

1 **Striking differences in virulence, transmission, and sporocyst growth**
2 **dynamics between two schistosome populations.**

3
4

5 **Authors:** Winka LE CLEC'H*, Robbie DIAZ, Frédéric D. CHEVALIER, Marina McDEW-WHITE,
6 Timothy J.C. ANDERSON

7

8 **Affiliation:** Texas Biomedical Research Institute, P.O. Box 760549, 78245 San Antonio, Texas, USA.

9

10 **Email addresses:**

11 Winka LE CLEC'H: winkal@txbiomed.org

12 Robbie DIAZ: robbied@txbiomed.org

13 Frédéric D. CHEVALIER: fcheval@txbiomed.org

14 Marina McDEW-WHITE: mwhite@txbiomed.org

15 Timothy J.C. ANDERSON: tanderso@txbiomed.org

16

17 *Corresponding author

18

19

20

21

22

23

24

25 **ABSTRACT:**

26 **Background:** Parasite traits associated with transmission success, such as the number of infective stages
27 released from the host, are expected to be optimized by natural selection. However, in the trematode
28 parasite *Schistosoma mansoni*, a key transmission trait – the number of cercariae larvae shed from infected
29 *Biomphalaria spp.* snails – varies significantly within and between different parasite populations and
30 selection experiments demonstrate that this variation has a strong genetic basis. In this study, we compared
31 the transmission strategies of two laboratory schistosome population and their consequences for their snail
32 host.

33 **Methods:** We infected inbred *Biomphalaria glabrata* snails using two *Schistosoma mansoni* parasite
34 populations (SmBRE and SmLE), both isolated from Brazil and maintained in the laboratory for decades.
35 We compared life history traits of these two parasite populations by quantifying sporocyst growth within
36 infected snails (assayed using qPCR), output of cercaria larvae, and impact on snail host physiological
37 response (i.e. hemoglobin rate, laccase-like activity) and survival.

38 **Results:** We identified striking differences in virulence and transmission between the two studied parasite
39 populations. SmBRE (low shedder (LS) parasite population) sheds very low numbers of cercariae, and
40 causes minimal impact on the snail physiological response (i.e. laccase-like activity, hemoglobin rate and
41 snail survival). In contrast, SmLE (high shedder (HS) parasite population) sheds 8-fold more cercariae
42 (mean \pm se cercariae per shedding: 284 \pm 19 vs 2352 \pm 113), causes high snail mortality, and has strong
43 impact on snail physiology. We found that HS sporocysts grow more rapidly inside the snail host,
44 comprising up to 60% of cells within infected snails, compared to LS sporocysts which comprised up to
45 31%. Cercarial production is strongly correlated to the number of *S. mansoni* sporocyst cells present within

46 the snail host tissue, although the proportion of sporocyst cells alone does not explain the low cercarial
47 shedding of SmBRE.

48 **Conclusions:** We demonstrated the existence of alternative transmission strategies in the *S. mansoni*
49 parasite consistent with trade-offs between parasite transmission and host survival: a "boom-bust" strategy
50 characterized by high virulence, high transmission and short duration infections and a "slow and steady"
51 strategy with low virulence, low transmission but long duration of snail host infections.

52

53 **KEY WORDS:** *Schistosoma mansoni*, *Biomphalaria glabrata*, life history traits, virulence, transmission,
54 hemoglobin rate, laccase-like activity, survival.

55

56 **BACKGROUND:**

57 Models predicting the evolution of virulence for parasites transmitted horizontally assume
58 generally that transmission rate (i.e. the probability for an infected host to infect a susceptible new host)
59 and virulence (i.e. the increase in host mortality due to infection) are positively correlated, as higher
60 production of infective stages may be more harmful for the host [1–4]. For most of the virulence evolution
61 models, such a trade-off shapes the relationship between parasite transmission and host survival (the
62 higher the virulence of the parasite, the shorter the host survival, and in turn the parasite lifespan) [5] for
63 both micro [6] and macroparasites [7]. This transmission / virulence trade-off model provides a general
64 and intuitive framework for understanding within-species variation in parasite virulence [5,8].

65 Studying production of larvae of schistosome, a human trematode parasite, offers the dual benefits
66 of empirically testing the trade-off model for a macroparasite and improving our understanding of a key
67 transmission-related trait in a biomedically important helminth parasite. Schistosomes infect over 200
68 million people in 78 countries (WHO fact sheet No. 115,
69 <http://www.who.int/mediacentre/factsheets/fs115/en/>), causing schistosomiasis. This chronic and
70 debilitating tropical disease ranks second behind malaria in terms of morbidity and mortality; there is no
71 licensed vaccine and only one drug (Praziquantel) is available to treat patients. Schistosome parasites have
72 a complex lifecycle, involving a freshwater snail (intermediate host) and a mammal (definitive host).
73 When parasite eggs are expelled with mammal feces or urine in water, miracidia larvae hatch and actively
74 search for its snail vector. Larvae penetrate the snail head-foot, differentiate into mother sporocysts and
75 then asexually proliferate to generate daughter sporocysts. This intramolluscan parasite stage, while
76 growing, metabolizes snail tissues, such as the hepatopancreas and the albumen gland [9]. These organs
77 are involved in the protein and egg production, and schistosome infection results in castration of infected
78 snails [10]. After approximately a month of infection, daughter sporocysts start to release cercariae, the

79 mammal infective larval stage of the parasite. These exit through the snail body wall and are released into
80 the water. This complex lifecycle can be maintained in the laboratory using rodent definitive hosts and
81 freshwater snail intermediate hosts.

82 Lewis and colleagues [11] measured production of *S. mansoni* cercariae from infected
83 *Biomphalaria glabrata* snails in the laboratory, and determined that this transmission trait varies
84 significantly within and between different parasite populations. Moreover, Gower and Webster [12]
85 performed replicated selection experiments in the laboratory and showed that cercarial shedding from the
86 snail host responded extremely rapidly to selection, with a 7-fold change in cercarial production within
87 three generations. These observations suggest that variation in transmission stage production in *S. mansoni*
88 has a strong genetic basis. Following the transmission / virulence trade-off model, we hypothesized that
89 *S. mansoni* parasites producing many cercariae will negatively affect snail health and cause high virulence.
90 Virulence could occur because intramolluscan schistosome stages consume host tissue to produce large
91 numbers of cercariae, and/or because cercariae damage tissue when they are released from snails. On the
92 other hand, parasites that produce less larvae, but for a longer period of time, will be less virulent toward
93 their snail host and have a lower negative impact on their physiology and survival.

94 In this study, we investigated the transmission and virulence of two laboratory *S. mansoni*
95 populations both originating from South America. We observed striking differences in the number of
96 cercariae produced by these two populations of schistosome parasites and showed that these transmission-
97 related life-history traits have a genetic basis. We then investigated why cercarial production varies
98 between these two populations by investigating growth of sporocysts within each infected snails. Finally,
99 we highlight a negative relationship between transmission stage production and snail survival, health and
100 immune parameters. Our results support the presence of a virulence / transmission trade-off in *S. mansoni*
101 / *B. glabrata*.

102 **METHODS:**

103 **Ethics statement**

104 This study was performed in strict accordance with the recommendations in the Guide for the Care
105 and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the
106 Institutional Animal Care and Use Committee of Texas Biomedical Research Institute (permit number:
107 1419-MA-3).

108

109 **Biomphalaria glabrata snails and Schistosoma mansoni parasites**

110 Uninfected inbred albino *Biomphalaria glabrata* snails (line Bg26 derived from 13-16-R1 line
111 [13] were reared in 10-gallon aquaria containing aerated freshwater at 26-28°C on a 12L-12D photocycle
112 and fed *ad libitum* on green leaf lettuce. All snails used in this study had a shell diameter between 8 and
113 10 mm, as snail size can influence cercarial outcome [14,15]. For all the experiments presented in this
114 study, we used inbred snails to minimize the impact of snail host genetic background on the parasite life
115 history traits. *B. glabrata* snails Bg26 were inbred over 3 generations through selfing [13], so their
116 genomes are expected to be 87.5% identical by descent.

117 The SmLE schistosome population (high shedder, HS) was originally obtained by Dr. J. Pellegrino
118 from an infected patient in Belo Horizonte (Minas Gerais, Brazil) in 1965 and has since been maintained
119 in laboratory [11], using *B. glabrata* NMRI population as intermediate host and Syrian golden hamster
120 (*Mesocricetus auratus*) as definitive hosts. The SmBRE schistosome population (low shedder, LS) was
121 sampled in the field in 1975 from Recife (East Brazil) [16] and has been maintained in the laboratory in
122 its sympatric albino Brazilian snail host BgBRE using hamsters or mice as the definitive host.

123

124 **Measurement of *S. mansoni* life history traits and virulence**

125 We compared larval output (i.e. cercarial production) and intramolluscan development (i.e. sporocyst
126 development and growth) of SmLE (HS) and SmBRE (LS) parasite populations using the same inbred
127 snail population in two independent cohort experiments (Figure 1). We also measured the impact of these
128 parasitic infections on the snail host by quantifying snail survival and physiological responses (i.e. laccase-
129 like activity and hemoglobin rate in the hemolymph).

130

131 **1. Cohort 1: *S. mansoni* cercarial output and impact on snail survival and physiological response:**

132 *a. S. mansoni cercarial production over time*

133 To compare cercarial production over the time for the SmLE (HS) and SmBRE (LS) parasite
134 populations, we exposed 384 inbred *B. glabrata* Bg26 to single miracidia. Miracidia of each population
135 were hatched from eggs recovered from 45-day-infected female hamster livers infected. The livers were
136 homogenized and the eggs were filtered, washed with normal saline (154 mM sodium chloride (Sigma),
137 pH 7.5), transferred to a beaker containing freshwater, and exposed to artificial light to induce hatching.
138 We exposed individual snails (192 per parasite populations) to single miracidia in 24 well-plates for at
139 least 4 hours, and exposed snails were maintained in trays (48 per tray) for 4 weeks. We used single
140 miracidia for infections to avoid competition effects and obtain the phenotype corresponding to a single
141 parasite genotypes. We covered trays with black plexiglass lids after 3 weeks to reduce cercarial shedding.
142 At four weeks post-exposure, we placed snails in 1 mL freshwater in 24 well-plates under artificial light
143 for 2 hours to induce cercarial shedding. We isolated each infected snail in a 100 mL glass beaker filled
144 with ~50 mL freshwater and kept them in the dark until week 7 post-infection. We replaced freshwater as
145 needed (typically every two days) and fed snails *ad libitum*. To quantify cercarial shedding, we placed
146 infected snails in 1 mL freshwater in a 24 well plate under artificial light (as described above) every week
147 for 4 weeks (week 4 to 7). For each well, we sampled three 100 μ L aliquots, added 20 μ L of 20X normal

148 saline and counted the immobilized cercariae under a microscope. We multiplied the mean of the
149 triplicated measurement by the dilution factor (10) to determine the number of cercariae produced by each
150 infected snail. We also extracted DNA from week 4 cercariae to determine parasite gender by PCR [17].

151 *b. B. glabrata snail survival*

152 We evaluated survival of the infected snails in cohort 1 over the course of the infection. We
153 compared the survival of infected snails with a group of 48 uninfected control snails. We monitored snail
154 survival every day from the first cercarial shedding day (28 days after exposure) to 22 days after the first
155 cercarial shedding (50 days after exposure).

156 *c. Snail physiological response to parasitic infection: hemolymph laccase-like activity and*
157 *hemoglobin rate*

158 In week 7, 3 days after the last cercarial shedding, we collected hemolymph as described in Le
159 Clec'h et al., 2016 [18] from all surviving snails infected with SmLE (HS) and SmBRE (LS), as well as
160 from uninfected Bg26 controls maintained under the same conditions. We measured both laccase-like
161 activity (phenoloxidase (PO) activity, known to be involved in invertebrate immunity) and the
162 hemoglobin (protein carrying oxygen in *B. glabrata* hemolymph) rates in the hemolymph of each snail
163 infected with SmLE (HS), SmBRE (LS) or uninfected control.

164 We measured the total laccase-like activity as described in Le Clec'h et al., 2016 [18]. In brief, we
165 combined 10 μ L of freshly collected hemolymph to 40 μ L of cacodylate buffer and 40 μ L of bovine
166 trypsin (1mg/mL) in a 96-well optical plate (Corning). Each sample was coupled to a control where 10 μ L
167 of the same hemolymph aliquot was combined to 40 μ L of 10 mM diethylthiocarbamate (a specific
168 inhibitor of PO enzymes) and 40 μ L of bovine trypsin. We incubated plates in the dark, at 37°C for 45
169 minutes, then added 120 μ L of the freshly prepared *p*-phenylenediamine substrate (50 mM). After 2 hours
170 incubation at 37°C, before reaching the plateau phase of the laccase-like activity, we measured

171 dopachrome formation at $\lambda=465$ nm using a SpectraMax M1 (Molecular Devices). A substrate auto-
172 oxidation control was also performed for each experiment, where the hemolymph sample was replaced by
173 10 μL of distilled water. The value of this substrate auto-oxidation control were subtracted from sample
174 and control values.

175 To quantify the hemoglobin rate, we centrifuged the hemolymph (5 minutes, at 300 x g at 4°C) to
176 pellet the hemocytes (i.e. the immune cells), as the hemoglobin is not sequestered in cells but free in the
177 plasma [19]. We collected the plasma in a fresh microtube placed on ice. The hemoglobin rate was
178 determined by measuring the optical density (OD) of the hemoglobin solution at $\lambda=410$ nm, the maximum
179 absorption of *B. glabrata* hemoglobin [19]. In a 96-well optical plate (Corning), we combined 190 μL of
180 PBS 1X to 10 μL of plasma. A blank control, containing only 200 μL of PBS 1X was also performed for
181 each assays. The value obtained for this blank control was subtracted from the sample wells (i.e.
182 containing plasma).

183

184 **2. Cohort 2: *S. mansoni* sporocyst time course and growth dynamics:**

185 *a. Cohort design*

186 Evaluating sporocyst development within infected snails requires the sacrifice of snails at multiple
187 time points. We exposed a second cohort of 1,392 Bg26 inbred snails to single miracidia from our two *S.*
188 *mansonii* populations. We exposed 384 snails to SmLE (HS) and 1,008 to SmBRE (LS). The numbers are
189 unequal because SmLE (HS) shows much higher infection rates than SmBRE (LS). Snails were kept in
190 trays (48 per tray). We sampled snails at week 3 post-exposure, one week prior to cercarial maturation.
191 To ensure sampling of infected snails, we randomly picked 30 snails exposed to SmLE (HS) and 100
192 snails exposed to SmBRE (LS). These sampling numbers take in account the snail susceptibility to 1
193 parasite larva.

194 In week 4, we placed each infected snail in 1 mL of freshwater in 24-well plates under artificial
195 light for 2 hours to induce cercarial shedding and identify infected snails. From week 4-8, we isolated
196 infected snails in trays (48 per tray) under a black lid. Each week, we randomly picked 6 infected snails
197 from each parasite population and counted the cercariae released by each snail as described in section 1a.

198 We cleaned the shell of sampled snails with 70% ethanol, snap-froze them individually in liquid
199 nitrogen, and store them at -80°C for further molecular analysis.

200 *b. gDNA extractions from exposed snails*

201 To prepare exposed snails for molecular analysis, we crushed snails individually in a sterile, liquid
202 nitrogen-cooled mortar and pestle to create a fine, homogenized tissue powder, and kept 100 µL of powder
203 into 1.5 mL tubes at -80°C until gDNA extraction. We extracted the gDNA using a DNeasy Blood &
204 Tissue Kit (Qiagen) according to manufacturer instructions, with tissue lysis for 20 minutes at 56°C. We
205 quantified the gDNA using a Qubit dsDNA BS Assay Kit (Invitrogen).

206 *c. Multiplex PCR to identify infected snails*

207 To screen for infected prepatent snails (week 3, Figure 1), we performed a multiplex PCR on the
208 gDNA recovered from snails powder. We used the *α-tubulin 2* *S. mansoni* gene (accession number
209 S79195.1; gene number Smp_103140; [20]) as specific parasite marker and the P-element induced wimpy
210 testis (*piwi*) gene from *B. glabrata* [21] as specific snail host marker. We identified the *piwi* gene
211 (BGLTMP009852) in the *B. glabrata* genome (Bglab1 assembly) using the blast module of VectorBase
212 [22] and 3 ESTs showing similarities with *piwi* (accession numbers FC855819.1, FC856421.1, and
213 FC856380.1).

214 Multiplex PCR reactions consisted of 8.325 µL sterile water, 1.5 µL 10x buffer, 1.2 µL dNTP (2.5
215 mM each), 0.9 µL MgCl₂, 0.5µL of each primer (10 µM) for both markers (*piwi* F: 5'-
216 CTTCTCCAATGCTACCATCAAAG-3'; *piwi* R: 5'-TTTCATCCTCCACACTGACAA-3'; *α-tubulin 2*

217 F: 5'-CGACTTAGAACCAATGTTGAGA-3'; α -tubulin 2 R: 5'-GTCCACTACATTGATCCGCT-3'),
218 0.075 μ L of *Taq* polymerase (TaKaRa) and 1 μ L of gDNA template using the following program: 95°C
219 for 5 minutes, [95°C for 30s, 55°C for 30s, and 72°C for 30s] \times 35cycles, 72°C for 10 minutes. Infected
220 snails exhibit a two band pattern at 361 bp and 190 bp on an agarose gel while uninfected snails show one
221 band at 361 bp (Supplementary figure 1). All the primers were designed using PerlPrimer v1.21.1 [23].

222 *d. qPCR to quantify the proportion of sporocyst cells within infected snails*

223 The daughter sporocysts that release cercariae are intertwined in the snail tissue, making them
224 difficult to isolate and study so they have been neglected relative to other parasite life stages. Using a
225 custom quantitative PCR assay, we quantified the relative proportion of parasite cells within infected snail
226 at different time points of the infection. This qPCR assay provides a relative measure of parasite growth
227 within infected snails.

228 We quantified a single copy gene from the parasite (α -tubulin 2, see section 2.c, [20]) and from
229 the snail (*piwi*, see section 2.c, [21]). The qPCR assay used a different set of *piwi* primers (*piwi* F [5'-
230 AATCATCTCATTCAACCTGTCCAT-3'] and *piwi* R [5'-ATTTCGCCATCATAGCCC-3'])
231 amplifying a 107 bp amplicon and the same α -tubulin 2 primers as described in the end-point PCR assay.
232 We conducted qPCR in duplicate for each reaction (i.e. samples and standards). Reactions consisted of 5
233 μ L SYBR Green PCR master mix (Applied Biosystems), 3.4 μ L sterile water, 0.3 μ L of each primer (10
234 μ M) and 1 μ L of standard PCR product or sample gDNA. We used the following program: 95°C for 10
235 minutes, [95°C for 15s and 60°C for 1 minute] \times 40 cycles followed by a melting curve step (15s at 95°C
236 and then rising in 0.075°C increments/second from 60°C to 95°C), to check for the uniqueness of the
237 product amplified. We plotted standard curves using seven 10-fold dilutions of a purified α -tubulin 2 PCR
238 product for *S. mansoni* parasite (α -tubulin 2 copies. μ L⁻¹: 2.69 \times 10¹ - 2.69 \times 10⁷) and seven 10-fold dilutions
239 of a purified *piwi* PCR product for *B. glabrata* (*piwi* copies. μ L⁻¹: 2.60 \times 10¹ - 2.60 \times 10⁷). PCR products for

240 standard curves were generated using TaKaRa Taq R001 AM kit (Clonetech) and the
241 manufacturer's protocol (PCR cycles: 95°C for 5 min, [95°C for 30 s, 60°C for 30 s, 72°C for 30 s] × 35
242 cycles, 72°C for 10 min), purified using SigmaSpin Sequencing Reaction Clean-Up kit (Sigma) following
243 the manufacturer's protocol, and quantified using Qubit dsDNA BR Assay kit (Invitrogen). We estimated
244 the number of copies in the PCR products as follows: PCR product length × (average molecular mass of
245 nucleotides (330 g.mol⁻¹) × 2 strands) × Avogadro constant. The number of *α-tubulin* 2 and *piwi* copies
246 in each sample was estimated according to the standard curve (QuantStudio Design and Analysis
247 Software). Both snail and parasite genes quantified are present as a single copy gene, so the number of
248 gene copies quantified corresponds to the number of genomes of each organism. As both parasite and snail
249 are diploid, the number of genomes is directly proportional to the number of cells from each organism.
250 The proportion of parasite cells within infected snails, our relative measure of parasite growth, was
251 calculated as follows:

$$252 \quad \text{Proportion}_{\text{parasite}} = N_{\text{parasite}} / (N_{\text{parasite}} + N_{\text{snail}})$$

253 Where N is the number of parasite or snail cells measured by qPCR.

254

255 **Statistical analysis**

256 All statistical analyzes and graphs were performed using R software (version 3.5.1). When data
257 were not normally distributed (Shapiro test, $p < 0.05$), results were compared with a Kruskal-Wallis
258 followed by Dunn's multiple comparison test or simple pairwise comparison (Wilcoxon-Mann-Whitney
259 test). When data followed a normal distribution, results were compared with a simple pairwise comparison
260 Welsh *t*-test. We performed survival analysis using log-rank tests (R survival package) and correlations
261 analysis with Pearson's test. The confidence interval of significance was set to 95% and *p*-values less than
262 0.05 were considered as significant.

263 **RESULTS:**

264 **Striking differences in transmission stage production between two *Schistosoma mansoni* populations**

265 The SmLE (HS) parasite population produce more cercariae than the SmBRE (LS) population in
266 both cohort 1 (4 weeks of shedding) and cohort 2 (5 weeks of sheddings): on average, our SmLE (HS)
267 population shed 8-fold more cercariae than SmBRE (LS) (Cohort 1: Kruskal-Wallis test, $p < 2.2 \times 10^{-16}$,
268 Figure 2A; Cohort 2: Kruskal-Wallis test, $p=2.824 \times 10^{-11}$, Figure 3B). In this experiment, all the infected
269 snails were from the same inbred *B. glabrata* population (Bg26) to minimize the impact of the host genetic
270 background, because we know that cercarial shedding can be influenced by the snail genotype [24].

271 We exposed the snail hosts to only one miracidia (SmLE (HS) or SmBRE (LS)), male or female.
272 We were therefore able to sex each parasite that developed inside the host and test the influence of the
273 parasite gender on the cercarial output. Parasite sex does not impact the cercarial production in the SmLE
274 (HS) population (Wilcoxon test, $p=0.6$; Supplementary figure 2) but does have an influence on the SmBRE
275 (LS) population where male LS genotypes produced significantly less cercariae than female ones
276 (Wilcoxon test, $p=0.016$; Supplementary figure 2).

277

278 ***Increased virulence of the high shedder S. mansoni population***

279 *1. Comparison of survival rates in infected snails*

280 SmLE (HS) parasites have a strongest impact on the survival of the host after the first shedding
281 day (log-rank test global analysis: $p=8 \times 10^{-4}$) compared to SmBRE (LS) (log-rank test: $p=0.011$) or the
282 control group (i.e. uninfected snails; log-rank test: $p=0.004$). Snails infected with SmBRE (LS) parasite
283 did not have significantly greater mortality than controls (Figure 2B).

284

285 *2. Comparison of hemoglobin and laccase-like activity in infected snails*

286 We also measured the impact of our two population of parasites on their snail hosts by measuring
287 laccase-like activity in the snail hemolymph, 7.5 weeks after parasite exposure [18]. Unlike the survival
288 data, where only SmLE (HS) population has a negative impact on the snail host, we observed that the
289 laccase-like activity is reduced in snails infected with both SmBRE (LS) and SmLE (HS) relative to
290 controls (Kruskal-Wallis test, $p=1.108 \times 10^{-5}$; Figure 2C). However, snails infected with SmLE (HS)
291 population showed greater reduction in laccase-like activity than those infected with SmBRE (LS) (Welch
292 *t*-test, $p=0.001$; Figure 2C).

293 We observed a similar impact of infection on hemoglobin rate, measured in hemolymph samples
294 collected 7.5 weeks after parasite exposure. Both SmLE (HS) and SmBRE (LS) infected snails had
295 reduced hemoglobin relative to controls (Kruskal-Wallis test, $p=2.155 \times 10^{-7}$; Figure 2D), while SmLE
296 (HS) infected snails had significantly reduced hemoglobin relative to SmBRE (LS) infected snails
297 (Wilcoxon test, $p=3.692 \times 10^{-6}$; Figure 2D).

298 Moreover, we found a strong positive correlation between hemoglobin rate and laccase-like
299 activity (Pearson's correlation test: 0.78, $p=4.633 \times 10^{-12}$, Supplementary figure 3C). These two proteins
300 provide a good proxy of snail health and are both severely impacted by *S. mansoni*, with the impact
301 dependent on parasite population (SmBRE (LS) or SmLE (HS)). We observed a strong negative
302 correlation between the hemoglobin rate and the average number of cercariae produced (Pearson's
303 correlation test: -0.54, $p=2.528 \times 10^{-5}$, Supplementary figure 3B) as well as between the laccase-like
304 activity in the hemolymph and the average number of cercariae produced (Pearson's correlation test: -
305 0.33, $p=0.017$, Supplementary figure 3A). These physiological proxies of snail health support the
306 mortality data, showing that our SmLE (HS) population of *S. mansoni* is more virulent toward the snail
307 inbred host (Bg26) than the SmBRE (LS) population of parasites.

308

309 **Dynamics of sporocyst growth in infected snails**

310 Cercariae are free-living schistosome larvae produced by daughter sporocysts. This parasite stage
311 is intertwined with the snail host hepatopancreas and ovotestis, so is difficult to quantify even in dissected
312 snails. In cohort 2, we investigate the relationship between the quantity of cercariae released and the total
313 quantity of sporocyst tissue developing in the snail for both SmLE (HS) and SmBRE (LS) parasites. We
314 measured the proportion of parasite cells relative to snail cells ($Proportion_{parasite}$) within infected snails
315 using a custom qPCR assay. SmLE (HS) parasites have a significantly higher growth (average
316 $Proportion_{parasite}$ ranges from average values of 26 % to 47 % with a maximum of 60.46 % for individual
317 snails) than SmBRE (LS) parasites (average $Proportion_{parasite}$ ranges from average values of 1.5 % to
318 25 %, with a maximum of 31.12% for individual snails) across the time course experiment (Kruskal-
319 Wallis test, $p=1.64 \times 10^{-7}$, Figure 3A). However, at the end of the time course (week 8 post-infection) both
320 SmBRE (LS) and SmLE (HS) sporocysts comprise approximately 25% of snail tissue (Welsh *t*-test,
321 $p=0.510$; Figure 3A). The sporocyst growth profiles also differ in shape: SmLE (HS) reaches a peak in
322 week 5 during the second week of shedding and then declines, while SmBRE (LS) is still increasing in
323 week 7 at the end of the timecourse.

324 Differences in $Proportion_{parasite}$ explains some, but not all of the variation in cercarial shedding
325 between the SmLE (HS) and SmBRE (LS) populations. At week 8, values of $Proportion_{parasite}$ are similar
326 for SmLE (HS) and SmBRE (LS), but SmLE (HS) still continues to produce around 15 times more
327 cercariae than SmBRE (LS) (mean \pm se cercariae: SmLE (HS): 1689 ± 164 vs SmBRE (LS): 109 ± 35).
328 Furthermore, in weeks 4 to 8, the differences in $Proportion_{parasite}$ are not sufficient to explain the
329 differences in cercarial output between the SmLE (HS) and SmBRE (LS) infected snails (Kruskal-Wallis
330 test, $p= 5.22 \times 10^{-11}$, Figure 3C).

331 We observed a strong correlation between *Proportion_{parasite}* and the quantity of cercariae released
332 by the same snail (Pearson's test, coef. = 0.77, $p=1.058 \times 10^{-12}$, Figure 4A). This correlation is driven by
333 SmLE (HS) parasite population (Figure 4B), and there was no correlation observed for SmBRE (LS), for
334 which there is more limited variation in the number of cercariae produced (Figure 4C).

335

336 **DISCUSSION:**

337 **Virulence – transmission trade-offs in *S. mansoni***

338 Our results are consistent with a transmission / virulence trade-off model [25–29]. We show that the
339 quantity of sporocysts, the intramolluscan stage of *S. mansoni*, and the number of cercariae shed are
340 strongly correlated. The SmLE (HS) parasite population has a higher sporocyst growth rate within infected
341 snails, produces large numbers of cercariae (i.e. transmission stage) and it is highly virulent toward the
342 snail. Virulence was evident both from the high rate of snail mortality and from reduced levels of two
343 physiological parameters: hemoglobin rate [30,31] and laccase-like activity [18]. In contrast, the SmBRE
344 (LS) population of *S. mansoni* has a much lower sporocyst growth rate inside the snail host, releases fewer
345 cercariae compared to the SmLE (HS) parasite, and is much less virulent for its snail host. Similar patterns
346 of life history variation are also observed in the water flea/bacteria (*Daphnia magna* / *Pasteuria ramosa*)
347 infection model, a comparable system where bacterial infection castrates water fleas. In this system, water
348 fleas infected with high virulent “early killer” spores had a significantly higher death rate compared to
349 those infected with low virulence “late killers”. Variation in time of death was at least in part caused by
350 genetic differences among parasites [6].

351 Our findings provide an interesting contrast with patterns observed in experimental work on the
352 SmPR1 parasite population originally isolated from Puerto Rico ([12,32], where parasites with high
353 cercarial shedding show low virulence to the snail host. This inverse relationship between cercarial
354 shedding and virulence was initially observed by Davies and colleagues [32] who isolated five inbred
355 parasites lines from the SmPR1 laboratory line. Consistent with this, experimental selection of SmPR1
356 populations for high or low cercarial output resulted in rapid divergence in cercarial production, with high
357 shedding parasites showing reduced virulence to the snail host. These results run counter to classical
358 theoretical work suggesting that virulence is expected to be a byproduct of increased transmission stage

359 production ([5,25]. However, these authors also showed that high virulence to the snail host was associated
360 with lower virulence to the mammal host. They suggested an alternative trade-off model involving
361 pleiotropy between genes underlying parasite traits conferring fitness within the definitive (mammal) and
362 intermediate (snail) host [12]. They suggested that such pleiotropy might explain patterns of virulence
363 observed and promote the maintenance of genetic and phenotypic polymorphisms in parasite populations
364 utilizing multiple hosts. The intriguing differences in transmission stage production and virulence toward
365 the snail host observed in work with SmPR1 [12,32] and our work suggest that the underlying causes of
366 high virulence in different schistosome populations may vary [33].

367 We also demonstrated that the gender of the parasite can impact cercarial shedding. Indeed, for the
368 SmBRE (LS) population only, we highlighted that male genotypes of *S. mansoni* produced significantly
369 less cercariae than the female ones. This result is consistent with observations collected by Boissier and
370 colleagues in their meta-analysis [34] of Brazilian schistosome/snail systems.

371 **What causes virulence to snails?**

372 We compared virulence of our two schistosome populations by directly measuring mortality of inbred
373 snails, and by quantifying laccase-like activity and hemoglobin rate. Schistosome parasites have a direct
374 impact on their snail intermediate hosts: as they grow and generate cercariae, sporocysts deplete
375 galactogen in the albumen gland and consume the ovotestis and hepatopancreas, converting stored
376 glycogen to glucose [10,35]. Wang and colleagues [36] found that neuropeptides and precursor proteins
377 involved in snail reproduction were heavily down regulated in infected prepatent snails compared to
378 uninfected snails, suggesting that this could play a role in castration of *Biomphalaria* snails by
379 schistosomes. Other down regulated neuropeptides in prepatent snails were linked to snail feeding and
380 growth, process that directly impact the reproductive capacity, metabolism and immunity of the snail host.
381 The high level of mortality observed in snails infected with SmLE (HS) is consistent with the fact that

382 sporocysts cells comprised on average 26% to 47% of the cells within infected snails (cohort 2), largely
383 replacing the hepatopancreas and ovotestis. This can also explain the reduction in laccase-like activity and
384 hemoglobin rate in SmLE (HS) relative to SmBRE (LS), and the strong correlations between cercarial
385 production, laccase-like activity and hemoglobin rate observed in SmLE (HS), as this rapidly growing
386 parasite depletes snail host resources. Cercarial shedding is also harmful to snails because cercariae
387 puncture the tegument to exit the snail, causing hemolymph loss, another potential cause of early death in
388 infected snails (personal observations). This may also contribute to the higher virulence of SmLE (HS)
389 compared with SmBRE (LS) population of parasites.

390 **Natural variation or an artifact of laboratory maintenance?**

391 Our two populations of parasites (SmLE (HS) and SmBRE (LS)) have been maintained in laboratory
392 conditions for 54 and 44 years respectively. We were concerned that long term maintenance of these
393 parasites in the laboratory could have selected for the life history traits observed: for example serial
394 passage of microbial pathogens often imposes selection for rapid growth and high virulence ([37–39]).
395 Interestingly, cercarial production in SmLE and SmBRE has remained stable over multiple decades. Our
396 SmLE (HS) population was reported to show high cercarial production compared to the other populations
397 of *S. mansoni* parasites in a study published 33 years ago [11]. Similarly, the low shedding profile
398 exhibited by our SmBRE (LS) population is consistent with low shedding by this *S. mansoni* population
399 reported 26 years ago [15]. Hence, cercarial shedding phenotypes observed in these two parasite
400 populations have remained stable over time.

401 **Dynamics of sporocyst growth**

402 We observed dramatic differences in sporocyst growth profiles between SmLE (HS) and SmBRE (LS)
403 using our qPCR assay (Figure 3A). These differences reflect sporocyst growth rate, rather than differences

404 in number of infecting miracidia, because we exposed each snail to a single miracidium. The growth
405 kinetics differs significantly: SmLE (HS) sporocysts have parabolic growth profile and a much higher
406 proportion of daughter sporocysts produced, even during the prepatent period (i.e. 3 weeks after parasite
407 exposure and 1 week before the first cercarial shedding). The SmLE (HS) *S. mansoni* population grows
408 faster (reaching an average of 47% of cells within infected snails) compared to SmBRE (LS) population
409 (reaching an average of 25% of cells within infected snails). Interestingly, the SmBRE (LS) daughter
410 sporocyst kinetics in whole snails measured by qPCR is similar to that obtained by microscopy and 3D
411 reconstructions of sporocysts (in the hepatopancreas only) in the same parasite population [15], with an
412 initial exponential growth of the parasite tissues followed by a plateau.

413 Differences in sporocyst proportions in SmLE (HS) and SmBRE (LS) infected snails do not fully explain
414 the difference in cercarial production between these lines. The SmBRE (LS) infected snails shed
415 significantly fewer cercariae than predicted from qPCR measures of sporocysts cells in infected snails
416 (Figure 3C). We suspect that SmLE (HS) and SmBRE (LS) sporocysts may exhibit different cellular
417 trajectories, with differences in development of cell populations that differentiate to generate cercariae
418 and those that give birth to the next generation of daughter sporocysts [40]. Advances in our understanding
419 of stem cell differentiation of *S. mansoni* within the molluscan host now provide the tools needed to
420 investigate these transmission related developmental differences at the cellular and molecular levels [40–
421 42].

422

423 **CONCLUSION:**

424 In this study, we describe two different transmission strategies of *S. mansoni* that have a strong genetic
425 basis: a “boom-bust” strategy characterized by high virulence, high transmission and short duration
426 infections for SmLE (HS), compared with “slow and steady” strategy with low virulence, low transmission
427 but long duration of infection for SmBRE (LS) populations. We speculate that these two different strategies
428 may be selected in the field to optimize the parasite transmission and fitness in different environments.
429 We envisage that in high transmission areas, where individual snails may contain competing *S. mansoni*
430 infections (or coinfections with other trematodes species [43], the SmLE (HS) strategy may be strongly
431 selected as a consequence of intense within host competition. Conversely, in low prevalence sites, where
432 coinfections are rare, the SmBRE (LS) strategy and limited virulence to the snail host may be advantageous.
433 Genetic crosses between parasites from these two distinctive *S. mansoni* populations, followed by a
434 classical quantitative trait locus analysis [44], now provides the opportunity to determine the genetic basis
435 of these key transmission-related phenotypes in an important human helminth infection.

436

437 **DECLARATION:**

438 ***Ethics approval and consent to participate***

439 This study was performed in strict accordance with the recommendations in the Guide for the Care
440 and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the
441 Institutional Animal Care and Use Committee of Texas Biomedical Research Institute (permit number:
442 1419-MA-3).

443 ***Consent for publication***

444 Not applicable

445 ***Availability of data and materials***

446 The datasets generated and/or analyzed during the current study are available from the Zenodo
447 repository, [PERSISTENT WEB LINK TO DATASETS]

448 ***Competing interests***

449 The authors declare that they have no competing interests

450 ***Funding***

451 This research was supported by a Cowles fellowship (WL) from Texas Biomedical Research
452 Institute, and NIH R01AI133749 (TJCA) and conducted in facilities constructed with support from
453 Research Facilities Improvement Program grant C06 RR013556 from the National Center for Research
454 Resources.

455 ***Authors' contributions***

456 WL, FDC and TJCA designed the experiments. WL, RD, FDC and MMW performed the
457 experiments. WL performed the data analyses. WL and TJCA drafted the manuscript. All authors read
458 and approved the final manuscript.

459

460 ***Acknowledgements***

461 We thank Michael S. Blouin from Oregon State University for providing the Bg26 snail line,
462 Guillaume Mitta and Benjamin Gourbal (University of Perpignan France) for providing SmBRE *S.*
463 *mansonii* population and Philip LoVerde from UT Health (San Antonio) for providing SmLE *S. mansonii*
464 population.

465

466 **REFERENCES:**

467 1. Ewald PW. The evolution of virulence. *Sci Am.* 1993;268:86–93.

468 2. Kakehashi M. Populations and infectious diseases: dynamics and evolution. *Res Popul Ecol Kyoto.*
469 1996;38:203–10.

470 3. Lipsitch M, Siller S, Nowak MA. The evolution of virulence in pathogens with vertical and horizontal
471 transmission. *Evol Int J Org Evol.* 1996;50:1729–41.

472 4. Stewart AD, Logsdon JM, Kelley SE. An empirical study of the evolution of virulence under both
473 horizontal and vertical transmission. *Evol Int J Org Evol.* 2005;59:730–9.

474 5. Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis:
475 history, current state of affairs and the future. *J Evol Biol.* 2009;22:245–59.

476 6. Jensen KH, Little TJ, Little T, Skorping A, Ebert D. Empirical support for optimal virulence in a
477 castrating parasite. *PLoS Biol.* 2006;4:e197.

478 7. Mennerat A, Hamre L, Ebert D, Nilsen F, Dávidová M, Skorping A. Life history and virulence are
479 linked in the ectoparasitic salmon louse *Lepeophtheirus salmonis*. *J Evol Biol.* 2012;25:856–61.

480 8. Schmid-Hempel P. Evolutionary Parasitology. Oxford: Oxford University Press; 2011.

481 9. Maldonado JF, Matienzo JA. The development of *Schistosoma mansoni* in the snail intermediate host,
482 *Australorbis glabratus*. *Puerto Rican J Public Health Trop Med.* 1947;22:331–73.

483 10. Faro MJ, Perazzini M, Corrêa L dos R, Mello-Silva CC, Pinheiro J, Mota EM, et al. Biological,
484 biochemical and histopathological features related to parasitic castration of *Biomphalaria glabrata*
485 infected by *Schistosoma mansoni*. *Exp Parasitol.* 2013;134:228–34.

486 11. Lewis FA, Stirewalt MA, Souza CP, Gazzinelli G. Large-scale laboratory maintenance of *Schistosoma*
487 *mansi*, with observations on three schistosome/snail host combinations. *J Parasitol.* 1986;72:813–29.

488 12. Gower CM, Webster JP. Fitness of indirectly transmitted pathogens: restraint and constraint.
489 *Evolution.* 2004;58:1178–84.

490 13. Bonner KM, Bayne CJ, Larson MK, Blouin MS. Effects of Cu/Zn superoxide dismutase (SOD1)
491 genotype and genetic background on growth, reproduction and defense in *Biomphalaria glabrata*. *PLoS*
492 *Negl Trop Dis.* 2012;6:e1701.

493 14. Tavalire HF, Blouin MS, Steinauer ML. Genotypic variation in host response to infection affects
494 parasite reproductive rate. *Int J Parasitol.* 2016;46:123–31.

495 15. Gérard C., Moné H. TA. *Schistosoma mansoni* – *Biomphalaria glabrata*: dynamics of the sporocyst
496 population in relation to the miracidial dose and the host size. *Can J Zool.* 1993;71:1880–5.

497 16. Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, et al. Sympatric versus allopatric
498 evolutionary contexts shape differential immune response in *Biomphalaria* / *Schistosoma* interaction.
499 *PLoS Pathog.* 2019;15:e1007647.

500 17. Chevalier FD, Le Clec'h W, Alves de Mattos AC, LoVerde PT, Anderson TJC. Real-time PCR for
501 sexing *Schistosoma mansoni* cercariae. *Mol Biochem Parasitol.* 2016;205:35–8.

502 18. Le Clec'h W, Anderson TJC, Chevalier FD. Characterization of hemolymph phenoloxidase activity
503 in two *Biomphalaria* snail species and impact of *Schistosoma mansoni* infection. *Parasit Vectors.*
504 2016;9:32.

505 19. Lieb B, Dimitrova K, Kang H-S, Braun S, Gebauer W, Martin A, et al. Red blood with blue-blood
506 ancestry: intriguing structure of a snail hemoglobin. *Proc Natl Acad Sci U A*. 2006;103:12011–6.

507 20. Duvaux-Miret O, Baratte B, Dissous C, Capron A. Molecular cloning and sequencing of the alpha-
508 tubulin gene from *Schistosoma mansoni*. *Mol Biochem Parasitol*. 1991;49:337–40.

509 21. Odoemelam E, Raghavan N, Miller A, Bridger JM, Knight M. Revised karyotyping and gene mapping
510 of the *Biomphalaria glabrata* embryonic (Bge) cell line. *Int J Parasitol*. 2009;39:675–81.

511 22. Giraldo-Calderón GI, Emrich SJ, MacCallum RM, Maslen G, Dialynas E, Topalis P, et al. VectorBase:
512 an updated bioinformatics resource for invertebrate vectors and other organisms related with human
513 diseases. *Nucleic Acids Res*. 2015;43:D707–13.

514 23. Marshall OJ. PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-
515 time PCR. *Bioinformatics*. 2004;20:2471–2.

516 24. Jones-Nelson O, Thiele EA, Minchella DJ. Transmission dynamics of two strains of *Schistosoma*
517 *mansonii* utilizing novel intermediate and definitive hosts. *Parasitol Res*. 2011;109:675–87.

518 25. Anderson R.M. MRM. Coevolution of hosts and parasites. *Parasitology*. 1982;85:411–26.

519 26. Levin BR, Bull JJ. Short-sighted evolution and the virulence of pathogenic microorganisms. *Trends*
520 *Microbiol*. 1994;2:76–81.

521 27. Ebert D. Virulence and local adaptation of a horizontally transmitted parasite. *Science*.
522 1994;265:1084–6.

523 28. Ebert D, Herre EA. The evolution of parasitic diseases. *Parasitol Today Pers Ed*. 1996;12:96–101.

524 29. Frank SA. Models of parasite virulence. *Q Rev Biol.* 1996;71:37–78.

525 30. Coles GC. Haemoglobin changes in infected *Biomphalaria glabrata*. *Trans R Soc Trop Med Hyg.*
526 1971;65:686–7.

527 31. Lee FO, Cheng TC. *Schistosoma mansoni*: alterations in total protein and hemoglobin in the
528 hemolymph of infected *Biomphalaria glabrata*. *Exp Parasitol.* 1972;31:203–16.

529 32. Davies CM, Webster JP, Woolhous ME. Trade-offs in the evolution of virulence in an indirectly
530 transmitted macroparasite. *Proc Biol Sci.* 2001;268:251–7.

531 33. Cressler CE, Mcleod DV, Rozins C, Van den Hoogen J, Day T. The adaptive evolution of virulence:
532 a review of theoretical predictions and empirical tests. *Parasitology.* 2016;143:915–30.

533 34. Boissier J, Morand S, Moné H. A review of performance and pathogenicity of male and female
534 *Schistosoma mansoni* during the life-cycle. *Parasitology.* 1999;119 (Pt 5):447–54.

535 35. Becker W. Metabolic interrelationship of parasitic trematodes and molluscs, especially *Schistosoma*
536 *mansoni* in *Biomphalaria glabrata*. *Z Parasitenkd Berl Ger.* 1980;63:101–11.

537 36. Wang T, Zhao M, Liang D, Bose U, Kaur S, McManus DP, et al. Changes in the neuropeptide content
538 of *Biomphalaria ganglia* nervous system following *Schistosoma* infection. *Parasit Vectors.* 2017;10:275.

539 37. Le Clec'h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in *Wolbachia* virulence
540 towards its native host across serial horizontal passages. *Proc Biol Sci.* 2017;284.

541 38. Dortmans JCFM, Koch G, Rottier PJM, Peeters BPH. Virulence of Newcastle disease virus: what is
542 known so far? *Vet Res.* 2011;42:122.

543 39. Kolodny-Hirsch D.M. VBNAM. Selection of a morphological variant of *Autographa californica*
544 nuclear polyhedrosis virus with increased virulence following serial passage in *Plutella xylostella**Plutella*
545 *xylostella*. *J Invertebr Pathol.* 1997;69:205–11.

546 40. Wang B, Lee J, Li P, Saberi A, Yang H, Liu C, et al. Stem cell heterogeneity drives the parasitic life
547 cycle of *Schistosoma mansoni*. *eLife.* 2018;7.

548 41. Wang B, Collins JJ, Newmark PA. Functional genomic characterization of neoblast-like stem cells in
549 larval *Schistosoma mansoni*. *eLife.* 2013;2:e00768.

550 42. Collins 3rd JJ, King RS, Cogswell A, Williams DL, Newmark PA. An atlas for *Schistosoma mansoni*
551 organs and life-cycle stages using cell type-specific markers and confocal microscopy. *PLoS Negl Trop*
552 *Dis.* 2011;5:e1009.

553 43. Laidemitt MR, Zawadzki ET, Brant SV, Mutuku MW, Mkoji GM, Loker ES. Loads of trematodes:
554 discovering hidden diversity of paramphistomoids in Kenyan ruminants. *Parasitology.* 2017;144:131–47.

555 44. Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in
556 Schistosome Parasites. *Trends Parasitol.* 2018;34:982–96.

557

558

559

560 **FIGURE LEGENDS:**

561 **Figure 1: Outline of the experimental design.** We used two independent cohorts of *Biomphalaria*
562 *glabrata* Bg26 inbred snails. Each snail was exposed to one miracidium from the SmLE (HS) or SmBRE
563 (LS) *Schistosoma mansoni* populations. In cohort 1, we measured transmission stage production for SmLE
564 (HS) and SmBRE (LS) populations during 4 weeks of the patent period (week 4 to 7 post-infection). We
565 also evaluated the virulence of these two populations of parasite by measuring the daily snail survival
566 during the patent period. After 7.5 weeks post-infection, surviving infected snails were bled and we
567 measured the total laccase-like activity as well as the hemoglobin rate in the collected hemolymph
568 samples. We used cohort 2 to determine the weekly sporocyst growth dynamics in snails for the late
569 prepatent (week 3) and the patent period (week 4 to 8).

570

571 **Figure 2: Transmission stage production and virulence of two *Schistosoma mansoni* populations**
572 **(SmLE (HS) and SmBRE (LS)).** **(A)** Difference in the number of cercariae produced by SmLE (HS) and
573 SmBRE (LS) *S. mansoni* populations during 4 weeks of the patent period (week 4 to 7 post infection).
574 SmLE (HS) population is shedding more cercariae than SmBRE (LS) population of parasite at all the time
575 points. **(B)** Survival of the infected and control *Biomphalaria glabrata* (Bg26 inbred) snails from the first
576 day of cercarial shedding to day 22 after the first shedding. Infection with SmLE (HS) parasites results in
577 greater snail mortality than infection with SmBRE (LS) parasites. **(C)** Infected snails show a decrease in
578 laccase-like activity in the snail hemolymph compared to uninfected ones. Snails infected with SmLE (HS)
579 parasites show a greater decrease than that in snails parasitized by SmBRE (LS) parasites. **(D)** The overall
580 hemoglobin rate in the hemolymph is reduced by the presence of schistosome parasites. However, the
581 reduction is greater when snails are infected with the SmLE (HS) parasites. * $p < 0.05$; ** $p \leq 0.01$; *** p
582 ≤ 0.001 .

583

584 **Figure 3: Sporocyst growth dynamics and cercarial production in SmLE (HS) and SmBRE (LS) *S.***
585 ***mansonii*.** **(A)** Comparison of the daughter sporocyst developmental kinetics for SmLE (HS) and SmBRE
586 (LS). The proportion of sporocyst cells within snails (*Proportion_{parasite}*) were quantified by qPCR during
587 6 weeks of the infection (from week 3 to 8). SmLE (HS) sporocysts grow faster and are more numerous
588 than the SmBRE (LS) ones. **(B)** Cercarial shedding profiles of the SmLE (HS) and SmBRE (LS) during the
589 5 weeks of the patent period (i.e. cercarial shedding time) (weeks 4 to 8). SmLE (HS) parasites produce
590 significantly more cercariae than the SmBRE (LS) parasites. **(C)** Ratio calculated by dividing the number
591 of cercariae produced by the proportion of daughter sporocyst cells present in the snail, infected with
592 SmLE (HS) or the SmBRE (LS) population. Differences in proportions of sporocyst within infected snails
593 are not sufficient to explain the difference in cercarial output between the SmLE (HS) and SmBRE (LS)
594 infected snails. * $p < 0.05$; ** $p \leq 0.01$; *** $p \leq 0.001$.

595

596 **Figure 4: Correlations between sporocyst quantity and cercarial output for SmLE (HS) and SmBRE**
597 **(LS) parasites.** **(A)** There is a strong correlation between the proportion of sporocysts present in the snail
598 tissue and the quantity of cercariae released by the same snail (Pearson's test, coef. = 0.77). This
599 correlation is mainly driven by **(B)** the SmLE (HS) parasite population (Pearson's test, coef. = 0.43) **(C)**
600 There is no significant correlation for the SmBRE (LS) parasite population (Pearson's test, coef. = -0.17).

601

602 **Supplementary figure 1: Multiplex PCR assay for identifying infected prepatent snails.** We
603 electrophoresed multiplexed PCR products generated using *piwi* and α -*tubulin-2* primers on 2% agarose
604 gel. The size ladder used is the 100 bp ladder from Promega. Infected *B. glabrata* Bg26 snails show a

605 “double-band”: a 361 bp *piwi* snail specific band and a 190 bp *α-tubulin-2* parasite specific band.
606 Uninfected snails exhibit only the 361 bp *piwi* snail specific band while *S. mansoni* control show only the
607 190 bp *α-tubulin-2* parasite specific band.

608

609 **Supplementary figure 2: Impact of *S. mansoni* gender on the cercarial production.** Male sporocysts
610 produced significantly less cercariae than female sporocysts in SmBRE (LS) parasite. There were no
611 difference driven by the gender of the parasites for the SmLE (HS) population of *S. mansoni*. * $p < 0.05$;
612 ** $p \leq 0.01$; *** $p \leq 0.001$.

613

614 **Supplementary figure 3: Virulence of *S. mansoni* parasites: correlation between cercarial
615 production and measured *B. glabrata* snail physiological parameters.** (A) There is a negative
616 correlation between the average of cercariae produced by a snail and the total laccase-like activity in the
617 hemolymph of this snail (Pearson’s test, coef. = -0.33). (B) Similarly, the hemoglobin rate is negatively
618 correlated to the cercarial output (Pearson’s test, coef. = -0.54). (C) We also observed a strong positive
619 correlation between the total laccase-like activity and the hemoglobin rate in the hemolymph of the snails.
620 Both of these parameters are good proxies for assessment of snail health (Pearson’s test, coef. = 0.78).

621

Virulence and transmission traits

Biomphalaria glabrata (Bgv26)
inbred snails

Cohort 1

Infections:

- 192 snails exposed to single SmLE (HS) miracidium
- 192 snails exposed to single SmBRE (LS) miracidium

0

1

2

3

4

5

6

7

8

Weeks

Prepatent period

Patent period

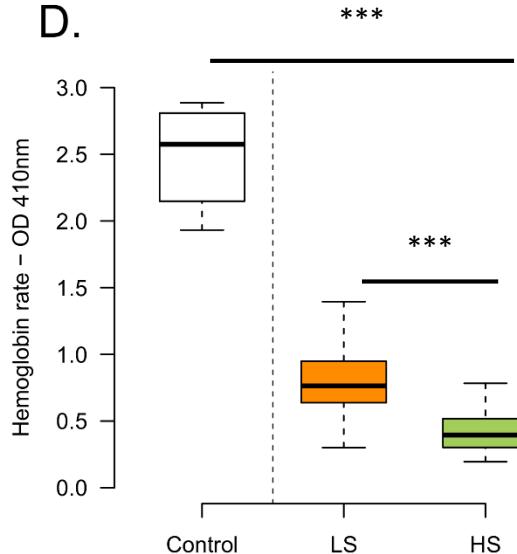
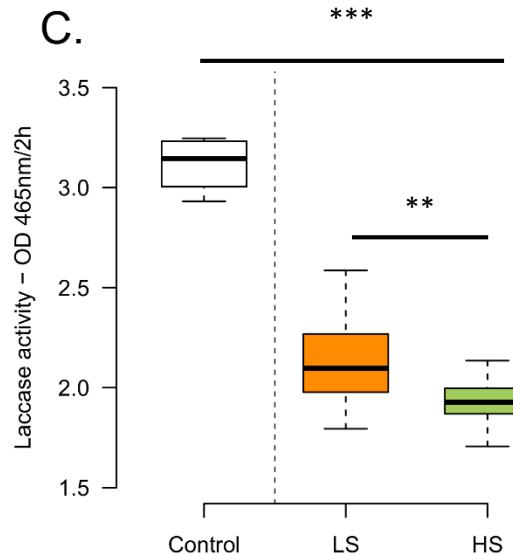
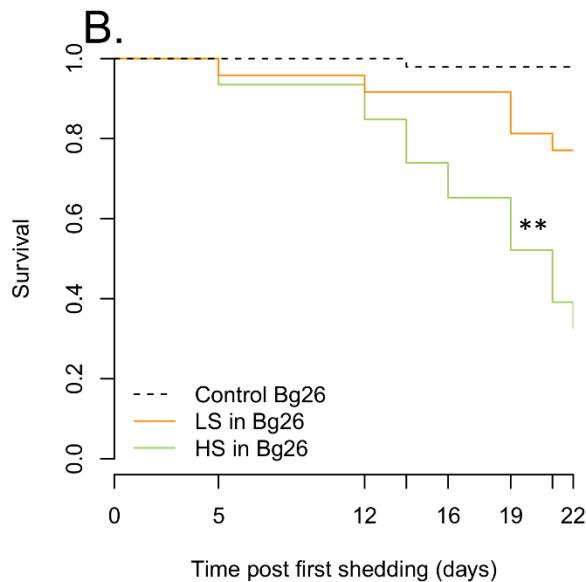
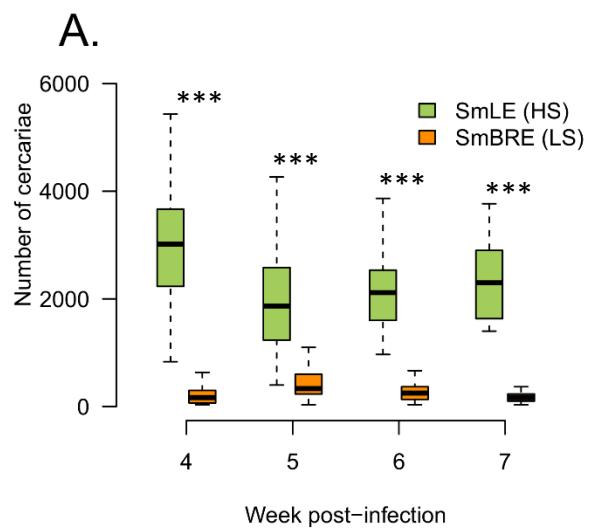
- Weekly measure of cercariae shed from individual snails
- Daily monitoring of snail mortality

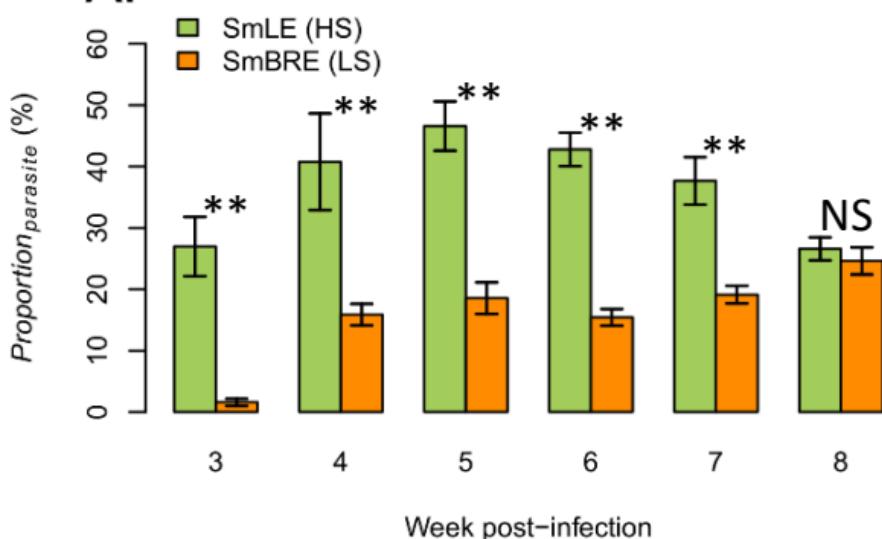
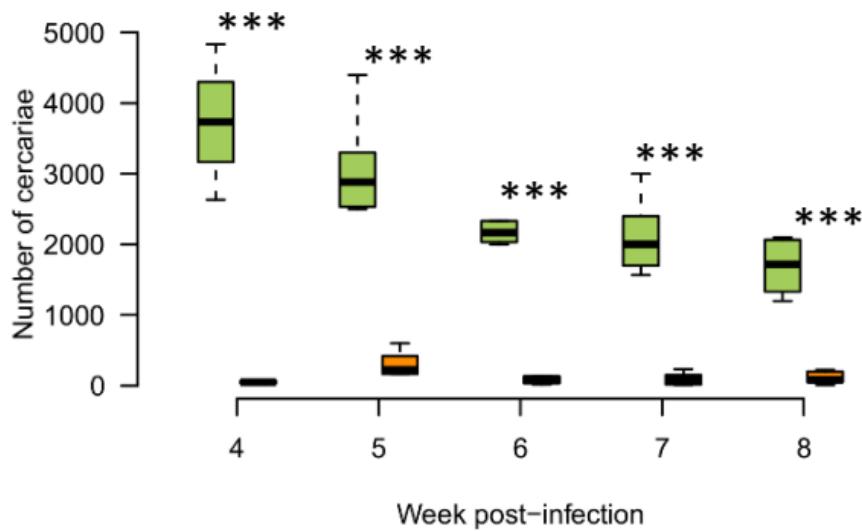
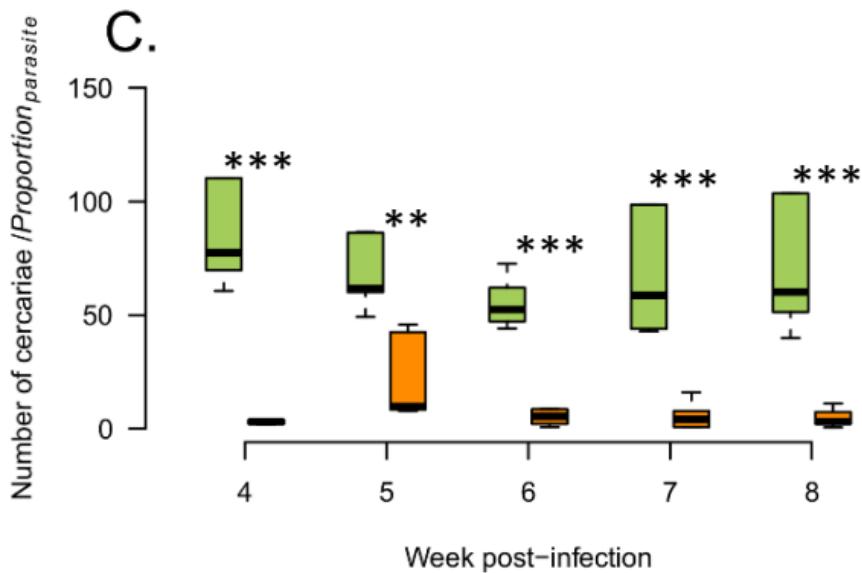
Hemolymph sampling for:
- Laccase activity
- Hemoglobin rate

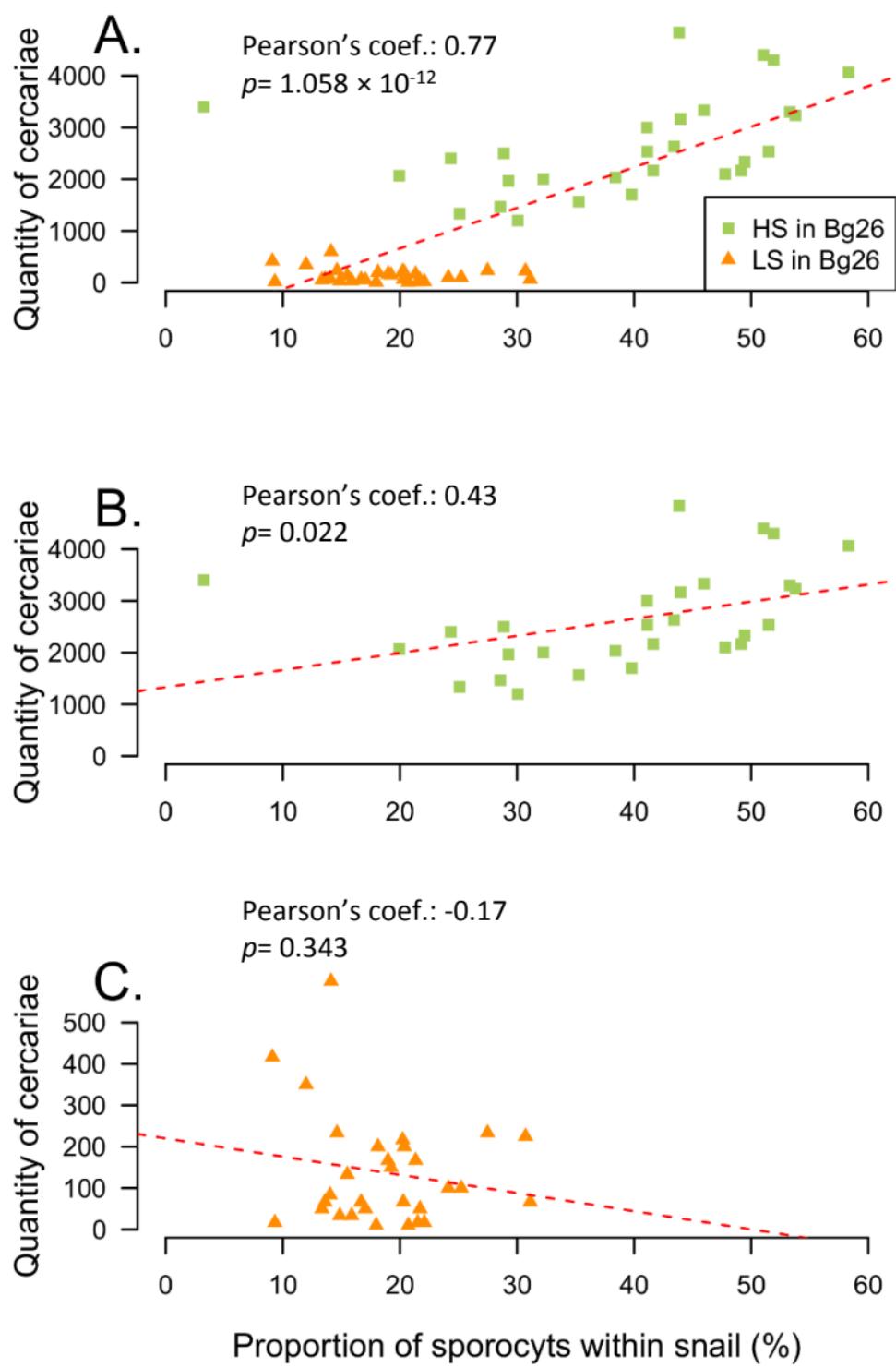
Cohort 2

Infections:

- 384 snails exposed to single SmLE (HS) miracidium
- 1008 snails exposed to single SmBRE (LS) miracidium





Collections:




- 30 snails exposed HS
- 100 snails exposed LS


Infected snails screening

- Weekly random collection of:
 - 6 snails shedding HS cercariae
 - 6 snails shedding LS cercariae
- Measure of cercarial production
- Snap-freezing of snails for sporocysts growth dynamics

Sporocyst growth dynamics and transmission traits

A.**B.****C.**

