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ABSTRACT

Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that
control the assembly and morphology of these protrusions remain poorly understood. Previous
studies in intestinal epithelial cell lines suggested a role for F-BAR domain protein PACSINZ2 in
normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide
evidence that through its role in promoting apical endocytosis, this molecule functions in
controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of
microvilli and defects in microvillar ultrastructure, with membranes lifting away from rootlets of
core bundles. Dynamin2, a PACSINZ2 binding partner, and other endocytic factors were also lost
from their normal localization near microvillar rootlets. To determine if loss of endocytic
machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2
KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when
endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a
membrane lifting phenomenon reminiscent of that observed in PACSIN2 KO brush borders.
These findings lead to a new model where inward forces generated by endocytic machinery on

the plasma membrane control the membrane wrapping of cell surface protrusions.

Highlight for TOC

Apical microvilli increase the functional surface area of transporting epithelia. Here we report
that the F-BAR domain-containing protein PACSIN2, through its ability to promote apical
endocytosis, plays a critical role in controlling the morphology of intestinal brush border microvilli.
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INTRODUCTION

Apical specializations enable epithelial cells to carry out specific functions including solute
uptake and mechano-sensation. In the context of transporting epithelia, the apical surface is
occupied by actin bundle-supported microvilli: finger-like protrusions that serve to amplify
membrane surface area and maximize solute uptake capacity [1]. A well-studied example is
found in the intestinal tract where enterocytes, the most abundant epithelial cell type in the gut,
provide the sole site of nutrient absorption. Enterocytes build tightly-packed arrays of 1000s of
microvilli, known as a brush borders. Microvillar growth and ordered packing take place as
enterocytes differentiate, which occurs as they exit stem cell-containing crypt domains and move

onto the villus surface [2-4].

Microvillus formation requires coordination of a variety of activities, including actin filament
nucleation, elongation, and bundling, which presumably all occur at the interface with the apical
plasma membrane. Nucleation of the actin filaments that comprise core bundles is at least
partially controlled by the WH2 domain protein cordon bleu (COBL), which is required for normal
brush border assembly in intestinal epithelial cell lines [5-7]. COBL overexpression drives
microvillus elongation and also leads to protrusions that are straighter, with higher actin content
[6]. COBL localizes to microvillar rootlets, which are embedded in a dense sub-apical network
of intermediate filaments known as the terminal web [8]. The actin bundling protein fimbrin also
localizes to the terminal web and has been shown to link microvillar actin to keratin-19 in
intermediate filament [9]. Along with fimbrin, two other bundling proteins, villin and espin,
stabilize the core bundle in a region-specific manner [10-13] and may promote elongation by
slowing disassembly at the pointed ends [14]. Later in differentiation, epithelial-specific
protocadherins target to the tips of microvilli to promote their elongation and tight packing [15-
20]. Such intermicrovillar adhesion allows cells to generate the maximum number of protrusions

per unit apical surface area [21].

Another recently identified factor that functions in microvillar growth is the I-BAR (inverse-Bin-
Amphiphysin-Rvs) domain containing protein, insulin receptor tyrosine kinase substrate (IRTKS)
[22]. BAR domains are small, three helix bundles that form curved dimers ~20 nm in length,
which in turn form higher order oligomers capable of sensing and inducing membrane curvature
[23]. I-BAR domains exhibit a structural curvature that is well matched to membrane bending
away from the cell [24], like that found at the distal tips of microvilli. Indeed, IRTKS targets to

microvillar tips where it promotes elongation directly by interacting with the core actin bundle,
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and indirectly through its interactions with epidermal growth factor receptor pathway substrate 8
(EPS8), another tip targeting factor implicated in the elongation of finger-like protrusions [22, 25-
28].

In contrast to the curvature preference of I-BAR domains, F-BAR (Fes-CIP4 homology Bin-
amphiphysin-Rvs161/167) motifs prefer binding to membranes that curve in toward the
cytoplasm [29-31]. Protein kinase C and casein kinase substrate in neurons (PACSIN) family
members are F-BAR proteins that have been implicated in a variety of cellular processes,
including clathrin-dependent and independent endocytosis, caveolae formation, vesicle
trafficking, actin dynamics, and cell migration [32-38]. Although PACSINZ2 is widely expressed
[39], PACSINL1 exhibits specificity for neural tissues [40], whereas PACSINS is expressed in
heart and skeletal muscle [41]. All three PACSIN isoforms contain an N-terminal F-BAR domain,
along with a C-terminal SH3 domain. Interestingly, previous studies in intestinal epithelial cells
revealed that PACSIN2 localizes to the intermicrovillar region in the terminal web, which exhibits
a high degree of inward bending and also serves as the site of endocytosis [6]. Moreover,
through its SH3 domain, PACSIN2 also interacts with several binding partners with roles in actin
filament nucleation and endocytosis at the membrane-cytoskeleton interface (Fig 1A). One
example is the actin nucleator COBL, which interacts with PACSINZ2 in the terminal web. Loss-
of-function studies in intestinal epithelial cell lines suggest that PACSIN2 serves to recruit or
anchor COBL in this location [6]. COBL in turn uses its multiple WH2 domains to promote
elongation of core actin bundles [7]. In this context, PACSIN2 is critical for normal microvillar
growth as knocking down the molecule in cell culture models leads to defects in brush border
assembly [6]. A second SH3 binding partner that links PACSIN2 to actin assembly is N-WASP,
a nucleation promoting factor and adaptor protein that activates the ubiquitous branched actin
nucleator, ARP2/3 [42]. N-WASP interactions with PACSIN2 are believed to physically link the
actin cytoskeleton to membranes in processes such as endocytosis [43, 44]. Yet another link
between PACSIN2 and endocytosis is mediated by SH3 domain binding to the large GTPase
Dynamin2, which drives vesicle excision from the plasma membrane. PACSINZ2 binds to and
recruits Dynamin2 in the context of clathrin-mediated endocytosis and the internalization of
caveolae [45]. Other studies have shown that the F-BAR domain of PACSIN2 is capable of
oligomerizing and coating the necks of newly forming vesicles, which likely helps stabilize these

intermediates before excision [46].
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In the present study, we sought to develop our understanding of PACSINZ2 function in the
epithelial apical domain through the analysis of mice lacking PACSIN2 expression.
Ultrastructural studies of tissues from KO animals revealed a plasma membrane lifting
phenotype, where core actin bundles are no longer fully enveloped in membrane, and in some
cases fuse with adjacent protrusions. Moreover, Dynamin2 and other endocytic factors were lost
from their normal localization near the intermicrovillar endocytic region. To determine if the loss
of endocytic machinery could explain defects in brush border morphology, we examined the
impact of dynamin inhibition and PACSIN2 KD on live intestinal epithelial cells. We found that
when endocytic vesicle scission fails, tubules are pulled into the cytoplasm, and this leads
directly to a membrane lifting phenomenon similar to that observed in PACSIN2 KO brush
borders. Our findings illuminate a previously unrecognized link between endocytic function and
the morphology of the epithelial apical domain, and also suggest that inward forces generated
on the plasma membrane by endocytic machinery control the membrane wrapping of cell surface

protrusions.
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RESULTS

PACSIN2 KO disrupts COBL localization

To explore how PACSIN2 contributes to enterocyte apical architecture and brush border
assembly in vivo, we acquired mice expressing a PACSIN2tM1b(EUCOMMHmaU gjele from the KOMP
resource [47]. Tm1b mice are “CREed knockout first” and provide constitutive loss of expression
in all tissues. KO of PACSIN2 was confirmed using western blot analysis (Fig.1B). PACSIN2 KO
mice did not exhibit gross level phenotypes or defects in growth. Analysis of hematoxylin- and
eosin-stained swiss roll sections (Fig. 1C,D) and scanning electron microscopy (SEM) of
duodenal tissue sections (Fig. 1E,F) revealed that PACSIN2 KO tissues were morphologically
similar to WT. In frozen sections of WT tissue, PACSIN2 is strongly enriched at the base of the
brush border in the terminal web (Fig. 1G). However, this labeling is completely lost in KO mice,
further confirming loss of expression (Fig. 1H). As previous studies in intestinal epithelial cells
lines suggest that this F-BAR protein functions in the recruitment of COBL, we next sought to
determine if COBL was mislocalized in the absence of PACSIN2. As expected, COBL exhibits
high level enrichment in the terminal web of WT tissues (Fig. 11), but this labeling is significantly
perturbed in KO samples (Fig. 1J). This point was also confirmed with quantification of brush
border to cytosol intensity ratios, which were markedly reduced in KO samples (2.83 £ 0.26 WT
vs. 1.52 +£0.18 KO; Fig. 1K). Interestingly, in KO tissues COBL signal also appears redistributed
along the microvillar axis (dashed arrows, Fig. 1J), suggesting a role for PACSIN2 in anchoring
COBL near microvillar rootlets. These results confirm the loss of PACSIN2 in the KO intestinal
tissue and are consistent with previous studies indicating that PACSINZ2 is needed for efficient

targeting of COBL to the apical domain.

Loss of PACSINZ2 decreases apical and basolateral F-actin levels

Given that PACSIN2 and its binding partners have been implicated in actin network assembly
[35, 48], we next sought to determine if KO tissues exhibited perturbations in the actin
cytoskeleton. Indeed, our initial staining of KO frozen tissue sections (Fig. 1H) suggested that
apical F-actin levels (assessed with phalloidin staining) were reduced, especially in the distal
regions of villi. To examine this in greater detail, we performed volumetric imaging of whole
mounted segments of intestinal tissue stained for F-actin. 3D reconstructions of individual villi
revealed several striking defects in KO samples (Fig. 2A,B). Levels of F-actin appeared reduced

throughout the apical domain, both in the brush border and at the lateral margins of cells (Fig.
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2A,B). We also noted that the apical surfaces of individual cells exhibited a domed appearance,
curving outward towards the lumen (Fig. 2B). This phenotype was even more evident when we
examined the apical surface of KO tissues using SEM (Fig. 1E,F). In higher-resolution tilted 3D
projections, KO brush borders demonstrated an apparent thinning of the F-actin signal, with
certain regions exhibiting significantly reduced microvillar density relative to WT controls (Fig.
2C,E). Line-scans drawn through the single plane images (Fig. 2C,E, bottom panels) showed an
almost 2-fold decrease in the PACSIN2 KO F-actin signal with several gaps throughout
(maximum F-actin peak signal of 4095 for WT vs. 2156 for KO; Fig. 2D,F). Further quantification
using thresholding and segmentation on multiple tissue sections also indicated a marked
decrease in brush border F-actin intensity in PACSIN2 KO tissues (mean intensity units 1912 +
323 for WT vs. 1123 + 239 for KO; Fig. 2G-I). Together these data indicate that in the absence
of PACSINZ2, actin polymerization at the apical surface is compromised.

Given the striking reduction of apical F-actin signal observed in PACSIN2 KO brush
borders, we also examined F-actin levels in actin networks in other parts of the cell (Fig. 2G,H).
Mean F-actin intensity values, measured using a threshold that included all cellular structures
basolateral to the brush border, were also markedly reduced (127.2 + 34.5 WT vs. 82.7 + 10.0
KO; Fig. 2J). Interestingly, ratios of brush border/cell body F-actin intensities were unchanged in
KO relative to WT samples (Fig. 2K), suggesting that the overall distribution of actin polymer
was similar. Further analysis of the cell body F-actin signal revealed that most of the intensity is
derived from the basolateral margins, at sites of cell-cell contact (Fig. S1E-J). Linescan analysis
through multiple cells revealed that junctional F-actin levels were also significantly reduced at
these sites (Fig. S1G,J). Consistent with this, we also noted defects in the localization of tight
and adherens junction markers, ZO-1 and E-cadherin; both probes exhibited significantly lower
levels of junctional enrichment relative to WT tissue sections (Fig. S1K-M). These data indicate
that in addition to promoting the growth of microvilli on the apical surface, PACSIN2 also drives
the accumulation of F-actin at cell margins, where it promotes accumulation of factors that

contribute to cell-cell adhesion.

Endocytic machinery is mislocalized in the absence of PACSIN2

In addition to scaffolding factors such as COBL and N-WASP, which promote actin
polymerization in the apical and basolateral compartments, PACSIN2 has also been implicated
in endocytic function in epithelial cells. Therefore, we sought to determine if the sub-apical

endocytic compartment in the terminal web was disrupted in the absence of PACSIN2. Under
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normal conditions, Dynamin2 is highly enriched at the base of microvilli in the terminal web, the
site of endocytic vesicle formation and fission (Fig. 3A). However, upon KO of PACSINZ2, this
striking band of enrichment is lost (Fig. 3B), which is also reflected in a significant decrease of
the brush border to cytosol ratio for this signal (2.04 £ 0.76 WT vs. 1.20 + 0.25 KO; Fig. 3C). We
also stained sections for VAMP4 (vesicle associated membrane protein 4), which has
established roles in endo- and exocytosis [49, 50]. Similar to Dynamin2, VAMP4 exhibits striking
enrichment at the base of the brush border in WT samples (Fig. 3D), but marked loss from this
region in KO tissues (Fig. 3E); brush border to cytosol ratios confirmed the redistribution of
VAMP4 in the absence of PACSIN2 (1.86 + 0.52 WT vs. 1.31 + 0.45 KO; Fig. 3F). We also
examined the localization of RAB14, another factor implicated in endocytic trafficking at the
apical membrane of polarized epithelial cells [51]. Once again, this marker demonstrated
decreased apical localization in the PACSIN2 KO tissue and a decreased brush border to cytosol
ratio (Fig. S2). Thus, in addition to disrupting F-actin assembly throughout the enterocyte, these
results show that loss of PACSIN2 disrupts the normal enrichment of endocytic machinery

including Dynamin2, VAMP4, and RAB14, in the sub-apical terminal web.

Loss of PACSIN2 disrupts microvillar ultrastructure and organization

To understand how loss of PACSIN2 impacts brush border architecture, we employed
transmission electron microscopy (TEM) to visualize WT and PACSIN2 KO tissues at the
ultrastructural level (Fig. 4A,B). TEM imaging of sections parallel to the microvillar axis allowed
us to perform detailed morphometry. Strikingly, microvilli in PACSIN2 KO brush borders were
significantly shorter relative to WT (1.93 £ 0.35 um WT vs. 1.08 + 0.31 um KO; Fig. 4C). We also
found that the extent of membrane coverage, calculated as the percent of core actin bundle
enveloped in membrane, was significantly reduced in KO brush borders (80.22 + 3.16% WT vs.
66.34 + 7.10% KO; Fig. 4B,D). Reduced membrane coverage was also linked to longer rootlets
(0.47 £0.12 um WT vs. 0.54 + 0.15 um KO; Fig. 4E). In addition, we noted a much more irregular
membrane profile in the intermicrovillar region (Fig. 4F,G). In KO enterocytes, the straightness
of this profile was significantly reduced compared to WT controls (0.87 £ 0.08 um WTvs. 0.72 +
0.11 um KO; Fig. 4H). Upon closer inspection of the PACSIN2 KO terminal web, we found an
increased number of membrane invaginations, most likely stalled endocytic intermediates,
extending into the cytoplasm (1.98 + 1.07 WT vs. 4.25 + 1.87 KO; Fig. 41). Combined with our

staining data, these results indicate that loss of PACSIN2 disrupts endocytosis, which is
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associated with profound effects on microvillar morphology and the extent of membrane
coverage.

To further analyze the organization of PACSIN2 KO brush borders, we performed SEM
to visualize the apical surface. En face images immediately revealed perturbations in microvillar
packing, with more apparent free space between adjacent protrusions (Fig. S3). We also
examined inter-microvillar spacing by calculating nearest neighbor distances (NND) for large
numbers of protrusions. KO brush borders exhibited greater NND values with higher variability
relative to WT controls (116.9 + 14.6 nm WT vs. 131.8 + 18.4 nm KO; Fig. S3C). To examine
the impact of this increase in NND on the organization of microvilli, we calculated fast Fourier
transforms (FFTs) as previously described [21]. FFTs generated by WT brush borders exhibited
the expected hexagonal pattern with six prominent first order spots (Fig. S3D). However, FFTs
generated from KO brush borders produced a pattern that lacked first order spots, indicating a
loss of ordered packing (Fig. S3E). These data reveal that microvilli in the PACSIN2 KO brush
borders are less densely packed and no longer organized in the hexagonal arrays that are a

defining feature of normal enterocyte brush borders.

Inhibition of endocytosis reduces microvillar membrane coverage

Our measurements indicate that under normal conditions, the distal ~80% of a microvillus actin
core bundle is enveloped in apical plasma membrane (Fig. 4D). In the absence of PACSINZ2,
membrane coverage is significantly reduced with values that are much more variable across a
population of protrusions (Fig. 4D). By promoting endocytic activity and/or anchoring the
intermicrovillar membrane to the actin cytoskeleton, PACSIN2 could play a direct role in
controlling the extent of microvillar membrane coverage. Because mechanisms that control
microvillar membrane coverage remain poorly defined, we sought to test this hypothesis using
the Ls174T-W4 (W4) intestinal epithelial cell culture model, which has been engineered to form
microvilli upon exposure to doxycycline [52]. Similar to WT intestinal tissue, W4 cells
demonstrate localization of PACSIN2 and Dynamin2 in the terminal web (Fig. S4A,B).

We first sought to determine if PACSIN2 KD in W4 cells generated a phenotype similar
to what we observed with PACSIN2 KO mouse intestinal tissues. W4 cells transduced with
scramble control shRNA or shRNA targeting PACSIN2 were fixed and stained to label the
plasma membrane and underlying actin cytoskeleton, and then imaged using super-resolution
structured illumination microscopy (SIM). KD of PACSINZ2 significantly decreased microvillar

membrane coverage relative to scramble controls (78.3 + 8.6% KD vs. 89.1 + 6.2% SCR) (Fig.
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5A-C). We also imaged PACSIN2 KD W4 cells live using spinning disk confocal microscopy
(SDCM). Remarkably, time-lapse acquisitions revealed the formation of long aberrant
membrane tubules, presumably stalled endocytic intermediates, which originated in the
intermicrovillar region (Fig. 5E). Coincident with the formation of these tubules, we noted
significant apical membrane lifting, which exposed the rootlets of adjacent microvillar core actin
bundles, in a manner that was strikingly reminiscent of membrane coverage perturbations
observed in PACSIN2 KO brush borders (Fig. 4). Thus, in terms of the microvillar membrane
coverage, PACSIN2 KD in W4 cells phenocopies the defects observed in brush borders from
PACSIN2 KO mice.

We next set out to determine if the microvillar membrane coverage defects observed in
PACSIN2 KO tissues and KD W4 cells were due specifically to perturbations in endocytic activity.
For these experiments, we exposed differentiating W4 cells to Dynasore, a small molecule
inhibitor of the GTPase domain of Dynamin2 that is expected to prevent the scission of endocytic
vesicles from the apical membrane. Dynasore-treated W4 cells were fixed and stained to
visualize the actin cytoskeleton and plasma membrane, and then imaged using SIM.
Remarkably, exposure to Dynasore decreased microvillar membrane coverage significantly
relative to control DMSO-treated cells (77.2 + 9.1% Dynasore vs. 89.0 + 6.9% DMSO; Fig. 5F-
H). We also used SDCM to image the impact of Dynasore treatment on live W4 cells. Similar to
that observed in PACSIN2 KD W4 cells, we noted the formation of long aberrant membrane
tubules, which again originated in the intermicrovillar region (Fig. 5J). The formation of these
tubules also coincided with significant membrane lifting and exposure of microvillar core bundle
rootlets (Fig. 5J). We verified this effect using a second inhibitor of endocytosis, Pitstop 2, which
generated similar aberrant tubule formation and membrane lifting (Fig. S4D). Together, these
findings uncover a previously unrecognized link between PACSIN2-dependent endocytic activity
and the extent of microvillar membrane coverage. These data further suggest that inward forces
on the apical membrane, normally generated by endocytic machinery, serve to control microvillar

morphology.
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DISCUSSION

PACSIN family proteins have long been implicated in the regulation of actin assembly in the
context of membrane deformation during endocytosis and vesicle formation. Indeed, in the initial
report, PACSINL1 (primarily expressed in neural tissues) co-immunoprecipitated with synaptic
vesicle endocytic factors including dynamin, synaptojanin, and synapsin-1, as well as N-WASP,
an actin nucleation promoting factor that activates the ARP2/3 complex [53]. All of these
interactions were mediated through the PACSIN1 C-terminal SH3 domain [53]. During
endocytosis, PACSINs are believed to recruit N-WASP, which in turn targets ARP2/3 to generate
bursts of actin filament polymerization in the space between the plasma membrane and nascent
budding vesicles. Combined with activity of the Dynamin GTPase, which constricts the necks of
forming vesicles, these bursts of actin polymerization likely generate additional mechanical force
for efficient vesicle scission [43, 48]. Although PACSINs have been implicated in various forms
of endocytosis, including activity dependent bulk endocytosis (ADBE) and clathrin-mediated
endocytosis [36], PACSIN2 has more recently been implicated in caveolar endocytosis, where
it binds to the necks of nascent caveolae and recruits Dynamin2 to promote vesicle scission [33,
34, 46]. In support of an endocytic role in transporting epithelia, previous studies localized
PACSIN2 to the sub-apical terminal web region of native enterocytes in the mouse small
intestine and human W4 cells in culture [6]. In the terminal web, endocytic vesicles are formed
from the inwardly curving membrane found between neighboring microvilli [54]. Indeed, SIM
imaging of differentiated W4 cells revealed robust PACSIN2 localization in the intermicrovillar
region, immediately between adjacent core actin bundles [6]. In the present study, we found that
markers of endocytosis which are normally enriched in the terminal web, including Dynamin2,
VAMP4, and RAB14, were also lost from this region in the absence of PACSINZ2. Together, all
of these data establish a role for PACSINZ2 in the normal targeting of endocytic machinery to the

sub-apical compartment.

In addition to a role in apical endocytic vesicle formation, PACSIN2 was also found to play a role
in recruiting the linear actin nucleator, COBL, to the terminal web. In the W4 cell culture model,
COBL loss-of-function impairs brush border assembly, whereas overexpression promotes the
formation of microvillar actin cores in a manner that depends on the number WH2 domains [6,
7]. COBL is also recruited to the apex of epithelial cells coincident with the earliest events in

brush border assembly [6]. Consistent with its role in targeting COBL to the terminal web, we
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found significantly lower levels of COBL at the base of the brush border in PACSIN2 KO tissues.
PACSIN2 KO enterocytes also exhibited reduced apical actin levels as assessed with F-actin
reporter, phalloidin (Fig. 2). Confocal volume projections showed a clear thinning of brush border
F-actin signal, with reduced microvillar density and regions that appeared to lack microvilli
completely (Fig. 2C,E). In the ultrastructural analysis of KO tissues, we also noted a significant
decrease in microvillar length (Fig. 4C). Together these findings suggest that KO of PACSINZ,
and subsequent loss of COBL from the terminal web, impairs the production of actin filaments

that form microvillar actin core bundles.

Remarkably, measurements of phalloidin intensity from other parts of PACSIN2 KO enterocytes
revealed lower levels of F-actin, although the relative ratio of apical/cell body F-actin signal
remained unchanged in response to PACSIN2 KO (Fig. 2K). Because most of the cell body
signal derives from the basolateral margins, we propose that these perturbations are induced by
loss of N-WASP stimulated ARP2/3 activity at the basolateral cortex. In support of this, previous
studies showed that inactivation of ARP2, a component of the ARP2/3 complex, decreased actin
polymerization and impairs the morphology and stability of epithelial adherens junctions [55, 56].
Inhibition of actin polymerization also impairs adherens junction reassembly and reduces E-
cadherin enrichment [57-59]. Interestingly, in our studies, the loss of junctional actin correlates
with the loss of ZO-1 and E-Cadherin signal in the PACSIN2 KO mouse (Fig. S4), indicating a

disruption in normal junctional stability and architecture.

Perhaps the most unexpected finding from the current investigation was the striking perturbation
in microvillar ultrastructure in PACSIN2 KO brush borders. In PACSIN2 KO brush borders, we
observed a significant decrease in microvillar length and the extent of membrane coverage, i.e.
the fraction of core actin bundle encapsulated in plasma membrane. These changes were also
accompanied by a corresponding increase in the length of exposed rootlet. How does loss of
PACSIN2 impact microvillar structure and membrane coverage? While it is known that
membrane-cytoskeleton linkers, such as Myola and Ezrin, stabilize physical contact between
the plasma membrane and the underlying actin core, factors that control the extent of membrane
coverage are poorly understood. A clue to the mechanism might come from our observation of
a higher frequency of membrane invaginations originating from the intermicrovillar region in
PACSIN2 KO brush borders. Because PACSIN2 and its binding partners (e.g. Dynamin)
normally stimulate vesicle scission at these sites, the elongated invaginations that extend
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through the terminal web are most likely stalled endocytic structures, an interpretation consistent
with their tubular morphology. Indeed, PACSIN2 KD in cultured cells has been shown to
generate elongated caveolae [33]. If the entire apical membrane is composed of a single
continuous surface, the formation of exaggerated tubules in the terminal web would directly
reduce the amount of membrane material available for encapsulating microvilli and thus,
compromise the extent of membrane coverage. To test this possibility more directly, we modeled
the defects observed in PACSIN2 KO tissues in the W4 intestinal epithelial cell line. PACSIN2
KD in this context also lead to reduced membrane coverage of microvilli. Strikingly, we also
observed that the inward pulling of exaggerated tubules temporally coincides with loss of
membrane coverage on microvilliimmediately adjacent to these sites. Because we were able to
phenocopy these events with two distinct inhibitors of endocytosis, we conclude that the
exaggerated tubules observed in PACSIN2 KO and PACSIN2 KD cells are in fact stalled
endocytic intermediates. Together our findings highlight a mechanistic link between sub-apical

endocytic activity and the membrane coverage of apical microvilli.

Interestingly, a role for inward pulling forces on the apical plasma membrane in shaping finger-
like protrusions has been highlighted in previous studies of the pointed-end directed motor,
MYOG6. MYOG localizes to the terminal web where it interacts with endocytic machinery near the
pointed-ends of microvillar core actin bundles, including DAB2, and GIPC [60]. In Snell’s Waltzer
mice, which lack functional MYOG6, inner ear hair cells exhibit a membrane lifting phenotype
similar what we observe in PACSIN2 KO brush borders [61]. These cells also manifest with
fused or coalesced protrusions, where multiple core bundles appear to be enveloped in a single
tubule of plasma membrane. Later studies with the same model system revealed similar
phenomena in the enterocyte brush border, with marked decreases in the membrane coverage
of core actin bundles and more general disorder in the terminal web [62]. In combination with
the data we present here, these studies lead to a model whereby the formation and steady-state
morphology of finger-like protrusions such as microvilli and stereocilia, are controlled by a
balance of outward and inward mechanical forces that impinge on the plasma membrane.
PACSINZ likely limits these forces by promoting the budding and scission of endocytic vesicles
from the intermicrovillar membrane. Whether PACSINZ2 functions in the same pathway as MYO6

is not known, but functional links between these two factors should be the focus of future studies.
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MATERIALS AND METHODS

Frozen Tissue Preparation

Segments of WT and KO intestine were removed and flushed with PBS and pre-fixed for 10
minutes with 4% paraformaldehyde (PFA) to preserve the tissue structure. The tube was then
cut along its length, sub dissected into 0.5 um square chunks, fixed for an additional 30min in
4% PFA at RT, and washed 3 times in PBS. Samples were then gently placed on top of a 30%
sucrose solution in TBS and allowed to sink to the bottom overnight at 4°C. Specimens were
then swirled in three separate blocks of OCT (Electron Microscopy Sciences), oriented in a block
filled with fresh OCT, and snap-frozen in dry ice-cooled acetone. Samples were cut in 10 um

sections and mounted on slides for staining.

Cell Culture

Ls174T-W4 cells (female Hs colon epithelial cells) were cultured in DMEM with high glucose and
2 mM L-glutamine supplemented with 10% tetracycline-free fetal bovine serum (FBS), G418 (1
mg/ml), blasticidin (10 pg/ml), and phleomycin (20 ug/ml). The cell line was obtained from Dr.
Hans Clevers (Utrecht University, Netherlands) and has not been additionally authenticated. All

cells were grown at 37°C and 5% CO2.

Transfections and lentivirus production

All transfections were performed using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instructions and the cells were allowed to recover overnight (ON). Lentivirus was
generated by co-transfecting HEK293FT cells (Fetal Hs embryonic epithelial cells; T75 flasks at
80% confluency) with 6 pg of pLKO.1 PACSIN2 shRNA KD plasmids (Open Biosystems;
TRCNO0000037980), 4 ug of psPAX2 packaging plasmid, and 0.2 ug of pMD2.G envelope
plasmid using FUGENE 6 (Promega). Cells were incubated up to 48 hrs and then lentivirus-
containing media was collected and concentrated with Lenti-X concentrator (Clontech). To
transduce W4 cells in T25 flasks, lentiviral ShRNAs with 6 ug/ml polybrene (Sigma) was added
dropwise to the media. After a 24-hour incubation, the media was changed and resupplemented
with lentiviral ShRNAs for an additional 24 hours. The cells were then seeded into 6-well plates
with glass coverslips and incubated ON in the absence or presence of 1 ug/ml doxycycline, and

then prepared for immunofluorescence.
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Immunofluorescence
Frozen tissue sections of WT and PACSIN2 KO intestinal tissue were washed in phosphate-
buffered saline (PBS) three times and permeabilized for 10 min with 0.1% Triton X-100/PBS at
RT. The tissue sections were then blocked with 10% bovine serum albumin (BSA) at 37°C for 2
hours and washed once with PBS. Primary antibodies (listed below) were diluted in 10%
BSA/PBS and incubated with cells at 4°C O/N, followed by four washes with PBS. Tissue
sections were then stained with phalloidin and secondary antibodies (listed below) in 1%
BSA/PBS for 2 hrs at RT, washed three times with PBS and mounted with Prolong Gold Antifade
mounting media (P36930; Invitrogen). Paraffin-embedded small intestinal tissue sections of WT
and PACSIN2 KO were deparaffinized using Histo-clear solution (Fisher) and rehydrated in a
descending graded ethanol series. Slides were then subject to an antigen retrieval step
consisting of boiling for 1 hr in a solution of 10 mM Tris (pH 9.0) and 0.5 mM EGTA. Slides were
then washed in PBS three times and stained O/N at 4°C with primary antibodies (see below) in
10% BSA/PBS. After washing with PBS four times, samples were stained with secondary
antibodies in 1% BSA/PBS for 2 hrs at RT. Slides were then washed four times with PBS and
mounted in ProLong Gold Antifade mounting media.

For SIM imaging, cells were plated on glass coverslips and allowed to adhere for at least
6 hrs. They were then washed with pre-warmed PBS and fixed with warm 4% PFA/PBS for 15
min at 37°C. Cells were then washed three times with PBS and permeabilized with 0.1% Triton
X-100/PBS for 15 min at RT. Cells were once again washed three times with PBS and blocked
for 1 hr at 37°C in 5% BSA/PBS. Primary antibodies (listed below) were diluted in 1% BSA/PBS
and incubated with cells at 37°C for 1 hr, followed by four washes with PBS. Cells were then
incubated for 1 hr with secondary antibodies and phalloidin (listed below) at RT. Coverslips were
then washed four times with PBS and mounted on glass slides in ProLong Gold Antifade
Mounting Media. For live cell spinning disk confocal imaging of W4 cells, previously transfected
cells were plated on glass-bottom dishes with 1 pg/ml of doxycycline and allowed to adhere for
6 hours. If drug treatments were performed, 80uM DMSO/ 80uM Dynasore (D7693; Sigma-
Aldrich) or 30uM DMSO/ 30uM Pitstop 2 (SML1169; Sigma-Aldrich) were diluted into 1ml media
and added to glass-bottom dish of W4s 10 minutes before acquisition. For live imaging of
scramble/ PACSIN2 KD cells, the protocol above was used however cells were seeded into
glass-bottom dishes instead of 6-well plates and induced with 1ug/ml doxycycline and allowed

to adhere for at least 4-6 hours before imaging. Movies of single W4 cells were acquired every
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5 seconds for 30 minutes or continuously for 4 minutes. All live cells were maintained in a humid
environment at 37°C and 5% CO2 using a stage-top incubation system. Image acquisition was
controlled with Nikon Elements software.

The following dilutions were used for primary antibodies for staining: anti-PACSIN2 (2.5
pg/ml, HPA049854; Sigma-Aldrich), anti-COBL (1ug/ml, HPA019033; Sigma-Aldrich), anti-
Dynamin2 (4 ug/ml, NBP2-47477; Novus Biologicals), anti-villin (4ug/ml; Santa Cruz #sc-66022),
anti-E-Cadherin (0.5 pg/ml; BD Biosciences #610182), anti-ZO-1 (5ug/ml, 61-7300; Thermo
Fisher), anti-VAMP4 (2ug/ml, HPA050418; Sigma-Aldrich), anti-RAB14 (4ug/ml; Invitrogen
#PAb-55306). The following dilutions were used for secondary antibodies and cell dyes for
staining: goat anti-rabbit Alexa Fluor 488 F(ab’)2 Fragment (2 ug/ml, A11070; Molecular Probes),
goat anti-mouse Alexa Fluor 488 F(ab’)2 Fragment (2 ug/ml, A11017; Molecular Probes), Alexa
Fluor 568—phalloidin (1:200, A12380; Invitrogen), or Wheat Germ Agglutin Oregon Green (WGA)
(2ug/ml, W67-48; Life Technologies).

Light Microscopy

Confocal microscopy was performed using a Nikon A1R laser-scanning confocal microscope
equipped with 60x/1.4 NA and 100x/1.49 NA objectives. SIM was performed using a Nikon N-
SIM with an Apo TIRF 100x/1.49 NA objective. All images used for quantitative comparisons
were prepared with equal treatment, acquired with identical parameters (e.g. pinhole diameter,
detector gain), and processed in an identical manner. Richardson-Lucy deconvolution of image
volumes (20 iterations) was performed using Nikon Elements software. Live-cell imaging of W4
cells was performed on a Nikon Yokogawa CSU-X1 spinning disk confocal microscope. Images

were contrast enhanced and cropped using ImageJ software (NIH).

Electron Microscopy

Segments of WT and KO intestine were placed into 0.1M HEPES (pH 7.3) and sub dissected
into 2mm chunks at RT. Samples were placed into scintillation vials and incubated in RT fix
buffer (4% PFA, 2.5% glutaraldehyde, 2mM CacClz in 0.1M HEPES) for 1 hr and washed 3 times
in HEPES buffer. Samples were incubated with 1% tannic acid/HEPES for 1 hr, washed 3 times
with ddH20 followed by incubation with 1% osmium tetroxide/ddH20 for 1 hour. Samples were
then washed 3 times with ddH20, incubated in 1% uranyl acetate/ddH20 for 30 min then washed
with ddH20. Samples were dehydrated in a graded ethanol series and then dried using critical

point drying. Samples were then mounted on aluminum stubs and coated with gold/palladium
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using a sputter coater. Imaging was performed using a Quanta 250 Environmental SEM
operated in high vacuum mode with an accelerating voltage of 5 kV. All EM reagents were

purchased from Electron Microscopy Sciences.

Image Analysis and Statistics

All image analysis and signal intensities measurements from image data were performed using
FIJI or Nikon Elements software. To perform intensity analyses (Figures 1, 2 and 6), the brush
border and/ or cytosol were thresholded in villar confocal images using Nikon Elements software
and the mean intensity numbers per villus were plotted; brush border to cytosol enrichment was
defined as the ratio of these two mean intensities. Microvillar length measurements were
performed on projected SIM images (Supplemental Figure 3) or on TEM images (Figure 4) by
tracing individual microvillar actin bundles using FIJI. For W4 cell microvillar length analysis, at
least 10 microvillar actin bundles were scored per cell and at least 25 cells measured per
experiment. Microvillar membrane coverage measurements were performed on projected W4
SIM images (Figure 5) or on TEM images by dividing the length of a microvilli covered in
membrane by the entire actin bundle from the rootlet to the tip. Nearest neighbor distance
measurements (Figure 3) were performed by thresholding microvilli in SEM images using Nikon
Elements. Data were analyzed with a D’Agostino and Pearson omnibus normality test to
determine normal distribution and normally distributed data were statistically analyzed to
determine significance using the unpaired Student’s t test. Welch'’s correction was used in cases
where data sets did not exhibit equal variance. Statistical analyses performed are stated in the
figure legends. All graphs were generated and statistical analyses performed using Prism (v.7,
GraphPad).

Animal Studies
Animal experiments were carried out in accordance with Vanderbilt University Medical Center

Institutional Animal Care and Use Committee guidelines.
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MOVIE LEGENDS

Movie S1, Related to Figure 5. Live imaging of Ls174T-W4 cell treated with 80 uM DMSO.
Spinning disk confocal imaging of an induced Ls174T-W4 cell expressing EGFP-CAAX (green,
membrane) and mCherry-UtrCH (magenta, F-actin). Cell was treated with 80 uM DMSO ~10
min prior to acquisition. Movie was acquired every 30 seconds for 60 minutes and is played at
12.5 FPS. Scale bar, 5 um.

Movie S2, Related to Figure 5. Live imaging of Ls174T-W4 cell treated with 80 uM
Dynasore.

Spinning disk confocal imaging of an induced Ls174T-W4 cell expressing EGFP-CAAX (green,
membrane) and mCherry-UtrCH (magenta, F-actin). Cell was treated with 80 uM Dynasore ~10
min prior to acquisition. Movie was acquired every 30 seconds for 90 minutes and is played at
12.5 FPS. Scale bar, 5 um.

Movie S3, Related to Figure 5. Live imaging of scramble control shRNA Ls174T-WA4 cell.
Spinning Disk confocal imaging of an induced, scramble control Ls174T-W4 cell expressing
EGFP-CAAX (green, membrane) and mCherry-UtrCH (magenta, F-actin). Movie was acquired
every 30 seconds for 60 minutes and is played at 12.5 FPS. Scale bar, 5 ym.

Movie S4, Related to Figure 5. Live imaging of PACSIN2 shRNA Ls174T-W4 cell.

Spinning Disk confocal imaging of an induced, IRTKS KD Ls174T-W4 cell expressing EGFP-
CAAX (green, membrane) and mCherry-UtrCH (magenta, F-actin). Movie was acquired every
30 seconds for 90 minutes and is played at 12.5 FPS. Scale bar, 5 ym.

Movie S5, Related to Figure S4. Live imaging of Ls174T-W4 cell treated with 30 uM Pitstop
2. Spinning disk confocal imaging of an induced Ls174T-W4 cell expressing EGFP-CAAX
(green, membrane) and mCherry-UtrCH (magenta, F-actin). Cell was treated with 30 uM Pitstop
2 ~10 min prior to acquisition Movie was acquired every 30 seconds for 90 minutes and is played
at 12.5 FPS. Scale bar, 5 ym.
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Figure 1. PACSIN2 KO disrupts COBL localization.
(A) PACSIN2 domain diagram depicting SH3 binding partners and prospective functions. (B)

Western blot of WT and PACSIN2 KO tissue with GAPDH as a loading control. (C, D) H&E-


https://doi.org/10.1101/686816
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/686816; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

stained swiss roll sections of paraffin-embedded small intestine from WT and PACSIN2 KO
mice. Scale bars, 2mm. (E, F) Scanning EM images of intestinal tissue samples from WT (E)
and PACSIN2 KO (F) mice. Scale bars, 100 um for i, 200 um for ii, and 10 um for iii; purple
asterisks in KO Bi indicate bare spaces in the epithelium between adjacent villi. (G, H)
Endogenous PACSIN2 (green) and phalloidin (F-actin, magenta) labelling of WT and PACSIN2
KO frozen tissue sections. Arrows highlight PACSIN2 signal at the base of the brush border in
WT tissue (G). Scale bars, 50 um for main panels, 10 um for zooms. (I, J) Endogenous COBL
(green) and phalloidin (magenta) labelling of WT and PACSIN2 KO frozen tissue sections. Solid
arrows highlight COBL signal at the base of the brush border in WT tissue (I), dashed arrows
highlight mislocalization of COBL signal in KO tissue (J). Scale bars, 10 um. (K) Quantification
of the ratio of COBL brush border (BB) to cytosol signal intensity between the WT and PACSIN2
KO tissue; n = 7 tissue sections per condition. Error bars indicate + SD; p value was calculated
using a t test (***p<0.001).
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Figure 2. Loss of PACSIN2 decreases apical and basolateral F-actin levels.

(A, B) 3D projections of 50 um sections of WT (A) and PACSIN2 KO (B) whole mount tissue.
Zooms highlight differences in cell surface morphology and actin intensity between WT and KO.
Actin signal is inverted to simplify visualization; Scale bars, 50 um for main panels, 10 um for
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zooms. (C, E) 3D reconstructed volumes of 8 um sections (top) and single image planes (bottom)
of phalloidin stained WT and PASCIN2 KO frozen tissue sections. Scale bars, 25 um. (D, F)
Plots of raw 8-bit intensity data from an 80 um line drawn through the brush border of the single
plane images. PACSIN2 KO tissue has ~2-fold decrease in brush border actin intensity. (G, H)
Phalloidin labelling of WT and PACSIN2 KO frozen tissue sections. Right panels show
representative thresholding of brush border and cell body used in quantification (I-K). Scale bars,
50 um. (I) Quantification of brush border (BB) actin intensity between WT and PACSIN2 KO
tissue; 9 tissue sections per condition. (J) Quantification of cell body actin intensity between the
WT and PACSIN2 KO tissue; 9 tissue sections per condition. (K) Quantification of the percent
of actin in the cell body to total actin between WT and PACSIN2 KO; 9 tissue sections per
condition. Error bars indicate + SD; p values were calculated using a t test (**p<0.01,
****p<0.0001).
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Figure 3. Endocytic machinery is mislocalized in the absence of PACSIN2.

(A, B) Single confocal image planes of WT and PACSIN2 KO paraffin-embedded tissue sections
stained with anti-Villin (magenta) to highlight the brush border and anti-Dynamin2 (green). Solid
arrows in zoom panels highlight Dynamin2 signal at the base of the brush border in WT tissue
(A), dashed arrows highlight mislocalization of Dynamin2 signal in KO tissue (B); Scale bars, 50
um for main panel, 10 um for zoom. (C) Quantification of the ratio of Dynamin2 brush border
(BB) to cytosol signal intensity between WT and PACSIN2 KO (n = 48 measurements). (D, E)
Single confocal image planes of WT and PACSIN2 KO paraffin-embedded tissue sections
stained with anti-Villin (magenta) and anti-VAMP4 (green). Solid arrows in zoom panels highlight
VAMP4 signal at the base of the brush border in WT tissue (D), dashed arrows highlight
mislocalization of VAMPA4 signal in KO tissue (E); Scale bars, 50 um for main panel, 10 um for
zoom. (F) Quantification of the ratio of VAMP4 brush border (BB) to cytosol signal intensity
between WT (n = 45 measurements) and PACSIN2 KO (n = 50 measurements). Error bars
indicate + SD; p values were calculated using a t test (****p<0.0001).
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Figure 4. Loss of PACSIN2 disrupts microvillar ultrastructure and organization.

(A) TEM image of a WT brush border in a plane parallel to the microvillar axis; teal dashed box
indicates region highlighted in zoom panel below. Scale bar, 1 um. (B) TEM images of PACSIN2
KO brush borders in a plane parallel to the microvillar axis; purple dashed boxes indicate region
highlighted in zoom panels below. Arrowhead in zoom 1 highlights membrane lifting, arrows in
zoom 2 highlight endocytic events. Scale bars, 1 um. (C) Quantification of microvillar length in
WT (n =82) and KO (n = 102); measurements were selected so that only protrusions with actin
cores fully visible along their length were scored. (D) Quantification of membrane coverage, the
percentage of an actin core wrapped in membrane, in WT (n = 83) and KO (n = 102) microvilli.
(E) Quantification of microvillar rootlet length in WT (n = 83) and KO (n = 102) microvilli. (F, G)
Representative images of WT (F) and KO (G) tissue used in the quantification of membrane
profile straightness (H); scale bars, 0.5 um. Teal and purple lines highlight the decreased
membrane straightness in KO. (H) Quantification of plasma membrane profile straightness at
the base of WT (n = 102) and KO (n = 88) microvilli; total membrane length was measured over
1 um units. (I) Quantification of the number of endocytic events, or structures that resemble
stalled endocytic intermediates, at the plasma membrane of WT (n = 44 image fields) and KO
(n = 44 image fields) brush borders. Error bars indicate + SD; p values were calculated using a
t test (**p<0.01, ****p<0.0001).


https://doi.org/10.1101/686816
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/686816; this version posted June 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

~
'

MvTip C 100 . .
- ¢

MV Membrane
coverage (%)
% 8

WGA t } Rootlet

F-actin

LS
WGA ., 5 le* }Rootlet
F-actin S MV Base

0 min
EGRP-CAAX
mCh-UtrGH

PACSIN2.
»
D,
EGFP-CGASX ¢
mCh-UtrCH

"

coverage (%)

MV Membrane

}Rootlet
MV Base

W(/\ £~ FRootlet
F-actin MV Base

EGFP-CAAX
MCh-"tHrCHe

a

5

0 rin
EGFP-CAAX~
mCh-UtrCH

Figure 5. Inhibition of endocytosis reduces microvillar membrane coverage.

(A, B) SIM projections of scramble control (A) and PACSIN2 KD (B) W4 cells stained for WGA
(membrane, green) and phalloidin (magenta). Brackets in zoom panels indicate actin rootlet
lengths. Dashed lines denote where line scans were drawn through a single microvillus to show
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increased actin rootlet length; membrane (green), actin (magenta). Scale bars, 5 um. (C)
Quantification of microvillar membrane coverage; scramble n = 77 microvilli from 10 cells;
PACSIN2 KD n = 88 microvilli from 11 cells. (D, E) Montages of scramble control and PACSIN2
KD W4 cells expressing EGFP-CAAX box (last 10aa of the GTPase HRas; membrane, green)
and mCherry-UtrCH (F-actin, magenta). Arrows in the PACSIN2 KD cell (E) indicate membrane
tubules forming into the cytosol. Scale bars, 5 um. (F, G) SIM projections of DMSO control (F)
and 80 uM Dynasore (G) treated W4 cells stained for WGA (membrane, green) and phalloidin
(magenta). Brackets in zoom panels indicate actin rootlet lengths. Dashed lines denote where
line scans were drawn to show increased actin rootlet length; membrane (green), actin
(magenta). Scale bars, 5 um. (H) Quantification of microvillar membrane coverage; DMSO n =
104 microvilli from 13 cells; Dynasore n = 105 microvilli from 12 cells. (I, J) Montages of DMSO
control and 80 uM Dynasore treated W4 cells expressing EGFP-CAAX box (membrane, green)
and mCherry-UtrCH (F-actin, magenta). Arrows in the Dynasore treated cell (J) indicate
membrane tubules forming into the cytosol. Scale bars, 5 um. Error bars indicate + SD; p values
were calculated using a t test (****p<0.0001).
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