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Abstract 
Summary:  TRIBES is a user-friendly pipeline for relatedness detection in genomic data. TRIBES is 
the first tool which is both accurate up to 7th degree relatives (e.g. third cousins) and combines 
essential data processing steps into a single user-friendly pipeline. Furthermore, using a proof-of-
principle cohort comprising amyotrophic lateral sclerosis cases with known relationship structures and 
a known causal mutation in SOD1, we demonstrated that TRIBES can successfully uncover disease 
susceptibility loci. TRIBES has multiple applications in addition to disease gene mapping, including 
sample quality control in genome wide association studies and avoiding consanguineous unions in 
family planning. 
Availability: TRIBES is freely available on GitHub: https://github.com/aehrc/TRIBES/ 
Contact: natalie.twine@csiro.au 
Supplementary information: XXXX 
 

 

 

4. Introduction  

Accurately classifying the degree of relatedness between pairs of 

individuals has important applications, including empowering disease 

gene discovery in linkage analyses (Teare et al. 2005), removal of 

relatives in genome wide association studies (GWAS) (Voight & 

Pritchard 2005) and avoiding consanguineous unions which lead to poor 

health outcomes (i.e. family planning) (Shalev 2019). Several tools exist 

to infer the degree of relatedness between individuals using two main 

approaches: genomic regions that are identical-by-descent (IBD) and 

population allele frequency-based tools. GERMLINE (Gusev et al. 2009) 

and Refined IBD (Browning & Browning 2013) identify genomic 

segments that have been inherited from a common ancestor IBD, which 

can be parsed to additional tools such as ERSA (Li, Glusman, Hu, et al. 

2014) to infer relationships. On the other hand, KING (Manichaikul et al. 

2010) and PLINK (Purcell et al. 2007) use population allele frequencies 

to infer relatedness measures.  

A key benefit of allele frequency-based tools is the fast compute time 

and minimal data pre-processing, however these tools show poor 

accuracy in identifying relatives more distant than 3rd degree. In 

contrast, IBD segment-based tools demonstrate significantly better 

accuracy for distant relatedness (>3rd degree), although often require the 

use of additional tools to perform ad-hoc data pruning, phasing of 

chromosomes and IBD inference.  

Currently no tools are available that are reliable beyond 3rd degree and 

combine the necessary data processing steps for accuracy and ease of 

use. Being able to accurately and routinely perform relationship 

classification is especially relevant with recent increases in large-cohort 

whole genome sequencing (WGS) studies, which in turn increases the 

risk of related samples within a study. Accurate relationship 

classification is also imperative for linkage analysis to identify disease 

linked loci. 

To address this we have developed a user-friendly pipeline, TRIBES, 

which combines data pruning, phasing of genomes, IBD segment 

recovery, masking of artefactual IBD segments and accurate relationship 

estimation into one tool. We demonstrate the accuracy of TRIBES on a 

simulated population, consisting of 1,290 samples and 18,480 known 

relationship pairs, as well as the tool’s ability to create novel insights 

using an amyotrophic lateral sclerosis (ALS) data set (Henden et al. 

2019). 
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Figure 1.  Performance of relationship estimation in 30 simulated pedigrees with (A) TRIBES 1.0.0 and (B) KING 2.0.0. The size of the circles indicates the percentage of pairs whose 

estimated degrees of relationship are identical to the reported relationship. Absolute count of relationships is shown in red above the circle. The dashed blue line along the diagonal 

indicate relationship pairs for which the reported and estimated degree are the same. PO: parent offspring. UR: unrelated individuals.

 

4. Methods 

The input data to TRIBES is a quality control filtered, joint sample 

variant call format (VCF) file. TRIBES then follows the steps below for 

relatedness inference, where the full pipeline is described in detail in the 

Supplementary Material. 

3. Variants in the VCF file are filtered according to quality 

control metrics using bcftools (v1.9) (Li et al. 2009; Li 2011). 

3. The filtered VCF is then phased using BEAGLE (v4.1) 

(Browning & Browning 2007) with or without a reference 

dataset.  

3. The phased VCF is converted to PLINK map format with  

vcftools (v0.1.16) from which IBD segments are then 

estimated using GERMLINE (v1.5.3) (Gusev et al. 2009). 

3. IBD segments located within regions with high amounts of 

artefactual IBD are masked and segment endpoints are 

adjusted.  

3. Adjusted IBD segments are then summed to estimate 

relationships between pairs of individuals.  

3. TRIBES returns the relatedness estimates for all pairs of 

individuals as well as result files for all intermediate analysis 

steps. 

3. Results 

3.1 TRIBES is more accurate than KING given a fixed workflow  

Haplotype data was generated for 18,480 pairs of related individuals 

from a simulated 15-generation pedigree and used to compare the 

accuracy of TRIBES (v 1.0.0) and KING (v. 2.0.0) (Figure 1, 

Supplementary Material). Given a fixed workflow we demonstrated that 

TRIBES is more accurate than KING at 3rd through to 15th degree 

relatives. Particularly beyond 4th degree relatives, the accuracy of KING 

drops off precipitously, calling 41.27% of known 5th degree and 10.17% 

of 6th degree relationships correctly, while TRIBES called 56.06% and 

43.64% of 5th  

and 6th degree relationships correctly. We have also applied TRIBES to 

an ALS disease cohort comprising known relationships (Henden et al. 

2019) where we demonstrated 99% accuracy (allowing 1 degree of error) 

up to 7th degree relatives, where 5th degree relatives showed 73.02% 

accuracy and 6th degree relatives showed 61.02% accuracy.  

Furthermore, TRIBES discovered novel relationships in the ALS disease 

cohort (Henden et al. 2019).  

 

 

 

3.2 TRIBES is user-friendly due to built-in data pruning and 

flexible workflow  

TRIBES includes built-in data pruning and phasing that would otherwise 

need to be performed using multiple tools prior to IBD analysis with 

GERMLINE and relationship estimation. The entire analysis is 

performed using a single command that includes an option for 

multithreading to reduce computation time. TRIBES leverages workflow 

tool Snakemake (Köster & Rahmann 2012), which provides for 

reproducibility and seamless scalability to server, cluster, grid and cloud 

environments, as well as allows for flexible customisation of the data 

processing pipeline steps and their parameters. 

 

3.3 Masking of artefactual IBD enables disease locus discovery 

We observed regions of the genome which had disproportionately high 

amounts of shared IBD (Supplementary Figure 2A and B), in accordance 

with previous studies (Li, Glusman, Huff, et al. 2014). These regions 

were generally consistent between the unrelated 1000 Genomes ‘EUR’ 

cohort (Supplementary Figure 2A) and an independent ALS pedigree 

(Henden et al. 2019) (Supplementary Figure 2B), indicating these 

regions are indeed artefactual. Hence, TRIBES incorporates masking of 

artefactual IBD prior to relationship estimation, similarly to ERSA 2.0 

(Li, Glusman, Huff, et al. 2014). This not only significantly improves the 

accuracy of relationship estimates, but also allows for disease gene 

mapping, where a locus with high amounts of IBD sharing is observed 

over the known ALS gene SOD1 (Supplementary Figure 2c), where all 

individuals in this cohort carry one of three disease-causing SOD1 

mutations (Henden et al. 2019). 

 

4. Conclusion 
We have developed a novel relatedness tool, TRIBES, which addresses 

the need for a relatedness discovery platform that is accurate beyond 3rd 

degree relatives, easy-to-use and flexible. TRIBES is an end-to-end 

platform that can process large cohorts of WGS data, incorporating 

multiple tools and methodologies into a single, straightforward pipeline. 

Furthermore, TRIBES can substantially narrow the search space for 

disease loci in cohorts of related samples, making it an essential tool for 
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researchers investigating the genetic origins of disease. TRIBES has 

further utility in both sample quality control prior to GWAS and for 

avoiding consanguineous unions in family planning. 
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