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Abstract

Cognitive deficits are important predictors for outcome, independence and quality of life after
stroke, but often remain unnoticed and unattended because other impairments are more
evident. Computerized cognitive training (CCT) is among the candidate interventions that
may alleviate cognitive difficulties, but the evidence supporting its feasibility and
effectiveness is scarce, partly due to the lack of tools for outcome prediction and monitoring.
Magnetic resonance imaging (MRI) provides candidate markers for disease monitoring and
outcome prediction. By integrating information not only about lesion extent and localization,
but also regarding the integrity of the unaffected parts of the brain, advanced MRI provides
relevant information for developing better prediction models in order to tailor cognitive
intervention for patients, especially in a chronic phase.

Using brain age prediction based on MRI based brain morphometry and machine
learning, we tested the hypotheses that stroke patients with a younger-appearing brain relative
to their chronological age perform better on cognitive tests and benefit more from cognitive
training compared to patients with an older-appearing brain. In this randomized double-blind
study, 54 patients who suffered mild stroke (>6 months since hospital admission, NIHSS<7
at hospital discharge) underwent 3-weeks CCT and MRI before and after the intervention. In
addition, patients were randomized to one of two groups receiving either active or sham
transcranial direct current stimulation (tDCS). We tested for main effects of brain age gap
(estimated age — chronological age) on cognitive performance, and associations between
brain age gap and task improvement. Finally, we tested if longitudinal changes in brain age
gap during the intervention were sensitive to treatment response. Briefly, our results suggest
that longitudinal brain age prediction based on automated brain morphometry is feasible and
reliable in stroke patients. However, no significant association between brain age and both

performance and response to cognitive training were found.
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Introduction

Stroke is among the most common causes of acquired cognitive disabilities during adulthood,
with a projected increase in prevalence over the next decades due to the aging population
(Feigin et al. 2014; Feigin et al. 2017). Despite recent reductions in stroke-related mortalities,
largely due to major improvements in acute health care and treatment (Zhang et al. 2012)
many stroke survivors suffer from long-term and pervasive cognitive deficits (Barbay et al.
2018; Barker-Collo et al. 2010; Cumming et al. 2014; Haacke et al. 2006; Nakling et al.
2017; Patel et al. 2002) that often remain unnoticed by the health care system due to its
typically delayed manifestation (Jacova et al. 2012; Kalaria et al. 2016).

Previous studies and treatment programs have largely targeted patients in the acute
and sub-acute phase, as it has been assumed that recovery and cognitive rehabilitation are
more likely to be successful during a limited time window following the insult (Zucchella et
al. 2014). Whereas the temporal aspects of cognitive interventions following stroke is
important, evidence suggests that recovery can also occur in chronic stages, i.e. years after
the insult (Berthier et al. 2011; Moss & Nicholas 2006). As a result, there is an increasing
need for developing and validating tools that can be used to predict long-term outcome and
for monitoring of the effects of cognitive rehabilitation after stroke (Hope et al. 2013).

Advanced neuroimaging techniques based on magnetic resonance imaging (MRI)
offer a range of candidate markers for disease monitoring and outcome prediction. In addition
to providing detailed information about the localization and extent of the lesion, which

represent key clinical information in the acute phase, imaging techniques allow for a
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characterization of the structural and functional integrity of the whole brain, including areas
not directly damaged by the stroke (Kalaria et al. 2016; Werden et al. 2017). This information
is highly relevant in a cognitive rehabilitation context, where the potential for improvement
and recovery are not only defined by the lesion itself, but by the integrity and efficiency of
the unaffected brain regions (Ihle-Hansen et al. 2014). Further, it is widely acknowledged
that the brain systems supporting cognitive functions are broadly distributed, supporting a
network-based conceptualization of the functional neuroanatomy of cognitive functions.
Hence, lesions in widely different parts of the brain may result in overlapping cognitive
symptoms, depending on the brain networks involved (Guggisberg et al. 2019). A direct
implication of this is that both the degree of cognitive impairment and the individual potential
for improvement in response to intervention may be less dependent on the exact
characteristics of the lesion than the structural integrity of the unaffected brain networks.

Here, we test this concept by utilizing multivariate brain age prediction using machine
learning and sensitive measures of brain morphometry. Briefly, combining a wide array of
informative brain imaging features in a prediction model allows for an accurate prediction of
the age of an unseen individual (Franke et al. 2012; Franke et al. 2010). The degree to which
the model under- or over-estimate the individual’s age has been shown to be sensitive to a
variety of health- related characteristics, including cognitive function and mortality (Boyle et
al. 2019; Cole & Franke 2017; Cole et al. 2018; Richard et al. 2018), and brain age prediction
using MRI data has recently been shown to be sensitive both to the clinical manifestation and
polygenic risk of various brain disorders (Hogestel et al. 2019a; Kaufmann et al. 2018).

Based on the notion that brain age prediction offers a sensitive summary measure of
brain health and integrity, we first tested whether brain age is sensitive to cognitive function
in chronic stroke patients. Next, to assess the predictive value of brain age prediction in a

cognitive rehabilitation context, we tested if brain age prior to the intervention is associated
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with response to an intensive computerized cognitive training (CCT) program. As a follow-
up analysis to a previous study (Kolskar et al. 2019) reporting no robust beneficial effects of
transcranial direct brain stimulation (tDCS) on cognitive improvement, we assessed if any
beneficial effects of tDCS (active vs sham) would be dependent on brain age. Finally, we
tested to which degree longitudinal changes in brain age during the course of the intervention
are sensitive to treatment response. We hypothesized that (1) brain age prediction would
constitute a reliable and sensitive method for characterizing individual level brain health. We
further anticipated that (2) patients with a relatively low brain age (which may imply higher
cognitive or brain reserve) would show better cognitive function at baseline, and (3) would
show larger improvements in task performance. Lastly, to the extent that intensive cognitive
training shows beneficial effects on cognitive performance and the brain (Engvig et al. 2010),
we hypothesized that (4) cognitive gains would be reflected in longitudinal changes in brain
age during the course of the intervention.

We tested these hypotheses in a group of 54 chronic patients who suffered mild stroke
(> 6 months since hospital admission, NIHSS < 7 at hospital discharge) invited to take part in
a randomized, double blind study aimed to test the utility of tDCS in combination with CCT
to improve cognitive performance following stroke (Kolskér et al. 2019; Ulrichsen et al.
2019). For unbiased brain age prediction, we utilized a large independent training set, and
employed stringent procedures for multiple comparison correction to increase the robustness

of the results.

Materials and methods
Table 1 summarizes key clinical and demographic information for the patient group. Patients
were recruited with the main aim of testing the clinical feasibility of combining CCT and

tDCS to improve cognitive function in chronic stroke patients. Description of the extent and
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localization of individual patient lesions, as well as recruitment procedures are detailed in
(Kolskar et al. 2019). Briefly, patients admitted to the Stroke Unit at Oslo University Hospital
and at Diakonhjemmet Hospital, Oslo, Norway during 2013-2016 were invited to participate
through letters. Stroke was defined as any form of strokes of either ischemic or hemorrhagic
etiology; transient ischemic attacks (TIA) were excluded. Additional exclusion criteria
included MRI contraindications and other neurological diseases diagnosed prior to the stroke.

Approximately 250 patients responded to the letter, of which 72 completed the first
assessment and 54 patients completed the full protocol; including three MRI brain scan
sessions, three sessions with cognitive assessments, one EEG assessment, and seven CCT
sessions in addition to 10 CCT sessions performed at home.

Four patients were excluded from the analysis in the current study. Two were
excluded based on poor quality or incomplete MRI data, one based on incomplete cognitive
assessment at baseline and one due to lack of confirmed stroke. The remaining 68 patients
were included in the brain age estimation and associations with baseline cognitive
performance (age = 24.3-81.8, mean = 67.98, SD = 10.24, 19 females). All 54 patients who
completed the training sessions were included in the remaining analyses (age = 47.8-82.0,

mean = 69.72, SD = 7.46, 14 females).

Training sample Test sample
Cam-CAN StrokeMRI
Baseline Longitudinal

Healthy controls Stroke patients Stroke patients

Mean (SD) Range Mean (SD) Range Mean (SD) Range
Total N (% 628 (51.6%) 68 (27.9%) 54 (25.9%)
females)
Age 54.2(18.3) 18-87 67.98 (10.24) 24.3-81.8 69.72 (7.46) 47.8-82.0
Education (in - - 14.32 (3.78) 7-30 14.38 (3.75) 9-30
years)
MMSE! - - 27.91(1.97) 22-30 28.00 (1.87) 22-30
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MoCA! - - 25.70 (3.15) 14-30 25.92 (2.77) 17-30
onths since stroke K . - . . -
Months si k 26.67 (9.13 6-45 25.74 (9.17 6-45
NIHSS? 131 (1.52) 0-7 1.33 (1.53) 0-7

TOAST classification for ischemic stroke®

Stroke location

Large artery artherosclerosis (23)
Cardioembolism (7)
Small vessel occlusion (21)

Other (17)

Right (30)

Left (22)

Brain stem / Cerebellum (9)
Bilateral (7)

Large artery artherosclerosis (20)
Cardioembolism (6)
Small vessel occlusion (18)

Other (10)

Right (23)

Left (18)

Brain stem / Cerebellum (8)
Bilateral (5)

Table 1. Demographics and sample characteristics. 'MMSE and MoCA scores at inclusion. NIHSS
score at hospital discharge. *One patient had intracerebral hemorrhage (Kolskar et al. 2019; Ulrichsen
et al. 2019).

Training set for brain age prediction

The healthy controls used as training set for the age prediction model were obtained from the

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) sample (http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/; (Shafto et al. 2014; Taylor et al. 2017)). Briefly, volunteers

were recruited to Cam-CAN through a large-scale collaborative research project funded by

the Biotechnology and Biological Sciences Research Council (BBSRC, grant number

BB/H008217/1), the UK Medical Research Council and University of Cambridge. For more

information, see http://www.cam-can.org. Data from 628 individuals (age = 18-87, mean =

54.2, SD = 18.3, 324 females) were included in the training set (Richard et al. 2018).

Cognitive assessment at baseline

Similar to our recent study (Richard et al. 2018), cognitive performance at baseline was

assessed with a set of neuropsychological and computerized tests assumed to be sensitive to

cognitive aging, including the Montreal Cognitive Assessment (MoCA; Nasreddine et al.

2005), the vocabulary and matrix subtests of the Wechsler Abbreviated Scale of Intelligence

(WASI; Wechsler 1999), the California Verbal Learning Test (CVLT-II; Delis et al. 2000),
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and the Delis-Kaplan Executive Function System (D-KEFS) color word interference test
(Stroop; Delis et al. 2001). We included several computerized tests from the Cognitive
Assessment at Bedside for iPAD (CABPad; Willer et al. 2016), including motor speed, verbal
fluency (phonological and semantic), working memory (forward and backward memory
span), spatial Stroop (executive control of attention), spatial attention span, and symbol digit
coding tests. Further, a computerized test based on the Theory of Visual Attention (TVA;
Bundesen 1990; Bundesen & Habekost 2008; Dyrholm et al. 2011) provided measures of
visual short-term memory capacity (K), processing speed (C), and perceptual threshold ().
Several variables were highly correlated, and we used the clustering solution from Richard et
al. (2018), which included seven broad cognitive domains. Cluster 1 reflected memory and
learning (CVLT, attention span, MoCA), cluster 2 visual processing speed (TVA-parameters
C and 1), cluster 3 verbal skills (phonological and semantic flow), cluster 4 attentional
control and speed (spatial Stroop), cluster 5 executive control and speed (color-word Stroop),
cluster 6 reasoning and psychomotor speed (matrix, symbol coding and motor speed, visual
short-term memory capacity (TVA-parameter K)), and cluster 7 working memory (forward
and backward memory span). Briefly, the clusters were computed using normalized sum
scores of highly correlated test scores. Prior to calculating summary scores based on the
seven clusters mentioned above, we used outlierTest from the car package (Fox & Weisberg
2011) to identify the most extreme observations based on a linear model, including age and
sex. 17 observations were identified as outliers based on a Bonferroni corrected p < 0.05 and
treated as missing values, we then replaced these extremes and imputed the 75 missing values
(2.63% of the scores were missing/incomplete) using predictive mean matching (pmm)
method from the mice package in R (multivariate imputation by chained equations; Buuren &

Groothuis-Oudshoorn 2011).
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CCT protocol

All patients completed a computerized working memory training program consisting of 25
online training sessions (Cogmed Systems AB, Stockholm, Sweden). Similar to our recent
study (Kolskar et al. 2019), we used data from 17 of the 25 training sessions over a period of
three to four weeks, corresponding to approximately five weekly training sessions. Seven
sessions were carried out at the hospital, of which six were in combination with tDCS (either
sham or active stimulation). On average, patients received two training sessions with tDCS
per week with a minimum of one day between each session. The remaining 10 training
sessions were home-training. Each training session took approximately 45 minutes in which
the participant completed eight different exercises. In total, 10 different tasks targeting verbal
and visuospatial working memory were used, i.e. Grid, Hidden, Cube, Sort, Digits, 3D Cube,
Twist, Assembly, Rotating and Chaos. The difficulty level of each task is adapted to the
participant’s performance, and in general, for each task, it takes approximately two sessions
for the difficulty level to be appropriately adjusted to the individual level of performance.
Thus, we discarded the two first training sessions of each task from our analysis. In addition,
we included only tasks with a minimum of three training sessions after exclusion of the two

first sessions, discarding Assembly and Chaos from further analysis.

tDCS protocol

The tDCS protocol has been described in details in a prior publication (Kolskar et al. 2019).
Participants were randomly assigned to an active or a sham condition, using an in-house
Matlab script to randomly generate a code for each participant while ensuring that each block
of 20 participants was balanced across conditions. Both the participant and the experimenter
remained blinded throughout the experiment. Stimulation was delivered using a battery-

driven direct current stimulator (Neuroconn DC-STIMULATOR PLUS, neuroConn GmbH,
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[llmenau, Germany), through 5 x 7 cm rubber pads using the following parameters: DC
current = 1 mA, total duration = 20 minutes, ramp-up = 120 seconds, fade-out = 30 seconds,
and current density = 28.57 uA/cm?. The sham stimulation followed the factory settings
which include a ramp-up and a fade-out period. We used the 10-20 system for the electrode
location, with the anodal electrode covering F3 and the cathodal electrode placed over O2,
and fixated with rubber bands. The pads were covered with high-conductive gel (Abralyt
HiCl, Falk Minow Services Herrsching, Germany) to keep the impedance threshold under <
20 kQ. For security reason, the device has an absolute impedance threshold of 40 kQ.
Following each stimulation period, participants were asked to fill in a side-effect form. In
addition, after the last stimulation session, they were asked to make a guess whether they

thought they received active stimulation or sham stimulation and the reason for their guess.

MRI acquisition

Patients were scanned on a 3T GE 750 Discovery MRI scanner with a 32-channel head coil at
Oslo University Hospital. Paddings were used to reduce head motion. T1-weighted data was
acquired using a 3D IR-prepared FSPGR (BRAVO) with the following parameters: repetition
time (TR): 8.16 ms, echo time (TE): 3.18 ms, inversion time (TI): 450 ms, flip angle (FA):
12°, voxel size: 1 X 1 x 1 mm, field of view (FOV): 256 x 256 mm, 188 sagittal slices, scan
time: 4:43 minutes.

Cam-CAN participants were scanned on a 3T Siemens TIM Trio scanner with a 32-
channel head-coil at Medical Research Council (UK) Cognition and Brain Sciences Unit
(MRC-CBSU) in Cambridge, UK. High-resolution 3D T1-weighted data was acquired using
a magnetization prepared rapid gradient echo (MPRAGE) sequence with the following

parameters: TR: 2250 ms, TE: 2.99 ms, TI: 900 ms, FA: 9°, FOV of 256 x 240 x 192 mm;

10
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voxel size =1 mm? isotropic, GRAPPA acceleration factor of 2, scan time 4:32 minutes

(Shafto et al. 2014).

MRI processing

All T1-weighted images were processed using FreeSurfer 5.3
(http://surfer.nmr.mgh.harvard.edu; (Dale et al. 1999)) including brain extraction, intensity
normalization, automated tissue segmentation, generation of white and pial surfaces (Dale et
al. 1999). All reconstructions were visually assessed and corrected as appropriate, and data
with excessive motion or other major artefacts were discarded.

For StrokeMRI, images were processed with the longitudinal Freesurfer pipeline
(Reuter & Fischl 2011; Reuter et al. 2012), which substantially increases reliability and
power (Reuter et al. 2012). For each individual dataset, we extracted mean cortical thickness,
area and volumes from 180 regions of interests (ROIs) per hemisphere based on a surface-

based atlas (Glasser et al. 2016), yielding 1080 structural brain features per individual.

Age prediction

Based on a recent implementation (Kaufmann et al. 2018), brain age estimation was
performed both using global and regional features as input. The regional brain age
estimations were based on lobesStrict segmentation (occipital, frontal, temporal, parietal,
cingulate and insulate) from Freesurfer (Dale et al. 1999). Overall, one global and 12
hemisphere specific lobe-based models were trained to estimate age in 628 healthy controls
from the Cam-CAN cohort, using the same pipeline as previously described (Richard et al.
2018). We used xgboost package in R (extreme gradient boosting) (Chen & Guestrin 2016;
Chen et al. 2017) with the following parameters: learning rate (eta) = 0.1, nround = 1500,

gamma = 1, max_depth = 6, subsample=0.5, to build the prediction models. For each model,

11
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the performance was estimated using a 10-fold cross-validation procedure within the training
set.

Next, we tested the performance of our trained models by predicting age in unseen
subjects in the test sample. More specifically, we calculated the Pearson correlation between
the predicted and the chronological, as well as the mean absolute error (MAE) in years. For
each individual and for each model, we calculated the brain age gap (BAG), i.e. the
difference between the estimated and chronological age, yielding 13 BAGs per individuals.
Next, in order to account for age-related bias in the age prediction (Le et al. 2018), we used
linear modeling to regress out the main effect of age, age? and sex from each BAG, resulting
in 13 residualized BAG (BAGR) used in the calculation of MAE and further analyses.

In some instances, the stroke lesions interfered with the cortical reconstruction
process in Freesurfer, which inevitably influences the estimated morphometric parameters in
the relevant part of the brain. In order to assess the influence of the stroke lesion on the brain
age estimates, we used outlierTest from the car package (Fox & Weisberg, 2011) to identify
the most extreme morphometric estimations based on a linear model, including age, age? and
sex. We identified 479 observations (0.24% of all observations) as extreme and replaced
them using predictive mean matching (pmm) method from the mice package in R
(multivariate imputation by chained equations; Buuren & Groothuis-Oudshoorn 2011). Next,
we estimated brain age using the resulting data frame containing imputed estimations and
compared it with the original estimations. Subsequent analyses were performed both with and
without the outliers included. Briefly, the estimated brain age based on the original Freesurfer
estimations and the estimations after imputing realistic values to replace outliers resulted in
nearly identical outcomes. (See supplemental results for the analyses performed after

removing the outliers.)
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In addition to the global model including all T1 features, we calculated a robust brain

age based on the median of the 12 regional brain ages.

Processing of Cogmed data

For each participant and for each included tasks, we used linear modeling to quantify the
changes in performance across the training period, i.e. the cognitive improvement, using
performance as dependent variable and session number as independent variable (Kolskar et
al. 2019). In addition, we used the generic function predict in R (Chambers & Hastie 1992) to
estimate the baseline score and the final score using the resulting individual linear models for
each trained task. To derive a common score across the trained tasks, we performed a
principal component analysis (PCA) on the performance improvement scores and we used
the first component as the individual’s performance improvement (Kolskar et al. 2019). All

test scores were zero-centered and standardized prior to running the PCA.

Statistical analysis

Statistical analyses were performed using R version 3.3.3 (2017-03-06) (R Core Team 2017).
We assessed the reliability of the age estimations using intra-class coefficient (ICC) using
ICCest function from the ICC R package (Wolak et al. 2012) across the two baseline MRI
and across all three MRI sessions.

To test if patients with relative low brain age show better cognitive performance at
baseline, we employed linear models with the seven summary scores based on the clustering
solution from (Richard et al. 2018) as independent variable and each BAGR as the dependent
variable, including age and sex as covariates. To test if patients with relative low brain age
would show larger improvement in task performance, we employed linear models with

Cogmed performance gain score derived from the PCA as independent variable and each

13
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BAGR as dependent variable, including age and sex as covariates. For transparency, we
report both uncorrected p-values and p-values adjusted using false discovery rate (FDR;
Benjamini & Hochberg 1995) from the p.adjust function from the stats R package (R Core
Team 2017). We have previously reported no significant beneficial effects of tDCS on
cognitive improvement in response to the intervention (Kolskar et al. 2019). Here, as a
follow-up analysis, we added tDCS group (sham vs experimental) as an additional variable
and tested for interactions between tDCS and BAGR on training gain to assess if any
beneficial effects of tDCS would be dependent on BAGR.

Lastly, in order to assess if cognitive improvements in response to intensive cognitive
training is associated with reduced brain age during the course of the intervention, we tested
for associations between cognitive performance and BAGR by time interaction in a
longitudinal context using linear mixed effects models (LME). For each trained task, we used
the estimated baseline and final scores from the individual linear models, and we used BAGR
from scan number 2 and 3 as timepoint one and two, respectively. Estimated task
performance was entered as dependent variable, with BAGR, time, BAGR by time

interaction, age and sex as fixed factors, and participant as random factor.

Results

Brain age predictions

Ten-fold cross-validation on the training sample (Cam-CAN) revealed relatively high
correlations between chronological and predicted age for each of the 13 models, confirming
reasonable model performance. Supplementary Fig. 1 shows Pearson correlation with
confidence intervals between estimated brain age and chronological age within the training
sample for each of the 13 trained models ranging from » = .84 (CI=.81-.86) for the full model

to » =.61 (CI=.56-.66) for the model based on right cingulate features.
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Table 2 shows Pearson correlation between estimated brain age and chronological age
with their 95 % confidence intervals on the test sample at baseline (stroke patients) for each
model, in addition to the MAE calculated from BAGR. The correlations ranged from » = .58
(CI=.40-.72, MAE=4.27) for the most comprehensive model based on the median of the 12
regional models to » = .09 (CI=-.16-.32 MAE=7.29) for the left cingulate model. See Suppl.

Table 1 for the model performance after replacing outliers by imputed values.

models r lowerCI  upperCl MAE
Global

all Tl 0.550  0.358 0.697 5.506
median 0.579  0.395 0.718 4.271
Regional

left frontal 0.448  0.234 0.620 5.799

right frontal 0.403  0.182 0.585 5.663
left parietal 0.413  0.194 0.593 6.287
right parietal 0.460  0.248 0.629 6.086
left_occipital 0.221  -0.019  0.436 7.642
right occipital  0.206  -0.034  0.423 6.953
left_temporal 0.416  0.198 0.596 7.588
right temporal  0.455  0.242 0.625 5.733
left cingulate 0.086 -0.156  0.317 6.953
right cingulate  0.439  0.224 0.613 8.804
left insula 0.309  0.076 0.510 7.732

right insula 0.366  0.140 0.556 6.277
Table 2. Pearson correlation between estimated brain age and chronological age with their confidence
intervals on the test sample at baseline (stroke patients from StrokeMRI sample) for each model, and
the MAE calculated from BAGR.

Table 3 shows ICC with their confidence intervals for each model for the two baselines and
for the three timepoints ranging from .89 (CI=.82-.94) for the right parietal model to .68
(CI=.50-.80) for the left cingulate model across the two baseline assessments, and ranging
from .86 (CI=.79-.91) for the right parietal model to .70 (CI=.57-.80) for the left cingulate
model across the three timepoints. See Suppl. Table 2 for the estimation after replacing

outliers by imputed values.
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Baseline (scan 1 and 2) All time points (scan 1 to 3)
models ICC lowerCI  upperCI | ICC lowerCl  upperClI
Global
BAGR all T1 0.788  0.661 0.871 0.783  0.686 0.859
BAGR median 0.887 0.813 0.932 0.831 0.750 0.891
Regional
BAGR left frontal 0.790 0.664 0.872 0.812 0.724 0.879
BAGR right frontal 0.761  0.622 0.854 0.74 0.628 0.829
BAGR _left parietal 0.803 0.684 0.880 0.805 0.714 0.874
BAGR right parietal 0.891 0.819 0.935 0.856  0.786 0.908
BAGR _left occipital 0.823  0.715 0.893 0.815 0.728 0.881
BAGR right occipital 0.786  0.658 0.870 0.811 0.723 0.878
BAGR left temporal 0.800 0.679 0.878 0.807 0.718 0.876
BAGR right temporal 0.726  0.572 0.831 0.754  0.646 0.839
BAGR left cingulate 0.677  0.503 0.799 0.700  0.577 0.801
BAGR right cingulate 0.814  0.700 0.887 0.802 0.711 0.872
BAGR left insula 0.809  0.693 0.884 0.802 0.711 0.872
BAGR right insula 0.791  0.666 0.873 0.789  0.693 0.863

Table 3. Intra-class correlation (ICC) with their confidence interval of the estimated brain age for the
two baseline scans (scan one and two), and for the three timepoints (scan one, two and three).

Table 4 and Table 5 show summary statistics from the linear models testing for associations
between cognitive performance at baseline and Cogmed performance gain, respectively, and
BAGR, including age and sex in the models. As expected, we found a main effect of age on
cognitive performance at baseline. However, the analyses revealed no significant associations
between cognitive performance at baseline and BAGR after FDR correction for multiple
comparisons. Amongst the non-significant findings, the strongest associations were found
between cluster 5 (executive control and speed) and the right cingulate, cluster 7 (working
memory) and the right cingulate, and cluster 4 (attentional control and speed) and the right
temporal BAGR. Further, we did not find any significant associations between performance
improvement score and BAGR, nor main effect of age, nor sex on the performance
improvement score after FDR corrections. Amongst the non-significant findings, the
strongest associations with Cogmed performance gain were found for the left frontal and left

parietal models, indicating higher cognitive gain for participants with lower BAGR.
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clusters  models Bagr (t (p)) Age (t (p) Sex (t (p)
Cluster] all T1 0.152 (0.880) -4.884 (<0.001) -2.200 (0.032)
Cluster]  median -0.095 (0.925) -4.886 (<0.001) -2.220 (0.030)
Cluster] left frontal -0.032 (0.975) -4.886 (<0.001) -2.201 (0.031)
Cluster]  right frontal -0.795 (0.43) -4.933 (<0.001) -2.169 (0.034)
Cluster] left parietal -0.356 (0.723) -4.879 (<0.001) -2.227 (0.030)
Cluster]  right parietal 0.466 (0.643) -4.902 (<0.001) -2.187(0.032)
Cluster] left occipital -0.797 (0.429) -4.957 (<0.001) -2.281 (0.026)
Cluster]  right occipital 0.478 (0.634) -4.846 (<0.001) -2.182(0.033)
Cluster] left temporal -0.283 (0.778) -4.893 (<0.001) -2.232(0.029)
Cluster]l  right temporal -0.495 (0.622) -4.906 (<0.001) -2.246 (0.028)
Cluster] left cingulate 1.018 (0.313) -4.910 (<0.001)  -2.146 (0.036)
Cluster]l  right cingulate -0.330 (0.742) -4.843 (<0.001) -2.230(0.029)
Cluster]  left insula -0.898 (0.373) -4.921 (<0.001) -2.322(0.024)
Cluster]  right insula -0.651 (0.518) -4.922 (<0.001)  -2.176 (0.033)
Cluster2 all T1 0.277 (0.783) -3.716 (<0.001)  1.853 (0.069)
Cluster2  median 0.263 (0.793) -3.723 (<0.001)  1.848 (0.069)
Cluster2 left frontal 0.120 (0.905) -3.721 (<0.001) 1.821(0.073)
Cluster2  right_frontal -0.754 (0.454) -3.753 (<0.001) 1.884 (0.064)
Cluster2  left parietal 0.304 (0.762) -3.729 (<0.001)  1.840 (0.070)
Cluster2  right_parietal -0.012 (0.991) -3.718 (<0.001)  1.830(0.072)
Cluster2  left occipital 0.122 (0.903) -3.700 (<0.001) 1.838 (0.071)
Cluster2  right occipital -0.931 (0.355) -3.806 (<0.001)  1.782 (0.08)
Cluster2  left temporal 1.283 (0.204) -3.752 (<0.001)  1.927 (0.058)
Cluster2  right temporal 0.345 (0.731) -3.713 (<0.001)  1.851 (0.069)
Cluster2  left cingulate 0.498 (0.62) -3.716 (<0.001)  1.870 (0.066)
Cluster2  right cingulate -0.431 (0.668) -3.679 (<0.001) 1.833(0.072)
Cluster2  left insula -0.482 (0.632) -3.728 (<0.001) 1.773 (0.081)
Cluster2  right insula -0.658 (0.513) -3.750 (<0.001)  1.880 (0.065)
Cluster3 all T1 -0.497 (0.621) -2.96 (0.004) -3.072 (0.003)
Cluster3  median -0.529 (0.599) -2.947 (0.004)  -3.068 (0.003)
Cluster3  left frontal 0.986 (0.328) -2.996 (0.004)  -3.119 (0.003)
Cluster3  right frontal -0.744 (0.460) -2.977 (0.004)  -2.997 (0.004)
Cluster3  left parietal -0.808 (0.422) -2.935(0.005)  -3.063 (0.003)
Cluster3  right parietal 0.796 (0.429) -2.971 (0.004)  -2.995 (0.004)
Cluster3  left occipital -0.608 (0.545) -2.992 (0.004)  -3.079 (0.003)
Cluster3  right occipital 0.243 (0.809) -2.919 (0.005)  -3.013 (0.004)
Cluster3  left temporal 0.264 (0.793) -2.945 (0.004)  -3.016 (0.004)
Cluster3  right temporal -0.901 (0.371) -2.985(0.004)  -3.096 (0.003)
Cluster3  left cingulate -0.462 (0.646) -2.959 (0.004)  -3.066 (0.003)
Cluster3  right cingulate -1.708 (0.092) -2.87 (0.006) -3.118 (0.003)
Cluster3  left insula -1.207 (0.232) -2.987 (0.004)  -3.183 (0.002)
Cluster3  right insula -1.909 (0.061) -3.086 (0.003)  -2.983 (0.004)
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Cluster4 all T1 -1.687 (0.096) -4.182 (<0.001)  -0.170 (0.866)
Cluster4 median -1.990 (0.051) -4.166 (<0.001) -0.142 (0.887)
Cluster4 left frontal -0.833 (0.408) -4.060 (<0.001)  0.043 (0.966)
Cluster4 right frontal -0.838 (0.405) -4.106 (<0.001)  0.034 (0.973)
Cluster4 left parietal -1.325(0.190) -4.076 (<0.001)  -0.040 (0.968)
Cluster4  right parietal -1.471 (0.146) -4.112 (<0.001) -0.106 (0.916)
Cluster4  left occipital -1.884 (0.064) -4.303 (<0.001) -0.155(0.878)
Cluster4  right occipital -1.334 (0.187) -4.213 (<0.001)  -0.103 (0.918)
Cluster4  left temporal -0.280 (0.780) -4.069 (<0.001) -0.032 (0.974)
Cluster4  right temporal -2.063 (0.043) -4.243 (<0.001) -0.125 (0.901)
Cluster4  left cingulate 0.023 (0.982) -4.063 (<0.001) -0.015 (0.988)
Cluster4  right cingulate -1.316 (0.193) -4.003 (<0.001) -0.029 (0.977)
Cluster4  left insula -0.042 (0.967) -4.064 (<0.001) -0.021 (0.983)
Cluster4  right insula -0.637 (0.527) -4.094 (<0.001)  0.026 (0.979)
Cluster5 all T1 -1.318 (0.192) -4.442 (<0.001) -2.098 (0.040)
Cluster5 median -1.427 (0.158) -4.415 (<0.001) -2.077 (0.042)
Cluster5 left frontal 0.570 (0.571) -4.388 (<0.001)  -2.000 (0.050)
Cluster5 right frontal -0.82 (0.415) -4.404 (<0.001) -1.917 (0.060)
Cluster5 left parietal 0.464 (0.644) -4.381 (<0.001) -1.955 (0.055)
Cluster5 right parietal -0.449 (0.655) -4.362 (<0.001) -1.986 (0.051)
Cluster5 left occipital -0.417 (0.678) -4.386 (<0.001) -1.988 (0.051)
Cluster5 right occipital -1.995 (0.050) -4.639 (<0.001) -2.145(0.036)
Cluster5 left temporal -1.263 (0.211) -4.430 (<0.001) -2.052 (0.044)
ClusterS  right temporal -1.827 (0.072) -4.515 (<0.001) -2.103 (0.039)
Cluster5 left cingulate 1.429 (0.158) -4.405 (<0.001) -1.874 (0.066)
Cluster5 right cingulate -2.387 (0.020) -4.351 (<0.001) -2.067 (0.043)
Cluster5 left insula -1.840 (0.070) -4.487 (<0.001) -2.202 (0.031)
Cluster5  right insula 0.655 (0.515) -4.354 (<0.001)  -2.006 (0.049)
Cluster6  all T1 -0.008 (0.993) -5.334 (<0.001) -2.252 (0.028)
Cluster6  median -0.278 (0.782) -5.334 (<0.001) -2.275 (0.026)
Cluster6  left frontal 0.176 (0.860) -5.339 (<0.001) -2.268 (0.027)
Cluster6  right frontal -1.132 (0.262) -5.415 (<0.001) -2.211 (0.031)
Cluster6  left parietal -0.128 (0.898) -5.329 (<0.001) -2.263 (0.027)
Cluster6  right parietal 0.309 (0.758) -5.342 (<0.001)  -2.239 (0.029)
Cluster6  left occipital -1.046 (0.300) -5.443 (<0.001) -2.350 (0.022)
Cluster6  right occipital -0.179 (0.858) -5.333 (<0.001) -2.268 (0.027)
Cluster6  left temporal 0.673 (0.503) -5.346 (<0.001) -2.227(0.030)
Cluster6  right temporal -0.280 (0.781) -5.343 (<0.001) -2.273 (0.026)
Cluster6  left cingulate 0.825 (0.412) -5.347 (<0.001)  -2.202 (0.031)
Cluster6  right cingulate -1.443 (0.154) -5.291 (<0.001) -2.310(0.024)
Cluster6  left insula -1.027 (0.308) -5.385(<0.001) -2.378 (0.020)
Cluster6  right insula 0.013 (0.990) -5.332 (<0.001)  -2.256 (0.028)
Cluster7 all T1 0.206 (0.838) -5.298 (<0.001)  -1.473 (0.146)
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Cluster7 median -0.431 (0.668)  -5.303 (<0.001) -1.524 (0.132)
Cluster7  left frontal 0.636 (0.527) -5.333(<0.001) -1.544 (0.128)
Cluster7 right frontal 0.003 (0.998) -5.298 (<0.001)  -1.495 (0.140)
Cluster7  left parietal -0.378 (0.707)  -5.292(<0.001) -1.506 (0.137)
Cluster7 right parietal 0.151 (0.881) -5.303 (<0.001) -1.486 (0.142)
Cluster7  left occipital -0.595 (0.554)  -5.344(<0.001) -1.541 (0.128)
Cluster7 right occipital -1.219 (0.227) -5.441 (<0.001)  -1.591 (0.117)
Cluster7  left temporal 0.799 (0.427) -5.317 (<0.001)  -1.458 (0.150)
Cluster7 right temporal -0.336 (0.738)  -5.311(<0.001) -1.515(0.135)
Cluster7 left cingulate -0.572 (0.569) -5.323 (<0.001) -1.541 (0.128)
Cluster7 right cingulate -2.241 (0.028) -5.312 (<0.001) -1.576 (0.120)
Cluster7  left insula 0.989 (0.326) -5.335(<0.001) -1.391 (0.169)
Cluster7  right insula -0.234 (0.816)  -5.307 (<0.001) -1.479 (0.144)

Table 4. Summary statistics of the associations between cognitive performance at baseline and
BAGR, including age and sex using linear models. Cluster 1: memory and learning. Cluster 2: visual
processing speed. Cluster 3: verbal skills. Cluster 4: attentional control and speed. Cluster 5:
executive control and speed. Cluster 6: reasoning and psychomotor speed. Cluster 7: working
memory. The reported p-values are uncorrected values, and no main effect of BAGR remained
significant after FDR correction.

models Bagr (t (p)) Age (t (p)) Sex (t (p))
Global

BAGR all T1 -0.383 (0.703)  0.497 (0.622) -0.900 (0.373)
BAGR median 0.382 (0.704)  0.453 (0.652) -0.902 (0.371)
Regional

BAGR left frontal
BAGR right frontal
BAGR_left parietal
BAGR right parietal
BAGR _left occipital
BAGR right occipital
BAGR left temporal
BAGR right temporal
BAGR left cingulate
BAGR right cingulate
BAGR left insula
BAGR right insula

2.399 (0.020)
0.241 (0.810)
2.037 (0.047)
0.264 (0.793)
-0.083 (0.934)
0.392 (0.697)
0.159 (0.875)
0.963 (0.340)
0.750 (0.457)
1.150 (0.256)
0.458 (0.649)
0.693 (0.491)

0.285 (0.777)
0.479 (0.634)
0.425 (0.673)
0.493 (0.625)
0.489 (0.627)
0.502 (0.618)
0.484 (0.631)
0.452 (0.653)
0.438 (0.663)
0.436 (0.664)
0.487 (0.629)
0.452 (0.653)

_1.146 (0.257)
-0.913 (0.366)
-0.876 (0.385)
-0.899 (0.373)
-0.899 (0.373)
-0.909 (0.368)
-0.900 (0.372)
-0.925 (0.359)
-0.883 (0.381)
-1.053 (0.297)
-0.882 (0.382)
-0.952 (0.345)

Table 5. Summary statistics of the associations between Cogmed performance gain and BAGR,
including age and sex using linear models. The reported p-values are uncorrected values, and no main
effect of BAGR remained significant after FDR correction.

Table 6 shows summary statistics from the linear mixed effects models testing for

longitudinal associations between cognitive performance and BAGR, including age and sex
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in the models. The analyses revealed robust main effects of session and age, indicating

increasing performance during the course of the intervention, and generally lower

performance with increasing age. Beyond this, we did not find any significant associations

between performance and BAGR, nor BAGR by time interaction after FDR correction for

multiple comparisons. Amongst the non-significant findings, the five strongest associations

were found between the left occipital and Digits, the left frontal and Cube and 3D Cube, the

left parietal and Hidden, and the right insula and 7Twist and the eight strongest BAGR by time

interactions were found between the left occipital and Digits, the left frontal and Cube and

3D Cube, the left parietal and Hidden, the right insula and Twist and Rotating, and the left

temporal and Cube and 3D Cube.

bagr:session (t

test models Bagr (t (p)) Session (t (p)) Age (t (p) Sex (t (p) (p)

Grid BAGR all T1 -0.478 (0.635)  10.704 (<0.001) -3.538 (0.001) -1.064 (0.292)  0.338 (0.737)
Sort BAGR all T1 -1.409 (0.165)  10.097 (<0.001) -2.642 (0.011) -0.573 (0.569)  1.157 (0.253)
Digits BAGR all T1 0.739 (0.463)  10.198 (<0.001) -6.649 (<0.001)  -2.507 (0.015)  -0.685 (0.496)
Cube BAGR all T1 0.053 (0.958)  15.279 (<0.001) -3.047 (0.004) -1.384(0.172)  -0.211 (0.833)
Hidden @ BAGR all T1 -0.213(0.832)  9.487(<0.001)  -5.612(<0.001)  -2.764 (0.008)  0.929 (0.357)
Twist BAGR all T1 -0.230 (0.819)  6.202 (<0.001)  -3.813 (<0.001)  -1.453(0.152)  0.088 (0.930)
3D Cube BAGR all Tl 1.444 (0.155)  6.369 (<0.001)  -4.353(<0.001)  -1.574(0.122)  -1.631(0.109)
Rotating BAGR all T1 0.198 (0.844)  4.307(<0.001)  -3.984 (<0.001)  -1.508 (0.138)  -0.349 (0.729)
Grid BAGR_median -0.507 (0.615)  10.840 (<0.001) -3.521 (0.001) -1.050 (0.299)  0.116 (0.908)
Sort BAGR_median -1.288 (0.204)  10.063 (<0.001) -2.648 (0.011) -0.610 (0.544)  0.968 (0.338)
Digits BAGR_median 1.091(0.280)  10.377 (<0.001) -6.590 (<0.001)  -2.472(0.017)  -1.165 (0.250)
Cube BAGR_median 0.157 (0.876)  15.422(<0.001) -3.043 (0.004) -1.376 (0.175)  -0.533 (0.596)
Hidden = BAGR_median 0.357(0.722)  9.768 (<0.001)  -5.420 (<0.001)  -2.665(0.010)  0.286 (0.776)
Twist BAGR_median 0.520 (0.605)  6.203 (<0.001)  -3.816 (<0.001)  -1.505(0.138)  -0.614 (0.542)
3D Cube BAGR median 1.345(0.185)  6.454(<0.001)  -4.335(<0.001)  -1.522(0.134)  -1.808 (0.077)
Rotating BAGR_median 0.894 (0.376)  4.327(<0.001)  -3.982 (<0.001)  -1.538(0.130)  -1.072 (0.289)
Grid BAGR left frontal 0.298 (0.767)  10.94 (<0.001)  -3.574 (0.001) -1.165(0.249)  -0.981 (0.331)
Sort BAGR left frontal -0.020 (0.984)  10.125(<0.001) -2.661 (0.011) -0.749 (0.457)  -0.624 (0.536)
Digits BAGR left frontal 1.800 (0.078)  10.527 (<0.001) -6.643 (<0.001)  -2.450(0.018)  -1.942 (0.058)
Cube BAGR left frontal 2.423(0.019)  16.704 (<0.001) -3.086 (0.003) -1.439(0.156)  -3.187(0.003)
Hidden = BAGR left frontal 1.343(0.186)  9.835(<0.001)  -5.277 (<0.001)  -2.502 (0.016)  -1.278 (0.207)
Twist BAGR left frontal 1.333(0.189)  6.316(<0.001)  -3.850(<0.001)  -1.524(0.134)  -1.667 (0.102)
3D Cube BAGR left frontal 2.274(0.027)  6.407 (<0.001)  -4.419 (<0.001)  -1.537(0.130)  -2.380 (0.021)
Rotating BAGR left frontal 1.496 (0.141)  4.297(<0.001)  -4.025(<0.001)  -1.529(0.132)  -1.526(0.133)
Grid BAGR right frontal 0.024 (0.981)  10.660 (<0.001) -3.554 (0.001) -1.117 (0.269)  -0.019 (0.985)
Sort BAGR right frontal 0.417 (0.679)  10.034 (<0.001) -2.631 (0.011) -0.681(0.499)  -0.187(0.853)
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BAGR right frontal
BAGR right frontal
BAGR right frontal
BAGR right frontal
BAGR right frontal
BAGR right frontal
BAGR left parietal
BAGR_left parietal
BAGR left parietal
BAGR left parietal
BAGR_left parietal
BAGR left parietal
BAGR_left parietal
BAGR_left parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR right parietal
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR_left occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR right occipital
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR_left temporal
BAGR right temporal
BAGR right temporal
BAGR right temporal

-0.428 (0.671)
1.340 (0.186)
-0.501 (0.618)
0.012 (0.990)
1.279 (0.207)
0.330 (0.743)
0.879 (0.384)
-0.197 (0.845)
0.968 (0.338)
0.075 (0.941)
2.051 (0.046)
1.535 (0.131)
0.291 (0.772)
1.225 (0.227)
-0.990 (0.327)
-0.489 (0.627)
0.202 (0.841)
-0.327 (0.745)
-0.450 (0.655)
-0.226 (0.822)
0.994 (0.325)
0.625 (0.535)
-1.717 (0.092)
-0.489 (0.627)
2.399 (0.020)
-0.202 (0.840)
0.028 (0.978)
-0.265 (0.792)
0.340 (0.735)
-0.718 (0.476)
-0.632 (0.530)
-1.314 (0.195)
0.595 (0.555)
-0.982 (0.331)
-0.265 (0.792)
-0.578 (0.566)
0.311 (0.757)
-0.448 (0.656)
0.192 (0.849)
-0.300 (0.766)
0.733 (0.467)
1.224 (0.227)
0.367 (0.715)
0.160 (0.874)
1.516 (0.136)
0.480 (0.633)
0.116 (0.908)
-0.530 (0.599)
1.236 (0.222)

10.187 (<0.001)
15.643 (<0.001)
9.721 (<0.001)
6.264 (<0.001)
6.294 (<0.001)
4.298 (<0.001)
10.990 (<0.001)
10.109 (<0.001)
10.668 (<0.001)
15.499 (<0.001)
10.062 (<0.001)
6.406 (<0.001)
6.561 (<0.001)
4.423 (<0.001)
10.795 (<0.001)
9.883 (<0.001)
10.461 (<0.001)
15.394 (<0.001)
9.734 (<0.001)
6.180 (<0.001)
6.366 (<0.001)
4.309 (<0.001)
11.041 (<0.001)
10.050 (<0.001)
10.716 (<0.001)
15.254 (<0.001)
9.630 (<0.001)
6.197 (<0.001)
6.246 (<0.001)
4.271 (<0.001)
10.557 (<0.001)
9.815 (<0.001)
10.645 (<0.001)
15.919 (<0.001)
9.655 (<0.001)
6.114 (<0.001)
6.414 (<0.001)
4.202 (<0.001)
10.683 (<0.001)
9.878 (<0.001)
10.26 (<0.001)
16.324 (<0.001)
9.897 (<0.001)
6.176 (<0.001)
6.551 (<0.001)
4.297 (<0.001)
10.638 (<0.001)
9.997 (<0.001)
10.329 (<0.001)

-6.666 (<0.001)
-3.027 (0.004)
-5.308 (<0.001)
-3.789 (<0.001)
-4.351 (<0.001)
-3.980 (<0.001)
-3.536 (0.001)
-2.665 (0.010)
-6.620 (<0.001)
-3.044 (0.004)
-5.262 (<0.001)
-3.804 (<0.001)
-4.398 (<0.001)
-3.986 (<0.001)
-3.558 (0.001)
-2.661 (0.010)
-6.620 (<0.001)
-3.058 (0.004)
-5.344 (<0.001)
-3.832 (<0.001)
-4.386 (<0.001)
-3.984 (<0.001)
-3.487 (0.001)
-2.561 (0.014)
-6.684 (<0.001)
-3.083 (0.003)
-5.413 (<0.001)
-3.782 (<0.001)
-4.33 (<0.001)
-4.005 (<0.001)
-3.532(0.001)
-2.613(0.012)
-6.638 (<0.001)
-2.993 (0.004)
-5.254 (<0.001)
-3.808 (<0.001)
-4.349 (<0.001)
-4.007 (<0.001)
-3.572(0.001)
-2.656 (0.011)
-6.645 (<0.001)
-3.078 (0.003)
-5.359 (<0.001)
-3.829 (<0.001)
-4.407 (<0.001)
-3.988 (<0.001)
-3.552(0.001)
-2.660 (0.011)
-6.602 (<0.001)

-2.475 (0.017)
-1.387(0.171)
-2.535(0.014)
-1.503 (0.139)
-1.513 (0.136)
-1.526 (0.133)
-1.094 (0.279)
-0.661 (0.511)
-2.417 (0.019)
-1.377 (0.174)
-2.544 (0.014)
-1.496 (0.141)
-1.493 (0.141)
-1.521 (0.134)
-1.072 (0.289)
-0.673 (0.504)
-2.432(0.019)
-1.385(0.172)
-2.544 (0.014)
-1.487 (0.143)
-1.554 (0.126)
-1.543 (0.129)
-1.095 (0.279)
-0.664 (0.510)
-2.480 (0.016)
-1.423 (0.161)
-2.599 (0.012)
-1.483 (0.144)
-1.515 (0.136)
-1.54 (0.130)

-1.061 (0.294)
-0.621 (0.537)
-2.400 (0.020)
-1.297 (0.200)
-2.478 (0.016)
-1.433 (0.158)
-1.470 (0.148)
-1.480 (0.145)
-1.073 (0.288)
-0.687 (0.495)
-2.469 (0.017)
-1.293 (0.202)
-2.665 (0.010)
-1.492 (0.142)
-1.412 (0.164)
-1.527(0.133)
-1.120 (0.268)
-0.679 (0.500)
-2.513(0.015)

0.324 (0.747)
-1.412 (0.164)
0.592 (0.556)
-0.320 (0.750)
-1.269 (0.210)
-0.464 (0.645)
-1.331(0.189)
-0.344 (0.733)
-1.482 (0.145)
-0.514 (0.610)
-2.060 (0.045)
-1.775 (0.082)
-1.054 (0.297)
-1.515 (0.136)
0.661 (0.512)
0.248 (0.805)
-0.712 (0.480)
-0.116 (0.908)
0.817 (0.418)
0.086 (0.932)
-1.489 (0.143)
-0.716 (0.477)
1.794 (0.079)
0.282 (0.779)
-2.383(0.021)
0.473 (0.638)
0.407 (0.685)
0.144 (0.886)
-0.510 (0.612)
0.899 (0.373)
0.236 (0.814)
1.026 (0.310)
-1.355 (0.182)
-0.201 (0.842)
-0.063 (0.950)
0.065 (0.948)
-1.135 (0.262)
-0.052 (0.959)
-0.517 (0.608)
0.189 (0.851)
-0.552 (0.583)
-2.241 (0.030)
0.33(0.743)
-0.18 (0.858)
2271 (0.028)
-0.403 (0.689)
-0.128 (0.899)
0.684 (0.497)
-1.445 (0.155)
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Cube BAGR right_temporal ~ 0.791(0.433)  15.444 (<0.001) -3.033(0.004)  -1.417(0.162)  -1.110(0.272)
Hidden  BAGR right temporal ~ 1.014 (0.315)  9.635(<0.001)  -5.331(<0.001)  -2.620(0.011)  -0.902 (0.372)
Twist BAGR right_temporal ~ -0.183 (0.856)  6.233(<0.001)  -3.789(<0.001)  -1.456(0.151)  -0.011 (0.991)
3D Cube BAGR right temporal ~ 1.417(0.163)  6.186(<0.001)  -4.397 (<0.001)  -1.630(0.109)  -1.332(0.189)
Rotating BAGR right temporal ~ -0.168 (0.867) 4.288 (<0.001)  -3.991(<0.001)  -1.506 (0.138)  0.077 (0.939)
Grid BAGR left cingulate  0.182(0.856)  10.635(<0.001) -3.531(0.001)  -1.076 (0.287)  -0.369 (0.714)
Sort BAGR left cingulate  0.667 (0.508)  9.662 (<0.001)  -2.683(0.010)  -0.746(0.459)  -0.481 (0.633)
Digits ~ BAGR left cingulate  0.318(0.752)  10.09 (<0.001)  -6.641 (<0.001)  -2.440 (0.018)  -0.345 (0.731)
Cube BAGR left cingulate  -1.008 (0.318)  15.291 (<0.001) -3.076 (0.003)  -1.441(0.156)  1.259 (0.214)
Hidden  BAGR left cingulate  -0.726 (0.472) 9.718 (<0.001)  -5376(<0.001)  -2.661 (0.010)  1.235 (0.223)
Twist BAGR left cingulate  -0.550 (0.585)  6.115(<0.001)  -3.860 (<0.001)  -1.546(0.128)  0.737 (0.465)
3D Cube BAGR left cingulate  0.251(0.803)  6.225(<0.001)  -4.348 (<0.001)  -1.474 (0.146)  -0.504 (0.617)
Rotating BAGR left cingulate  0.524 (0.603)  4.161 (<0.001)  -4.013 (<0.001)  -1.546(0.128)  -0.453 (0.652)
Grid BAGR right cingulate  -0.486 (0.629)  10.575 (<0.001) -3.564 (0.001) ~ -1.112(0.271)  0.353 (0.725)
Sort BAGR right cingulate  0.034 (0.973)  9.922(<0.001)  -2.625(0.012)  -0.706(0.484)  0.099 (0.921)
Digits ~ BAGR right cingulate  0.266 (0.792)  10.123 (<0.001) -6.658 (<0.001)  -2.447 (0.018)  -0.333 (0.741)
Cube BAGR right cingulate  -0.263 (0.794)  15.110 (<0.001) -3.116(0.003)  -1.39(0.171)  -0.248 (0.805)
Hidden  BAGR right cingulate  0.390 (0.698)  9.694 (<0.001)  -5.264 (<0.001)  -2.506 (0.015)  -0.424 (0.674)
Twist BAGR right cingulate  0.684 (0.497)  6.138 (<0.001)  -3.846(<0.001)  -1.493(0.142)  -0.737 (0.465)
3D Cube BAGR right cingulate  1.072(0.289)  6.119(<0.001)  -4.48 (<0.001)  -1.511(0.137)  -1.521(0.135)
Rotating BAGR right cingulate  0.262 (0.794)  4.352(<0.001)  -3.955(<0.001)  -1.533(0.131)  -0.056 (0.956)
Grid BAGR_left_insula 0.704 (0.485)  10.678 (<0.001) -3.568(0.001)  -1.153(0.254)  -0.543 (0.590)
Sort BAGR_left_insula -1.289(0.204)  10.083 (<0.001) -2.639(0.011)  -0.663 (0.510)  1.223 (0.227)
Digits ~ BAGR_left insula 1.611 (0.114)  10.372(<0.001) -6.716 (<0.001)  -2.564 (0.013)  -1.274 (0.209)
Cube BAGR_left_insula 0.282(0.779)  15.283 (<0.001) -3.064 (0.004)  -1.422(0.161)  -0.174 (0.863)
Hidden ~ BAGR left insula 0.406 (0.686)  9.749 (<0.001)  -5.526(<0.001)  -2.753 (0.008)  0.280 (0.781)
Twist BAGR_left_insula 0.570 (0.571)  6.193 (<0.001)  -3.848(<0.001)  -1.555(0.126)  -0.323 (0.748)
3D Cube BAGR left insula 1.625 (0.111)  6.310(<0.001)  -4.350(<0.001)  -1.510(0.137)  -1.862 (0.069)
Rotating BAGR_left_insula 1.102 (0.276)  4.277 (<0.001)  -3.982(<0.001)  -1.530(0.132)  -1.143 (0.258)
Grid BAGR right_insula -0.205(0.838)  10.677 (<0.001) -3.546(0.001)  -1.107 (0.273)  0.138 (0.890)
Sort BAGR right_insula 20291 (0.772)  9.912(<0.001)  -2.637(0.011)  -0.687 (0.495)  0.156 (0.877)
Digits  BAGR right insula -0.749 (0.457)  10.191 (<0.001) -6.797 (<0.001)  -2.417 (0.019)  1.071 (0.289)
Cube BAGR right_insula -0.928(0.358)  15.415(<0.001) -3.053(0.004)  -1.372(0.176)  0.779 (0.440)
Hidden  BAGR right insula 0.486 (0.629)  9.671 (<0.001)  -5.345(<0.001)  -2.560 (0.013)  -0.252 (0.802)
Twist BAGR right_insula 2.631(0.011)  6.561 (<0.001)  -3.843(<0.001)  -1.656 (0.104)  -2.528 (0.015)
3D Cube BAGR right insula -0.859(0.394)  6.227 (<0.001)  -4.392(<0.001)  -1.486(0.143)  0.889 (0.378)
Rotating BAGR right insula 1.919 (0.061)  4.470 (<0.001)  -3.970 (<0.001)  -1.635(0.108)  -2.041 (0.047)

Table 6. Summary statistics from the linear mixed effects models testing for associations between
cognitive performance and BAGR by time interaction, including age and sex in the models. The
reported p-values are uncorrected values, and no main effect of BAGR nor BAGR by time interaction
remained significant after FDR correction.

Discussion

Cognitive deficits are important predictors for outcome, independence and quality of life in

stroke survivors, and computerized cognitive training has been suggested among the
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candidate interventions that may alleviate them. However, the lack of widely adapted tools
for stratification, outcome prediction and treatment monitoring prevent an adequate
assessment of the effectiveness of such training. Advanced brain MRI provides various
candidate markers for disease monitoring and outcome prediction, integrating lesion specific
information and characterization of the integrity of the unaffected parts of the brain, which is
highly relevant for cognitive functions and long-term outcome. Here, we used brain age
prediction based on brain morphometry and machine learning to test the hypotheses that
patients with younger-looking brains would show preserved cognitive function compared to
patients with older-looking brains and show more beneficial treatment response.

Based on the notion that brain age prediction offers a sensitive summary measure of
brain health and integrity, we first tested the prediction accuracy and then the reliability in a
longitudinal context. The estimated performance of the 13 trained models within the training
set using a 10-fold cross-validation procedure suggested a relatively good model fit, with
correlations ranging from .84 to .61 for the model based on all T1 features and for the right
cingulate model respectively. Further, the models estimated brain age on the test sample also
suggested an acceptable model fit with some regional differences in performance with MAE
ranging from 5.50 to 8.80 for the most comprehensive model based on all T1 features and for
the model based on right cingulate features respectively. In addition, the age estimation based
on the median of the 12 regional models achieved the highest performance with a Pearson
correlation of » = .58 (CI=.40-.72, MAE=4.27).

In line with a recent implementation in patients with MS (Hegestel et al. 2019a), our
results demonstrated high reliability across all timepoints for the global and regional models
with ICC ranging from .70 to .86 for the right occipital and the right parietal models

respectively. The brain age estimation based on the median of the 12 regional model was
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amongst the most reliable models with an ICC of .89. across the two baselines and .83 across
all timepoints, outperforming the estimation based on all T1 features.

A particular challenge in clinical neuroimaging is that lesions may interfere with tools
for automated processing and brain segmentations. Here, to test for the influence of brain
lesions on BAGR estimation and reliability, we used outlier detection on the individual
features level to identify extreme observations and replace those extremes by means of
imputation using predictive mean matching. Comparisons between brain age from the raw
and imputed feature sets revealed only minimal influence of outliers on both brain age
estimates and reliability. Importantly, this suggests that our model predictions are robust to
gross segmentation errors caused by the lesions, which supports the feasibility of automated
brain age prediction in patient groups with brain disorders and lesions.

To test the hypotheses that patients with low BAGR at baseline show better cognitive
function and a more positive treatment response, we used seven summary scores derived
from a set of neuropsychological and computerized tests assumed to be sensitive to cognitive
aging at baseline and the performance gain during the course of the intensive training period
respectively. Contrary to our hypothesis, after corrections for multiple comparisons, linear
models revealed no significant associations between BAGR and summary scores from the
baseline assessment or performance gain. In line with a few previous studies (Boyle et al.
2019; Hogestol et al. 2019b), region specific models revealed putative associations between
summary scores for executive control and speed, working memory and the right cingulate
BAGR, as well as, attentional control and speed and the right temporal BAGR, suggesting
better cognitive performance with lower BAGR. In addition, region specific analysis revealed
non-significant putative associations between performance gain and left frontal and left
parietal BAGR, indicating more positive treatment response for patients with lower BAGR.

Although future studies are needed to confirm the results, these preliminary non-significant
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findings provide some support to the general notion that individuals with younger-appearing
brains, which may reflect relevant aspects of brain health and reserve, both perform better on
cognitive tests, and respond more positively to cognitive interventions.

In order to assess if cognitive gains in response to intensive cognitive training are
reflected in longitudinal changes in brain age during the course of the intervention, we tested
for interactions between BAGR and session on cognitive performance using linear mixed
effects models. Our analyses revealed a few putative associations between BAGR and
Cogmed performance, and also session by BAGR interactions on cognitive performance in a
longitudinal context. However, none of these associations and interactions remained
significant after correction for multiple comparisons, and the direction of the associations, if
any, did not seem to converge. Hence, our results did not provide significant support for our
hypothesis that cognitive gains would be reflected in longitudinal changes in brain age during
the course of the intervention.

While this study does not provide significant support for the utility of brain age
estimation as a sensitive measure for cognitive reserve and potential predictor for training
outcomes in stroke patients, our results suggest that region specific brain age estimations are
not only reliable measures, but might also be more informative than global brain age as a
measure of brain health. Future studies are needed to confirm the putative associations
between summary scores for executive control and speed (cluster 5) and working memory
(cluster 7) and the right cingulate BAGR, as well as summary scores for attentional control
and speed (cluster 4) and the right temporal BAGR; in addition to the weak associations
found between the left frontal and left parietal brain age with the rate of cognitive
improvement. In general, these findings are in line with our recent study suggesting that, by

capturing distinct measures of brain aging, tissue specific age prediction models might better
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inform us about the individual determinants and heterogeneity of the aging brain compared to
models collapsing several brain compartments (Richard et al. 2018).

The following methodological considerations should be taken into account while
interpreting the current results. Although our patient sample was highly heterogenous in
terms of location, extent of the lesions and stroke etiologies, most of them had small lesions.
Further studies are needed to confirm that the current approach for brain age prediction based
on automated brain morphometry is also feasible for patients with larger lesions, and how
stroke etiologies can impact BAGR and cognitive improvement, for instance progressive
vascular disease (small vessel and large vessel disease) may affect cognition prior to the
stroke (Thle-Hansen et al. 2014). In addition, the patients included in this study suffered from
moderate to mild stroke (NIHSS < 7 at hospital discharge), representing a high functioning
group with mild cognitive deficits and better overall prognosis, limiting the generalizability
of our findings. Although previous studies have reported links between cognitive function
and brain age in healthy controls, it is conceivable that the current associations would be
stronger had we sampled from a wider distribution in terms of stroke severity and cognitive
symptoms. The lack of control group prevents us from distinguishing between the time-
related changes and training-related changes (Kolskér et al. 2019), and, although tailored to
the current cognitive intervention regime, a longer interval between time points might have
increased sensitivity to detect relevant associations between cognitive changes and changes in
brain age.

In conclusion, reliable and non-invasive markers of brain health and cognitive
function are needed to help improving the current treatment programs targeting cognitive
deficits following stroke and other brain disorders. Although our current results do not
support an immediate clinical utility of brain age prediction in highly functioning stroke

patients, we speculate that using region specific brain age model as opposed to reducing the
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whole brain to one summary score might be as reliable and more informative potential
biomarkers of brain integrity and health. Importantly, our study supports the feasibility of
automated brain age prediction in patient groups with brain disorders and lesions by

highlighting the minimal impact of lesions on brain age estimations.
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