0.408) -4.060 (<0.001) 0.043 (0.966) 
Cluster4 right_frontal -0.838 (0.405) -4.106 (<0.001) 0.034 (0.973) 
Cluster4 left_parietal -1.325 (0.190) -4.076 (<0.001) -0.040 (0.968) 
Cluster4 right_parietal -1.471 (0.146) -4.112 (<0.001) -0.106 (0.916) 
Cluster4 left_occipital -1.884 (0.064) -4.303 (<0.001) -0.155 (0.878) 
Cluster4 right_occipital -1.334 (0.187) -4.213 (<0.001) -0.103 (0.918) 
Cluster4 left_temporal -0.280 (0.780) -4.069 (<0.001) -0.032 (0.974) 
Cluster4 right_temporal -2.063 (0.043) -4.243 (<0.001) -0.125 (0.901) 
Cluster4 left_cingulate 0.023 (0.982) -4.063 (<0.001) -0.015 (0.988) 
Cluster4 right_cingulate -1.316 (0.193) -4.003 (<0.001) -0.029 (0.977) 
Cluster4 left_insula -0.042 (0.967) -4.064 (<0.001) -0.021 (0.983) 
Cluster4 right_insula -0.637 (0.527) -4.094 (<0.001) 0.026 (0.979) 

Cluster5 all_T1 -1.318 (0.192) -4.442 (<0.001) -2.098 (0.040) 
Cluster5 median -1.427 (0.158) -4.415 (<0.001) -2.077 (0.042) 
Cluster5 left_frontal 0.570 (0.571) -4.388 (<0.001) -2.000 (0.050) 
Cluster5 right_frontal -0.82 (0.415) -4.404 (<0.001) -1.917 (0.060) 
Cluster5 left_parietal 0.464 (0.644) -4.381 (<0.001) -1.955 (0.055) 
Cluster5 right_parietal -0.449 (0.655) -4.362 (<0.001) -1.986 (0.051) 
Cluster5 left_occipital -0.417 (0.678) -4.386 (<0.001) -1.988 (0.051) 
Cluster5 right_occipital -1.995 (0.050) -4.639 (<0.001) -2.145 (0.036) 
Cluster5 left_temporal -1.263 (0.211) -4.430 (<0.001) -2.052 (0.044) 
Cluster5 right_temporal -1.827 (0.072) -4.515 (<0.001) -2.103 (0.039) 
Cluster5 left_cingulate 1.429 (0.158) -4.405 (<0.001) -1.874 (0.066) 
Cluster5 right_cingulate -2.387 (0.020) -4.351 (<0.001) -2.067 (0.043) 
Cluster5 left_insula -1.840 (0.070) -4.487 (<0.001) -2.202 (0.031) 
Cluster5 right_insula 0.655 (0.515) -4.354 (<0.001) -2.006 (0.049) 

Cluster6 all_T1 -0.008 (0.993) -5.334 (<0.001) -2.252 (0.028) 
Cluster6 median -0.278 (0.782) -5.334 (<0.001) -2.275 (0.026) 
Cluster6 left_frontal 0.176 (0.860) -5.339 (<0.001) -2.268 (0.027) 
Cluster6 right_frontal -1.132 (0.262) -5.415 (<0.001) -2.211 (0.031) 
Cluster6 left_parietal -0.128 (0.898) -5.329 (<0.001) -2.263 (0.027) 
Cluster6 right_parietal 0.309 (0.758) -5.342 (<0.001) -2.239 (0.029) 
Cluster6 left_occipital -1.046 (0.300) -5.443 (<0.001) -2.350 (0.022) 
Cluster6 right_occipital -0.179 (0.858) -5.333 (<0.001) -2.268 (0.027) 
Cluster6 left_temporal 0.673 (0.503) -5.346 (<0.001) -2.227 (0.030) 
Cluster6 right_temporal -0.280 (0.781) -5.343 (<0.001) -2.273 (0.026) 
Cluster6 left_cingulate 0.825 (0.412) -5.347 (<0.001) -2.202 (0.031) 
Cluster6 right_cingulate -1.443 (0.154) -5.291 (<0.001) -2.310 (0.024) 
Cluster6 left_insula -1.027 (0.308) -5.385 (<0.001) -2.378 (0.020) 
Cluster6 right_insula 0.013 (0.990) -5.332 (<0.001) -2.256 (0.028) 

Cluster7 all_T1 0.206 (0.838) -5.298 (<0.001) -1.473 (0.146) 
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Cluster7 median -0.431 (0.668) -5.303 (<0.001) -1.524 (0.132) 
Cluster7 left_frontal 0.636 (0.527) -5.333 (<0.001) -1.544 (0.128) 
Cluster7 right_frontal 0.003 (0.998) -5.298 (<0.001) -1.495 (0.140) 
Cluster7 left_parietal -0.378 (0.707) -5.292 (<0.001) -1.506 (0.137) 
Cluster7 right_parietal 0.151 (0.881) -5.303 (<0.001) -1.486 (0.142) 
Cluster7 left_occipital -0.595 (0.554) -5.344 (<0.001) -1.541 (0.128) 
Cluster7 right_occipital -1.219 (0.227) -5.441 (<0.001) -1.591 (0.117) 
Cluster7 left_temporal 0.799 (0.427) -5.317 (<0.001) -1.458 (0.150) 
Cluster7 right_temporal -0.336 (0.738) -5.311 (<0.001) -1.515 (0.135) 
Cluster7 left_cingulate -0.572 (0.569) -5.323 (<0.001) -1.541 (0.128) 
Cluster7 right_cingulate -2.241 (0.028) -5.312 (<0.001) -1.576 (0.120) 
Cluster7 left_insula 0.989 (0.326) -5.335 (<0.001) -1.391 (0.169) 
Cluster7 right_insula -0.234 (0.816) -5.307 (<0.001) -1.479 (0.144) 

Table 4. Summary statistics of the associations between cognitive performance at baseline and 
BAGR, including age and sex using linear models. Cluster 1: memory and learning. Cluster 2: visual 
processing speed. Cluster 3: verbal skills. Cluster 4: attentional control and speed. Cluster 5: 
executive control and speed. Cluster 6: reasoning and psychomotor speed. Cluster 7: working 
memory. The reported p-values are uncorrected values, and no main effect of BAGR remained 
significant after FDR correction. 

 
 
models Bagr (t (p)) Age (t (p)) Sex (t (p)) 
Global    
BAGR_all_T1 -0.383 (0.703) 0.497 (0.622) -0.900 (0.373) 
BAGR_median 0.382 (0.704) 0.453 (0.652) -0.902 (0.371) 
Regional    
BAGR_left_frontal 2.399 (0.020) 0.285 (0.777) -1.146 (0.257) 
BAGR_right_frontal 0.241 (0.810) 0.479 (0.634) -0.913 (0.366) 
BAGR_left_parietal 2.037 (0.047) 0.425 (0.673) -0.876 (0.385) 
BAGR_right_parietal 0.264 (0.793) 0.493 (0.625) -0.899 (0.373) 
BAGR_left_occipital -0.083 (0.934) 0.489 (0.627) -0.899 (0.373) 
BAGR_right_occipital 0.392 (0.697) 0.502 (0.618) -0.909 (0.368) 
BAGR_left_temporal 0.159 (0.875) 0.484 (0.631) -0.900 (0.372) 
BAGR_right_temporal 0.963 (0.340) 0.452 (0.653) -0.925 (0.359) 
BAGR_left_cingulate 0.750 (0.457) 0.438 (0.663) -0.883 (0.381) 
BAGR_right_cingulate 1.150 (0.256) 0.436 (0.664) -1.053 (0.297) 
BAGR_left_insula 0.458 (0.649) 0.487 (0.629) -0.882 (0.382) 
BAGR_right_insula 0.693 (0.491) 0.452 (0.653) -0.952 (0.345) 

Table 5. Summary statistics of the associations between Cogmed performance gain and BAGR, 
including age and sex using linear models. The reported p-values are uncorrected values, and no main 
effect of BAGR remained significant after FDR correction. 

 

Table 6 shows summary statistics from the linear mixed effects models testing for 

longitudinal associations between cognitive performance and BAGR, including age and sex 
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in the models. The analyses revealed robust main effects of session and age, indicating 

increasing performance during the course of the intervention, and generally lower 

performance with increasing age. Beyond this, we did not find any significant associations 

between performance and BAGR, nor BAGR by time interaction after FDR correction for 

multiple comparisons. Amongst the non-significant findings, the five strongest associations 

were found between the left occipital and Digits, the left frontal and Cube and 3D Cube, the 

left parietal and Hidden, and the right insula and Twist and the eight strongest BAGR by time 

interactions were found between the left occipital and Digits, the left frontal and Cube and 

3D Cube, the left parietal and Hidden, the right insula and Twist and Rotating, and the left 

temporal and Cube and 3D Cube.  

 

test models Bagr (t (p)) Session (t (p)) Age (t (p)) Sex (t (p)) 
bagr:session (t 
(p)) 

Grid BAGR_all_T1 -0.478 (0.635) 10.704 (<0.001) -3.538 (0.001) -1.064 (0.292) 0.338 (0.737) 
Sort BAGR_all_T1 -1.409 (0.165) 10.097 (<0.001) -2.642 (0.011) -0.573 (0.569) 1.157 (0.253) 
Digits BAGR_all_T1 0.739 (0.463) 10.198 (<0.001) -6.649 (<0.001) -2.507 (0.015) -0.685 (0.496) 
Cube BAGR_all_T1 0.053 (0.958) 15.279 (<0.001) -3.047 (0.004) -1.384 (0.172) -0.211 (0.833) 
Hidden BAGR_all_T1 -0.213 (0.832) 9.487 (<0.001) -5.612 (<0.001) -2.764 (0.008) 0.929 (0.357) 
Twist BAGR_all_T1 -0.230 (0.819) 6.202 (<0.001) -3.813 (<0.001) -1.453 (0.152) 0.088 (0.930) 
3D Cube BAGR_all_T1 1.444 (0.155) 6.369 (<0.001) -4.353 (<0.001) -1.574 (0.122) -1.631 (0.109) 
Rotating BAGR_all_T1 0.198 (0.844) 4.307 (<0.001) -3.984 (<0.001) -1.508 (0.138) -0.349 (0.729) 
Grid BAGR_median -0.507 (0.615) 10.840 (<0.001) -3.521 (0.001) -1.050 (0.299) 0.116 (0.908) 
Sort BAGR_median -1.288 (0.204) 10.063 (<0.001) -2.648 (0.011) -0.610 (0.544) 0.968 (0.338) 
Digits BAGR_median 1.091 (0.280) 10.377 (<0.001) -6.590 (<0.001) -2.472 (0.017) -1.165 (0.250) 
Cube BAGR_median 0.157 (0.876) 15.422 (<0.001) -3.043 (0.004) -1.376 (0.175) -0.533 (0.596) 
Hidden BAGR_median 0.357 (0.722) 9.768 (<0.001) -5.420 (<0.001) -2.665 (0.010) 0.286 (0.776) 
Twist BAGR_median 0.520 (0.605) 6.203 (<0.001) -3.816 (<0.001) -1.505 (0.138) -0.614 (0.542) 
3D Cube BAGR_median 1.345 (0.185) 6.454 (<0.001) -4.335 (<0.001) -1.522 (0.134) -1.808 (0.077) 
Rotating BAGR_median 0.894 (0.376) 4.327 (<0.001) -3.982 (<0.001) -1.538 (0.130) -1.072 (0.289) 
Grid BAGR_left_frontal 0.298 (0.767) 10.94 (<0.001) -3.574 (0.001) -1.165 (0.249) -0.981 (0.331) 
Sort BAGR_left_frontal -0.020 (0.984) 10.125 (<0.001) -2.661 (0.011) -0.749 (0.457) -0.624 (0.536) 
Digits BAGR_left_frontal 1.800 (0.078) 10.527 (<0.001) -6.643 (<0.001) -2.450 (0.018) -1.942 (0.058) 
Cube BAGR_left_frontal 2.423 (0.019) 16.704 (<0.001) -3.086 (0.003) -1.439 (0.156) -3.187 (0.003) 
Hidden BAGR_left_frontal 1.343 (0.186) 9.835 (<0.001) -5.277 (<0.001) -2.502 (0.016) -1.278 (0.207) 
Twist BAGR_left_frontal 1.333 (0.189) 6.316 (<0.001) -3.850 (<0.001) -1.524 (0.134) -1.667 (0.102) 
3D Cube BAGR_left_frontal 2.274 (0.027) 6.407 (<0.001) -4.419 (<0.001) -1.537 (0.130) -2.380 (0.021) 
Rotating BAGR_left_frontal 1.496 (0.141) 4.297 (<0.001) -4.025 (<0.001) -1.529 (0.132) -1.526 (0.133) 
Grid BAGR_right_frontal 0.024 (0.981) 10.660 (<0.001) -3.554 (0.001) -1.117 (0.269) -0.019 (0.985) 
Sort BAGR_right_frontal 0.417 (0.679) 10.034 (<0.001) -2.631 (0.011) -0.681 (0.499) -0.187 (0.853) 
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Digits BAGR_right_frontal -0.428 (0.671) 10.187 (<0.001) -6.666 (<0.001) -2.475 (0.017) 0.324 (0.747) 
Cube BAGR_right_frontal 1.340 (0.186) 15.643 (<0.001) -3.027 (0.004) -1.387 (0.171) -1.412 (0.164) 
Hidden BAGR_right_frontal -0.501 (0.618) 9.721 (<0.001) -5.308 (<0.001) -2.535 (0.014) 0.592 (0.556) 
Twist BAGR_right_frontal 0.012 (0.990) 6.264 (<0.001) -3.789 (<0.001) -1.503 (0.139) -0.320 (0.750) 
3D Cube BAGR_right_frontal 1.279 (0.207) 6.294 (<0.001) -4.351 (<0.001) -1.513 (0.136) -1.269 (0.210) 
Rotating BAGR_right_frontal 0.330 (0.743) 4.298 (<0.001) -3.980 (<0.001) -1.526 (0.133) -0.464 (0.645) 
Grid BAGR_left_parietal 0.879 (0.384) 10.990 (<0.001) -3.536 (0.001) -1.094 (0.279) -1.331 (0.189) 
Sort BAGR_left_parietal -0.197 (0.845) 10.109 (<0.001) -2.665 (0.010) -0.661 (0.511) -0.344 (0.733) 
Digits BAGR_left_parietal 0.968 (0.338) 10.668 (<0.001) -6.620 (<0.001) -2.417 (0.019) -1.482 (0.145) 
Cube BAGR_left_parietal 0.075 (0.941) 15.499 (<0.001) -3.044 (0.004) -1.377 (0.174) -0.514 (0.610) 
Hidden BAGR_left_parietal 2.051 (0.046) 10.062 (<0.001) -5.262 (<0.001) -2.544 (0.014) -2.060 (0.045) 
Twist BAGR_left_parietal 1.535 (0.131) 6.406 (<0.001) -3.804 (<0.001) -1.496 (0.141) -1.775 (0.082) 
3D Cube BAGR_left_parietal 0.291 (0.772) 6.561 (<0.001) -4.398 (<0.001) -1.493 (0.141) -1.054 (0.297) 
Rotating BAGR_left_parietal 1.225 (0.227) 4.423 (<0.001) -3.986 (<0.001) -1.521 (0.134) -1.515 (0.136) 
Grid BAGR_right_parietal -0.990 (0.327) 10.795 (<0.001) -3.558 (0.001) -1.072 (0.289) 0.661 (0.512) 
Sort BAGR_right_parietal -0.489 (0.627) 9.883 (<0.001) -2.661 (0.010) -0.673 (0.504) 0.248 (0.805) 
Digits BAGR_right_parietal 0.202 (0.841) 10.461 (<0.001) -6.620 (<0.001) -2.432 (0.019) -0.712 (0.480) 
Cube BAGR_right_parietal -0.327 (0.745) 15.394 (<0.001) -3.058 (0.004) -1.385 (0.172) -0.116 (0.908) 
Hidden BAGR_right_parietal -0.450 (0.655) 9.734 (<0.001) -5.344 (<0.001) -2.544 (0.014) 0.817 (0.418) 
Twist BAGR_right_parietal -0.226 (0.822) 6.180 (<0.001) -3.832 (<0.001) -1.487 (0.143) 0.086 (0.932) 
3D Cube BAGR_right_parietal 0.994 (0.325) 6.366 (<0.001) -4.386 (<0.001) -1.554 (0.126) -1.489 (0.143) 
Rotating BAGR_right_parietal 0.625 (0.535) 4.309 (<0.001) -3.984 (<0.001) -1.543 (0.129) -0.716 (0.477) 
Grid BAGR_left_occipital -1.717 (0.092) 11.041 (<0.001) -3.487 (0.001) -1.095 (0.279) 1.794 (0.079) 
Sort BAGR_left_occipital -0.489 (0.627) 10.050 (<0.001) -2.561 (0.014) -0.664 (0.510) 0.282 (0.779) 
Digits BAGR_left_occipital 2.399 (0.020) 10.716 (<0.001) -6.684 (<0.001) -2.480 (0.016) -2.383 (0.021) 
Cube BAGR_left_occipital -0.202 (0.840) 15.254 (<0.001) -3.083 (0.003) -1.423 (0.161) 0.473 (0.638) 
Hidden BAGR_left_occipital 0.028 (0.978) 9.630 (<0.001) -5.413 (<0.001) -2.599 (0.012) 0.407 (0.685) 
Twist BAGR_left_occipital -0.265 (0.792) 6.197 (<0.001) -3.782 (<0.001) -1.483 (0.144) 0.144 (0.886) 
3D Cube BAGR_left_occipital 0.340 (0.735) 6.246 (<0.001) -4.33 (<0.001) -1.515 (0.136) -0.510 (0.612) 
Rotating BAGR_left_occipital -0.718 (0.476) 4.271 (<0.001) -4.005 (<0.001) -1.54 (0.130) 0.899 (0.373) 
Grid BAGR_right_occipital -0.632 (0.530) 10.557 (<0.001) -3.532 (0.001) -1.061 (0.294) 0.236 (0.814) 
Sort BAGR_right_occipital -1.314 (0.195) 9.815 (<0.001) -2.613 (0.012) -0.621 (0.537) 1.026 (0.310) 
Digits BAGR_right_occipital 0.595 (0.555) 10.645 (<0.001) -6.638 (<0.001) -2.400 (0.020) -1.355 (0.182) 
Cube BAGR_right_occipital -0.982 (0.331) 15.919 (<0.001) -2.993 (0.004) -1.297 (0.200) -0.201 (0.842) 
Hidden BAGR_right_occipital -0.265 (0.792) 9.655 (<0.001) -5.254 (<0.001) -2.478 (0.016) -0.063 (0.950) 
Twist BAGR_right_occipital -0.578 (0.566) 6.114 (<0.001) -3.808 (<0.001) -1.433 (0.158) 0.065 (0.948) 
3D Cube BAGR_right_occipital 0.311 (0.757) 6.414 (<0.001) -4.349 (<0.001) -1.470 (0.148) -1.135 (0.262) 
Rotating BAGR_right_occipital -0.448 (0.656) 4.202 (<0.001) -4.007 (<0.001) -1.480 (0.145) -0.052 (0.959) 
Grid BAGR_left_temporal 0.192 (0.849) 10.683 (<0.001) -3.572 (0.001) -1.073 (0.288) -0.517 (0.608) 
Sort BAGR_left_temporal -0.300 (0.766) 9.878 (<0.001) -2.656 (0.011) -0.687 (0.495) 0.189 (0.851) 
Digits BAGR_left_temporal 0.733 (0.467) 10.26 (<0.001) -6.645 (<0.001) -2.469 (0.017) -0.552 (0.583) 
Cube BAGR_left_temporal 1.224 (0.227) 16.324 (<0.001) -3.078 (0.003) -1.293 (0.202) -2.241 (0.030) 
Hidden BAGR_left_temporal 0.367 (0.715) 9.897 (<0.001) -5.359 (<0.001) -2.665 (0.010) 0.33 (0.743) 
Twist BAGR_left_temporal 0.160 (0.874) 6.176 (<0.001) -3.829 (<0.001) -1.492 (0.142) -0.18 (0.858) 
3D Cube BAGR_left_temporal 1.516 (0.136) 6.551 (<0.001) -4.407 (<0.001) -1.412 (0.164) -2.271 (0.028) 
Rotating BAGR_left_temporal 0.480 (0.633) 4.297 (<0.001) -3.988 (<0.001) -1.527 (0.133) -0.403 (0.689) 
Grid BAGR_right_temporal 0.116 (0.908) 10.638 (<0.001) -3.552 (0.001) -1.120 (0.268) -0.128 (0.899) 
Sort BAGR_right_temporal -0.530 (0.599) 9.997 (<0.001) -2.660 (0.011) -0.679 (0.500) 0.684 (0.497) 
Digits BAGR_right_temporal 1.236 (0.222) 10.329 (<0.001) -6.602 (<0.001) -2.513 (0.015) -1.445 (0.155) 
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Cube BAGR_right_temporal 0.791 (0.433) 15.444 (<0.001) -3.033 (0.004) -1.417 (0.162) -1.110 (0.272) 
Hidden BAGR_right_temporal 1.014 (0.315) 9.635 (<0.001) -5.331 (<0.001) -2.620 (0.011) -0.902 (0.372) 
Twist BAGR_right_temporal -0.183 (0.856) 6.233 (<0.001) -3.789 (<0.001) -1.456 (0.151) -0.011 (0.991) 
3D Cube BAGR_right_temporal 1.417 (0.163) 6.186 (<0.001) -4.397 (<0.001) -1.630 (0.109) -1.332 (0.189) 
Rotating BAGR_right_temporal -0.168 (0.867) 4.288 (<0.001) -3.991 (<0.001) -1.506 (0.138) 0.077 (0.939) 
Grid BAGR_left_cingulate 0.182 (0.856) 10.635 (<0.001) -3.531 (0.001) -1.076 (0.287) -0.369 (0.714) 
Sort BAGR_left_cingulate 0.667 (0.508) 9.662 (<0.001) -2.683 (0.010) -0.746 (0.459) -0.481 (0.633) 
Digits BAGR_left_cingulate 0.318 (0.752) 10.09 (<0.001) -6.641 (<0.001) -2.440 (0.018) -0.345 (0.731) 
Cube BAGR_left_cingulate -1.008 (0.318) 15.291 (<0.001) -3.076 (0.003) -1.441 (0.156) 1.259 (0.214) 
Hidden BAGR_left_cingulate -0.726 (0.472) 9.718 (<0.001) -5.376 (<0.001) -2.661 (0.010) 1.235 (0.223) 
Twist BAGR_left_cingulate -0.550 (0.585) 6.115 (<0.001) -3.860 (<0.001) -1.546 (0.128) 0.737 (0.465) 
3D Cube BAGR_left_cingulate 0.251 (0.803) 6.225 (<0.001) -4.348 (<0.001) -1.474 (0.146) -0.504 (0.617) 
Rotating BAGR_left_cingulate 0.524 (0.603) 4.161 (<0.001) -4.013 (<0.001) -1.546 (0.128) -0.453 (0.652) 
Grid BAGR_right_cingulate -0.486 (0.629) 10.575 (<0.001) -3.564 (0.001) -1.112 (0.271) 0.353 (0.725) 
Sort BAGR_right_cingulate 0.034 (0.973) 9.922 (<0.001) -2.625 (0.012) -0.706 (0.484) 0.099 (0.921) 
Digits BAGR_right_cingulate 0.266 (0.792) 10.123 (<0.001) -6.658 (<0.001) -2.447 (0.018) -0.333 (0.741) 
Cube BAGR_right_cingulate -0.263 (0.794) 15.110 (<0.001) -3.116 (0.003) -1.39 (0.171) -0.248 (0.805) 
Hidden BAGR_right_cingulate 0.390 (0.698) 9.694 (<0.001) -5.264 (<0.001) -2.506 (0.015) -0.424 (0.674) 
Twist BAGR_right_cingulate 0.684 (0.497) 6.138 (<0.001) -3.846 (<0.001) -1.493 (0.142) -0.737 (0.465) 
3D Cube BAGR_right_cingulate 1.072 (0.289) 6.119 (<0.001) -4.48 (<0.001) -1.511 (0.137) -1.521 (0.135) 
Rotating BAGR_right_cingulate 0.262 (0.794) 4.352 (<0.001) -3.955 (<0.001) -1.533 (0.131) -0.056 (0.956) 
Grid BAGR_left_insula 0.704 (0.485) 10.678 (<0.001) -3.568 (0.001) -1.153 (0.254) -0.543 (0.590) 
Sort BAGR_left_insula -1.289 (0.204) 10.083 (<0.001) -2.639 (0.011) -0.663 (0.510) 1.223 (0.227) 
Digits BAGR_left_insula 1.611 (0.114) 10.372 (<0.001) -6.716 (<0.001) -2.564 (0.013) -1.274 (0.209) 
Cube BAGR_left_insula 0.282 (0.779) 15.283 (<0.001) -3.064 (0.004) -1.422 (0.161) -0.174 (0.863) 
Hidden BAGR_left_insula 0.406 (0.686) 9.749 (<0.001) -5.526 (<0.001) -2.753 (0.008) 0.280 (0.781) 
Twist BAGR_left_insula 0.570 (0.571) 6.193 (<0.001) -3.848 (<0.001) -1.555 (0.126) -0.323 (0.748) 
3D Cube BAGR_left_insula 1.625 (0.111) 6.310 (<0.001) -4.350 (<0.001) -1.510 (0.137) -1.862 (0.069) 
Rotating BAGR_left_insula 1.102 (0.276) 4.277 (<0.001) -3.982 (<0.001) -1.530 (0.132) -1.143 (0.258) 
Grid BAGR_right_insula -0.205 (0.838) 10.677 (<0.001) -3.546 (0.001) -1.107 (0.273) 0.138 (0.890) 
Sort BAGR_right_insula -0.291 (0.772) 9.912 (<0.001) -2.637 (0.011) -0.687 (0.495) 0.156 (0.877) 
Digits BAGR_right_insula -0.749 (0.457) 10.191 (<0.001) -6.797 (<0.001) -2.417 (0.019) 1.071 (0.289) 
Cube BAGR_right_insula -0.928 (0.358) 15.415 (<0.001) -3.053 (0.004) -1.372 (0.176) 0.779 (0.440) 
Hidden BAGR_right_insula 0.486 (0.629) 9.671 (<0.001) -5.345 (<0.001) -2.560 (0.013) -0.252 (0.802) 
Twist BAGR_right_insula 2.631 (0.011) 6.561 (<0.001) -3.843 (<0.001) -1.656 (0.104) -2.528 (0.015) 
3D Cube BAGR_right_insula -0.859 (0.394) 6.227 (<0.001) -4.392 (<0.001) -1.486 (0.143) 0.889 (0.378) 
Rotating BAGR_right_insula 1.919 (0.061) 4.470 (<0.001) -3.970 (<0.001) -1.635 (0.108) -2.041 (0.047) 

Table 6. Summary statistics from the linear mixed effects models testing for associations between 
cognitive performance and BAGR by time interaction, including age and sex in the models. The 
reported p-values are uncorrected values, and no main effect of BAGR nor BAGR by time interaction 
remained significant after FDR correction. 

 

Discussion  

Cognitive deficits are important predictors for outcome, independence and quality of life in 

stroke survivors, and computerized cognitive training has been suggested among the 
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candidate interventions that may alleviate them. However, the lack of widely adapted tools 

for stratification, outcome prediction and treatment monitoring prevent an adequate 

assessment of the effectiveness of such training. Advanced brain MRI provides various 

candidate markers for disease monitoring and outcome prediction, integrating lesion specific 

information and characterization of the integrity of the unaffected parts of the brain, which is 

highly relevant for cognitive functions and long-term outcome. Here, we used brain age 

prediction based on brain morphometry and machine learning to test the hypotheses that 

patients with younger-looking brains would show preserved cognitive function compared to 

patients with older-looking brains and show more beneficial treatment response.  

 Based on the notion that brain age prediction offers a sensitive summary measure of 

brain health and integrity, we first tested the prediction accuracy and then the reliability in a 

longitudinal context. The estimated performance of the 13 trained models within the training 

set using a 10-fold cross-validation procedure suggested a relatively good model fit, with 

correlations ranging from .84 to .61 for the model based on all T1 features and for the right 

cingulate model respectively. Further, the models estimated brain age on the test sample also 

suggested an acceptable model fit with some regional differences in performance with MAE 

ranging from 5.50 to 8.80 for the most comprehensive model based on all T1 features and for 

the model based on right cingulate features respectively. In addition, the age estimation based 

on the median of the 12 regional models achieved the highest performance with a Pearson 

correlation of r = .58 (CI=.40-.72, MAE=4.27).  

In line with a recent implementation in patients with MS (Høgestøl et al. 2019a), our 

results demonstrated high reliability across all timepoints for the global and regional models 

with ICC ranging from .70 to .86 for the right occipital and the right parietal models 

respectively. The brain age estimation based on the median of the 12 regional model was 
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amongst the most reliable models with an ICC of .89. across the two baselines and .83 across 

all timepoints, outperforming the estimation based on all T1 features. 

A particular challenge in clinical neuroimaging is that lesions may interfere with tools 

for automated processing and brain segmentations. Here, to test for the influence of brain 

lesions on BAGR estimation and reliability, we used outlier detection on the individual 

features level to identify extreme observations and replace those extremes by means of 

imputation using predictive mean matching. Comparisons between brain age from the raw 

and imputed feature sets revealed only minimal influence of outliers on both brain age 

estimates and reliability. Importantly, this suggests that our model predictions are robust to 

gross segmentation errors caused by the lesions, which supports the feasibility of automated 

brain age prediction in patient groups with brain disorders and lesions.   

 To test the hypotheses that patients with low BAGR at baseline show better cognitive 

function and a more positive treatment response, we used seven summary scores derived 

from a set of neuropsychological and computerized tests assumed to be sensitive to cognitive 

aging at baseline and the performance gain during the course of the intensive training period 

respectively. Contrary to our hypothesis, after corrections for multiple comparisons, linear 

models revealed no significant associations between BAGR and summary scores from the 

baseline assessment or performance gain. In line with a few previous studies (Boyle et al. 

2019; Høgestøl et al. 2019b), region specific models revealed putative associations between 

summary scores for executive control and speed, working memory and the right cingulate 

BAGR, as well as, attentional control and speed and the right temporal BAGR, suggesting 

better cognitive performance with lower BAGR. In addition, region specific analysis revealed 

non-significant putative associations between performance gain and left frontal and left 

parietal BAGR, indicating more positive treatment response for patients with lower BAGR. 

Although future studies are needed to confirm the results, these preliminary non-significant 
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findings provide some support to the general notion that individuals with younger-appearing 

brains, which may reflect relevant aspects of brain health and reserve, both perform better on 

cognitive tests, and respond more positively to cognitive interventions. 

 In order to assess if cognitive gains in response to intensive cognitive training are 

reflected in longitudinal changes in brain age during the course of the intervention, we tested 

for interactions between BAGR and session on cognitive performance using linear mixed 

effects models. Our analyses revealed a few putative associations between BAGR and 

Cogmed performance, and also session by BAGR interactions on cognitive performance in a 

longitudinal context. However, none of these associations and interactions remained 

significant after correction for multiple comparisons, and the direction of the associations, if 

any, did not seem to converge. Hence, our results did not provide significant support for our 

hypothesis that cognitive gains would be reflected in longitudinal changes in brain age during 

the course of the intervention.  

 While this study does not provide significant support for the utility of brain age 

estimation as a sensitive measure for cognitive reserve and potential predictor for training 

outcomes in stroke patients, our results suggest that region specific brain age estimations are 

not only reliable measures, but might also be more informative than global brain age as a 

measure of brain health. Future studies are needed to confirm the putative associations 

between summary scores for executive control and speed (cluster 5) and working memory 

(cluster 7) and the right cingulate BAGR, as well as summary scores for attentional control 

and speed (cluster 4) and the right temporal BAGR; in addition to the weak associations 

found between the left frontal and left parietal brain age with the rate of cognitive 

improvement. In general, these findings are in line with our recent study suggesting that, by 

capturing distinct measures of brain aging, tissue specific age prediction models might better 
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inform us about the individual determinants and heterogeneity of the aging brain compared to 

models collapsing several brain compartments (Richard et al. 2018).  

 The following methodological considerations should be taken into account while 

interpreting the current results. Although our patient sample was highly heterogenous in 

terms of location, extent of the lesions and stroke etiologies, most of them had small lesions. 

Further studies are needed to confirm that the current approach for brain age prediction based 

on automated brain morphometry is also feasible for patients with larger lesions, and how 

stroke etiologies can impact BAGR and cognitive improvement, for instance progressive 

vascular disease (small vessel and large vessel disease) may affect cognition prior to the 

stroke (Ihle-Hansen et al. 2014). In addition, the patients included in this study suffered from 

moderate to mild stroke (NIHSS < 7 at hospital discharge), representing a high functioning 

group with mild cognitive deficits and better overall prognosis, limiting the generalizability 

of our findings. Although previous studies have reported links between cognitive function 

and brain age in healthy controls, it is conceivable that the current associations would be 

stronger had we sampled from a wider distribution in terms of stroke severity and cognitive 

symptoms. The lack of control group prevents us from distinguishing between the time-

related changes and training-related changes (Kolskår et al. 2019), and, although tailored to 

the current cognitive intervention regime, a longer interval between time points might have 

increased sensitivity to detect relevant associations between cognitive changes and changes in 

brain age.  

In conclusion, reliable and non-invasive markers of brain health and cognitive 

function are needed to help improving the current treatment programs targeting cognitive 

deficits following stroke and other brain disorders. Although our current results do not 

support an immediate clinical utility of brain age prediction in highly functioning stroke 

patients, we speculate that using region specific brain age model as opposed to reducing the 
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whole brain to one summary score might be as reliable and more informative potential 

biomarkers of brain integrity and health. Importantly, our study supports the feasibility of 

automated brain age prediction in patient groups with brain disorders and lesions by 

highlighting the minimal impact of lesions on brain age estimations.  
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