

1 **IBD analysis of Australian amyotrophic lateral sclerosis *SOD1*-**
2 **mutation carriers identifies five founder events and links sporadic**
3 **cases to existing ALS families**

4

5 Lyndal Henden,^{1,9} Natalie A. Twine,^{2,9} Piotr Szul,³ Emily P. McCann,¹ Garth A. Nicholson,^{4,5}
6 Dominic B. Rowe^{1,6}, Matthew C. Kiernan^{7,8}, Denis C. Bauer,² Ian P. Blair,¹ and Kelly L.
7 Williams,^{1,*}

8

9 ¹Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie
10 University Centre for Motor Neuron Disease Research, Sydney, New South Wales, 2109,
11 Australia

12 ²Transformational Bioinformatics, Commonwealth Scientific and Industrial Research
13 Organisation, Sydney, New South Wales, 2113, Australia

14 ³Data61, Commonwealth Scientific and Industrial Research Organisation, Dutton Park,
15 Queensland, 4102, Australia

16 ⁴Concord Clinical School, ANZAC Research Institute, Concord Repatriation Hospital,
17 Sydney, New South Wales, 2139, Australia

18 ⁵Sydney Medical School, University of Sydney, Sydney, New South Wales, 2050, Australia

19 ⁶Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie
20 University, Sydney, New South Wales, 2019, Australia

21 ⁷Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, 2050,
22 Australia

23 ⁸Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050,
24 Australia

25 ⁹These authors contributed equally to this work

1 *Correspondence: kelly.williams@mq.edu.au (K.L.W.)

2

3 **Abstract**

4

5 Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterised by the loss
6 of upper and lower motor neurons resulting in paralysis and eventual death. Approximately
7 10% of ALS cases have a family history of disease, while the remaining cases present as
8 apparently sporadic. Heritability studies suggest a significant genetic component to sporadic
9 ALS, and although most sporadic cases have an unknown genetic etiology, some familial
10 ALS mutations have also been found in sporadic cases. This suggests that some sporadic
11 cases may be unrecognised familial cases with reduced disease penetrance. Identifying a
12 familial basis of disease in apparently sporadic ALS cases has significant genetic counselling
13 implications for immediate relatives. A powerful strategy to uncover a familial link is
14 identity-by-descent (IBD) analysis which detects genomic regions that have been inherited
15 from a common ancestor. We performed IBD analysis on 90 Australian familial ALS cases
16 from 25 families and three sporadic ALS cases, each of whom carried one of three *SOD1*
17 mutations (p.I114T, p.V149G and p.E101G). We identified five unique haplotypes that carry
18 these mutations in our cohort, indicative of five founder events. This included two different
19 haplotypes that carry *SOD1* p.I114T, where one haplotype was present in one sporadic case
20 and 20 families, while the second haplotype was found in the remaining two sporadic cases
21 and one family, thus linking these familial and sporadic cases. Furthermore, we linked two
22 families that carry *SOD1* p.V149G and found that *SOD1* p.E101G arose independently in
23 each family that carries this mutation.

24

25

1 **Introduction**

2

3 Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder characterised by
4 the progressive loss of upper and lower motor neurons in the motor cortex, brainstem and
5 spinal cord, resulting in paralysis and death, typically from respiratory failure, within 3-5
6 years of disease onset¹⁻⁵. The majority of cases present without a family history (sporadic
7 ALS), while 5-10% of cases are familial⁶. The cause of ALS in most cases remains
8 unknown⁷, however heritability studies suggest a significant genetic component to sporadic
9 ALS⁸. Furthermore, genetic mutations that are present in familial ALS cases have also been
10 found in sporadic ALS cases^{9,10}, suggesting that some sporadic cases may in fact be
11 unrecognised familial cases with reduced disease penetrance. Identifying a familial basis of
12 disease in apparently sporadic ALS cases has important genetic counselling implications for
13 their immediate family members, including a 50% chance of inheriting the mutation and an
14 increased likelihood of developing ALS.

15

16 Mutations in the gene encoding copper zinc superoxide dismutase 1 (*SOD1* [MIM:147450])
17 account for around 20% of familial ALS cases^{2,3,5} and a small proportion of sporadic ALS
18 cases^{9,11}. More than 150 mutations in *SOD1* have been associated with ALS thus far, where
19 the frequency of each mutation varies across populations. The most common *SOD1* mutation
20 in North America is p.A4V, while in Scandinavia and the United Kingdom the most common
21 *SOD1* mutations are p.D90A and p.I114T, respectively. All three of these *SOD1* mutations,
22 as well as *SOD1* p.D11Y and p.R115G, have originated from founder events, where the
23 mutation has descended from a common ancestor.

24

1 Mutations that originate from founder events are typically inherited as part of larger founder
2 haplotypes that are broken down over time due to recombination. In North America, *SOD1*
3 p.A4V is found most often on a haplotype background that suggests it arose in American
4 Indians. In contrast, *SOD1* p.A4V is found on a different haplotype background in
5 Europeans, indicating two separate founder events¹². Additionally, *SOD1* p.D90A arose from
6 a single founder in Scandinavian families with recessive ALS, while multiple founders exist
7 when this mutation is inherited in a dominant fashion^{10,13}. Much of the work on founder
8 events in ALS has used microsatellite markers to identify a founder haplotype^{9,10,13–15}.
9 However alternative methods are available that make use of tens-of-thousands of single
10 nucleotide polymorphisms (SNPs) extracted from SNP array data or whole genome
11 sequencing (WGS) data, which can also provide fine-scale resolution on the breakpoints of
12 shared ancestral haplotypes and more accurate variant dating. These methods identify
13 genomic regions that have been inherited from a recent common ancestor, said to be identical
14 by descent (IBD), and have proven useful in many applications, including disease
15 mapping^{16,17} and uncovering unknown relatedness^{18,19}. In the case of founder events,
16 individuals who have inherited part of a founder haplotype are in fact IBD over this genomic
17 region, therefore inferred IBD regions can be used to identify common founders and thus
18 founder events¹⁷.
19
20 In this study we performed an IBD analysis leveraging WGS data to investigate founder
21 events in a cohort of 90 Australian familial ALS cases from 25 families and three sporadic
22 ALS cases with the most common *SOD1* mutations in Australia (*SOD1* p.I114T, p.V149G,
23 p.E101G)^{20,22}. We identified multiple families and sporadic cases as distantly related and
24 discovered several founder events in patients carrying identical *SOD1* mutations. In
25 particular, we created relatedness networks to visualize clusters of individuals sharing a

1 common haplotype over *SOD1*, from which we subsequently inferred the number of unique
2 haplotype backgrounds that carry each causal *SOD1* mutation in our population, thus drawing
3 conclusions as to the presence of founder events. This suggested that *SOD1* p.I114T and
4 p.E101G each had two independent origins in this cohort, and p.V149G had a single origin;
5 totalling five independent founder events. Furthermore, we were able to calculate the time to
6 the most recent common ancestors for both p.I114T and p.V149G as less than 360 years ago.

7

8 **Material and Methods**

9

10 **Australian sample cohort**

11 850 Australian participants were recruited for analysis from the Macquarie University
12 Neurodegenerative Disease Biobank, Molecular Medicine Laboratory (Concord Hospital),
13 Australian MND DNA Bank (Royal Prince Alfred Hospital) and Brain and Mind Centre
14 (University of Sydney). Each participant provided informed written consent as approved by
15 the human research ethics committees of the Sydney South West Area Health Service,
16 Macquarie University, or University of Sydney. Most participants were of European descent,
17 and each ALS case was clinically diagnosed according to El Escorial criteria²¹.

18 Genomic DNA extraction was performed from whole blood according to standard
19 protocols. Of these 850 individuals, 90 familial ALS cases from 25 families were previously
20 known to carry either a *SOD1* p.I114T, p.V149G or p.E101G mutation²⁰. Mutation screening
21 of the 616 sporadic cases among the 760 remaining cases determined that three sporadic ALS
22 cases have a *SOD1* p.I114T mutation²².

23

24 **Whole genome sequencing data processing**

1 Detailed descriptions of the DNA library preparation and the generation of WGS data for all
2 850 participants is described in McCann *et al.*²², as is the pipeline for processing, filtering
3 and variant calling of this sequencing data. All 850 samples were leveraged to improve
4 variant calling accuracy and quality filtering, however only *SOD1* mutation carriers were
5 included for all subsequent analyses. This resulted in 88 *SOD1* samples (Table 1) and
6 3,527,233 high quality SNPs remaining for analysis.

7

8 **IBD analysis**

9 Relationship estimates and IBD segments were inferred using TRIBES²³ with default
10 parameter settings. Briefly, TRIBES phases biallelic SNP data using BEAGLE v4.1²⁴ then
11 infers IBD segments with the phased haplotype data using GERMLINE²⁵. GERMLINE
12 identifies IBD segments by sliding a window of a predefined length along a chromosome and
13 classifying pairs of samples as IBD within each window if they have an identical haplotype.
14 Neighbouring windows that are inferred IBD for a pair of samples are then merged to define
15 the IBD segment boundaries. IBD segments that overlapped the masked regions reported in
16 TRIBES were either removed from further analyses or had their boundaries adjusted. These
17 masked regions most likely reflect population substructure due to linkage disequilibrium and
18 loci that are difficult to map such as centromeres²⁶. We note that *SOD1* was more than 12
19 Mbp from its nearest masked region. IBD segments of 3cM or larger ($n=16,736$) were
20 retained for analysis genome wide.

21

22 **Relatedness networks of shared haplotypes over the *SOD1* locus**

23 A relatedness network is a graphical representation of shared haplotypes between pairs of
24 individuals over a specified locus. Each node in the network represents a unique individual
25 and an edge is drawn between two nodes if the individuals share an IBD segment, either

1 partially or completely, over the specified locus. All individuals who do not share an IBD
2 segment over the locus with any other individual are omitted from the network. Networks are
3 produced using the functions `getIBDclusters` and `plotIBDclusters` in the R package
4 `isoRelate`²⁷, where the network layout is produced according to Fruchterman-Reingold
5 forced-directed layout algorithm²⁸. This algorithm aims to position nodes such that all edges
6 are of similar lengths with as few edges overlapping as possible. The locus used in this study
7 was chr21:33,031,935-33,041,243 (hg19).

8

9 **Dating *SOD1* mutations p.I114T and p.V149G**

10 The Gamma method²⁹ was used to estimate the age of *SOD1* p.I114T and p.V149G,
11 respectively. Variant dating could not be performed on *SOD1* p.E101G as there were too few
12 individuals of sufficiently distant relatedness for the assumptions of the methodology to hold.
13 Briefly, the Gamma method uses the lengths of shared ancestral haplotypes that carry the
14 mutation to estimate the time to the most recent common ancestor, which is less than or equal
15 to the time since the mutation first arose. Ancestral haplotype lengths were simply taken as
16 the lengths of the inferred IBD segments generated from phased data, and the time to the
17 most recent common ancestor is reported assuming a correlated genealogy, which takes into
18 account subsets of samples with a common ancestor earlier than the most recent common
19 ancestor for all samples.

20

21 **Results**

22

23 **Summary statistics for the *SOD1* cohort**

24 Following filtering procedures, 88 ALS samples and 3,527,233 SNPs genome wide were
25 retained for analysis. Of these, 85 cases had familial ALS, where 43 individuals (21 families)

1 carry a *SOD1* p.I114T mutation, 33 individuals (two families) carry *SOD1* p.V149G, and
2 nine individuals (two families) carry *SOD1* p.E101G (Table 1). Additionally, three sporadic
3 ALS cases were identified with having a *SOD1* p.I114T mutation²². Pairwise IBD analysis
4 was performed on the SNP data using TRIBES²³ and a total of 1,209 IBD segments of 3cM
5 or greater were inferred on chromosome 21 with median length 8.31cM (range: 3cM to
6 62.79cM).

7

8 **New relationships identified between ALS families and sporadic cases**

9 Of the 85 familial ALS cases, 70 came from families where multiple affected individuals
10 were sequenced and the degree of relatedness was known (Table 1). Of these known
11 relationships, TRIBES correctly estimated 99% of relationships to within 1 degree of the true
12 relationship for relatives up to 7th degree (third cousins), while only 13% of 8th degree or
13 higher relatives were correctly estimated to within 1 degree (Figure 1).

14

15 By extending this analysis to identify relationships between seemingly-unrelated individuals,
16 3, 10 and 7 pairs of individuals were found to be 5th, 6th and 7th degree relatives respectively
17 (Figure 1, Table 2), while there were no individuals of unknown-relatedness who were
18 estimated as 4th degree relatives or closer. Although some apparently unrelated individuals
19 were inferred as 8th to 11th degree relatives (Figure 1), we chose only to investigate
20 individuals identified as 7th degree relatives or closer as this is the accuracy limit of
21 TRIBES²³. Of these novel relationships, 19 pairs were from patients where both individuals
22 within each pair had identical *SOD1* variants and shared an IBD segment over this locus.

23 This included one pair of apparently sporadic ALS cases with *SOD1* variants, which
24 confirmed they are in fact part of a larger extended family.

25

1 **Identification of five independent *SOD1* mutation founder events**

2 Of all individuals with *SOD1* mutations, IBD segments over the *SOD1* locus were expected
3 in 656 pairs since this was the total number of pairs known to be related prior to analysis
4 (Table 1). However, there was more IBD sharing over *SOD1* than expected (Figure 2). We
5 observed IBD segments in 956 pairs that indicated shared haplotypes between seemingly
6 unrelated families and sporadic cases, where the median length of an IBD segment over
7 *SOD1* in apparently unrelated individuals was 4cM (range: 3cM to 37.69cM).

8

9 A relatedness network of individuals that shared IBD segments over *SOD1* is shown in
10 Figure 3. Noticeably, five distinct clusters were evident, where every individual within each
11 cluster carried the same *SOD1* mutation on identical haplotype backgrounds. Both families
12 with the *SOD1* p.V149G mutation shared a common haplotype over this locus, which
13 suggests that p.V149G descended from a common founder. Relationship estimates between
14 cases from each family identified two pairs 5th degree relatives as well as more distant
15 relatives linking both families (Table 2, Figure 4). In contrast, *SOD1* p.E101G was found on
16 two different haplotype backgrounds, each unique to one of the two families that carried this
17 mutation, suggesting that p.E101G arose independently in these families. Similarly, two
18 different haplotype backgrounds appeared to harbour the *SOD1* p.I114T mutation, implying
19 two independent origins for this mutation in our cohort. One of these haplotypes was seen in
20 three cases; including two apparently sporadic cases and one familial case. These three
21 individuals were estimated to be 6th and 7th degree relatives. The second *SOD1* p.I114T
22 haplotype was present in 20 apparently unrelated families as well as one apparently sporadic
23 case, suggesting this haplotype had also descended from a common founder and was the most
24 widely distributed haplotype in our cohort. The closest degree of relatedness estimated
25 between families in this cluster was 5th degree (Table 2).

1

2 **Mutation dating of *SOD1* p.V149G and p.I114T**

3 We estimated the times to the most recent common ancestor for *SOD1* p.V149G and p.I114T,
4 where estimation was performed separately for each of the two clusters carrying p.I114T
5 (Figure 3). For *SOD1* p.V149G, we selected six individuals for analysis, including
6 individuals from both families, who were at least 6th degree relatives. The estimated age of
7 p.V149G was 3 to 11 generations (60 to 220 years, assuming 20-year generation time). For
8 the large *SOD1* p.I114T cluster (Figure 3), we selected one individual from each of the 20
9 families with the highest number of connections to other individuals in the network as well as
10 the sporadic case for variant dating. The estimated age of p.I114T on the haplotype present in
11 this cluster was between 5 to 18 generations (100 to 360 years). For the smaller *SOD1*
12 p.I114T cluster, we included all three individuals in the calculation, and estimated the age of
13 p.I114T on the alternative haplotype to be between 1 to 11 generations (20 to 220 years).

14

15 **Discussion**

16

17 In the present study, we analyse a cohort of Australian ALS cases who have had their causal
18 mutation, and therefore disease critical region, identified as *SOD1* p.I114T, p.V149G and
19 p.E101G^{20,22}. However as each of these three mutations appeared in multiple individuals
20 from different families, we sought to determine if each mutation descended from one or more
21 common ancestor. In the case of *SOD1* p.I114T, where 43 individuals from 21 families and
22 three sporadic cases have the mutant allele, it seemed unlikely that this mutation arose
23 independently in each family, reflecting a high mutation rate. As such, we performed an IBD
24 analysis on WGS data to uncover any unknown-relatedness in our cohort and explore founder
25 events.

1

2 Using TRIBES to estimate the degree of relatedness between apparently unrelated

3 individuals, we identified 20 pairs of 5th, 6th and 7th degree relatives connecting six pairs of

4 families, where both individuals have identical *SOD1* mutations in all but one pair.

5 Investigating the pair with discordant mutations revealed the inferred IBD segments to be

6 inconsistent with Mendelian inheritance (data not shown), thus they are unlikely to represent

7 true 6th degree relatives. One explanation for incorrectly identifying these individuals as close

8 relatives is the increased number of false IBD segments produced by GERMLINE with

9 sequencing data³⁰. Many incorrectly inferred IBD segments will inflate the amount of IBD

10 sharing observed between a pair of individuals, which in turn will give the appearance of

11 close relatives. This may also explain why more distant relatives, such as individuals who are

12 12th degree relatives or greater, are consistently estimated as more closely related (Figure 1).

13

14 Relatedness networks have been shown to be a powerful method to identify clusters of

15 individuals sharing a common haplotype over a locus and can also be informative as to the

16 number of haplotypes that segregate with disease, indicative of independent origins or

17 founder events^{17,27}. By investigating IBD segments overlapping *SOD1* using relatedness

18 networks, we identified five distinct clusters of individuals that each carried a unique disease

19 associated haplotype (Figure 3). Three of these clusters were each connected by one pair of

20 individuals with discordant *SOD1* mutations, whom are unlikely to be truly related. *SOD1*

21 p.I114T was present on two different haplotype backgrounds, one of which was inherited in

22 20 families and one sporadic case. p.I114T is the most common *SOD1* mutation in the United

23 Kingdom, and in particular in Scotland³¹, where a haplotype analysis of Scottish p.I114T

24 mutant cases revealed a common founder^{9,32}. It is likely that *SOD1* p.I114T in the Australian

25 cohort has also descended from Scottish founders, as genealogical analysis indicated that six

1 of the p.I114T families originated from Scotland, including families in both clusters that
2 carry different *SOD1* p.I114T haplotypes (Figure 3). Furthermore, we estimated that this
3 mutation originated from a common ancestor up to 360 years ago, which is within the
4 timeframe of Scottish settlers in Australia³³.

5

6 Family 18 was the largest Australian ALS family in the cohort, spanning ten generations, 409
7 total individuals and 67 ALS cases with the *SOD1* p.V149G mutation³⁴, of which 32 were
8 included in this analysis. TRIBES inferred two individuals from family 18 as both 5th and 6th
9 degree relatives with a single case from family 35, who also carried a *SOD1* p.V149G mutant
10 allele. Using the relationship estimates from TRIBES along with pedigree records, we were
11 able create a new pedigree combining both families (Figure 4). Relationship estimates
12 combined with the inferred IBD segments confirmed that all cases with p.V149G in this
13 cohort descended from a common founder; predicted to have originated up to 11 generations
14 ago (220 years), which was consistent with pedigree records.

15

16 *SOD1* mutations have a large effect size⁶ and almost always present as classic ALS without
17 comorbid frontotemporal dementia. However, the variability in disease phenotype, including
18 age of disease presentation and duration, between individuals carrying identical mutations is
19 marked, suggesting polygenic, epigenetic and environmental factors may also play a role in
20 disease onset and progression. It has been postulated that separating ALS into phenotype
21 subgroups may aid in uncovering phenotypic modifiers, whether they be genetic or
22 epigenetic. Large ALS families with known gene mutations provide a relatively homogenous
23 group with which to uncover modifiers. However, the late onset of ALS limits the
24 recruitment of affected individuals, such that most recruited ALS families are represented by
25 a small number of samples. By genetically linking families using relatedness analysis,

1 specifically IBD sharing, we can increase family sizes and therefore increase statistical power
2 to identify these phenotypic modifiers.

3

4 Phenotypic modifiers may also explain why some ALS cases appear as sporadic cases when
5 they are in fact familial cases with reduced penetrance. Here, all three apparently sporadic
6 ALS cases that carried a *SOD1* p.I114T mutation were shown to be unrecognised familial
7 cases. This result is consistent with previous findings that familial ALS cases with *SOD1*
8 p.I114T have been incorrectly classified as sporadic cases^{9,32}. Screening these three sporadic
9 cases for additional reported ALS causal or associated variants identified at least one other
10 ALS mutation or associated variant in addition to the *SOD1* p.I114T mutation in each
11 sporadic case²². These additional variants may be acting as disease modifiers or to reduce
12 penetrance. In addition to incomplete penetrance, incorrect classification of sporadic ALS
13 cases may arise from inadequate knowledge or reporting of family history and may be
14 masked, for example, by the death of at-risk family members from other causes prior to ALS
15 onset^{6,35}. Not recognising a familial basis of disease can have significant genetic counselling
16 implications for immediate family members^{6,35} whose risk of developing ALS greatly
17 increases. Correct classification of familial and sporadic cases allows health professionals to
18 make appropriate recommendations regarding genetic testing and lifestyle changes of ALS
19 patients and their families.

20

21 Identifying relatedness and thus founder events within ALS patient cohorts aids in disease
22 gene mapping when the causal variant is unknown. In such instances the search space for
23 potential candidate genes can be greatly reduced to those within IBD regions common to all
24 affected family members. Such analyses may help improve our understanding of the

1 biological mechanisms influencing familial ALS, particularly in terms of disease progression,
2 as well as sporadic ALS which remains largely unsolved.

3

4 **Acknowledgements**

5 We thank Carolyn Cecere and Ashley Crook for their assistance in compiling family
6 information. This work was funded by the Motor Neuron Disease Research Institute of
7 Australia (grant to KLW), National Health and Medical Research Council of Australia (grant
8 1095215 to IPB and fellowship 1092023 to KLW) and Macquarie University (grant to
9 KLW).

10

11 **Declaration of Interests**

12 The authors declare no competing interests.

13

14 **Web Resources**

15 The R Project for Statistical Computing, <http://www.r-project.org/>
16 R Studio, <http://www.rstudio.com/>
17 Genetic Mutation Age Estimator, <https://shiny.wehi.edu.au/rafehi.h/mutation-dating/>

18

19 **References**

20 1. Worms, P.M. (2001). The epidemiology of motor neuron diseases: a review of recent
21 studies. *J. Neurol. Sci.* *191*, 3–9.

22 2. Dion, P.A., Daoud, H., and Rouleau, G.A. (2009). Genetics of motor neuron disorders:
23 new insights into pathogenic mechanisms. *Nat. Rev. Genet.* *10*, 769–782.

24 3. Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell,
25 J.R., and Zoing, M.C. (2011). Amyotrophic lateral sclerosis. *Lancet* *377*, 942–955.

1 4. Oskarsson, B., Gendron, T.F., and Staff, N.P. (2018). Amyotrophic Lateral Sclerosis: An
2 Update for 2018. *Mayo Clin. Proc.* *93*, 1617–1628.

3 5. Rowland, L.P., and Shneider, N.A. (2001). Amyotrophic Lateral Sclerosis. *N. Engl. J.*
4 *Med.* *344*, 1688–1700.

5 6. Al-Chalabi, A., Van Den Berg, L.H., and Veldink, J. (2017). Gene discovery in
6 amyotrophic lateral sclerosis: implications for clinical management. *Nat. Rev. Neurol.* *13*,
7 96–104.

8 7. Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral
9 sclerosis genetics. *Nat. Neurosci.* *17*, 17–23.

10 8. Al-Chalabi, A., Fang, F., Hanby, M.F., Leigh, P.N., Shaw, C.E., Ye, W., and Rijssdijk, F.
11 (2010). An estimate of amyotrophic lateral sclerosis heritability using twin data. *J. Neurol.*
12 *Neurosurg. Psychiatry* *81*, 1324–1326.

13 9. Jones, C.T., Swingler, R.J., Simpson, S.A., and Brock, D.J. (1995). Superoxide dismutase
14 mutations in an unselected cohort of Scottish amyotrophic lateral sclerosis patients. *J. Med.*
15 *Genet.* *32*, 290–292.

16 10. Al-Chalabi, A. (1998). Recessive amyotrophic lateral sclerosis families with the D90A
17 SOD1 mutation share a common founder: evidence for a linked protective factor. *Hum. Mol.*
18 *Genet.* *7*, 2045–2050.

19 11. Eisen, A., Mezei, M.M., Stewart, H.G., Fabros, M., Gibson, G., and Andersen, P.M.
20 (2008). SOD1 gene mutations in ALS patients from British Columbia, Canada: Clinical
21 features, neurophysiology and ethical issues in management. *Amyotroph. Lateral Scler. ISSN*
22 *9*, 108–119.

23 12. Saeed, M., Yang, Y., Deng, H.-X., Hung, W.-Y., Siddique, N., Dellefave, L., Gellera, C.,
24 Andersen, P.M., and Siddique, T. (2009). Age and founder effect of SOD1 A4V mutation
25 causing ALS. *Neurology* *72*, 1634–1639.

1 13. Parton, M.J., Broom, W., Andersen, P.M., Al-Chalabi, A., Nigel Leigh, P., Powell, J.F.,
2 and Shaw, C.E. (2002). D90A-SOD1 mediated amyotrophic lateral sclerosis: A single
3 founder for all cases with evidence for aCis-acting disease modifier in the recessive
4 haplotype. *Hum. Mutat.* *20*, 473.

5 14. Niemann, S. (2004). Familial ALS in Germany: origin of the R115G SOD1 mutation by a
6 founder effect. *J. Neurol. Neurosurg. Psychiatry* *75*, 1186–1188.

7 15. Lattante, S., Marangi, G., Luigetti, M., Conte, A., Mandrioli, J., Del Grande, A., Zollino,
8 M., and Sabatelli, M. (2012). Founder effect hypothesis of D11Y SOD1 mutation in Italian
9 amyotrophic lateral sclerosis patients. *Amyotroph. Lateral Scler.* *13*, 241–242.

10 16. Albrechtsen, A., Sand Korneliussen, T., Moltke, I., Van Overseem Hansen, T., Nielsen,
11 F.C., and Nielsen, R. (2009). Relatedness mapping and tracts of relatedness for genome-wide
12 data in the presence of linkage disequilibrium. *Genet. Epidemiol.* *33*, 266–274.

13 17. Henden, L., Freytag, S., Afawi, Z., Baldassari, S., Berkovic, S.F., Bisulli, F., Canafoglia,
14 L., Casari, G., Crompton, D.E., Depienne, C., et al. (2016). Identity by descent fine mapping
15 of familial adult myoclonus epilepsy (FAME) to 2p11.2–2q11.2. *Hum. Genet.* *135*, 1117–
16 1125.

17 18. Pemberton, T.J., Wang, C., Li, J.Z., and Rosenberg, N.A. (2010). Inference of
18 Unexpected Genetic Relatedness among Individuals in HapMap Phase III. *Am. J. Hum.*
19 *Genet.* *87*, 457–464.

20 19. Shaw, M., Yap, T.Y., Henden, L., Bahlo, M., Gardner, A., Kalscheuer, V.M., Haan, E.,
21 Christie, L., Hackett, A., and Gecz, J. (2015). Identical by descent L1CAM mutation in two
22 apparently unrelated families with intellectual disability without L1 syndrome. *Eur. J. Med.*
23 *Genet.* *58*, 364–368.

24 20. McCann, E.P., Williams, K.L., Fifita, J.A., Tarr, I.S., O'Connor, J., Rowe, D.B.,
25 Nicholson, G.A., and Blair, I.P. (2017). The genotype-phenotype landscape of familial

- 1 amyotrophic lateral sclerosis in Australia. *Clin. Genet.* **92**, 259–266.
- 2 21. Brooks, B.R., Miller, R.G., Swash, M., and Munsat, T.L. (2000). El Escorial revisited:
3 revised criteria for the diagnosis of amyotrophic lateral sclerosis. *Amyotroph. Lateral Scler.*
4 Other Motor Neuron Disord. **1**, 293–299.
- 5 22. McCann, E.P., Henden, L., Fifita, J.A., Bauer, D.C., Zhang, K., Grima, N., Chan Moi Fat,
6 S., Twine, N.A., Pamphlett, R., Kiernan, M.C., et al. (2019). High frequency of genetic
7 variants previously implicated in amyotrophic lateral sclerosis among Australian sporadic
8 cases. Manuscript in preparation.
- 9 23. Twine, N.A., Szul, P., Henden, L., McCann, E.P., Blair, I.P., Williams, K.L., and Bauer,
10 D.C. (2019). TRIBES: A user-friendly pipeline for relatedness detection and disease gene
11 discovery. Manuscript in preparation.
- 12 24. Browning, S.R., and Browning, B.L. (2007). Rapid and Accurate Haplotype Phasing and
13 Missing-Data Inference for Whole-Genome Association Studies By Use of Localized
14 Haplotype Clustering. *Am. J. Hum. Genet.* **81**, 1084–1097.
- 15 25. Gusev, A., Lowe, J.K., Stoffel, M., Daly, M.J., Altshuler, D., Breslow, J.L., Friedman,
16 J.M., and Pe’Er, I. (2008). Whole population, genome-wide mapping of hidden relatedness.
17 *Genome Res.* **19**, 318–326.
- 18 26. Li, H., Glusman, G., Huff, C., Caballero, J., and Roach, J.C. (2014). Accurate and Robust
19 Prediction of Genetic Relationship from Whole-Genome Sequences. *PLoS One* **9**, e85437.
- 20 27. Henden, L., Lee, S., Mueller, I., Barry, A., and Bahlo, M. (2018). Identity-by-descent
21 analyses for measuring population dynamics and selection in recombining pathogens. *PLOS*
22 *Genet.* **14**, e1007279.
- 23 28. Fruchterman, T.M.J., and Reingold, E.M. (1991). Graph drawing by force-directed
24 placement. *Softw. Pract. Exp.* **21**, 1129–1164.
- 25 29. Gandolfo, L.C., Bahlo, M., and Speed, T.P. (2014). Dating Rare Mutations from Small

1 Samples with Dense Marker Data. *Genetics* *197*, 1315–1327.

2 30. Su, S.-Y., Kasberger, J., Baranzini, S., Byerley, W., Liao, W., Oksenberg, J., Sherr, E.,
3 and Jorgenson, E. (2012). Detection of identity by descent using next-generation whole
4 genome sequencing data. *BMC Bioinformatics* *13*, 121.

5 31. Yamashita, S., and Ando, Y. (2015). Genotype-phenotype relationship in hereditary
6 amyotrophic lateral sclerosis. *Transl. Neurodegener.* *4*,.

7 32. Hayward, C., Swingler, R.J., Simpson, S.A., and Brock, D.J. (1996). A specific
8 superoxide dismutase mutation is on the same genetic background in sporadic and familial
9 cases of amyotrophic lateral sclerosis. *Am. J. Hum. Genet.* *59*, 1165–1167.

10 33. Cage, R.A. (1985). The Scots Abroad: Labour, Capital, Enterprise 1750–1914.

11 34. Aggarwal, A., and Nicholson, G. (2005). Age dependent penetrance of three different
12 superoxide dismutase 1 (SOD 1) mutations. *Int. J. Neurosci.* *115*, 1119–1130.

13 35. Crook, A., Williams, K.L., Adams, L., Blair, I.P., and Rowe, D.B. (2017). Predictive
14 genetic testing for amyotrophic lateralsclerosis and frontotemporal dementia:
15 genetic counselling considerations. *Amyotroph. Lateral Scler. Front.* *18*, 475–485.

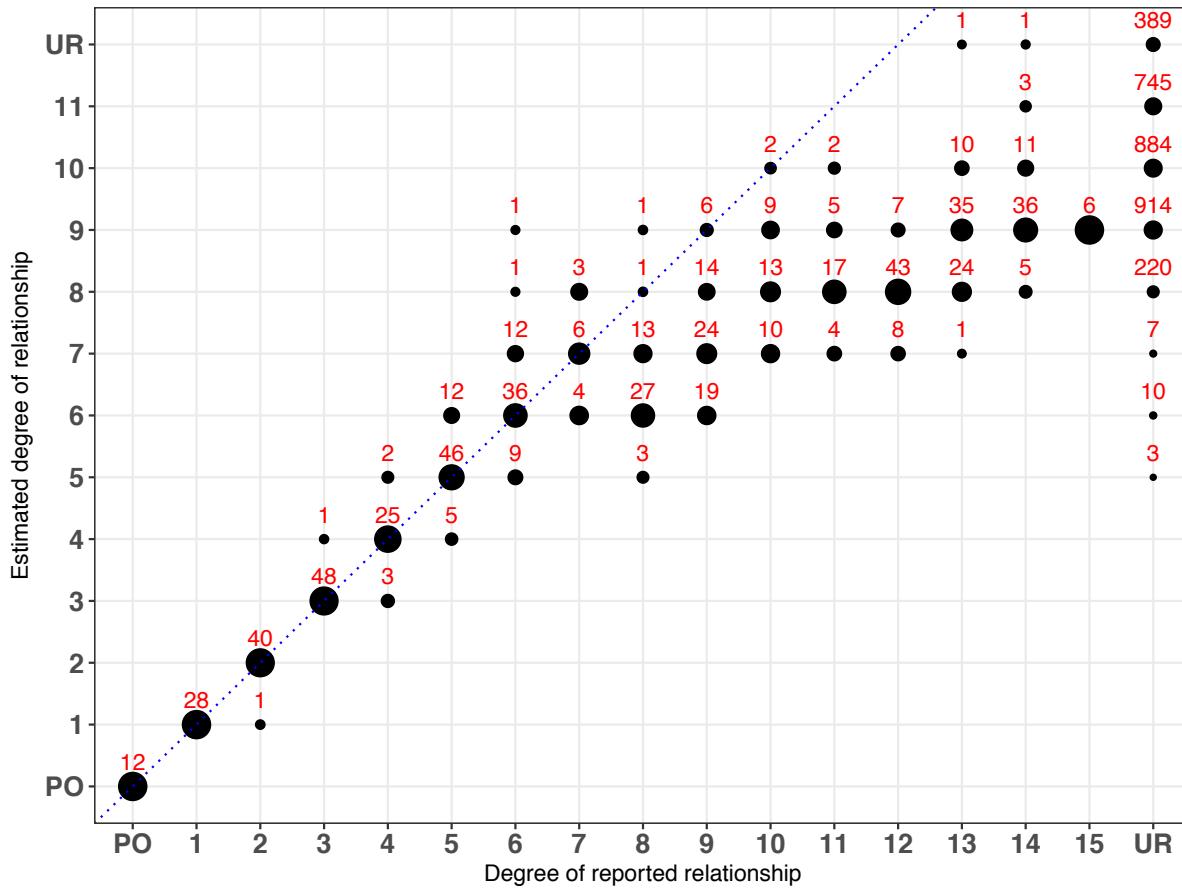
16

17

18

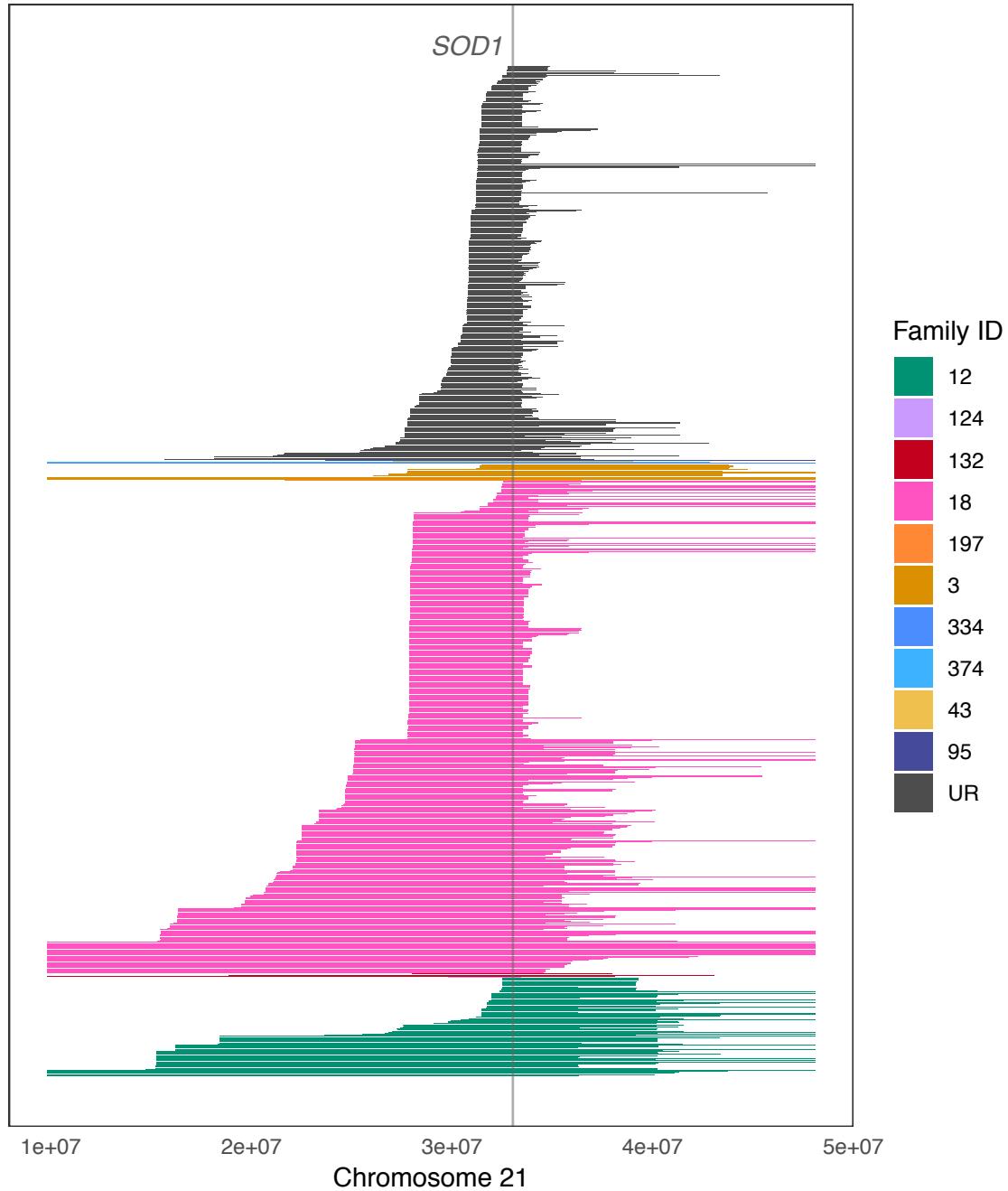
19

20


21

22

23


24

1 Figure titles and legends

3 **Figure 1. The reported vs. estimated degree of relatedness in the *SOD1* cohort using**
4 **TRIBES**

5 The size of the circles represent the percentage of individual pairs whose estimated degree of
6 relationship are exactly the same as their reported relationship. The number of pairs estimated
7 at each point is labelled in red above the corresponding circle. PO and UR are abbreviations
8 for parent-offspring pairs and unrelated pairs, respectively. Individuals were reported as
9 unrelated if they belonged to different families or were sporadic cases. Circles that fall on the
10 blue dotted line, $y=x$, indicate concordance between the reported and estimated relationship.
11 TRIBES correctly estimated 99% of relationships to within 1 degree of the reported
12 relationships for relatives up to 7th degree (third cousins) and identified 3, 10 and 7 pairs of
13 seemingly-unrelated individuals as 5th, 6th and 7th degree relatives respectively.

2 **Figure 2. The distribution of IBD segments that overlap *SOD1*.**

3 Each line represents an IBD segment inferred between a unique pair. IBD segments have
4 been coloured according to whether both individuals within a pair belong to the same family;
5 or whether they belong to different families and are otherwise considered unrelated (UR). All
6 three sporadic ALS patients with *SOD1* variants were considered unrelated. Family 18 had
7 the greatest number of IBD segments inferred over *SOD1* as this family had the greatest

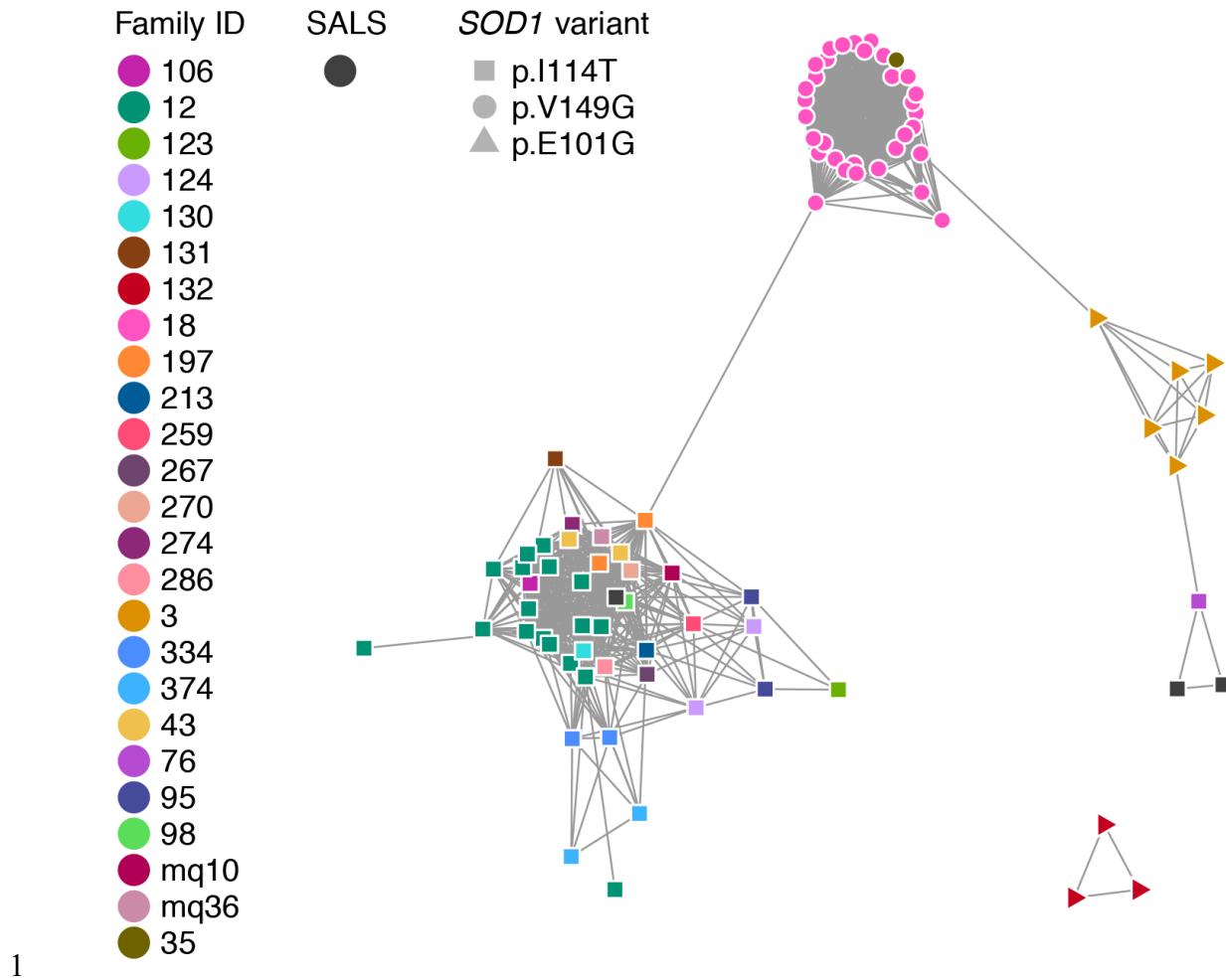
1 number of cases sequenced, followed by family 12. Many IBD segments were inferred over
2 *SOD1* between apparently unrelated individuals, suggesting these individuals were part of an
3 extended family.

4

5

6

7


8

9

10

11

12

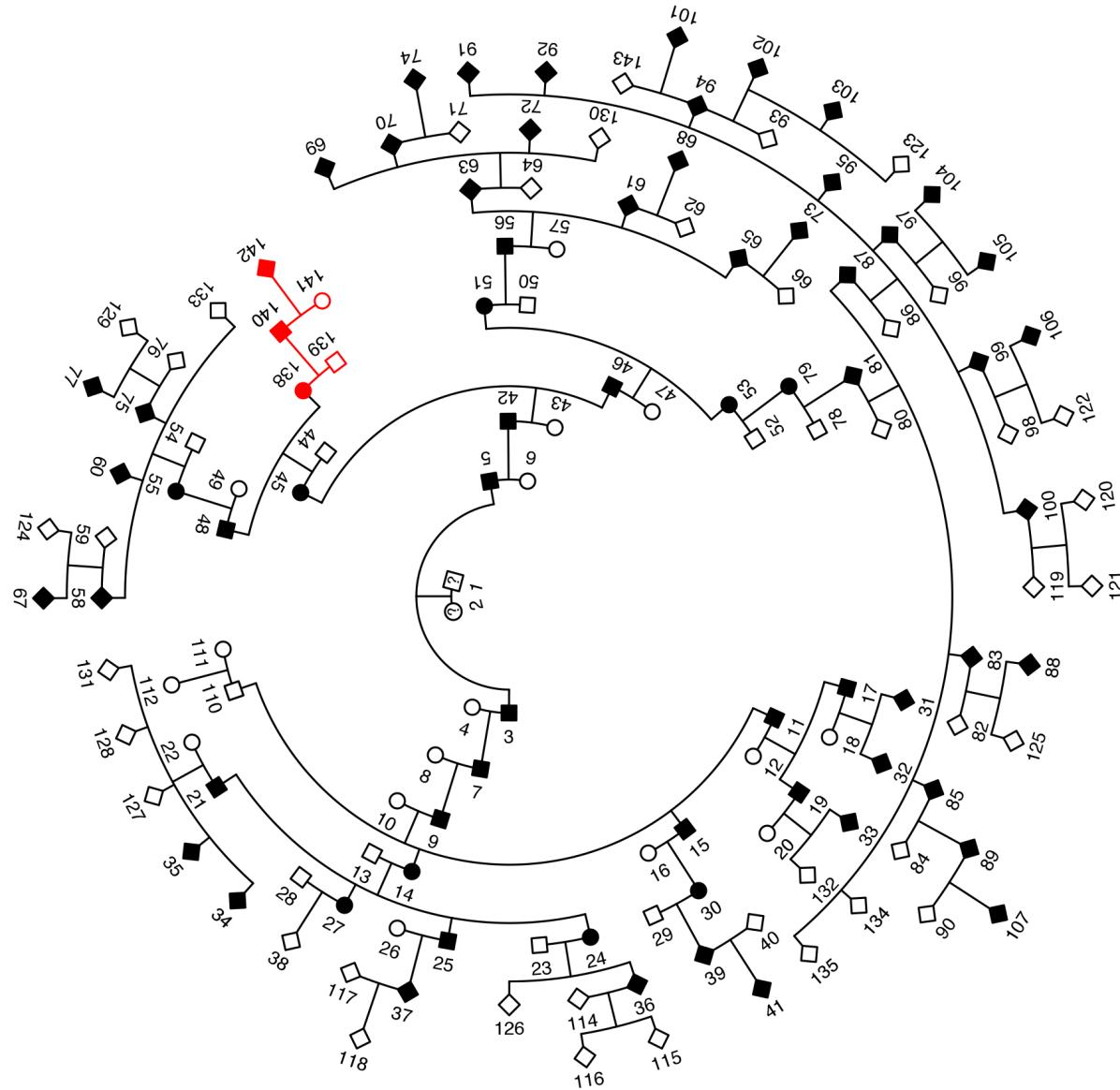
2 **Figure 3. Network of individuals sharing IBD segments over *SOD1*.**

3 Each node is a sample and an edge is drawn between two samples if they were inferred IBD
4 over *SOD1*. Nodes are coloured according to their unique family ID, in addition to the three
5 sporadic ALS cases who have been assigned one colour. All samples have one of three *SOD1*
6 mutations, represented by unique node shapes in the network. There are five clusters in this
7 network, where all cases within each cluster had an identical *SOD1* mutation. The cluster of
8 individuals carrying *SOD1* p.V149G connects family 18 and family 35, indicating they were
9 in fact one family. Similarly, two clusters are present for individuals carrying *SOD1* p.I114T,
10 where these individuals were from different families, including three apparently sporadic
11 ALS cases, indicating two disjoint extended families. Specifically, two sporadic cases were
12 found to be related to each other and family 76, while the third sporadic cases was found to

1 be related to the remaining 20 families with *SOD1* p.I114T. In contrast, *SOD1* p.E101G was
2 unique to each family with this mutation, suggesting independent origins. The three pairs of
3 individuals with discordant mutations were inferred IBD over *SOD1* and likely represent
4 false positive IBD calls.

5

6


7

8

9

10

11

1

2 **Figure 4. Pedigree connecting two Australian families with *SOD1* p.V149G.**

3 A subset of family 18's pedigree (black) with 67 ALS cases over ten generations linked to
4 family 35 (red). The extended pedigree for family 18 had 409 individuals and 67 ALS cases.
5 The sex of individuals from generation 7 to generation 10 have been omitted for
6 confidentiality.

7

8

9

10

1

2 **Table titles and legends**

3

4 **Table 1. Familial and sporadic ALS *SOD1* mutation carrier samples.**

Familial or Sporadic	Family or Sporadic ID	Number of Samples	Number of Pairs ^a	<i>SOD1</i> Mutation
Sporadic	SALS	3	.	p.I114T
Familial	3	6	15	p.E101G
Familial	12	17	136	p.I114T
Familial	18	32 ^b	496	p.V149G
Familial	35	1	0	p.V149G
Familial	43	2	1	p.I114T
Familial	76	1	0	p.I114T
Familial	95	2	1	p.I114T
Familial	98	1	0	p.I114T
Familial	106	1	0	p.I114T
Familial	123	1	0	p.I114T
Familial	124	2	1	p.I114T
Familial	130	1	0	p.I114T
Familial	131	1	0	p.I114T
Familial	132	3	3	p.E101G
Familial	197	2	1	p.I114T
Familial	213	1	0	p.I114T
Familial	259	1	0	p.I114T
Familial	267	1	0	p.I114T
Familial	270	1	0	p.I114T
Familial	274	1	0	p.I114T
Familial	286	1	0	p.I114T
Familial	334	2	1	p.I114T
Familial	374	2	1	p.I114T
Familial	mq10	1	0	p.I114T
Familial	mq36	1	0	p.I114T
Total	.	88	656	.

5 ^aThe number of pairwise comparisons was calculated for familial samples only and was

6 simply the number of unordered 2-sample combinations, i.e. n -choose-2 where n was the

7 number of samples.

1 ^bWGS data from five additional samples did not pass WGS processing quality thresholds and
2 were not used in subsequent analyses.

3 **Table 2.** Newly identified 5th, 6th and 7th degree related pairs.

FID^a 1	IID^b 1	FID^a 2	IID^b 2	Estimated Degree	IID 1 Mutation	IID 2 Mutation
18	18-60	35	35-142	5	p.V149G	p.V149G
18	18-58	35	35-142	5	p.V149G	p.V149G
197	197-060095	mq36	mq36-MQ160147	5	p.I114T	p.I114T
18	18-77	35	35-142	6	p.V149G	p.V149G
18	18-67	35	35-142	6	p.V149G	p.V149G
18	18-77	197	197-060228	6	p.V149G	p.I114T
334	334-060820	374	374-140839	6	p.I114T	p.I114T
334	334-120512	374	374-140839	6	p.I114T	p.I114T
334	334-060820	374	374-140975	6	p.I114T	p.I114T
334	334-120512	374	374-140975	6	p.I114T	p.I114T
123	123-971530	259	259-080285	6	p.I114T	p.I114T
197	197-060228	mq36	mq36-MQ160147	6	p.I114T	p.I114T
SALS	MN201517	SALS	SALS2258	6	p.I114T	p.I114T
76	76-940290	SALS	MN201517	7	p.I114T	p.I114T
76	76-940290	SALS	SALS2258	7	p.I114T	p.I114T
267	267-090221	286	286-090750	7	p.I114T	p.I114T
18	18-41	35	35-142	7	p.V149G	p.V149G
197	197-060095	43	43-070626	7	p.I114T	p.I114T
197	197-060095	43	43-080797	7	p.I114T	p.I114T
197	197-060228	43	43-080797	7	p.I114T	p.I114T

4 ^aFamily or sporadic ID.

5 ^bIndividual ID.

6